1
|
Li W, He Q, Bai J, Wen Y, Hu Z, Deng Z, Huang Q. Moderating role of live microbe between chronic inflammatory airway disease and depressive symptoms. Front Nutr 2025; 12:1572178. [PMID: 40357036 PMCID: PMC12066434 DOI: 10.3389/fnut.2025.1572178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Purpose Our study aims to investigate the impact of dietary live microbe on the relationship between chronic inflammatory airway diseases (CIAD) and depressive symptoms. Methods We selected data from the NHANES database from 2007 to 2020. First, we explored the relationship between CIAD and depressive symptoms using logistic regression analysis. And subgroup analyses were conducted to demonstrate the relationship and whether there was an interaction effect between the two in each subgroup. Then, we further analyzed the effect of live microbe on depressive symptoms in CIAD patients. And subgroup analyses were conducted to assess whether the effect of dietary viable microbial levels on depressive symptoms held true in each subgroup and whether there was an interaction effect. Results A study included 23,072 participants, of whom 5,111 were diagnosed with CIAD, and 5,110 had live microbial information available. Multivariate logistic regression analysis revealed that, compared to those without CIAD, individuals with CIAD had an increased risk of depressive symptoms. Subgroup analysis indicated that, except for educational level and smoking status, all other subgroups demonstrated that CIAD increased the risk of depressive symptoms. Additionally, within the CIAD population, a higher level of live microbe was associated with a reduced risk of depressive symptoms. It is implied that live microbe can negatively modulate the relationship between CIAD and depressive symptoms. Subgroup analysis further showed no significant interaction effects across subgroups (p > 0.05). Conclusion Chronic inflammatory airway diseases can increase the risk of developing depressive symptoms. Dietary live microbe negatively modulate the relationship between CIAD and depressive symptoms. High levels of dietary live microbe significantly reduced the risk of depressive symptoms in patients with CIAD.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Pulmonary and Critical Care Medicine, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Qian He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Jingshan Bai
- Department of Respiratory Medicine, Xiong'an Xuanwu Hospital, Xiong'an, Hebei, China
| | - Youli Wen
- Department of Pulmonary and Critical Care Medicine, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Zefu Hu
- Department of Pulmonary and Critical Care Medicine, Dazhou Dachuan District People's Hospital (Dazhou Third People's Hospital), Dazhou, Sichuan, China
| | - Zhiping Deng
- Department of Pulmonary and Critical Care Medicine, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Qian Huang
- Department of Pulmonary and Critical Care Medicine, Dazhou Dachuan District People's Hospital (Dazhou Third People's Hospital), Dazhou, Sichuan, China
| |
Collapse
|
2
|
Shen CL, Hassan T, Presto P, Payberah D, Devega R, Wakefield S, Dunn DM, Neugebauer V. Novel Insights into Dietary Bioactive Compounds and Major Depressive Disorders: Evidence from Animal Studies and Future Perspectives. J Nutr 2025:S0022-3166(25)00190-7. [PMID: 40274236 DOI: 10.1016/j.tjnut.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Clinical depression, including major depressive disorder (MDD), is a chronic mental illness characterized by persistent sadness and indifference. Depression is associated with neuroinflammation, oxidative stress, and neuronal apoptosis in the brain, resulting in microglial overactivation, decreased neuronal and glial proliferation, monoamine depletion, structural abnormalities, and aberrant biochemical activity via the hypothalamic-pituitary-adrenal axis. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of MDD progression. Here, in this narrative review, we reported the effects of commonly consumed bioactive compounds (curcumin, saffron, garlic, resveratrol, omega-3 fatty acids, ginger, blueberry, tea, and creatine) on MDD and MDD-related neuroinflammation and oxidative stress. The evidence reviewed here is almost exclusively from animal studies and strongly suggests that these commonly consumed bioactive compounds have anti-MDD effects as shown in antidepression-like behaviors, such as increased immobility, sucrose preference, and social interaction. On the basis of the literature/studies reviewed, the proposed molecular mechanisms include 1) the reduction of neuroinflammation activation and oxidative stress, 2) the enhancement of anti-inflammatory and antioxidant properties, 3) the reduction of monoamine oxidase-A production, and 4) the elevation of brain-derived neurotropic factor and neurogenesis. In the future, dietary bioactive compounds on clinical randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in individuals with MDD.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - Taha Hassan
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Daniel Payberah
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rodan Devega
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sarah Wakefield
- Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
3
|
Juneja K, Bhuchakra HP, Sadhukhan S, Mehta I, Niharika A, Thareja S, Nimmakayala T, Sahu S. Creatine Supplementation in Depression: A Review of Mechanisms, Efficacy, Clinical Outcomes, and Future Directions. Cureus 2024; 16:e71638. [PMID: 39553021 PMCID: PMC11567172 DOI: 10.7759/cureus.71638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Depression, affecting millions of people worldwide, is a leading cause of disability globally. It affects not only daily functioning but also interpersonal relationships and overall health by increasing the risks of chronic physical and mental illnesses. Creatine, traditionally recognized for boosting physical performance through its role in producing adenosine triphosphate, has recently shown potential as an adjunctive therapy for treating depression. Creatine's ability to enhance brain energy metabolisms and provide neuroprotection suggests that it can alleviate mood disorders by improving mitochondrial function, increasing cellular resilience, and modulating neurotransmitter systems that regulate mood. This narrative review aims to critically evaluate the research on creatine supplementation for depression, focusing on its efficacy, mechanism of action, risks, and benefits as a treatment for mood disorders. It analyzes preclinical and clinical studies to understand creatine's potential as an adjunctive or alternative therapy for major depressive disorder and bipolar depression and underscores any gaps in current research. Both animal models and human trials indicate creatine's efficacy for the treatment of depression. Creatine supplementation reduces depressive symptoms, particularly when combined with selective serotonin reuptake inhibitors, and may improve brain energy metabolism and neuroplasticity. It is generally well tolerated, though caution is warranted due to potential side effects such as manic episodes in bipolar disorder and renal function impairment in patients with kidney dysfunction. Overall, creatine presents a promising addition to current depression treatments, though further research is needed to establish optimal dosing, long-term efficacy, and safety across diverse patient populations.
Collapse
Affiliation(s)
- Keshav Juneja
- Psychiatry, Byramjee Jeejeebhoy (BJ) Medical College, Ahmedabad, IND
| | - Hamsa Priya Bhuchakra
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Hyderabad, IND
| | | | - Ishani Mehta
- Psychiatry and Behavioral Sciences, Maharaja Agrasen Institute of Medical Research and Education, Hissar, IND
| | - Alla Niharika
- Medical School, Sri Venkateswara Institute of Medical Sciences, Sri Padmavathi Medical College for Women, Tirupati, IND
| | - Swati Thareja
- Medicine and Surgery, The Hans Foundation, New Delhi, IND
| | - Tharun Nimmakayala
- Medicine and Surgery, Apollo Institute of Medical Sciences and Research, Chittoor, IND
| | - Sweta Sahu
- Internal Medicine, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| |
Collapse
|
4
|
Gonzalez DE, Forbes SC, Zapp A, Jagim A, Luedke J, Dickerson BL, Root A, Gil A, Johnson SE, Coles M, Brager A, Sowinski RJ, Candow DG, Kreider RB. Fueling the Firefighter and Tactical Athlete with Creatine: A Narrative Review of a Key Nutrient for Public Safety. Nutrients 2024; 16:3285. [PMID: 39408252 PMCID: PMC11478539 DOI: 10.3390/nu16193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Firefighters, tactical police officers, and warriors often engage in periodic, intermittent, high-intensity physical work in austere environmental conditions and have a heightened risk of premature mortality. In addition, tough decision-making challenges, routine sleep deprivation, and trauma exacerbate this risk. Therefore, identifying strategies to bolster these personnel's health and occupational performance is critical. Creatine monohydrate (CrM) supplementation may offer several benefits to firefighters and tactical athletes (e.g., police, security, and soldiers) due to its efficacy regarding physical performance, muscle, cardiovascular health, mental health, and cognitive performance. Methods: We conducted a narrative review of the literature with a focus on the benefits and application of creatine monohydrate among firefighters. Results: Recent evidence demonstrates that CrM can improve anaerobic exercise capacity and muscular fitness performance outcomes and aid in thermoregulation, decision-making, sleep, recovery from traumatic brain injuries (TBIs), and mental health. Emerging evidence also suggests that CrM may confer an antioxidant/anti-inflammatory effect, which may be particularly important for firefighters and those performing tactical occupations exposed to oxidative and physiological stress, which can elicit systemic inflammation and increase the risk of chronic diseases. Conclusions: This narrative review highlights the potential applications of CrM for related tactical occupations, with a particular focus on firefighters, and calls for further research into these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | | | - Andrew Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Joel Luedke
- Olmsted Medical Center-Sports Medicine, La Crosse, WI 54601, USA;
| | - Broderick L. Dickerson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | | | - Adriana Gil
- College of Medicine, University of Houston, Houston, TX 77021, USA;
| | - Sarah E. Johnson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Macilynn Coles
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Allison Brager
- U.S. Army John F. Kennedy Special Warfare Center and School, Fort Liberty, NC 48397, USA;
| | - Ryan J. Sowinski
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Richard B. Kreider
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| |
Collapse
|
5
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Firman CB, Forder REA, Inhuber V, Cadogan DJ, Fernandez EJ. Short Communication: The effect of in ovo creatine monohydrate on early pen use activity in chicks. Animal 2024; 18:101201. [PMID: 38850576 DOI: 10.1016/j.animal.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
First-week survival and egg hatchability are lower in chicks from younger broiler breeder hen flocks. Creatine is a naturally occurring compound synthesised from the amino acid arginine or obtained from the diet and is important in the storage and transport of energy. Previous research found an improvement in the hatch rate but no posthatch performance improvements when fertile eggs from young breeder hens were injected with creatine monohydrate (CrM) on embryonic day 14. This pilot study aimed to further investigate the possibility of early posthatch improvements by examining the activity of chicks during the 1st week posthatch. Behaviours were broadly classified as active or inactive, the pen was split into three areas, and the amount of time spent in the heat lamp, feed hopper, or drinker line areas was recorded. Chicks given in ovo CrM spent less time in the heat lamp area over the whole 7 days compared to saline (t = 2.352, P = 0.021) and control groups (t = 3.336, P = 0.003) and more time in the feed hopper area during the first 4 days compared to the control group (t = 2.174, P = 0.033). This finding suggests that creatine may improve energy reserves in young chicks allowing them to spend more time away from the heat lamp.
Collapse
Affiliation(s)
- C B Firman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia
| | - R E A Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia.
| | - V Inhuber
- AlzChem Trostberg GmbH, Dr.-Albert-Frank-Str. 32, 83308 Trostberg, Germany
| | - D J Cadogan
- Feedworks Pty. Ltd. Romsey, Victoria 3434, Australia
| | - E J Fernandez
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia
| |
Collapse
|
7
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
8
|
Zhong Z, Lin Y, Zhong L, Yu X, Xie A. Sex Difference in the Association between Depression and Adherence to Recommended Dilated Eye Examinations among Patients with Diabetes: Findings from National Health and Nutrition Examination Survey. Ophthalmic Res 2023; 66:1308-1317. [PMID: 37820597 PMCID: PMC10634276 DOI: 10.1159/000534480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The relationship between depression and adherence to regular dilated fundus examination (DFE) in patients with diabetes remains unclear. This study aimed to assess the association between depression and adherence to annual or biennial DFE among individuals with diabetes. METHODS In this cross-sectional study, we used the National Health and Nutrition Examination Survey database from 2005 to 2016 which contains information on demographics, clinical characteristics, health-related factors, and the time since last DFE. Participants were classified as having depression based on a score of >9 on the Patient Health Questionnaire-9. The main outcomes were the association between depression and the adherence of patients with diabetes to annual or biennial DFE. The second objective was to explore the potential influence of gender in this association. The independent association of depression with DFE compliance was explored by a series of multivariate logistic regression analyses (overall sample and then stratified by sex). RESULTS In total, 3,656 eligible participants were identified. The adherence rates to annual or biennial DFE were all higher for participants without depression than those with depression (64.8% vs. 56.1% and 80.3% vs. 69.7%, respectively). In the multivariate analyses, depression was neither independently associated with the adherence to annual DFE nor biennial DFE in the overall sample. An interaction was observed between depression and gender for the adherence to annual or biennial DFE (p = 0.017 and p = 0.026, respectively). When analyses were stratified by sex, female patients with diabetes and depression had a significantly increased odds ratio (OR) of being nonadherent to annual and biennial DFE (OR = 1.52, 95% confidence interval [CI]: 1.02-2.25, p = 0.039; OR = 1.55, 95% CI: 1.02-2.35, p = 0.039, respectively). However, this relationship was not evident in men with diabetes. CONCLUSIONS The independent association between depression and DFE compliance varied by sex, that is, only female patients with diabetes and depression were at a higher risk of nonadherence to annual or biennial DFE compared to those without depression.
Collapse
Affiliation(s)
- Zhe Zhong
- Department of Ophthalmology, Pingkuang General Hospital, Pingxiang, PR China
| | - Yaying Lin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, PR China
- Wuxi Medical College, Jiangnan University, Wuxi, PR China
| | - Li Zhong
- Department of Operating Room, Pingkuang General Hospital, Pingxiang, PR China
| | - Xi Yu
- Cataract Special Department, Aier Eye Hospital of Yichun, Yichun, PR China
| | - Aihong Xie
- Department of Ophthalmology, Pingkuang General Hospital, Pingxiang, PR China
| |
Collapse
|
9
|
Brandwein C, Leenaars CHC, Becker L, Pfeiffer N, Iorgu AM, Hahn M, Vairani GA, Lewejohann L, Bleich A, Mallien AS, Gass P. A systematic mapping review of the evolution of the rat Forced Swim Test: Protocols and outcome parameters. Pharmacol Res 2023; 196:106917. [PMID: 37690532 DOI: 10.1016/j.phrs.2023.106917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
As depression is projected to become the leading mental disease burden globally by 2030, understanding the underlying pathology, as well as screening potential anti-depressants with a higher efficacy, faster onset of action, and/or fewer side-effects is essential. A commonly used test for screening novel antidepressants and studying depression-linked aspects in rodents is the Porsolt Forced Swim Test. The present systematic mappping review gives a comprehensive overview of the evolution and of the most prevalently used set-ups of this test in rats, including the choice of animals (strain, sex, and age), technical aspects of protocol and environment, as well as reported outcome measures. Additionally, we provide an accessible list of all existing publications, to support informed decision-making for procedural and technical aspects of the test, to thereby enhance reproducibility and comparability. This should further contribute to reducing the number of unnecessarily replicated experiments, and consequently, reduce the number of animals used in future.
Collapse
Affiliation(s)
- Christiane Brandwein
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Cathalijn H C Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Laura Becker
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Natascha Pfeiffer
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ana-Maria Iorgu
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Melissa Hahn
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Gaia A Vairani
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Max‑Dohrn‑Str. 8-10, 10589 Berlin, Germany; Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Anne S Mallien
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Meftahi GH, Hatef B, Pirzad Jahromi G. Creatine Activity as a Neuromodulator in the Central Nervous System. ARCHIVES OF RAZI INSTITUTE 2023; 78:1169-1175. [PMID: 38226371 PMCID: PMC10787915 DOI: 10.32592/ari.2023.78.4.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/05/2023] [Indexed: 01/17/2024]
Abstract
Creatine is a nutritional compound that potentially influences cognitive processing and neuroprotection. Recent evidence has demonstrated that similar to neurotransmitters, creatine is released in an excitotoxic and action potential-dependent manner and acts as a neuromodulator. Creatine deficiency syndromes are characterized by severe mental and developmental disorders. Studies have reported that brain creatine content could be enhanced with creatine supplementation. Nevertheless, there is still limited knowledge about the effects of creatine on the central nervous system. However, ample evidence has proved the neuroprotective effects of creatine on various mental aspects, such as cognition, memory skills, and spatial memory. The present review aimed to review available experimental data and clinical observations confirming creatine roles in the central transmission process. A systematic search in the literature was performed in PubMed, Scopus, Embase, Cochrane Library, Web of Science, and Google Scholar database using all available MeSH terms for Creatine, Phosphocreatine, Bioenergetics, Nervous system, Brain, Cognition, and Neuroprotection. Electronic database searches were combined and duplicates were removed. Here, first, creatine and its potential influence on cognitive health and performance were briefly reviewed. Next, the existing experimental and clinical evidence was specifically explored to understand how creatine could interact as a neurotransmitter in the nervous system. Studies have revealed that exogenous creatine supplementation decreases neuronal cell loss in experimental paradigms of neurological diseases. It was observed that creatine could interact with the N-methyl-D-aspartate receptor, Na+-K+-ATPase enzyme, GABAA receptor, serotonin 1A receptors, and presumably α1-adrenoceptor and play critical roles in the central transmission process which implies that creatine can be considered a neuromodulator.
Collapse
Affiliation(s)
- G H Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Hatef
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - G Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
ALIOMRANI M, MESRIPOUR A, MEHRJARDI AS. Creatine and Alpha-Lipoic Acid Antidepressant-Like Effect Following Cyclosporine A Administration. Turk J Pharm Sci 2022; 19:196-201. [DOI: 10.4274/tjps.galenos.2021.27217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Nersesova LS, Petrosyan MS, Arutjunyan AV. Neuroprotective Potential of Creatine. Hidden Resources of Its Therapeutic and Preventive Use. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
The Problem of Malnutrition Associated with Major Depressive Disorder from a Sex-Gender Perspective. Nutrients 2022; 14:nu14051107. [PMID: 35268082 PMCID: PMC8912662 DOI: 10.3390/nu14051107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) is an incapacitating condition characterized by loss of interest, anhedonia and low mood, which affects almost 4% of people worldwide. With rising prevalence, it is considered a public health issue that affects economic productivity and heavily increases health costs alone or as a comorbidity for other pandemic non-communicable diseases (such as obesity, cardiovascular disease, diabetes, inflammatory bowel diseases, etc.). What is even more noteworthy is the double number of women suffering from MDD compared to men. In fact, this sex-related ratio has been contemplated since men and women have different sexual hormone oscillations, where women meet significant changes depending on the age range and moment of life (menstruation, premenstruation, pregnancy, postpartum, menopause…), which seem to be associated with susceptibility to depressive symptoms. For instance, a decreased estrogen level promotes decreased activation of serotonin transporters. Nevertheless, sexual hormones are not the only triggers that alter neurotransmission of monoamines and other neuropeptides. Actually, different dietary habits and/or nutritional requirements for specific moments of life severely affect MDD pathophysiology in women. In this context, the present review aims to descriptively collect information regarding the role of malnutrition in MDD onset and course, focusing on female patient and especially macro- and micronutrient deficiencies (amino acids, ω3 polyunsaturated fatty acids (ω3 PUFAs), folate, vitamin B12, vitamin D, minerals…), besides providing evidence for future nutritional intervention programs with a sex-gender perspective that hopefully improves mental health and quality of life in women.
Collapse
|
15
|
Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022; 14:nu14050921. [PMID: 35267907 PMCID: PMC8912287 DOI: 10.3390/nu14050921] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
While the vast majority of research involving creatine supplementation has focused on skeletal muscle, there is a small body of accumulating research that has focused on creatine and the brain. Preliminary studies indicate that creatine supplementation (and guanidinoacetic acid; GAA) has the ability to increase brain creatine content in humans. Furthermore, creatine has shown some promise for attenuating symptoms of concussion, mild traumatic brain injury and depression but its effect on neurodegenerative diseases appears to be lacking. The purpose of this narrative review is to summarize the current body of research pertaining to creatine supplementation on total creatine and phophorylcreatine (PCr) content, explore GAA as an alternative or adjunct to creatine supplementation on brain creatine uptake, assess the impact of creatine on cognition with a focus on sleep deprivation, discuss the effects of creatine supplementation on a variety of neurological and mental health conditions, and outline recent advances on creatine supplementation as a neuroprotective supplement following traumatic brain injury or concussion.
Collapse
|
16
|
Exploring the Role of Nutraceuticals in Major Depressive Disorder (MDD): Rationale, State of the Art and Future Prospects. Pharmaceuticals (Basel) 2021; 14:ph14080821. [PMID: 34451918 PMCID: PMC8399392 DOI: 10.3390/ph14080821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and common disorder, with many factors involved in its onset and development. The clinical management of this condition is frequently based on the use of some pharmacological antidepressant agents, together with psychotherapy and other alternatives in most severe cases. However, an important percentage of depressed patients fail to respond to the use of conventional therapies. This has created the urgency of finding novel approaches to help in the clinical management of those individuals. Nutraceuticals are natural compounds contained in food with proven benefits either in health promotion or disease prevention and therapy. A growing interest and economical sources are being placed in the development and understanding of multiple nutraceutical products. Here, we summarize some of the most relevant nutraceutical agents evaluated in preclinical and clinical models of depression. In addition, we will also explore less frequent but interest nutraceutical products which are starting to be tested, also evaluating future roads to cover in order to maximize the benefits of nutraceuticals in MDD.
Collapse
|
17
|
Kanekar S, Ettaro R, Hoffman MD, Ombach HJ, Brown J, Lynch C, Sheth CS, Renshaw PF. Sex-Based Impact of Creatine Supplementation on Depressive Symptoms, Brain Serotonin and SSRI Efficacy in an Animal Model of Treatment-Resistant Depression. Int J Mol Sci 2021; 22:ijms22158195. [PMID: 34360959 PMCID: PMC8348220 DOI: 10.3390/ijms22158195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Rates of major depressive disorder (MDD) increase with living at altitude. In our model, rats housed at moderate altitude (in hypobaric hypoxia) exhibit increased depression-like behavior, altered brain serotonin and a lack of antidepressant response to most selective serotonin reuptake inhibitors (SSRIs). A forebrain deficit in the bioenergetic marker creatine is noted in people living at altitude or with MDD. Methods: Rats housed at 4500 ft were given dietary creatine monohydrate (CRMH, 4% w/w, 5 weeks) vs. un-supplemented diet, and impact on depression-like behavior, brain bioenergetics, serotonin and SSRI efficacy assessed. Results: CRMH significantly improved brain creatine in a sex-based manner. At altitude, CRMH increased serotonin levels in the female prefrontal cortex and striatum but reduced male striatal and hippocampal serotonin. Dietary CRMH was antidepressant in the forced swim test and anti-anhedonic in the sucrose preference test in only females at altitude, with motor behavior unchanged. CRMH improved fluoxetine efficacy (20 mg/kg) in only males at altitude: CRMH + SSRI significantly improved male striatal creatine and serotonin vs. CRMH alone. Conclusions: Dietary CRMH exhibits sex-based efficacy in resolving altitude-related deficits in brain biomarkers, depression-like behavior and SSRI efficacy, and may be effective clinically for SSRI-resistant depression at altitude. This is the first study to link CRMH treatment to improving brain serotonin.
Collapse
Affiliation(s)
- Shami Kanekar
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
- VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Correspondence: ; Tel.: +1-801-587-1477 or +1-801-585-5375
| | - Robert Ettaro
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Michael D. Hoffman
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Hendrik J. Ombach
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Jadeda Brown
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Cayla Lynch
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Chandni S. Sheth
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Perry F. Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
- VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| |
Collapse
|
18
|
Creatine Supplementation in Women's Health: A Lifespan Perspective. Nutrients 2021; 13:nu13030877. [PMID: 33800439 PMCID: PMC7998865 DOI: 10.3390/nu13030877] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite extensive research on creatine, evidence for use among females is understudied. Creatine characteristics vary between males and females, with females exhibiting 70–80% lower endogenous creatine stores compared to males. Understanding creatine metabolism pre- and post-menopause yields important implications for creatine supplementation for performance and health among females. Due to the hormone-related changes to creatine kinetics and phosphocreatine resynthesis, supplementation may be particularly important during menses, pregnancy, post-partum, during and post-menopause. Creatine supplementation among pre-menopausal females appears to be effective for improving strength and exercise performance. Post-menopausal females may also experience benefits in skeletal muscle size and function when consuming high doses of creatine (0.3 g·kg−1·d−1); and favorable effects on bone when combined with resistance training. Pre-clinical and clinical evidence indicates positive effects from creatine supplementation on mood and cognition, possibly by restoring brain energy levels and homeostasis. Creatine supplementation may be even more effective for females by supporting a pro-energetic environment in the brain. The purpose of this review was to highlight the use of creatine in females across the lifespan with particular emphasis on performance, body composition, mood, and dosing strategies.
Collapse
|
19
|
Kreider RB, Stout JR. Creatine in Health and Disease. Nutrients 2021; 13:nu13020447. [PMID: 33572884 PMCID: PMC7910963 DOI: 10.3390/nu13020447] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.
Collapse
Affiliation(s)
- Richard B. Kreider
- Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| | - Jeffery R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, 12494 University Blvd., Orlando, FL 32816, USA;
| |
Collapse
|
20
|
Wu W, Howard D, Sibille E, French L. Differential and spatial expression meta-analysis of genes identified in genome-wide association studies of depression. Transl Psychiatry 2021; 11:8. [PMID: 33414381 PMCID: PMC7791035 DOI: 10.1038/s41398-020-01127-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Major depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and affects individuals of all ages. It causes significant psychosocial impairments and is a major cause of disability. A recent consortium study identified 102 genetic variants and 269 genes associated with depression. To provide targets for future depression research, we prioritized these recently identified genes using expression data. We examined the differential expression of these genes in three studies that profiled gene expression of MDD cases and controls across multiple brain regions. In addition, we integrated anatomical expression information to determine which brain regions and transcriptomic cell types highly express the candidate genes. We highlight 12 of the 269 genes with the most consistent differential expression: MANEA, UBE2M, CKB, ITPR3, SPRY2, SAMD5, TMEM106B, ZC3H7B, LST1, ASXL3, ZNF184 and HSPA1A. The majority of these top genes were found to have sex-specific differential expression. We place greater emphasis on ZNF184 as it is the top gene in a more conservative analysis of the 269. Specifically, the differential expression of ZNF184 was strongest in subcortical regions in males and females. Anatomically, our results suggest the importance of the dorsal lateral geniculate nucleus, cholinergic, monoaminergic and enteric neurons. These findings provide a guide for targeted experiments to advance our understanding of the genetic underpinnings of depression.
Collapse
Affiliation(s)
- Wennie Wu
- Institute for Medical Science, University of Toronto, Toronto, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Derek Howard
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Etienne Sibille
- Institute for Medical Science, University of Toronto, Toronto, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leon French
- Institute for Medical Science, University of Toronto, Toronto, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Snow WM, Cadonic C, Cortes-Perez C, Adlimoghaddam A, Roy Chowdhury SK, Thomson E, Anozie A, Bernstein MJ, Gough K, Fernyhough P, Suh M, Albensi BC. Sex-Specific Effects of Chronic Creatine Supplementation on Hippocampal-Mediated Spatial Cognition in the 3xTg Mouse Model of Alzheimer's Disease. Nutrients 2020; 12:nu12113589. [PMID: 33238473 PMCID: PMC7700653 DOI: 10.3390/nu12113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
The creatine (Cr) energy system has been implicated in Alzheimer’s disease (AD), including reductions in brain phosphoCr and Cr kinase, yet no studies have examined the neurobehavioral effects of Cr supplementation in AD, including the 3xTg mouse model. This studied investigated the effects of Cr supplementation on spatial cognition, plasticity- and disease-related protein levels, and mitochondrial function in the 3xTg hippocampus. Here, 3xTg mice were fed a control or Cr-supplemented (3% Cr (w/w)) diet for 8–9 weeks and tested in the Morris water maze. Mitochondrial oxygen consumption (Seahorse) and protein levels (Western blots) were measured in the hippocampus in subsets of mice. Overall, 3xTg females exhibited impaired memory as compared to males. In females, Cr supplementation decreased escape latency and was associated with increased spatial search strategy use. In males, Cr supplementation decreased the use of spatial search strategies. Pilot data indicated mitochondrial enhancements with Cr supplementation in both sexes. In females, Cr supplementation increased CREB phosphorylation and levels of IκB (NF-κB suppressor), CaMKII, PSD-95, and high-molecular-weight amyloid β (Aβ) species, whereas Aβ trimers were reduced. These data suggest a beneficial preventative effect of Cr supplementation in females and warrant caution against Cr supplementation in males in the AD-like brain.
Collapse
Affiliation(s)
- Wanda M. Snow
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Centre for the Advancement of Teaching and Learning, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: or (W.M.S); (B.C.A.); Tel.: +1-204-235-3942 (B.C.A.)
| | - Chris Cadonic
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Claudia Cortes-Perez
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Subir K. Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Research Institute in Oncology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Adama Anozie
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
| | - Michael J. Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington, Abington, PA 19001, USA;
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Miyoung Suh
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H2A6, Canada; (C.C.); (C.C.-P.); (A.A.); (S.K.R.C.); (E.T.); (A.A.); (P.F.); (M.S.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: or (W.M.S); (B.C.A.); Tel.: +1-204-235-3942 (B.C.A.)
| |
Collapse
|
22
|
Kang I, Kondo D, Kim J, Lyoo IK, Yurgelun-Todd D, Hwang J, Renshaw PF. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med Hypotheses 2020; 146:110398. [PMID: 33246695 DOI: 10.1016/j.mehy.2020.110398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that regulates gene expressions in response to decreased oxygen levels in the tissue, or hypoxia. HIF-1 exerts protective effects against hypoxia by mediating mitochondrial metabolism and consequently reducing oxidative stress. Recently, increased levels of oxidative stress and abnormal energy metabolism in the brain have been suggested to play essential roles in the pathogenesis of depression. Given that HIF-1 activates creatine metabolism and increases phosphocreatine levels in the intestinal epithelial cells, we assume that HIF-1 may induce similar processes in the brain. Elevated phosphocreatine levels in the brain, as measured by magnetic resonance spectroscopy, were associated with better treatment response to the antidepressants in individuals with depression. In addition, oral creatine supplements, which led to increased phosphocreatine levels in the brain, also enhanced the effects of antidepressants in individuals with depression. As such, we hypothesized that increasing the HIF-1, which potentially facilitates creatine metabolism in the brain, might be a new therapeutic target in depression. With this regard, we suggested that interventions to elevate the HIF-1 levels in the brain, including the intermittent hypoxia conditioning and hyperbaric oxygen therapy, might be considered as new additional treatments for depression.
Collapse
Affiliation(s)
- Ilhyang Kang
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Douglas Kondo
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea; Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA; Veterans Integrated Service Network 19 Mental Illness Research Education Clinical, Centers of Excellence, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, South Korea.
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, USA; The Brian Institute, University of Utah School of Medicine, Salt Lake City, USA; Veterans Integrated Service Network 19 Mental Illness Research Education Clinical, Centers of Excellence, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| |
Collapse
|
23
|
Han Y, Jia Y, Tian J, Zhou S, Chen A, Luo X. Urine metabolomic responses to aerobic and resistance training in rats under chronic unpredictable mild stress. PLoS One 2020; 15:e0237377. [PMID: 32785263 PMCID: PMC7423134 DOI: 10.1371/journal.pone.0237377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background It is known that bioenergetics of aerobic and resistance exercise are not the same but both can effectively improve depression. However, it is not clear whether and how different types of exercise can influence depression through the same metabolic regulatory system. Metabolomics provides a way to study the correlation between metabolites and changes in exercise and/or diseases through the quantitative analysis of all metabolites in the organism. The objective of this study was to investigate the effects of aerobic and resistance training on urinary metabolites by metabolomics analysis in a rodent model of depression. Methods Male Sprague-Dawley rats were given chronic unpredictable mild stress (CUMS) for eight weeks. The validity of the modeling was assessed by behavioral indices. After four weeks of CUMS, the rats that developed depression were randomly divided into a depression control group, an aerobic training group and a resistance training group. There was also a normal control group. From week 5, the rats in the exercise groups were trained for 30 min per day, five days per week, for four weeks. The urine samples were collected pre and post the training program, and analyzed by proton nuclear magnetic resonance (1H-NMR) spectroscopy. Results Both types of training improved depression-like behavior in CUMS rats. Compared with normal control, 21 potential biomarkers were identified in the urine of CUMS rats, mainly involved in energy, amino acids and intestinal microbial metabolic pathways. Common responses to the training were found in the two exercise groups that the levels of glutamine, acetone and creatine were significantly recalled (all P<0.05) Aerobic training also resulted in changes in pyruvate and trigonelline, while resistance training modified α-Oxoglutarate, citric acid, and trimethylamine oxide (all P<0.05). Conclusions Aerobic and resistance training resulted in common effects on the metabolic pathways of alanine-aspartate-glutamate, TCA cycle, and butyric acid. Aerobic training also had effects on glycolysis or gluconeogenesis and pyruvate metabolism, while resistance training had additional effect on intestinal microbial metabolism.
Collapse
Affiliation(s)
- Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, Shanxi Province, China
- * E-mail:
| | - Yi Jia
- School of Physical Education, Shanxi University, Taiyuan, Shanxi Province, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi Province, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, New South Wales, Australia
| | - Anping Chen
- School of Physical Education, Shanxi University, Taiyuan, Shanxi Province, China
| | - Xin Luo
- School of Physical Education, Shanxi University, Taiyuan, Shanxi Province, China
| |
Collapse
|
24
|
Duan J, Xie P. The potential for metabolomics in the study and treatment of major depressive disorder and related conditions. Expert Rev Proteomics 2020; 17:309-322. [PMID: 32516008 DOI: 10.1080/14789450.2020.1772059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Major depressive disorder (MDD) is a common mental disease, associated with a debilitating condition and high prevalence. Although the underlying mechanism of MDD remains to be elucidated, several factors, including social, biological, and psychological factors, have been associated with disease pathogenesis. Metabolomics can provide new insights into the prognosis, treatment response, and related biomarkers associated with MDD at the metabolic level. AREAS COVERED In this review, we investigated the metabolic changes identified in different bio-samples from animal models of depression and MDD patients. Moreover, we summarized the metabolites associated with antidepressant treatment responses. Keywords used for the literature searches were 'depression' [MeSH] and 'metabolomics' [MeSH], in PubMed. EXPERT OPINION Metabolomic evidence in humans has indicated that amino acid metabolism, energy metabolism, and lipid metabolism are the primary metabolic alterations that are observed in the etiology of MDD, and animal models serve as an important theoretical reference in this field. Metabolomics has shed new light on the pathogenic mechanisms and treatment responses during MDD; however, study results are not always consistent. The application of metabolomic results to clinical practice will require the integration of different biological samples and other omics studies, as well as the clinical validation of study findings.
Collapse
Affiliation(s)
- Jiajia Duan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University , Chongqing, China
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University , Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University , Chongqing, China
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University , Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
25
|
Lago N, Kaufmann FN, Negro-Demontel ML, Alí-Ruiz D, Ghisleni G, Rego N, Arcas-García A, Vitureira N, Jansen K, Souza LM, Silva RA, Lara DR, Pannunzio B, Abin-Carriquiry JA, Amo-Aparicio J, Martin-Otal C, Naya H, McGavern DB, Sayós J, López-Vales R, Kaster MP, Peluffo H. CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. Proc Natl Acad Sci U S A 2020; 117:6651-6662. [PMID: 32152116 PMCID: PMC7104369 DOI: 10.1073/pnas.1911816117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A role for microglia in neuropsychiatric diseases, including major depressive disorder (MDD), has been postulated. Regulation of microglial phenotype by immune receptors has become a central topic in many neurological conditions. We explored preclinical and clinical evidence for the role of the CD300f immune receptor in the fine regulation of microglial phenotype and its contribution to MDD. We found that a prevalent nonsynonymous single-nucleotide polymorphism (C/T, rs2034310) of the human CD300f receptor cytoplasmic tail inhibits the protein kinase C phosphorylation of a threonine and is associated with protection against MDD, mainly in women. Interestingly, CD300f-/- mice displayed several characteristic MDD traits such as augmented microglial numbers, increased interleukin 6 and interleukin 1 receptor antagonist messenger RNA, alterations in synaptic strength, and noradrenaline-dependent and persistent depressive-like and anhedonic behaviors in females. This behavioral phenotype could be potentiated inducing the lipopolysaccharide depression model. RNA sequencing and biochemical studies revealed an association with impaired microglial metabolic fitness. In conclusion, we report a clear association that links the function of the CD300f immune receptor with MDD in humans, depressive-like and anhedonic behaviors in female mice, and altered microglial metabolic reprogramming.
Collapse
MESH Headings
- Anhedonia
- Animals
- Behavior, Animal
- Cohort Studies
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/pathology
- Depressive Disorder, Major/psychology
- Female
- Gene Expression Profiling
- Humans
- Inflammation/etiology
- Inflammation/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/pathology
- Polymorphism, Single Nucleotide
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Synapses
Collapse
Affiliation(s)
- Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Fernanda N Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, 88040-900 Santa Catarina, Brazil
| | - María Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Daniela Alí-Ruiz
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Andrea Arcas-García
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Nathalia Vitureira
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Department of Physiology, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Karen Jansen
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Luciano M Souza
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Ricardo A Silva
- Department of Life and Health Sciences, Catholic University of Pelotas, 96015-560 Rio Grande do Sul, Brazil
| | - Diogo R Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, Brazil
| | - Bruno Pannunzio
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | | | - Jesús Amo-Aparicio
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Celia Martin-Otal
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Hugo Naya
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebrón Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, 88040-900 Santa Catarina, Brazil
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay;
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| |
Collapse
|
26
|
Bakian AV, Huber RS, Scholl L, Renshaw PF, Kondo D. Dietary creatine intake and depression risk among U.S. adults. Transl Psychiatry 2020; 10:52. [PMID: 32066709 PMCID: PMC7026167 DOI: 10.1038/s41398-020-0741-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Creatine monohydrate is actively being researched for its antidepressant effects, yet little is known about the link between dietary creatine and depression risk. This study examines the association between dietary creatine and depression in U.S. adults, using data from the 2005 to 2012 National Health and Nutrition Examination Survey (NHANES). Patient health questionnaire, dietary creatine intake and covariates were obtained on 22,692 NHANES participants ≥20 years of age. Depression prevalence was calculated within quartiles of dietary creatine intake. Adjusted logistic regression models were formulated to determine the relationship between dietary creatine intake and depression risk. Additional covariates included income to poverty ratio, race/ethnicity, sex, age, education level, body mass index, healthcare access, smoking status, physical activity, and antidepressant/anxiolytic medication use. Models were further stratified by sex, age group, and antidepressant/anxiolytic medication use. Depression prevalence was 10.23/100 persons (95% CI: 8.64-11.83) among NHANES participants in the lowest quartile of dietary creatine intake compared with 5.98/100 persons (95% CI: 4.97-6.98) among participants in the highest quartile (p < 0.001). An inverse association was measured between dietary creatine and depression (adjusted odds ratio (AOR) = 0.68, 95% CI: 0.52-0.88). Dietary creatine's negative association with depression was strongest in females (AOR = 0.62, 95% CI: 0.40-0.98), participants aged 20-39 years (AOR = 0.52, 95% CI: 0.34-0.79) and participants not taking antidepressant/anxiolytic medication (AOR = 0.58, 95% CI: 0.43-0.77). Study results indicate a significant negative relationship between dietary creatine and depression in a nationally representative adult cohort. Further research is warranted to investigate the role creatine plays in depression, particularly among women and across the lifespan.
Collapse
Affiliation(s)
- Amanda V. Bakian
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Rebekah S. Huber
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Lindsay Scholl
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Perry F. Renshaw
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA ,The Rocky Mountain Veterans Integrated Service Network 19 Mental Illness Research, Education, and Clinical Centers of Excellence, Salt Lake City, UT USA
| | - Douglas Kondo
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA ,The Rocky Mountain Veterans Integrated Service Network 19 Mental Illness Research, Education, and Clinical Centers of Excellence, Salt Lake City, UT USA
| |
Collapse
|
27
|
Cassol G, Godinho DB, de Zorzi VN, Farinha JB, Della-Pace ID, de Carvalho Gonçalves M, Oliveira MS, Furian AF, Fighera MR, Royes LFF. Potential therapeutic implications of ergogenic compounds on pathophysiology induced by traumatic brain injury: A narrative review. Life Sci 2019; 233:116684. [DOI: 10.1016/j.lfs.2019.116684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
|
28
|
Kious BM, Kondo DG, Renshaw PF. Creatine for the Treatment of Depression. Biomolecules 2019; 9:E406. [PMID: 31450809 PMCID: PMC6769464 DOI: 10.3390/biom9090406] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Depressed mood, which can occur in the context of major depressive disorder, bipolar disorder, and other conditions, represents a serious threat to public health and wellness. Conventional treatments are not effective for a significant proportion of patients and interventions that are often beneficial for treatment-refractory depression are not widely available. There is, therefore, an immense need to identify novel antidepressant strategies, particularly strategies that target physiological pathways that are distinct from those addressed by conventional treatments. There is growing evidence from human neuroimaging, genetics, epidemiology, and animal studies that disruptions in brain energy production, storage, and utilization are implicated in the development and maintenance of depression. Creatine, a widely available nutritional supplement, has the potential to improve these disruptions in some patients, and early clinical trials indicate that it may have efficacy as an antidepressant agent.
Collapse
Affiliation(s)
- Brent M Kious
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Douglas G Kondo
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| | - Perry F Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| |
Collapse
|
29
|
Fernández MJF, Valero-Cases E, Rincon-Frutos L. Food Components with the Potential to be Used in the Therapeutic Approach of Mental Diseases. Curr Pharm Biotechnol 2019; 20:100-113. [PMID: 30255749 DOI: 10.2174/1389201019666180925120657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neurological disorders represent a high influence in our society throughout the world. Although the symptoms arising from those diseases are well known, the causes and mechanisms are complex and depending on multiple factors. Some food components consumed as part of our diet have been studied regarding their incidence in different common neurological diseases such as Alzheimer disease, major depression, Parkinson disease, autism and schizophrenia among others. OBJECTIVE In this review, information has been gathered on the main evidences arising from studies on the most promising food components, related to their therapeutic potential, as part of dietary supplements or through the diet, as an alternative or a complement of the traditional drug treatments. Those food components include vitamins, minerals, fatty acids, carotenoids, polyphenols, bioactive peptides, probiotics, creatine and saponins. RESULTS Many in vitro and in vivo animal studies, randomized and placebo control trials, and systematic reviews on the scientific results published in the literature, have been discussed, highlighting the more recent advances, also with the aim to explore the main research needs. Particular attention has been paid to the mechanisms of action of the compounds regarding their anti-inflammatory, antioxidative properties and neuronal protection. CONCLUSION More research is needed to prove the therapeutic potential of the food components based on scientific evidence, also on intervention studies to demonstrate the improvement of neuronal and cognitive impairments.
Collapse
Affiliation(s)
- María J F Fernández
- Agro-food Technology Department, High Polytechnic School, Miguel Hernandez University, Orihuela, Alicante, Spain
| | - Estefanía Valero-Cases
- Agro-food Technology Department, High Polytechnic School, Miguel Hernandez University, Orihuela, Alicante, Spain
| | - Laura Rincon-Frutos
- Ocular Neurobiology Group, Instituto de Neurociencias de Alicante UMH-CSIC, San Juan, Alicante, Spain
| |
Collapse
|
30
|
Balestrino M, Adriano E. Beyond sports: Efficacy and safety of creatine supplementation in pathological or paraphysiological conditions of brain and muscle. Med Res Rev 2019; 39:2427-2459. [PMID: 31012130 DOI: 10.1002/med.21590] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
Creatine is pivotal in energy metabolism of muscle and brain cells, both in physiological and in pathological conditions. Additionally, creatine facilitates the differentiation of muscle and neuronal cells. Evidence of effectiveness of creatine supplementation in improving several clinical conditions is now substantial, and we review it in this paper. In hereditary diseases where its synthesis is impaired, creatine has a disease-modifying capacity, especially when started soon after birth. Strong evidence, including a Cochrane meta-analysis, shows that it improves muscular strength and general well-being in muscular dystrophies. Significant evidence exists also of its effectiveness in secondary prevention of statin myopathy and of treatment-resistant depression in women. Vegetarians and vegans do not consume any dietary creatine and must synthesize all they need, spending most of their methylation capacity. Nevertheless, they have a lower muscular concentration of creatine. Creatine supplementation has proved effective in increasing muscular and neuropsychological performance in vegetarians or vegans and should, therefore, be recommended especially in those of them who are athletes, heavy-duty laborers or who undergo intense mental effort. Convincing evidence also exists of creatine effectiveness in muscular atrophy and sarcopenia in the elderly, and in brain energy shortage (mental fatigue, sleep deprivation, environmental hypoxia as in mountain climbing, and advanced age). Furthermore, we review more randomized, placebo-controlled trials showing that creatine supplementation is safe up to 20 g/d, with a possible caveat only in people with kidney disease. We trust that the evidence we review will be translated into clinical practice and will spur more research on these subjects.
Collapse
Affiliation(s)
- Maurizio Balestrino
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrico Adriano
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, Genova, Italy
| |
Collapse
|
31
|
Pazini FL, Cunha MP, Rodrigues ALS. The possible beneficial effects of creatine for the management of depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:193-206. [PMID: 30193988 DOI: 10.1016/j.pnpbp.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 01/23/2023]
Abstract
Depression, a highly prevalent neuropsychiatric disorder worldwide, causes a heavy burden for the society and is associated with suicide risk. The treatment of this disorder remains a challenge, since currently available antidepressants provide a slow and, often, incomplete response and cause several side effects that contribute to diminish the adhesion of patients to treatment. In this context, several nutraceuticals have been investigated regarding their possible beneficial effects for the management of this neuropsychiatric disorder. Creatine stands out as a supplement frequently used for ergogenic purpose, but it also is a neuroprotective compound with potential to treat or mitigate a broad range of central nervous systems diseases, including depression. This review presents preclinical and clinical evidence that creatine may exhibit antidepressant properties. The focus is given on the possible molecular mechanisms underlying its effects based on the results obtained with different animal models of depression. Finally, evidence obtained in animal models of depression addressing the possibility that creatine may produce rapid antidepressant effect, similar to ketamine, are also presented and discussed.
Collapse
Affiliation(s)
- Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
32
|
Abstract
After participating in this activity, learners should be better able to:• Assess epidemiologic evidence that increased altitude of residence is linked to increased risk of depression and suicide• Evaluate strategies to address hypoxia-related depression and suicidal ideation ABSTRACT: Suicide and major depressive disorder (MDD) are complex conditions that almost certainly arise from the influences of many interrelated factors. There are significant regional variations in the rates of MDD and suicide in the United States, suggesting that sociodemographic and environmental conditions contribute. Here, we review epidemiological evidence that increases in the altitude of residence are linked to the increased risk of depression and suicide. We consider the possibility that chronic hypobaric hypoxia (low blood oxygen related to low atmospheric pressure) contributes to suicide and depression, which is suggested by animal models, short-term studies in humans, and the effects of hypoxic medical conditions on suicide and depression. We argue that hypobaric hypoxia could promote suicide and depression by altering serotonin metabolism and brain bioenergetics; both of these pathways are implicated in depression, and both are affected by hypoxia. Finally, we briefly examine treatment strategies to address hypoxia-related depression and suicidal ideation that are suggested by these findings, including creatine monohydrate and the serotonin precursors tryptophan and 5-hydroxytryptophan.
Collapse
|
33
|
Cunha MP, Pazini FL, Lieberknecht V, Rodrigues ALS. Subchronic administration of creatine produces antidepressant-like effect by modulating hippocampal signaling pathway mediated by FNDC5/BDNF/Akt in mice. J Psychiatr Res 2018; 104:78-87. [PMID: 30005372 DOI: 10.1016/j.jpsychires.2018.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Creatine has been shown to play a significant role in the pathophysiology and treatment of major depressive disorder (MDD) in preclinical and clinical studies. However, the biological mechanisms underlying its antidepressant effect is still not fully elucidated. This study investigated the effect of creatine (p.o.) administered for 21 days in the behavior of mice submitted to tail suspension test (TST), a predictive test of antidepressant activity. Creatine reduced the immobility time in the TST (1-10 mg/kg), without affecting locomotor activity, a finding consistent with an antidepressant profile. Creatine administration increased the ubiquitous creatine kinase (uCK) and creatine kinase brain isoform (CK-B) mRNA in the hippocampus of mice. Taking into account that PGC-1α induces FNDC5/irisin expression mediating BDNF-dependent neuroplasticity, the effect of creatine administration (1 mg/kg, p. o.) on the hippocampal PGC-1α, FNDC5 and BDNF gene expression was investigated. Creatine treatment increased PGC-1α, FNDC5 and BDNF mRNA in the hippocampus as well as BDNF immunocontent. The involvement of BDNF downstream intracellular signaling pathway mediated by Akt, proapoptotic proteins BAX and BAD and antiapoptotic proteins Bcl2 and Bcl-xL was also investigated following creatine treatment. Creatine increased Akt phosphorylation (Ser 473), and Bcl2 mRNA and protein levels, and Bcl-xL mRNA, whereas BAD mRNA was decreased following creatine administration in the hippocampus. Altogether these results indicate that creatine antidepressant-like effect may be dependent on Akt activation and increased expression of the neuroprotective proteins in the hippocampus of mice. The obtained data reinforce the antidepressant property of creatine and highlight the role of these molecular targets in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Mauricio P Cunha
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil.
| | - Francis L Pazini
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| | - Vicente Lieberknecht
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| |
Collapse
|
34
|
Antidepressant effects of creatine on amyloid β 1-40-treated mice: The role of GSK-3β/Nrf 2 pathway. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:270-278. [PMID: 29753049 DOI: 10.1016/j.pnpbp.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction and neuronal lost in specific brain areas including hippocampus, resulting in memory/learning deficits and cognitive impairments. In addition, non-cognitive symptoms are reported in AD patients, such as anxiety, apathy and depressed mood. The current antidepressant drugs present reduced efficacy to improve depressive symptoms in AD patients. Here, we investigated the ability of creatine, a compound with neuroprotective and antidepressant properties, to counteract amyloid β1-40 peptide-induced depressive-like behavior in mice. Moreover, we addressed the participation of the intracellular signaling pathway mediated by glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid-2-related factor 2 (Nrf2) in the creatine effects. Aß1-40 administration (400 pmol/mouse, i.c.v.) increased the immobility time in the tail suspension test and decreased the grooming time and increased latency to grooming in the splash test, indicative of depressive-like behavior. These impairments were attenuated by creatine (0.01 and 10 mg/kg, p.o.) and fluoxetine (10 mg/kg, p.o., positive control). No significant alterations on locomotor performance were observed in the open field. Aß1-40 administration did not alter hippocampal phospho-GSK-3β (Ser9)/total GSK-3β, total GSK-3β and heme oxygenase-1 (HO-1) immunocontents. However, Aß1-40-infused mice treated with creatine (0.01 mg/kg) presented increased phosphorylation of GSK-3β(Ser9) and HO-1 immunocontent in the hippocampus. Fluoxetine per se increased GSK-3β(Ser9) phosphorylation, but did not alter HO-1 levels. In addition, Aß1-40 administration increased hippocampal glutathione (GSH) levels as well as glutathione reductase (GR) and thioredoxin reductase (TrxR) activities, and these effects were abolished by creatine and fluoxetine. This study provides the first evidence of the antidepressive-like effects of creatine in Aß1-40-treated mice, which were accompanied by hippocampal inhibition of GSK-3β and modulation of antioxidant defenses. These findings indicate the potential of creatine for the treatment of depression associated with AD.
Collapse
|
35
|
Manchishi SM, Cui RJ, Zou XH, Cheng ZQ, Li BJ. Effect of caloric restriction on depression. J Cell Mol Med 2018; 22:2528-2535. [PMID: 29465826 PMCID: PMC5908110 DOI: 10.1111/jcmm.13418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, most of evidence shows that caloric restriction could induce antidepressant‐like effects in animal model of depression. Based on studies of the brain–gut axis, some signal pathways were common between the control of caloric restriction and depression. However, the specific mechanism of the antidepressant‐like effects induced by caloric restriction remains unclear. Therefore, in this article, we summarized clinical and experimental studies of caloric restriction on depression. This review may provide a new therapeutic strategy for depression.
Collapse
Affiliation(s)
- Stephen Malunga Manchishi
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Physiology, University of Cambridge, Cambridge, UK
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zi Qian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Sheth C, Ombach H, Olson P, Renshaw PF, Kanekar S. Increased Anxiety and Anhedonia in Female Rats Following Exposure to Altitude. High Alt Med Biol 2018; 19:81-90. [PMID: 29431475 DOI: 10.1089/ham.2017.0125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sheth, Chandni, Hendrik Ombach, Paul Olson, Perry F. Renshaw, and Shami Kanekar. Increased anxiety and anhedonia in female rats following exposure to altitude. High Alt Med Biol. 19:81-90, 2018.-Anxiety disorders are chronic, highly prevalent conditions, often comorbid with depression. Both anxiety and depression form major risk factors for suicide. Living at altitude is associated with higher rates of depression and suicide, leading us to address whether anxiety disorders may also be amplified at altitude. Using a novel translational animal model, we previously showed that depression-like behavior increases with altitude of housing in female, but not male rats. We now use this model to examine the effects of altitude on both anxiety-like behavior and anhedonia, a core symptom of depression. After housing for a week at sea level, 4500 or 10,000 ft, rats were evaluated for anxiety in the open-field test or the elevated plus maze, and anhedonia in the sucrose preference test. Another group was tested at baseline. Anxiety-like behavior increased in females housed at altitude. In females, lower sucrose preference was seen in those housed at 10,000 ft versus those at sea level. Males showed no change in anxiety or anhedonia across groups. These data suggest that living at moderate-high altitude may pose a risk factor for those vulnerable to anxiety disorders, with the potential to be particularly detrimental to females at altitude.
Collapse
Affiliation(s)
- Chandni Sheth
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Hendrik Ombach
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Paul Olson
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Perry F Renshaw
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah.,2 VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC) , Salt Lake City Veterans Health Administration, Salt Lake City, Utah
| | - Shami Kanekar
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah.,2 VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC) , Salt Lake City Veterans Health Administration, Salt Lake City, Utah
| |
Collapse
|
37
|
Snow WM, Cadonic C, Cortes-Perez C, Roy Chowdhury SK, Djordjevic J, Thomson E, Bernstein MJ, Suh M, Fernyhough P, Albensi BC. Chronic dietary creatine enhances hippocampal-dependent spatial memory, bioenergetics, and levels of plasticity-related proteins associated with NF-κB. ACTA ACUST UNITED AC 2018; 25:54-66. [PMID: 29339557 PMCID: PMC5772392 DOI: 10.1101/lm.046284.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
The brain has a high demand for energy, of which creatine (Cr) is an important regulator. Studies document neurocognitive benefits of oral Cr in mammals, yet little is known regarding their physiological basis. This study investigated the effects of Cr supplementation (3%, w/w) on hippocampal function in male C57BL/6 mice, including spatial learning and memory in the Morris water maze and oxygen consumption rates from isolated mitochondria in real time. Levels of transcription factors and related proteins (CREB, Egr1, and IκB to indicate NF-κB activity), proteins implicated in cognition (CaMKII, PSD-95, and Egr2), and mitochondrial proteins (electron transport chain Complex I, mitochondrial fission protein Drp1) were probed with Western blotting. Dietary Cr decreased escape latency/time to locate the platform (P < 0.05) and increased the time spent in the target quadrant (P < 0.01) in the Morris water maze. This was accompanied by increased coupled respiration (P < 0.05) in isolated hippocampal mitochondria. Protein levels of CaMKII, PSD-95, and Complex 1 were increased in Cr-fed mice, whereas IκB was decreased. These data demonstrate that dietary supplementation with Cr can improve learning, memory, and mitochondrial function and have important implications for the treatment of diseases affecting memory and energy homeostasis.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chris Cadonic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Claudia Cortes-Perez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Michael J Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington, Abington, Pennsylvania 19001, USA
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada
| |
Collapse
|
38
|
Liu YY, Zhou XY, Yang LN, Wang HY, Zhang YQ, Pu JC, Liu LX, Gui SW, Zeng L, Chen JJ, Zhou CJ, Xie P. Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats. PLoS One 2017; 12:e0176725. [PMID: 28453574 PMCID: PMC5409051 DOI: 10.1371/journal.pone.0176725] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/15/2017] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder is a serious mental disorder with high morbidity and mortality. The role of social stress in the development of depression remains unclear. Here, we used the social defeat stress paradigm to induce depression-like behavior in rats, then evaluated the behavior of the rats and measured metabolic changes in the prefrontal cortex using gas chromatography-mass spectrometry. Within the first week after the social defeat procedure, the sucrose preference test (SPT), open field test (OFT), elevated plus maze (EPM) and forced swim test (FST) were conducted to examine the depressive-like and anxiety-like behaviors. For our metabolite analysis, multivariate statistics were applied to observe the distribution of all samples and to differentiate the socially defeated group from the control group. Ingenuity pathway analysis was used to find the potential relationships among the differential metabolites. In the OFT and EPM, there were no significant differences between the two experimental groups. In the SPT and FST, socially defeated rats showed less sucrose intake and longer immobility time compared with control rats. Metabolic profiling identified 25 significant variables with good predictability. Ingenuity pathways analysis revealed that “Hereditary Disorder, Neurological Disease, Lipid Metabolism” was the most significantly altered network. Stress-induced alterations of low molecular weight metabolites were observed in the prefrontal cortex of rats. Particularly, lipid metabolism, amino acid metabolism, and energy metabolism were significantly perturbed. The results of this study suggest that repeated social defeat can lead to metabolic changes and depression-like behavior in rats.
Collapse
Affiliation(s)
- Yi-Yun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xin-Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li-Ning Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yu-Qing Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jun-Cai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Si-Wen Gui
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jian-Jun Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Chan-Juan Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
39
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
40
|
Effect of creatine monohydrate supplementation on learning, memory and neuromuscular coordination in female albino mice. Acta Neuropsychiatr 2017; 29:27-34. [PMID: 27345702 DOI: 10.1017/neu.2016.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Research findings made over the last few years have highlighted the important role of creatine (Cr) in health and disease. However, limited information is available regarding the effect of Cr supplementation on cognation. Present study was designed to determine the effect of variable doses of Cr (1% and 3%) on selected parameters of female albino mice behaviour. METHODS Following weaning, on 20th postnatal day, female albino mice were divided into three groups on the basis of dietary supplementation. Control group were was fed with normal rodent diet, whereas treated groups received diet supplemented with 1% and 3% Creatine monohydrate (Ssniff, Germany) for 10 weeks. Morris water maze (MWM), Rota rod and open field (OF) tests were carried out at the end of diet supplementation for neurofunctional assessment in all the groups. RESULTS Data analysis showed that Cr supplementation did not affect the muscular activity and during rota rod test as well as locomotor and exploratory behaviour during OF test. Results of MWM probe trial indicated that mice supplemented with 3% Cr had significantly more entries in platform area than other two treatments (p=0.03) indicating improved spatial memory. Body weight remained unaffected (p>0.05) when compared between three experimental treatments. CONCLUSION Female mice supplemented with 3% Cr showed improved spatial memory than mice fed on 1% Cr-supplemented diet and mice on normal rodent diet.
Collapse
|
41
|
van Woerkom AE. A fully integrated new paradigm for lithium's mode of action - lithium utilizes latent cellular fail-safe mechanisms. Neuropsychiatr Dis Treat 2017; 13:275-302. [PMID: 28203080 PMCID: PMC5293501 DOI: 10.2147/ndt.s123612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is proposed that lithium's therapeutic effects occur indirectly by augmenting a cascade of protective "fail-safe" pathways pre-configured to activate in response to a dangerous low cell [Mg++] situation, eg, posttraumatic brain injury, alongside relative cell adenosine triphosphate depletion. Lithium activates cell protection, as it neatly mimics a lowered intracellular [Mg++] level.
Collapse
Affiliation(s)
- Arthur Ernst van Woerkom
- South Birmingham and Solihull Mental Health NHS Foundation Trust, Longbridge CMHT, Rubery, Birmingham, UK
| |
Collapse
|
42
|
Zhou X, Liu L, Zhang Y, Pu J, Yang L, Zhou C, Yuan S, Zhang H, Xie P. Metabolomics identifies perturbations in amino acid metabolism in the prefrontal cortex of the learned helplessness rat model of depression. Neuroscience 2016; 343:1-9. [PMID: 27919695 DOI: 10.1016/j.neuroscience.2016.11.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Major depressive disorder is a serious psychiatric condition associated with high rates of suicide and is a leading cause of health burden worldwide. However, the underlying molecular mechanisms of major depression are still essentially unclear. In our study, a non-targeted gas chromatography-mass spectrometry-based metabolomics approach was used to investigate metabolic changes in the prefrontal cortex of the learned helplessness (LH) rat model of depression. Body-weight measurements and behavioral tests including the active escape test, sucrose preference test, forced swimming test, elevated plus-maze and open field test were used to assess changes in the behavioral spectrum after inescapable footshock stress. Rats in the stress group exhibited significant learned helpless and depression-like behaviors, while without any significant change in anxiety-like behaviors. Using multivariate and univariate statistical analysis, a total of 18 differential metabolites were identified after the footshock stress protocol. Ingenuity Pathways Analysis and MetaboAnalyst were applied for predicted pathways and biological functions analysis. "Amino Acid Metabolism, Molecule Transport, Small Molecule Biochemistry" was the most significantly altered network in the LH model. Amino acid metabolism, particularly glutamate metabolism, cysteine and methionine metabolism, arginine and proline metabolism, was significantly perturbed in the prefrontal cortex of LH rats.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Lining Yang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Shuai Yuan
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
43
|
Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem 2016; 529:144-157. [PMID: 27840053 DOI: 10.1016/j.ab.2016.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Creatine (Cr) is an important organic compound acting as intracellular high-energy phosphate shuttle and in energy storage. While located in most cells where it plays its main roles in energy metabolism and cytoprotection, Cr is highly concentrated in muscle and brain tissues, in which Cr also appears to act in osmoregulation and neurotransmission. This review discusses the basis of Cr metabolism, synthesis and transport within brain cells. The importance of Cr in brain function and the consequences of its impaired metabolism in primary and secondary Cr deficiencies are also discussed. Cr and phosphocreatine (PCr) in living systems can be well characterized using in vivo magnetic resonance spectroscopy (MRS). This review describes how 1H MRS allows the measurement of Cr and PCr, and how 31P MRS makes it possible to estimate the creatine kinase (CK) rate constant and so detect dynamic changes in the Cr/PCr/CK system. Absolute quantification by MRS using creatine as internal reference is also debated. The use of in vivo MRS to study brain Cr in a non-invasive way is presented, as well as its use in clinical and preclinical studies, including diagnosis and treatment follow-up in patients.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
44
|
Alimohammadi-Kamalabadi M, Eshraghian M, Zarindast MR, Aliaghaei A, Pishva H. Effect of creatine supplementation on cognitive performance and apoptosis in a rat model of amyloid-beta-induced Alzheimer's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:1159-1165. [PMID: 27917270 PMCID: PMC5126215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Neuroprotective effect of creatine (Cr) against β-amyloid (Aβ) is reported in an in vitro study. This study investigated the effect of Cr supplementation on β-amyloid toxicity in vivo. MATERIALS AND METHODS Thirty two, male Wistar rats were divided into 4 groups. During ten weeks of study, control group went through no surgical or dietary intervention. At the 4th week of study Sham group had a hippocampal normal saline injection, while Aβ and AβCr groups had an β-amyloid injection in the hippocampus. AβCr group were fed by Cr diet during the study. After 10 weeks, Morris water maze (MWM) test was administered to measure learning ability and memory retrieval. Animals were sacrificed for TUNEL anti apoptotic assay and staining of amyloid plaques by Thioflavin-T. RESULTS There was a significant retention deficit among AβCr and Aβ group while the escape latency and the distance traveled to the platform were significantly higher in AβCr group compared to Aβ group. AβCr group had same percent of TUNEL positive neurons compared to Aβ group. CONCLUSION Cr supplementation before and after β-amyloid injection into the CA1 area of hippocampus deteriorates the learning and memory impairment of rats and it does not protect neuronal apoptosis caused by β-amyloid.
Collapse
Affiliation(s)
- Malek Alimohammadi-Kamalabadi
- Department of Cellular- Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Eshraghian
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy and Cell Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Pishva
- Department of Cellular- Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Ahn NR, Leem YH, Kato M, Chang HK. Effects of creatine monohydrate supplementation and exercise on depression-like behaviors and raphe 5-HT neurons in mice. J Exerc Nutrition Biochem 2016; 20:24-31. [PMID: 27757384 PMCID: PMC5067422 DOI: 10.20463/jenb.2016.09.20.3.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
[Purpose] The effects of creatine and exercise on chronic stress-induced depression are unclear. In the present study, we identified the effects of 4-week supplementation of creatine monohydrate and/or exercise on antidepressant behavior and raphe 5-HT expression in a chronic mild stress-induced depressed mouse model. [Methods] Seven-week-old male C57BL/6 mice (n=48) were divided randomly into 5 groups: (1) non-stress control (CON, n=10), (2) stress control (ST-CON, n=10), (3) stress and creatine intake (ST-Cr, n=10), (4) stress and exercise (ST-Ex, n=9), and (5) combined stress, exercise, and creatine intake (ST-Cr+Ex, n=9). After five weeks’ treatment, we investigated using both anti-behavior tests (the Tail Suspension Test (TST) and the Forced Swimming Test (FST)), and 5-HT expression in the raphe nuclei (the dorsal raphe (DR) and median raphe (MnR)). [Results] Stress for 4 weeks significantly increased depressive behaviors in the mice. Treatment with creatine supplementation combined with exercise significantly decreased depressive behaviors as compared with the CON-ST group in both the TST and FST tests. With stress, 5-HT expression in the raphe nuclei decreased significantly. With combined creatine and exercise, 5-HT positive cells increased significantly and had a synergic effect on both DR and MnR. [Conclusion] The present study found that even a single treatment of creatine or exercise has partial effects as an antidepressant in mice with chronic mild stress-induced depression. Furthermore, combined creatine and exercise has synergic effects and is a more effective prescription than a single treatment.
Collapse
Affiliation(s)
- Na-Ri Ahn
- Laboratory of Exercise Physiology, Department of Human Movement Science, Seoul Women's University, Seoul Republic of Korea
| | - Yea-Hyun Leem
- Department of Neuroscience and TIDRC, Ewha Womans University Medical Center, Seoul Republic of Korea
| | - Morimasa Kato
- Department of Health and Nutrition, Yonezawa Nutrition University of Yamagata Prefecture, Yonezawa Japan
| | - Hyuk-ki Chang
- Laboratory of Exercise Physiology, Department of Human Movement Science, Seoul Women's University, Seoul Republic of Korea
| |
Collapse
|
46
|
Effects of Creatine Monohydrate Augmentation on Brain Metabolic and Network Outcome Measures in Women With Major Depressive Disorder. Biol Psychiatry 2016; 80:439-447. [PMID: 26822799 DOI: 10.1016/j.biopsych.2015.11.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/11/2015] [Accepted: 11/29/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Creatine monohydrate (creatine) augmentation has the potential to accelerate the clinical responses to and enhance the overall efficacy of selective serotonin reuptake inhibitor treatment in women with major depressive disorder (MDD). Although it has been suggested that creatine augmentation may involve the restoration of brain energy metabolism, the mechanisms underlying its antidepressant efficacy are unknown. METHODS In a randomized, double-blind, placebo-controlled trial, 52 women with MDD were assigned to receive either creatine augmentation or placebo augmentation of escitalopram; 34 subjects participated in multimodal neuroimaging assessments at baseline and week 8. Age-matched healthy women (n = 39) were also assessed twice at the same intervals. Metabolic and network outcomes were measured for changes in prefrontal N-acetylaspartate and changes in rich club hub connections of the structural brain network using proton magnetic resonance spectroscopy and diffusion tensor imaging, respectively. RESULTS We found MDD-related metabolic and network dysfunction at baseline. Improvement in depressive symptoms was greater in patients receiving creatine augmentation relative to placebo augmentation. After 8 weeks of treatment, prefrontal N-acetylaspartate levels increased significantly in the creatine augmentation group compared with the placebo augmentation group. Increment in rich club hub connections was also greater in the creatine augmentation group than in the placebo augmentation group. CONCLUSIONS N-acetylaspartate levels and rich club connections increased after creatine augmentation of selective serotonin reuptake inhibitor treatment. Effects of creatine administration on brain energy metabolism and network organization may partly underlie its efficacy in treating women with MDD.
Collapse
|
47
|
Kanekar S, Bogdanova OV, Olson PR, Sung YH, D'Anci KE, Renshaw PF. Hypobaric hypoxia induces depression-like behavior in female Sprague-Dawley rats, but not in males. High Alt Med Biol 2016; 16:52-60. [PMID: 25803141 DOI: 10.1089/ham.2014.1070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rates of depression and suicide are higher in people living at altitude, and in those with chronic hypoxic disorders like asthma, chronic obstructive pulmonary disorder (COPD), and smoking. Living at altitude exposes people to hypobaric hypoxia, which can lower rat brain serotonin levels, and impair brain bioenergetics in both humans and rats. We therefore examined the effect of hypobaric hypoxia on depression-like behavior in rats. After a week of housing at simulated altitudes of 20,000 ft, 10,000 ft, or sea level, or at local conditions of 4500 ft (Salt Lake City, UT), Sprague Dawley rats were tested for depression-like behavior in the forced swim test (FST). Time spent swimming, climbing, or immobile, and latency to immobility were measured. Female rats housed at altitude display more depression-like behavior in the FST, with significantly more immobility, less swimming, and lower latency to immobility than those at sea level. In contrast, males in all four altitude groups were similar in their FST behavior. Locomotor behavior in the open field test did not change with altitude, thus validating immobility in the FST as depression-like behavior. Hypobaric hypoxia exposure therefore induces depression-like behavior in female rats, but not in males.
Collapse
Affiliation(s)
- Shami Kanekar
- 1 The Brain Institute, University of Utah , Salt Lake City, Utah
| | | | | | | | | | | |
Collapse
|
48
|
Creatine target engagement with brain bioenergetics: a dose-ranging phosphorus-31 magnetic resonance spectroscopy study of adolescent females with SSRI-resistant depression. Amino Acids 2016; 48:1941-54. [PMID: 26907087 PMCID: PMC4974294 DOI: 10.1007/s00726-016-2194-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) often begins during adolescence and is projected to become the leading cause of global disease burden by the year 2030. Yet, approximately 40 % of depressed adolescents fail to respond to standard antidepressant treatment with a selective serotonin reuptake inhibitor (SSRI). Converging evidence suggests that depression is related to brain mitochondrial dysfunction. Our previous studies of MDD in adult and adolescent females suggest that augmentation of SSRI pharmacotherapy with creatine monohydrate (CM) may improve MDD outcomes. Neuroimaging with phosphorus-31 magnetic resonance spectroscopy (31P-MRS) can measure the high-energy phosphorus metabolites in vivo that reflect mitochondrial function. These include phosphocreatine (PCr), a substrate for the creatine kinase reaction that produces adenosine triphosphate. As part of the National Institute of Mental Health’s experimental medicine initiative, we conducted a placebo-controlled dose-ranging study of adjunctive CM for adolescent females with SSRI-resistant MDD. Participants were randomized to receive placebo or CM 2, 4 or 10 g daily for 8 weeks. Pre- and post-treatment 31P-MRS scans were used to measure frontal lobe PCr, to assess CM’s target engagement with cerebral energy metabolism. Mean frontal lobe PCr increased by 4.6, 4.1 and 9.1 % in the 2, 4 and 10 g groups, respectively; in the placebo group, PCr fell by 0.7 %. There was no group difference in adverse events, weight gain or serum creatinine. Regression analysis of PCr and depression scores across the entire sample showed that frontal lobe PCr was inversely correlated with depression scores (p = 0.02). These results suggest that CM achieves target engagement with brain bioenergetics and that the target is correlated with a clinical signal. Further study of CM as a treatment for adolescent females with SSRI-resistant MDD is warranted.
Collapse
|
49
|
Creatine for women: a review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy. Amino Acids 2016; 48:1807-17. [PMID: 26898548 DOI: 10.1007/s00726-016-2199-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
The creatine/phosphocreatine/creatine kinase circuit is instrumental in regulating high-energy phosphate metabolism, and the maintenance of cellular energy turnover. The mechanisms by which creatine is able to buffer and regulate cellular energy balance, maintain acid-base balance, and reduce the effects of oxidative stress have led to a large number of studies into the use of creatine supplementation in exercise performance and to treat diseases associated with cellular energy depletion. Some of these studies have identified sex-specific responses to creatine supplementation, as such; there is the perception, that females might be less receptive to the benefits of creatine supplementation and therapy, compared to males. This review will describe the differences in male and female physique and physiology that may account for such differences, and discuss the apparent endocrine modulation of creatine metabolism in females. Hormone-driven changes to endogenous creatine synthesis, creatine transport and creatine kinase expression suggest that significant changes in this cellular energy circuit occur during specific stages of a female's reproductive life, including pregnancy and menopause. Recent studies suggest that creatine supplementation may be highly beneficial for women under certain conditions, such as depression. A greater understanding of these pathways, and the consequences of alterations to creatine bioavailability in females are needed to ensure that creatine is used to full advantage as a dietary supplement to optimize and enhance health outcomes for women.
Collapse
|
50
|
Pazini FL, Cunha MP, Rosa JM, Colla ARS, Lieberknecht V, Oliveira Á, Rodrigues ALS. Creatine, Similar to Ketamine, Counteracts Depressive-Like Behavior Induced by Corticosterone via PI3K/Akt/mTOR Pathway. Mol Neurobiol 2015; 53:6818-6834. [PMID: 26660117 DOI: 10.1007/s12035-015-9580-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
Abstract
Ketamine has emerged as a novel strategy to treat refractory depression, producing rapid remission, but elicits some side effects that limit its use. In an attempt to investigate a safer compound that may afford an antidepressant effect similar to ketamine, this study examined the effects of the ergogenic compound creatine in a model of depression, and the involvement of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in its effect. In order to induce a depressive-like behavior, mice were administered with corticosterone (20 mg/kg, per os (p.o.)) for 21 days. This treatment increased immobility time in the tail suspension test (TST), an effect abolished by a single administration of creatine (10 mg/kg, p.o.) or ketamine (1 mg/kg, i.p.), but not by fluoxetine (10 mg/kg, p.o., conventional antidepressant). Treatment of mice with wortmannin (PI3K inhibitor, 0.1 μg/site, intracerebroventricular (i.c.v.)) or rapamycin (mTOR inhibitor, 0.2 nmol/site, i.c.v.) abolished the anti-immobility effect of creatine and ketamine. None of the treatments affected locomotor activity of mice. The immunocontents of p-mTOR, p-p70S6 kinase (p70S6K), and postsynaptic density-95 protein (PSD95) were increased by creatine and ketamine in corticosterone or vehicle-treated mice. Moreover, corticosterone-treated mice presented a decreased hippocampal brain-derived neurotrophic factor (BDNF) level, an effect abolished by creatine or ketamine. Altogether, the results indicate that creatine shares with ketamine the ability to acutely reverse the corticosterone-induced depressive-like behavior by a mechanism dependent on PI3K/AKT/mTOR pathway, and modulation of the synaptic protein PSD95 as well as BDNF in the hippocampus, indicating the relevance of targeting these proteins for the management of depressive disorders. Moreover, we suggest that creatine should be further investigated as a possible fast-acting antidepressant.
Collapse
Affiliation(s)
- Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - André R S Colla
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ágatha Oliveira
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|