1
|
Yao Q, Dong J, Zhang T, Cao H, Yu J, Wang X, Li B, Zhu L, Wang Y, Fu A, Wang F. Dimerization of Immunophilin CYN38 Regulates Photosystem II Repair In Chlamydomonas. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40231480 DOI: 10.1111/pce.15556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
The high light (HL) tolerance of Chlamydomonas determines biomass productivity under excess light conditions. The repair cycle of photosystem II (PSII) is a fundamental process that ensures long-term HL adaptation in photosynthetic organisms. Immunophilins, originating from cyanobacteria and surged in eukaryotic photosynthetic species, were characterized to play pivotal functions for HL adaptation by influencing PSII activity directly or indirectly. Here, we identified that Chlamydomonas immunophilin CYN38, the conserved homolog of Arabidopsis CYP38, was localized in the thylakoid lumen. One intriguing cyn38 mutant caused by the insertion mutation to produce a longer protein CYN38(L) with an extended C terminus was characterized. The cyn38 mutant displayed HL sensitive phenotype, with dramatically reduced accumulation of PSII supercomplexes and PSII core subunits under HL treatment. In WT, CYN38 forms a homodimer relying on its C terminus and associates with PSII complexes. In cyn38, the CYN38(L) protein can neither dimerize nor associate with PSII complexes, which causes defective PSII repair. Taken together, our work demonstrated the conserved physiological function of CYN38 during PSII biogenesis in photosynthetic species and unraveled a previously unidentified dimerization of CYN38 for its function in PSII repair under HL stress.
Collapse
Affiliation(s)
- Qiang Yao
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jie Dong
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Tengyue Zhang
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Huihui Cao
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jie Yu
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xu Wang
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Bingyao Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lin Zhu
- Qinling National Botanical Garden, Xi'an, China
| | - Yuhua Wang
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, China
| | - Fei Wang
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, China
| |
Collapse
|
2
|
Mohagheghi M, Navid A, Mossington T, Ye C, Coleman MA, Hoang-Phou S. Developing a media formulation to sustain ex vivo chloroplast function. Front Bioeng Biotechnol 2025; 13:1560200. [PMID: 40271349 PMCID: PMC12014621 DOI: 10.3389/fbioe.2025.1560200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025] Open
Abstract
Chloroplasts are critical organelles in plants and algae responsible for accumulating biomass through photosynthetic carbon fixation and cellular maintenance through metabolism in the cell. Chloroplasts are increasingly appreciated for their role in biomanufacturing, as they can produce many useful molecules, and a deeper understanding of chloroplast regulation and function would provide more insight for the biotechnological applications of these organelles. However, traditional genetic approaches to manipulate chloroplasts are slow, and generation of transgenic organisms to study their function can take weeks to months, significantly delaying the pace of research. To develop chloroplasts themselves as a quicker and more defined platform, we isolated chloroplasts from the green algae, Chlamydomonas reinhardtii, and examined their photosynthetic function after extraction. Combined with a metabolic modeling approach using flux-balance analysis, we identified key metabolic reactions essential to chloroplast function and leveraged this information into reagents that can be used in a "chloroplast media" capable of maintaining chloroplast photosynthetic function over time ex vivo compared to buffer alone. We envision this could serve as a model platform to enable more rapid design-build-test-learn cycles to study and improve chloroplast function in combination with genetic modifications and potentially as a starting point for the bottom-up design of a synthetic organelle-containing cell.
Collapse
Affiliation(s)
- Mariam Mohagheghi
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Ali Navid
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Thomas Mossington
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Congwang Ye
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Steven Hoang-Phou
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
3
|
Kieffer JRN, Kandemir H, Stegemüller L, Hiemstra I, Eppink MHM, Wijffels RH, Boboescu IZ. Numerical analysis of a multiproduct biorefinery on a chip: Exploiting acoustic waves to process the microalgae Tisochrysis lutea. ULTRASONICS SONOCHEMISTRY 2025; 114:107280. [PMID: 39985823 PMCID: PMC11904573 DOI: 10.1016/j.ultsonch.2025.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Microalgae can provide a more sustainable alternative to traditional food systems which are dominated by terrestrial crops. The main economic challenges, however, relate to the downstream processing of microalgae and the valorization of their side streams. The present work explores the scientific principles and data required to develop an integrated biorefinery-on-a-chip, which replaces many of the common downstream processing unit operations by employing acoustic fields. The acoustic parameters of Tisochrysis lutea microalgal cells and their cell components are determined using the neutrally buoyant state method. Culture conditions which result in a high carbohydrate or high protein to lipid ratio led to a higher acoustic contrast factor than culture conditions favoring a high composition of lipids. The collected acoustic data is used as input in a numerical model which studies the harvesting of microalgal cells and the fractionation of microalgal cell components. High separation levels are achieved based on the size and composition of microalgal cells and the type of cell component. Subsequent studies are envisioned to determine the practical feasibility of applying these concepts and even scaling them out. Nevertheless, this study represents a steppingstone towards a novel, label-free approach to processing microalgal cells of different biomass compositions.
Collapse
Affiliation(s)
- Jacques R N Kieffer
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Hakan Kandemir
- Department of Electrical Engineering and Automation, Aalto University, Helsinki, Finland
| | - Lars Stegemüller
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Isa Hiemstra
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Iulian Z Boboescu
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Dong J, Hou J, Yao Q, Wang B, Wang J, Shen X, Lai K, Ge H, Wang Y, Xu M, Fu A, Wang F. The thylakoid phosphatase TEF8 is involved in state transition and high light stress resistance in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2138-2150. [PMID: 39453967 DOI: 10.1111/tpj.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 10/27/2024]
Abstract
The sophisticated regulation of state transition is required to maintain optimal photosynthetic performance under fluctuating light condition, through balancing the absorbed light energy between photosystem II and photosystem I. This exquisite process incorporates phosphorylation and dephosphorylation of light-harvesting complexes and PSII core subunits, accomplished by thylakoid membrane-localized kinases and phosphatases that have not been fully identified. In this study, one Chlamydomonas high light response gene, THYLAKOID ENRICHED FRACTION 8 (TEF8), was characterized. The Chlamydomonas tef8 mutant showed high light sensitivity and defective state transition. The enzymatic activity assays showed that TEF8 is a bona fide phosphatase localized in thylakoid membranes. Biochemical assays, including BN-PAGE, pull-down, and phosphopeptide mass spectrometry, proved that TEF8 associates with photosystem II and is involved in the dephosphorylation of D2 and CP29 subunits during state 2 to state 1 transition. Taken together, our results identified TEF8 as a thylakoid phosphatase with multiple dephosphorylation targets on photosystem II, and provide new insight into the regulatory mechanism of state transition and high light resistance in Chlamydomonas.
Collapse
Affiliation(s)
- Jie Dong
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Jinrong Hou
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Qiang Yao
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Baoxiang Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Jingyi Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| | - Xuan Shen
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Ke Lai
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing, 100101, China
| | - Min Xu
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| | - Fei Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| |
Collapse
|
5
|
Quan X, Liu C, Chen J, Li Y, Yuan Z, Zheng Y, Mok GSP, Wang R, Zhao Y. Neutrophil-Mimetic Upconversion Photosynthetic Nanosystem Derived from Microalgae for Targeted Treatment of Thromboembolic Stroke. ACS NANO 2024; 18:30307-30320. [PMID: 39465976 DOI: 10.1021/acsnano.4c06247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Thromboembolic stroke constitutes the majority of brain strokes, resulting in elevated mortality and morbidity rates, as well as significant societal and economic burdens. Although intravenous thrombolysis serves as the standard clinical treatment, its narrow therapeutic window and the inflammatory response induced by tissue plasminogen activator (tPA) administration limit its efficacy. In the initial stages of stroke, the abrupt cessation of blood flow leads to an energy metabolism disorder, marked by a substantial decrease in adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) levels, causing irreversible damage to neural cells. In this study, we introduce a neutrophil-mimetic, microalgae-derived upconversion photosynthetic nanosystem designed for targeted treatment of thromboembolic stroke. This system features upconversion nanoparticles coated with a thylakoid membrane and wrapped in an activated neutrophil membrane, further decorated with ROS-responsive thrombolytic tPA on its surface. The neutrophil-mimetic design facilitates high targeting specificity and accumulation at the thrombus site after intravenous administration. Upon exposure to elevated levels of reactive oxygen species (ROS) at the thrombus location, the nanosystem promptly demonstrated potent thrombolytic efficacy through the surface-modified tPA. Furthermore, near-infrared II (NIR-II) laser irradiation activated the generation of ATP and NADPH, which inhibited inflammatory cell infiltration, platelet activation, oxidative stress, and neuronal injury. This constructed nanoplatform not only showcases exceptional targeting efficiency at the stroke site and controllable release of the thrombolytic agent but also facilitates ATP/NADPH-mediated thrombolytic, anti-inflammatory, antioxidative stress, and neuroprotective effects. Additionally, it offers valuable insights into the potential therapeutic applications of microalgae-based derivatives in managing thromboembolic stroke.
Collapse
Affiliation(s)
- Xingping Quan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Jinfen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, SAR 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Greta S P Mok
- Department of Electrical and Computer Engineering, University of Macau, Macau, SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| |
Collapse
|
6
|
Sun Y, Bakhtiari S, Valente-Paterno M, Wu Y, Nishimura Y, Shen W, Law C, Dhaliwal J, Dai D, Bui KH, Zerges W. Chloroplast biogenesis involves spatial coordination of nuclear and organellar gene expression in Chlamydomonas. PLANT PHYSIOLOGY 2024; 196:112-123. [PMID: 38709497 PMCID: PMC11376380 DOI: 10.1093/plphys/kiae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
The localization of translation can direct the polypeptide product to the proper intracellular compartment. Our results reveal translation by cytosolic ribosomes on a domain of the chloroplast envelope in the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii). We show that this envelope domain of isolated chloroplasts retains translationally active ribosomes and mRNAs encoding chloroplast proteins. This domain is aligned with localized translation by chloroplast ribosomes in the translation zone, a chloroplast compartment where photosystem subunits encoded by the plastid genome are synthesized and assembled. Roles of localized translation in directing newly synthesized subunits of photosynthesis complexes to discrete regions within the chloroplast for their assembly are suggested by differences in localization on the chloroplast of mRNAs encoding either subunit of the light-harvesting complex II or the small subunit of Rubisco. Transcription of the chloroplast genome is spatially coordinated with translation, as revealed by our demonstration of a subpopulation of transcriptionally active chloroplast nucleoids at the translation zone. We propose that the expression of chloroplast proteins by the nuclear-cytosolic and organellar genetic systems is organized in spatially aligned subcompartments of the cytoplasm and chloroplast to facilitate the biogenesis of the photosynthetic complexes.
Collapse
Affiliation(s)
- Yi Sun
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Shiva Bakhtiari
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Melissa Valente-Paterno
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - Yanxia Wu
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Graduate School of Sciences, Koyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto-shi 606-8502, Japan
| | - Weike Shen
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Christopher Law
- Centre for Microscopy and Cell Imaging, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - James Dhaliwal
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Daniel Dai
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - William Zerges
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
7
|
Caccamo A, Vega de Luna F, Misztak AE, Pyr dit Ruys S, Vertommen D, Cardol P, Messens J, Remacle C. APX2 Is an Ascorbate Peroxidase-Related Protein that Regulates the Levels of Plastocyanin in Chlamydomonas. PLANT & CELL PHYSIOLOGY 2024; 65:644-656. [PMID: 38591346 PMCID: PMC11094752 DOI: 10.1093/pcp/pcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
- VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels 1050, Belgium
- Brussels Center for Redox Biology, Pleinlaan 2, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Félix Vega de Luna
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Agnieszka E Misztak
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Sébastien Pyr dit Ruys
- de Duve Institute and MASSPROT platform, UCLouvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Didier Vertommen
- de Duve Institute and MASSPROT platform, UCLouvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Pierre Cardol
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels 1050, Belgium
- Brussels Center for Redox Biology, Pleinlaan 2, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| |
Collapse
|
8
|
Rredhi A, Petersen J, Wagner V, Vuong T, Li W, Li W, Schrader L, Mittag M. The UV-A Receptor CRY-DASH1 Up- and Downregulates Proteins Involved in Different Plastidial Pathways. J Mol Biol 2024; 436:168271. [PMID: 37699454 DOI: 10.1016/j.jmb.2023.168271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Algae encode up to five different types of cryptochrome photoreceptors. So far, relatively little is known about the biological functions of the DASH (Drosophila, Arabidopsis, Synechocystis and Homo)-type cryptochromes. The green alga Chlamydomonas reinhardtii encodes two of them. CRY-DASH1 also called DCRY1 has its maximal absorption peak in the UV-A range. It is localized in the chloroplast and plays an important role in balancing the photosynthetic machinery. Here, we performed a comparative analysis of chloroplast proteins from wild type and a knockout mutant of CRY-DASH1 named cry-dash1mut, using label-free quantitative proteomics as well as immunoblotting. Our results show upregulation of enzymes involved in specific pathways in the mutant including key enzymes of chlorophyll and carotenoid biosynthesis consistent with increased levels of photosynthetic pigments in cry-dash1mut. There is also an increase in certain redox as well as photosystem I and II proteins, including D1. Strikingly, CRY-DASH1 is coregulated in a D1 deletion mutant, where its amount is increased. In contrast, key proteins of the central carbon metabolism, including glycolysis/gluconeogenesis, dark fermentation and the oxidative pentose phosphate pathway are downregulated in cry-dash1mut. Similarly, enzymes of histidine biosynthesis are downregulated in cry-dash1mut leading to a reduction in the amount of free histidine. Yet, transcripts encoding for several of these proteins are at a similar level in the wild type and cry-dash1mut or even opposite. We show that CRY-DASH1 can bind to RNA, taking the psbA RNA encoding D1 as target. These data suggest that CRY-DASH1 regulates plastidial metabolic pathways at the posttranscriptional level.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/1anPetersen
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany. https://twitter.com/trangha593
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
9
|
Zhou Q, Ding X, Wang H, Farooq Z, Wang L, Yang S. A novel in-situ-process technique constructs whole circular cpDNA library. PLANT METHODS 2024; 20:2. [PMID: 38172924 PMCID: PMC10763311 DOI: 10.1186/s13007-023-01126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The chloroplast genome (cp genome) is directly related to the study and analysis of molecular phylogeny and evolution of plants in the phylogenomics era. The cp genome, whereas, is highly plastic and exists as a heterogeneous mixture of sizes and physical conformations. It is advantageous to purify/enrich the circular chloroplast DNA (cpDNA) to reduce sequence complexity in cp genome research. Large-insert, ordered DNA libraries are more practical for genomics research than conventional, unordered ones. From this, a technique of constructing the ordered BAC library with the goal-insert cpDNA fragment is developed in this paper. RESULTS This novel in-situ-process technique will efficiently extract circular cpDNA from crops and construct a high-quality cpDNA library. The protocol combines the in-situ chloroplast lysis for the high-purity circular cpDNA with the in-situ substitute/ligation for the high-quality cpDNA library. Individually, a series of original buffers/solutions and optimized procedures for chloroplast lysis in-situ is different than bacterial lysis in-situ; the in-situ substitute/ligation that reacts on the MCE membrane is suitable for constructing the goal-insert, ordered cpDNA library while preventing the large-insert cpDNA fragment breakage. The goal-insert, ordered cpDNA library is arrayed on the microtiter plate by three colonies with the definite cpDNA fragment that are homologous-corresponds to the whole circular cpDNA of the chloroplast. CONCLUSION The novel in-situ-process technique amply furtherance of research in genome-wide functional analysis and characterization of chloroplasts, such as genome sequencing, bioinformatics analysis, cloning, physical mapping, molecular phylogeny and evolution.
Collapse
Affiliation(s)
- Qiang Zhou
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xianlong Ding
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zunaira Farooq
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liang Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shouping Yang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture of the People's Republic of China, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Soybean Research Institute, College of Agriculture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Caccamo A, Vega de Luna F, Wahni K, Volkov AN, Przybyla-Toscano J, Amelii A, Kriznik A, Rouhier N, Messens J, Remacle C. Ascorbate Peroxidase 2 (APX2) of Chlamydomonas Binds Copper and Modulates the Copper Insertion into Plastocyanin. Antioxidants (Basel) 2023; 12:1946. [PMID: 38001799 PMCID: PMC10669542 DOI: 10.3390/antiox12111946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Recent phylogenetic studies have unveiled a novel class of ascorbate peroxidases called "ascorbate peroxidase-related" (APX-R). These enzymes, found in green photosynthetic eukaryotes, lack the amino acids necessary for ascorbate binding. This study focuses on the sole APX-R from Chlamydomonas reinhardtii referred to as ascorbate peroxidase 2 (APX2). We used immunoblotting to locate APX2 within the chloroplasts and in silico analysis to identify key structural motifs, such as the twin-arginine transport (TAT) motif for lumen translocation and the metal-binding MxxM motif. We also successfully expressed recombinant APX2 in Escherichia coli. Our in vitro results showed that the peroxidase activity of APX2 was detected with guaiacol but not with ascorbate as an electron donor. Furthermore, APX2 can bind both copper and heme, as evidenced by spectroscopic, and fluorescence experiments. These findings suggest a potential interaction between APX2 and plastocyanin, the primary copper-containing enzyme within the thylakoid lumen of the chloroplasts. Predictions from structural models and evidence from 1H-NMR experiments suggest a potential interaction between APX2 and plastocyanin, emphasizing the influence of APX2 on the copper-binding abilities of plastocyanin. In summary, our results propose a significant role for APX2 as a regulator in copper transfer to plastocyanin. This study sheds light on the unique properties of APX-R enzymes and their potential contributions to the complex processes of photosynthesis in green algae.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Félix Vega de Luna
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Jonathan Przybyla-Toscano
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Antonello Amelii
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Alexandre Kriznik
- CNRS, IMoPA and IBSLor, Université de Lorraine, F-54000 Nancy, France;
| | | | - Joris Messens
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| |
Collapse
|
11
|
Fu W, Cui Z, Guo J, Cui X, Han G, Zhu Y, Hu J, Gao X, Li Y, Xu M, Fu A, Wang F. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1002-1016. [PMID: 36417279 PMCID: PMC9922407 DOI: 10.1093/plphys/kiac524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Excess light causes severe photodamage to photosystem II (PSII) where the primary charge separation for electron transfer takes place. Dissection of mechanisms underlying the PSII maintenance and repair cycle in green algae promotes the usage of genetic engineering and synthetic biology to improve photosynthesis and biomass production. In this study, we systematically analyzed the high light (HL) responsive immunophilin genes in Chlamydomonas (Chlamydomonas reinhardtii) and identified one chloroplast lumen-localized immunophilin, CYN28, as an essential player in HL tolerance. Lack of CYN28 caused HL hypersensitivity, severely reduced accumulation of PSII supercomplexes and compromised PSII repair in cyn28. The thylakoid FtsH (filamentation temperature-sensitive H) is an essential AAA family metalloprotease involved in the degradation of photodamaged D1 during the PSII repair cycle and was identified as one potential target of CYN28. In the cyn28 mutant, the thylakoid FtsH undergoes inefficient turnover under HL conditions. The CYN28-FtsH1/2 interaction relies on the FtsH N-terminal proline residues and is strengthened particularly under HL. Further analyses demonstrated CYN28 displays peptidyl-prolyl isomerase (PPIase) activity, which is necessary for its physiological function. Taken together, we propose that immunophilin CYN28 participates in PSII maintenance and regulates the homeostasis of FtsH under HL stress via its PPIase activity.
Collapse
Affiliation(s)
- Weihan Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jia Guo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiayu Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Guomao Han
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yunpeng Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jinju Hu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaoling Gao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yeqing Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
12
|
Rredhi A, Petersen J, Schubert M, Li W, Oldemeyer S, Li W, Westermann M, Wagner V, Kottke T, Mittag M. DASH cryptochrome 1, a UV-A receptor, balances the photosynthetic machinery of Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2021; 232:610-624. [PMID: 34235760 DOI: 10.1111/nph.17603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Drosophila, Arabidopsis, Synechocystis, Homo (DASH) cryptochromes belong to the cryptochrome/photolyase family and can act as DNA repair enzymes. In bacteria and fungi, they also can play regulatory roles, but in plants their biological functions remain elusive. Here, we characterize CRY-DASH1 from the green alga Chlamydomonas reinhardtii. We perform biochemical and in vitro photochemical analysis. For functional characterization, a knock-out mutant of cry-dash1 is used. CRY-DASH1 protein is localized in the chloroplast and accumulates at midday. Although the photoautotrophic growth of the mutant is significantly reduced compared to the wild-type (WT), the mutant has increased levels of photosynthetic pigments and a higher maximum photochemical efficiency of photosystem II (PS II). Hyper-stacking of thylakoid membranes occurs together with an increase in proteins of the PS II reaction center, D1 and its antenna CP43, but not of their transcripts. CRY-DASH1 binds fully reduced flavin adenine dinucleotide and the antenna 5,10-methenyltetrahydrofolate, leading to an absorption peak in the UV-A range. Supplementation of white light with UV-A increases photoautotrophic growth of the WT but not of the cry-dash1 mutant. These results suggest a balancing function of CRY-DASH1 in the photosynthetic machinery and point to its role as a photoreceptor for the UV-A range separated from the absorption of photosynthetic pigments.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Melvin Schubert
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Jena, 07743, Germany
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
- Medical School OWL, Bielefeld University, Bielefeld, 33615, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|
13
|
Gu X, Cao L, Wu X, Li Y, Hu Q, Han D. A Lipid Bodies-Associated Galactosyl Hydrolase Is Involved in Triacylglycerol Biosynthesis and Galactolipid Turnover in the Unicellular Green Alga Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040675. [PMID: 33807496 PMCID: PMC8065580 DOI: 10.3390/plants10040675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the main constituent lipids of thylakoid and chloroplast envelop membranes. Many microalgae can accumulate large amounts of triacylglycerols (TAGs) under adverse environmental conditions, which is accompanied by degradation of the photosynthetic membrane lipids. However, the process mediating the conversion from galactolipids to TAG remains largely unknown. In this study, we performed genetic and biochemical analyses of galactosyl hydrolases (CrGH) identified in the proteome of lipid bodies of the green microalga Chlamydomonas reinhardtii. The recombinant CrGH was confirmed to possess galactosyl hydrolase activity by using o-nitrophenyl-β-D-galactoside as the substrate, and the Michaelis constant (Km) and Kcat of CrGH were 13.98 μM and 3.62 s-1, respectively. Comparative lipidomic analyses showed that the content of MGDG and DGDG increased by 14.42% and 24.88%, respectively, in the CrGH-deficient mutant as compared with that of the wild type cc4533 grown under high light stress conditions, and meanwhile, the TAG content decreased by 32.20%. Up-regulation of CrGH at both a gene expression and protein level was observed under high light stress (HL) conditions. In addition, CrGH was detected in multiple subcellular localizations, including the chloroplast envelope, mitochondria, and endoplasmic reticulum membranes. This study uncovered a new paradigm mediated by the multi-localized CrGH for the conversion of the photosynthetic membranes to TAGs.
Collapse
Affiliation(s)
- Xiaosong Gu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Cao
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
| | - Xiaoying Wu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.G.); (L.C.); (X.W.); (Y.L.); (Q.H.)
- Correspondence:
| |
Collapse
|
14
|
Ramundo S, Asakura Y, Salomé PA, Strenkert D, Boone M, Mackinder LCM, Takafuji K, Dinc E, Rahire M, Crèvecoeur M, Magneschi L, Schaad O, Hippler M, Jonikas MC, Merchant S, Nakai M, Rochaix JD, Walter P. Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. Proc Natl Acad Sci U S A 2020; 117:32739-32749. [PMID: 33273113 PMCID: PMC7768757 DOI: 10.1073/pnas.2014294117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In photosynthetic eukaryotes, thousands of proteins are translated in the cytosol and imported into the chloroplast through the concerted action of two translocons-termed TOC and TIC-located in the outer and inner membranes of the chloroplast envelope, respectively. The degree to which the molecular composition of the TOC and TIC complexes is conserved over phylogenetic distances has remained controversial. Here, we combine transcriptomic, biochemical, and genetic tools in the green alga Chlamydomonas (Chlamydomonas reinhardtii) to demonstrate that, despite a lack of evident sequence conservation for some of its components, the algal TIC complex mirrors the molecular composition of a TIC complex from Arabidopsis thaliana. The Chlamydomonas TIC complex contains three nuclear-encoded subunits, Tic20, Tic56, and Tic100, and one chloroplast-encoded subunit, Tic214, and interacts with the TOC complex, as well as with several uncharacterized proteins to form a stable supercomplex (TIC-TOC), indicating that protein import across both envelope membranes is mechanistically coupled. Expression of the nuclear and chloroplast genes encoding both known and uncharacterized TIC-TOC components is highly coordinated, suggesting that a mechanism for regulating its biogenesis across compartmental boundaries must exist. Conditional repression of Tic214, the only chloroplast-encoded subunit in the TIC-TOC complex, impairs the import of chloroplast proteins with essential roles in chloroplast ribosome biogenesis and protein folding and induces a pleiotropic stress response, including several proteins involved in the chloroplast unfolded protein response. These findings underscore the functional importance of the TIC-TOC supercomplex in maintaining chloroplast proteostasis.
Collapse
Affiliation(s)
- Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Yukari Asakura
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Morgane Boone
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Kazuaki Takafuji
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Emine Dinc
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Rahire
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Crèvecoeur
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Leonardo Magneschi
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Sabeeha Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Masato Nakai
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan;
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland;
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
15
|
Soto-Sierra L, Wilken LR, Dixon CK. Aqueous enzymatic protein and lipid release from the microalgae Chlamydomonas reinhardtii. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00328-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAdvances in biochemical and molecular manipulation have led to increased biomass productivity and oil accumulation in the microalgae C. reinhardtii. However, scalable processes for the recovery of oil and other valuable biomolecules, such as protein, from C. reinhardtii are scarce. The use of aqueous enzymatic extraction, a non-solvent and environmentally friendly bioproduct recovery method, provides an opportunity to design an integrated process for oil and protein fractionation to reduce bioenergy and bioproducts costs. Based on the mechanistic understanding of biomolecule distribution and compartmentalization, an aqueous enzymatic treatment for the release of internally stored lipid bodies was designed. Application of a C. reinhardtii-produced protease, autolysin, for lysis of the microalgae cell wall was followed by a secondary treatment with trypsin for chloroplast disruption and lipid body release. Protein recovery after the primary treatment with autolysin indicated a 50.1 ± 4.2% release of total soluble protein and localization of lipid bodies still in the chloroplast. The development of a secondary enzyme treatment (trypsin) for chloroplast and lipid body lysis demonstrated a high percent of remaining lipids (73 ± 7%) released into the supernatant. The results indicate that the application of an enzymatic treatment scheme for protein and oil recovery is a promising alternative to traditional extraction processes.
Collapse
|
16
|
Sharaf A, Füssy Z, Tomčala A, Richtová J, Oborník M. Isolation of plastids and mitochondria from Chromera velia. PLANTA 2019; 250:1731-1741. [PMID: 31422509 DOI: 10.1007/s00425-019-03259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We present an easy and effective procedure to purify plastids and mitochondria from Chromera velia. Our method enables downstream analyses of protein and metabolite content of the organelles. Chromerids are alveolate algae that are the closest known phototrophic relatives to apicomplexan parasites such as Plasmodium or Toxoplasma. While genomic and transcriptomic resources for chromerids are in place, tools and experimental conditions for proteomic studies have not been developed yet. Here we describe a rapid and efficient protocol for simultaneous isolation of plastids and mitochondria from the chromerid alga Chromera velia. This procedure involves enzymatic treatment and breakage of cells, followed by differential centrifugation. While plastids sediment in the first centrifugation step, mitochondria remain in the supernatant. Subsequently, plastids can be purified from the crude pellet by centrifugation on a discontinuous 60%/70% sucrose density gradient, while mitochondria can be obtained by centrifugation on a discontinuous 33%/80% Percoll density gradient. Isolated plastids are autofluorescent, and their multi-membrane structure was confirmed by transmission electron microscopy. Fluorescent optical microscopy was used to identify isolated mitochondria stained with MitoTrackerTM green, while their intactness and membrane potential were confirmed by staining with MitoTrackerTM orange CMTMRos. Total proteins were extracted from isolated organellar fractions, and the purity of isolated organelles was confirmed using immunoblotting. Antibodies against the beta subunit of the mitochondrial ATP synthase and the plastid protochlorophyllide oxidoreductase did not cross-react on immunoblots, suggesting that each organellar fraction is free of the residues of the other. The presented protocol represents an essential step for further proteomic, organellar, and cell biological studies of C. velia and can be employed, with minor optimizations, in other thick-walled unicellular algae.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Aleš Tomčala
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
17
|
Schober AF, R�o B�rtulos C, Bischoff A, Lepetit B, Gruber A, Kroth PG. Organelle Studies and Proteome Analyses of Mitochondria and Plastids Fractions from the Diatom Thalassiosira pseudonana. PLANT & CELL PHYSIOLOGY 2019; 60:1811-1828. [PMID: 31179502 PMCID: PMC6683858 DOI: 10.1093/pcp/pcz097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/14/2019] [Indexed: 05/19/2023]
Abstract
Diatoms are unicellular algae and evolved by secondary endosymbiosis, a process in which a red alga-like eukaryote was engulfed by a heterotrophic eukaryotic cell. This gave rise to plastids of remarkable complex architecture and ultrastructure that require elaborate protein importing, trafficking, signaling and intracellular cross-talk pathways. Studying both plastids and mitochondria and their distinctive physiological pathways in organello may greatly contribute to our understanding of photosynthesis, mitochondrial respiration and diatom evolution. The isolation of such complex organelles, however, is still demanding, and existing protocols are either limited to a few species (for plastids) or have not been reported for diatoms so far (for mitochondria). In this work, we present the first isolation protocol for mitochondria from the model diatom Thalassiosira pseudonana. Apart from that, we extended the protocol so that it is also applicable for the purification of a high-quality plastids fraction, and provide detailed structural and physiological characterizations of the resulting organelles. Isolated mitochondria were structurally intact, showed clear evidence of mitochondrial respiration, but the fractions still contained residual cell fragments. In contrast, plastid isolates were virtually free of cellular contaminants, featured structurally preserved thylakoids performing electron transport, but lost most of their stromal components as concluded from Western blots and mass spectrometry. Liquid chromatography electrospray-ionization mass spectrometry studies on mitochondria and thylakoids, moreover, allowed detailed proteome analyses which resulted in extensive proteome maps for both plastids and mitochondria thus helping us to broaden our understanding of organelle metabolism and functionality in diatoms.
Collapse
Affiliation(s)
- Alexander F Schober
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
- Corresponding author: E-mail, ; Fax, +49(0)7531-88-4047
| | - Carolina R�o B�rtulos
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Annsophie Bischoff
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bernard Lepetit
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ansgar Gruber
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovsk� 1160/31, Česk� Budějovice, Czech Republic
| | - Peter G Kroth
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
18
|
Zhao Q, Zhang X, Sommer F, Ta N, Wang N, Schroda M, Cong Y, Liu C. Hetero-oligomeric CPN60 resembles highly symmetric group-I chaperonin structure revealed by Cryo-EM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:798-812. [PMID: 30735603 DOI: 10.1111/tpj.14273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/07/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60β1 and CPN60β2 and the co-chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo-oligomers and all possible other chloroplast co-chaperonin hetero-oligomers are functional, but only that consisting of CPN11/20/23-CPN60αβ1β2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60β1:CPN60β2. The cryo-EM structures of endogenous CPN60αβ1β2/ADP and CPN60αβ1β2/co-chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero-oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero-oligomerization, the chloroplast co-chaperonin CPN11/20/23 forms seven GroES-like domains, which symmetrically interact with CPN60αβ1β2. Our structure also reveals an uneven distribution of roof-forming domains in the dome-shaped CPN11/20/23 co-chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αβ1β2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Frederik Sommer
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Na Ta
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Erwin-Schroedinger Str. 70, 67663, Kaiserslautern, Germany
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
The dynamin-like protein Fzl promotes thylakoid fusion and resistance to light stress in Chlamydomonas reinhardtii. PLoS Genet 2019; 15:e1008047. [PMID: 30875368 PMCID: PMC6436760 DOI: 10.1371/journal.pgen.1008047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/27/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Large GTPases of the Dynamin Related Proteins (DRP) family shape lipid bilayers through membrane fission or fusion processes. Despite the highly organized photosynthetic membranes of thylakoids, a single DRP is known to be targeted inside the chloroplast. Fzl from the land plant Arabidopsis thaliana is inserted in the inner envelope and thylakoid membranes to regulate their morphology. Fzl may promote the fusion of thylakoids but this remains to be proven. Moreover, the physiological requirement for fusing thylakoids is currently unknown. Here, we find that the unicellular microalga Chlamydomonas reinhardtii encodes an Fzl ortholog (CrFzl) that is localized in the chloroplast where it is soluble. To explore its function, the CRISPR/Cas9 technology was employed to generate multiple CrFzl knock out strains. Phenotypic analyzes revealed a specific requirement of CrFzl for survival upon light stress. Consistent with this, strong irradiance lead to increased photoinhibition of photosynthesis in mutant cells. Fluorescence and electron microscopy analysis demonstrated that upon exposure to high light, CrFzl mutants show defects in chloroplast morphology but also large cytosolic vacuoles in close contact with the plastid. We further observe that strong irradiance induces an increased recruitment of the DRP to thylakoid membranes. Most importantly, we show that CrFzl is required for the fusion of thylakoids during mating. Together, our results suggest that thylakoids fusion may be necessary for resistance to light stress. All eukaryotic cells are composed of compartments with defined functions. Among those, mitochondria generate the main source of energy in human and animal cells. Their capacity to generate and diffuse energy in the cell is regulated by fusion and fragmentation processes. Together with mitochondria that produce energy from oxygen, plant cells include an additional compartment called the chloroplast that produces energy from light. The machinery that converts light into energy is more precisely located inside the chloroplast within stacks of membranes called the thylakoids. Here, we elucidate the function of CrFzl, a previously uncharacterized protein encoded by the genome of the unicellular alga Chlamydomonas reinhardtii. Algal cells that do not contain CrFzl are impaired in their capacity to grow when they receive too much light and our results indicate that CrFzl promotes the fusion of thylakoids during mating. These results suggest that membrane fusion is an essential tool for energy production in stress conditions by living organisms.
Collapse
|
20
|
Gilbert M, Bährs H, Steinberg CEW, Wilhelm C. The artificial humic substance HS1500 does not inhibit photosynthesis of the green alga Desmodesmus armatus in vivo but interacts with the photosynthetic apparatus of isolated spinach thylakoids in vitro. PHOTOSYNTHESIS RESEARCH 2018; 137:403-420. [PMID: 29777430 DOI: 10.1007/s11120-018-0513-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Humic substances (HSs) can influence the growth and composition of freshwater phytoplankton assemblage. Since HSs contain many phenolic and quinonic moieties and cause growth reductions in eco-physiological field experiments, HSs are considered photosystem II herbicides. To test this specific mode of action in vivo and in vitro, respectively, we used intact cells of the green alga Desmodesmus armatus, as well as thylakoids isolated from spinach (Spinacia oleracea) as a model system for the green algal chloroplast. Photosynthetic electron transport was measured as oxygen evolution and variable chlorophyll fluorescence. The in vivo effect of the artificial humic substance HS1500 on algae consisted of no impact on photosynthesis-irradiance curves of intact green algae compared to untreated controls. In contrast, addition of HS1500 to isolated thylakoids resulted in light-induced oxygen consumption (Mehler reaction) as an in vitro effect. Fluorescence induction kinetics of HS-treated thylakoids revealed a large static quenching effect of HS1500, but no inhibitory effect on electron transport. For the case of intact algal cells, we conclude that the highly hydrophilic and rather large molecules of HS1500 are not taken up in effective quantities and, therefore, cannot interfere with photosynthesis. The in vitro tests show that HS1500 has no inhibitory effect on photosystem II but operates as a weak, oxygen-consuming Hill acceptor at photosystem I. Hence, the results indicate that eco-physiological field experiments should focus more strongly on effects of HSs on extracellular features, such as reducing and red-shifting the underwater light field or influencing nutrient availability by cation exchange within the plankton network.
Collapse
Affiliation(s)
- Matthias Gilbert
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Hanno Bährs
- Aquacopa GmbH, Koppelbergstr. 4, 17166, Teterow, Germany
| | - Christian E W Steinberg
- Department of Biology, Freshwater and Stress Ecology, Humboldt-University Berlin, Arboretum, Späthstraße 80/81, 12437, Berlin, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
| |
Collapse
|
21
|
Zhang W, Zhong H, Lu H, Zhang Y, Deng X, Huang K, Duanmu D. Characterization of Ferredoxin-Dependent Biliverdin Reductase PCYA1 Reveals the Dual Function in Retrograde Bilin Biosynthesis and Interaction With Light-Dependent Protochlorophyllide Oxidoreductase LPOR in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2018; 9:676. [PMID: 29875782 PMCID: PMC5974162 DOI: 10.3389/fpls.2018.00676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/03/2018] [Indexed: 05/27/2023]
Abstract
Bilins are linear tetrapyrroles commonly used as chromophores of phycobiliproteins and phytochromes for light-harvesting or light-sensing in photosynthetic organisms. Many eukaryotic algae lack both phycobiliproteins and phytochromes, but retain the bilin biosynthetic enzymes including heme oxygenase (HO/HMOX) and ferredoxin-dependent biliverdin reductase (FDBR). Previous studies on Chlamydomonas reinhardtii heme oxygenase mutant (hmox1) have shown that bilins are not only essential retrograde signals to mitigate oxidative stress during diurnal dark-to-light transitions, they are also required for chlorophyll accumulation and maintenance of a functional photosynthetic apparatus in the light. However, the underlying mechanism of bilin-mediated regulation of chlorophyll biosynthesis is unclear. In this study, Chlamydomonas phycocyanobilin:ferredoxin oxidoreductase PCYA1 FDBR domain was found to specifically interact with the rate-limiting chlorophyll biosynthetic enzyme LPOR (light-dependent protochlorophyllide oxidoreductase). PCYA1 is partially associated with chloroplast envelope membrane, consistent with the observed export of bilin from chloroplast to cytosol by cytosolic expression of a bilin-binding reporter protein in Chlamydomonas. Both the pcya1-1 mutant with the carboxyl-terminal extension of PCYA1 eliminated and efficient knockdown of PCYA1 expression by artificial microRNA exhibited no significant impact on algal phototrophic growth and photosynthetic proteins accumulation, indicating that the conserved FDBR domain is sufficient and minimally required for bilin biosynthesis and functioning. Taken together, these studies provide novel insights into the regulatory role of PCYA1 in chlorophyll biosynthesis via interaction with key Chl biosynthetic enzyme.
Collapse
Affiliation(s)
- Weiqing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Zhan Y, Marchand CH, Maes A, Mauries A, Sun Y, Dhaliwal JS, Uniacke J, Arragain S, Jiang H, Gold ND, Martin VJJ, Lemaire SD, Zerges W. Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii. PLoS One 2018; 13:e0185039. [PMID: 29481573 PMCID: PMC5826530 DOI: 10.1371/journal.pone.0185039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023] Open
Abstract
Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO2-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO2 availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Alexandre Maes
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Adeline Mauries
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Yi Sun
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James S. Dhaliwal
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James Uniacke
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Simon Arragain
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Heng Jiang
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Nicholas D. Gold
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
- * E-mail: (SDL); (WZ)
| | - William Zerges
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- * E-mail: (SDL); (WZ)
| |
Collapse
|
23
|
Isolation of Plastid Fractions from the Diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Methods Mol Biol 2018; 1829:189-203. [PMID: 29987723 DOI: 10.1007/978-1-4939-8654-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The so-called "complex" plastids from diatoms possessing four envelope membranes are a typical feature of algae that arose from secondary endosymbiosis. Studying isolated plastids from these algae may allow answering a number of fundamental questions regarding diatom photosynthesis and plastid functionality. Due to their complex architecture and their integration into the cellular endoplasmic reticulum (ER) system, their isolation though is still challenging. In this work, we report a reliable isolation technique that is applicable for the two model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. The resulting plastid-enriched fractions are of homogenous quality, almost free from cellular contaminants, and feature structurally intact thylakoids that are capable to perform oxygenic photosynthesis, though in most cases they seem to lack most of the stromal components as well as plastid envelopes.
Collapse
|
24
|
Yang M, Jiang JP, Xie X, Chu YD, Fan Y, Cao XP, Xue S, Chi ZY. Chloroplasts Isolation from Chlamydomonas reinhardtii under Nitrogen Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1503. [PMID: 28900438 PMCID: PMC5581827 DOI: 10.3389/fpls.2017.01503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Triacylglycerols are produced in abundance through chloroplast and endoplasmic reticulum pathways in some microalgae exposed to stress, though the relative contribution of either pathway remains elusive. Characterization of these pathways requires isolation of the organelles. In this study, an efficient and reproducible approach, including homogenous batch cultures of nitrogen-deprived algal cells in photobioreactors, gentle cell disruption using a simple custom-made disruptor with mechanical shear force, optimized differential centrifugation and Percoll density gradient centrifugation, was developed to isolate chloroplasts from Chlamydomonas reinhardtii subjected to nitrogen stress. Using this approach, the maximum limited stress duration was 4 h and the stressed cells exhibited 19 and 32% decreases in intracellular chlorophyll and nitrogen content, respectively. Chloroplasts with 48 - 300 μg chlorophyll were successfully isolated from stressed cells containing 10 mg chlorophyll. These stressed chloroplasts appeared intact, as monitored by ultrastructure observation and a novel quality control method involving the fatty acid biomarkers. This approach can provide sufficient quantities of intact stressed chloroplasts for subcellular biochemical studies in microalgae.
Collapse
Affiliation(s)
- Miao Yang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
- University of Chinese Academy of SciencesBeijing, China
- School of Life Sciences and Biotechnology, Dalian University of TechnologyDalian, China
| | - Jun-Peng Jiang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xi Xie
- Liaoning Ocean and Fisheries Science Research InstituteDalian, China
| | - Ya-Dong Chu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Yan Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xu-Peng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Zhan-You Chi
- School of Life Sciences and Biotechnology, Dalian University of TechnologyDalian, China
| |
Collapse
|
25
|
Moudříková Š, Nedbal L, Solovchenko A, Mojzeš P. Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Zedler JA, Mullineaux CW, Robinson C. Efficient targeting of recombinant proteins to the thylakoid lumen in Chlamydomonas reinhardtii using a bacterial Tat signal peptide. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Campbell SJ, Stern DB. Activation of an Endoribonuclease by Non-intein Protein Splicing. J Biol Chem 2016; 291:15911-15922. [PMID: 27311716 DOI: 10.1074/jbc.m116.727768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/06/2022] Open
Abstract
The Chlamydomonas reinhardtii chloroplast-localized poly(A)-binding protein RB47 is predicted to contain a non-conserved linker (NCL) sequence flanked by highly conserved N- and C-terminal sequences, based on the corresponding cDNA. RB47 was purified from chloroplasts in association with an endoribonuclease activity; however, protein sequencing failed to detect the NCL. Furthermore, while recombinant RB47 including the NCL did not display endoribonuclease activity in vitro, versions lacking the NCL displayed strong activity. Both full-length and shorter forms of RB47 could be detected in chloroplasts, with conversion to the shorter form occurring in chloroplasts isolated from cells grown in the light. This conversion could be replicated in vitro in chloroplast extracts in a light-dependent manner, where epitope tags and protein sequencing showed that the NCL was excised from a full-length recombinant substrate, together with splicing of the flanking sequences. The requirement for endogenous factors and light differentiates this protein splicing from autocatalytic inteins, and may allow the chloroplast to regulate the activation of RB47 endoribonuclease activity. We speculate that this protein splicing activity arose to post-translationally repair proteins that had been inactivated by deleterious insertions or extensions.
Collapse
Affiliation(s)
- Stephen J Campbell
- From the Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| | - David B Stern
- From the Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| |
Collapse
|
28
|
Burgess SJ, Taha H, Yeoman JA, Iamshanova O, Chan KX, Boehm M, Behrends V, Bundy JG, Bialek W, Murray JW, Nixon PJ. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts. PLANT & CELL PHYSIOLOGY 2016; 57:82-94. [PMID: 26574578 PMCID: PMC4722173 DOI: 10.1093/pcp/pcv167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/27/2015] [Indexed: 05/19/2023]
Abstract
Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm.
Collapse
Affiliation(s)
- Steven J Burgess
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK These authors contributed equally to this work
| | - Hussein Taha
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK These authors contributed equally to this work Present address: Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
| | - Justin A Yeoman
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Oksana Iamshanova
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Kher Xing Chan
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Marko Boehm
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Volker Behrends
- Department of Biomolecular Medicine, Sir Alexander Fleming Building, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Jacob G Bundy
- Department of Biomolecular Medicine, Sir Alexander Fleming Building, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Wojciech Bialek
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - James W Murray
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
29
|
Kumar AA, Walz JA, Gonidec M, Mace CR, Whitesides GM. Combining Step Gradients and Linear Gradients in Density. Anal Chem 2015; 87:6158-64. [DOI: 10.1021/acs.analchem.5b00763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jenna A. Walz
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02115, United States
| | | | - Charles R. Mace
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02115, United States
| | | |
Collapse
|
30
|
Dünschede B, Träger C, Schröder CV, Ziehe D, Walter B, Funke S, Hofmann E, Schünemann D. Chloroplast SRP54 Was Recruited for Posttranslational Protein Transport via Complex Formation with Chloroplast SRP43 during Land Plant Evolution. J Biol Chem 2015; 290:13104-14. [PMID: 25833951 DOI: 10.1074/jbc.m114.597922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Indexed: 01/05/2023] Open
Abstract
In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP.
Collapse
Affiliation(s)
| | | | | | | | - Björn Walter
- From the Molecular Biology of Plant Organelles and
| | - Silke Funke
- From the Molecular Biology of Plant Organelles and
| | - Eckhard Hofmann
- Protein Crystallography, Ruhr University Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
31
|
Formighieri C, Cazzaniga S, Kuras R, Bassi R. Biogenesis of photosynthetic complexes in the chloroplast of Chlamydomonas reinhardtii requires ARSA1, a homolog of prokaryotic arsenite transporter and eukaryotic TRC40 for guided entry of tail-anchored proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:850-61. [PMID: 23167510 DOI: 10.1111/tpj.12077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 05/08/2023]
Abstract
as1, for antenna size mutant 1, was obtained by insertion mutagenesis of the unicellular green alga Chlamydomonas reinhardtii. This strain has a low chlorophyll content, 8% with respect to the wild type, and displays a general reduction in thylakoid polypeptides. The mutant was found to carry an insertion into a homologous gene, prokaryotic arsenite transporter (ARSA), whose yeast and mammal counterparts were found to be involved in the targeting of tail-anchored (TA) proteins to cytosol-exposed membranes, essential for several cellular functions. Here we present the characterization in a photosynthetic organism of an insertion mutant in an ARSA-homolog gene. The ARSA1 protein was found to be localized in the cytosol, and yet its absence in as1 leads to a small chloroplast and a strongly decreased chlorophyll content per cell. ARSA1 appears to be required for optimal biogenesis of photosynthetic complexes because of its involvement in the accumulation of TOC34, an essential component of the outer chloroplast membrane translocon (TOC) complex, which, in turn, catalyzes the import of nucleus-encoded precursor polypeptides into the chloroplast. Remarkably, the effect of the mutation appears to be restricted to biogenesis of chlorophyll-binding polypeptides and is not compensated by the other ARSA homolog encoded by the C. reinhardtii genome, implying a non-redundant function.
Collapse
Affiliation(s)
- Cinzia Formighieri
- Dipartimento di Biotecnologie, Università di Verona, 15, Strada Le Grazie, I-37134 Verona, Italy
| | | | | | | |
Collapse
|
32
|
Vinyard DJ, Gimpel J, Ananyev GM, Cornejo MA, Golden SS, Mayfield SP, Dismukes GC. Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity. J Biol Chem 2012; 288:5451-62. [PMID: 23271739 DOI: 10.1074/jbc.m112.394668] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is composed of six core polypeptides that make up the minimal unit capable of performing the primary photochemistry of light-driven charge separation and water oxidation in all oxygenic phototrophs. The D1 subunit of this complex contains most of the ligating amino acid residues for the Mn(4)CaO(5) core of the water-oxidizing complex (WOC). Most cyanobacteria have 3-5 copies of the psbA gene coding for at least two isoforms of D1, whereas algae and plants have only one isoform. Synechococcus elongatus PCC 7942 contains two D1 isoforms; D1:1 is expressed under low light conditions, and D1:2 is up-regulated in high light or stress conditions. Using a heterologous psbA expression system in the green alga Chlamydomonas reinhardtii, we have measured growth rate, WOC cycle efficiency, and O(2) yield as a function of D1:1, D1:2, or the native algal D1 isoform. D1:1-PSII cells outcompete D1:2-PSII cells and accumulate more biomass in light-limiting conditions. However, D1:2-PSII cells easily outcompete D1:1-PSII cells at high light intensities. The native C. reinhardtii-PSII WOC cycles less efficiently at all light intensities and produces less O(2) than either cyanobacterial D1 isoform. D1:2-PSII makes more O(2) per saturating flash than D1:1-PSII, but it exhibits lower WOC cycling efficiency at low light intensities due to a 40% faster charge recombination rate in the S(3) state. These functional advantages of D1:1-PSII and D1:2-PSII at low and high light regimes, respectively, can be explained by differences in predicted redox potentials of PSII electron acceptors that control kinetic performance.
Collapse
Affiliation(s)
- David J Vinyard
- Department of Chemistry and Chemical Biology, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Mitra M, Kirst H, Dewez D, Melis A. Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference. Philos Trans R Soc Lond B Biol Sci 2012; 367:3430-43. [PMID: 23148270 PMCID: PMC3497077 DOI: 10.1098/rstb.2012.0229] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Truncated light-harvesting antenna 1 (TLA1) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii. The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene.
Collapse
Affiliation(s)
- Mautusi Mitra
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Department of Biology, University of West Georgia, Carrollton, GA 30118, USA
| | - Henning Kirst
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - David Dewez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Teng YS, Chan PT, Li HM. Differential age-dependent import regulation by signal peptides. PLoS Biol 2012; 10:e1001416. [PMID: 23118617 PMCID: PMC3484058 DOI: 10.1371/journal.pbio.1001416] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022] Open
Abstract
Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.
Collapse
Affiliation(s)
- Yi-Shan Teng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Po-Ting Chan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
Luo L, Herrin DL. A novel rhodanese is required to maintain chloroplast translation in Chlamydomonas. PLANT MOLECULAR BIOLOGY 2012; 79:495-508. [PMID: 22644440 DOI: 10.1007/s11103-012-9926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Rhodanese-domain proteins (RDPs) are widespread in plants and other organisms, but their biological roles are mostly unknown. Here we report on a novel RDP from Chlamydomonas that has a single rhodanese domain, and a predicted chloroplast transit peptide. The protein was produced in Escherichia coli with a His-tag, but lacking most of the N-terminal transit peptide, and after purification was found to have rhodanese activity in vitro. It was also used to elicit antibodies for western blot analysis, which showed that the native Chlamydomonas protein migrated slower on SDS gels (apparent M(r) =34 kDa) than its predicted size (27 kDa), and co-fractionated with chloroplasts. To assess function in vivo, the tandem-RNAi approach was used to generate Chlamydomonas strains that had reductions of 30-70% for the mRNA and ~20-40% for the 34-kDa protein. These strains showed reduced growth under all trophic conditions, and were sensitive to even moderate light; properties reminiscent of chloroplast translation mutants. Pulse-labeling in the presence of cycloheximide indicated that chloroplast protein synthesis was broadly reduced in the RNAi strains, and transcript analysis (by RT-PCR and northern blotting) indicated the effect was mainly translational. These results identify a novel rhodanese-like protein that we have named CRLT, because it is required to maintain chloroplast translation.
Collapse
Affiliation(s)
- Liming Luo
- Section of Molecular Cell and Developmental Biology, School of Biological Sciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
36
|
Fan J, Andre C, Xu C. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 2011; 585:1985-91. [DOI: 10.1016/j.febslet.2011.05.018] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 01/15/2023]
|
37
|
Bienvenut WV, Espagne C, Martinez A, Majeran W, Valot B, Zivy M, Vallon O, Adam Z, Meinnel T, Giglione C. Dynamics of post-translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts. Proteomics 2011; 11:1734-50. [PMID: 21462344 DOI: 10.1002/pmic.201000634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/10/2010] [Accepted: 11/29/2010] [Indexed: 01/09/2023]
Abstract
The proteome of any system is a dynamic entity dependent on the intracellular concentration of the entire set of expressed proteins. In turn, this whole protein concentration will be reliant on the stability/turnover of each protein as dictated by their relative rates of synthesis and degradation. In this study, we have investigated the dynamics of the stromal proteome in the model organism Chlamydomonas reinhardtii by characterizing the half-life of the whole set of proteins. 2-DE stromal proteins profiling was set up and coupled with MS analyses. These identifications featuring an average of 26% sequence coverage and eight non-redundant peptides per protein have been obtained for 600 independent samples related to 253 distinct spots. An interactive map of the global stromal proteome, of 274 distinct protein variants is now available on-line at http://www.isv.cnrs-gif.fr/gel2dv2/. N-α-terminal-Acetylation (NTA) was noticed to be the most frequently detectable post-translational modification, and new experimental data related to the chloroplastic transit peptide cleavage site was obtained. Using this data set supplemented with series of pulse-chase experiments, elements directing the relationship between half-life and N-termini were analyzed. Positive correlation between NTA and protein half-life suggests that NTA could contribute to protein stabilization in the stroma.
Collapse
|
38
|
Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H. Expression of a low CO₂-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. THE PLANT CELL 2010; 22:3105-17. [PMID: 20870960 PMCID: PMC2965534 DOI: 10.1105/tpc.109.071811] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 08/11/2010] [Accepted: 09/07/2010] [Indexed: 05/19/2023]
Abstract
Aquatic photosynthetic organisms can modulate their photosynthesis to acclimate to CO₂-limiting stress by inducing a carbon-concentrating mechanism (CCM) that includes carbonic anhydrases and inorganic carbon (Ci) transporters. However, to date, Ci-specific transporters have not been well characterized in eukaryotic algae. Previously, a Chlamydomonas reinhardtii mutant (lcr1) was identified that was missing a Myb transcription factor. This mutant had reduced light-dependent CO₂ gas exchange (LCE) activity when grown under CO₂-limiting conditions and did not induce the CAH1 gene encoding a periplasmic carbonic anhydrase, as well as two as yet uncharacterized genes, LCI1 and LCI6. In this study, LCI1 was placed under the control of the nitrate reductase promoter, allowing for the induction of LCI1 expression by nitrate in the absence of other CCM components. When the expression of LCI1 was induced in the lcr1 mutant under CO₂-enriched conditions, the cells showed an increase in LCE activity, internal Ci accumulation, and photosynthetic affinity for Ci. From experiments using indirect immunofluorescence, LCI1-green fluorescent protein fusions, and cell fractionation procedures, it appears that LCI1 is mainly localized to the plasma membrane. These results provide strong evidence that LCI1 may contribute to the CCM as a component of the Ci transport machinery in the plasma membrane.
Collapse
Affiliation(s)
- Norikazu Ohnishi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Bratati Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Tomoki Tsujikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mari Yanase
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hirobumi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
39
|
Uniacke J, Zerges W. Photosystem II assembly and repair are differentially localized in Chlamydomonas. THE PLANT CELL 2007; 19:3640-54. [PMID: 18055604 PMCID: PMC2174875 DOI: 10.1105/tpc.107.054882] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 05/19/2023]
Abstract
Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and synthesized by bacterium-like ribosomes within this organelle. To determine where proteins are synthesized for the de novo assembly and repair of photosystem II (PSII) in the chloroplast of Chlamydomonas reinhardtii, we used fluorescence in situ hybridization, immunofluorescence staining, and confocal microscopy. These locations were defined as having colocalized chloroplast mRNAs encoding PSII subunits and proteins of the chloroplast translation machinery specifically under conditions of PSII subunit synthesis. The results revealed that the synthesis of the D1 subunit for the repair of photodamaged PSII complexes occurs in regions of the chloroplast with thylakoids, consistent with the current model. However, for de novo PSII assembly, PSII subunit synthesis was detected in discrete regions near the pyrenoid, termed T zones (for translation zones). In two PSII assembly mutants, unassembled D1 subunits and incompletely assembled PSII complexes localized around the pyrenoid, where we propose that they mark an intermediate compartment of PSII assembly. These results reveal a novel chloroplast compartment that houses de novo PSII biogenesis and the regulated transport of newly assembled PSII complexes to thylakoid membranes throughout the chloroplast.
Collapse
Affiliation(s)
- James Uniacke
- Biology Department, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | | |
Collapse
|