1
|
Li L, Zheng Z, Lan W, Tang N, Zhang D, Ling J, Wu Y, Yang P, Fu L, Liu J, Zhang J, Yu P, Huang T. Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes. ACS OMEGA 2025; 10:18145-18169. [PMID: 40385188 PMCID: PMC12079207 DOI: 10.1021/acsomega.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
In the cardiovascular system, different types of cardiovascular cells can secrete specific exosomes and participate in the maintenance of cardiovascular function and the occurrence and development of diseases. Exosomes carry biologically active substances such as proteins and nucleic acids from cells of origin and can be used as biomarkers for disease diagnosis and prognosis assessment. In addition, exosome-mediated intercellular communication plays a key role in the occurrence and development of cardiovascular diseases and has become a potential therapeutic target. This article emphasizes the importance of understanding the mechanism of exosomes in cardiovascular diseases and systematically details the current understanding of exosomes as regulators of intercellular communication in cardiomyocytes, providing a basis for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Zhidong Zheng
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Wenyu Lan
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Nan Tang
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Deju Zhang
- Food
and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 0000, Hong Kong
| | - Jitao Ling
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Yuting Wu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Pingping Yang
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Linhua Fu
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jianping Liu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jing Zhang
- Department
of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Peng Yu
- Department
of Metabolism and Endocrinology, The Second
Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tieqiu Huang
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| |
Collapse
|
2
|
Rey-Cadilhac F, Rachenne F, Marquant A, Kee Him JL, Ancelin A, Foisor V, Morille M, Lyonnais S, Cazevieille C, Missé D, Pompon J. Characterization of size distribution and markers for mosquito extracellular vesicles. Front Cell Dev Biol 2025; 13:1497795. [PMID: 40292329 PMCID: PMC12021844 DOI: 10.3389/fcell.2025.1497795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Extracellular vesicles (EVs) are non-replicative, cell-derived membranous structures secreted by potentially all eukaryotic cells, playing a crucial role in intercellular communication. The study of EVs requires approaches and tools, which have predominantly been developed for mammalian models. Here, we undertook a multimodal characterization of mosquito EVs to provide a technical and knowledge foundation for their study. First, using a cell line model from Aedes aegypti and applying multiple analytical technologies (i.e., NTA, TEM, cryo-EM, and AFM), we observed that mosquito EVs range from 20 to 500 nm in diameter and that a majority are smaller than 100 nm. Second, we showed that smaller EVs are secreted in mosquito saliva. Third, we evaluated the capacity of differential centrifugation and size exclusion chromatography to separate mosquito EVs, revealing the strengths and weaknesses of each technology. Finally, we identified a mosquito homolog of CD63 as an extravesicular marker and the mosquito syntenin as a putative luminal marker. Overall, our results promote the development of tools and approaches for the study of mosquito EVs.
Collapse
Affiliation(s)
| | | | | | - Josephine Lai Kee Him
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Aurélie Ancelin
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | | | - Marie Morille
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Chantal Cazevieille
- INM (Institut de Neuroscience de Montpellier), Electronic Microscopy Plateform, Saint Eloi Hospital, Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
3
|
Kozela E, Petrovich-Kopitman E, Berger Y, Camacho AC, Shoham Y, Morandi MI, Rosenhek-Goldian I, Rotkopf R, Regev-Rudzki N. Spectral flow cytometry for detecting DNA cargo in malaria parasite-derived extracellular vesicles. J Biol Chem 2025; 301:108481. [PMID: 40199399 DOI: 10.1016/j.jbc.2025.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Cells across biological kingdoms release extracellular vesicles (EVs) as a means of communication with other cells, be their friends or foes. This is indeed true for the intracellular malaria parasite Plasmodium falciparum (Pf), which utilizes EVs to transport bioactive molecules to various human host systems. Yet, the study of this mode of communication in malaria research is currently constrained due to limitations in high-resolution tools and the absence of commercial antibodies. Here, we demonstrate the power of an advanced spectral flow cytometry approach to robustly detect secreted EVs, isolated from Pf-infected red blood cells. By labeling both EV membrane lipids and the DNA cargo within (non-antibody staining approach), we were able to detect a subpopulation of parasitic-derived EVs enriched in DNA. Furthermore, we could quantitatively measure the DNA-carrying EVs isolated from two distinct blood stages of the parasite: rings and trophozoites. Our findings showcase the potential of spectral flow cytometry to monitor dynamic changes in nucleic acid cargo within pathogenic EVs.
Collapse
Affiliation(s)
- Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yuval Berger
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yaara Shoham
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mattia I Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague, Czech Republic; The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Fernandes C, Persaud AT, Chaphekhar D, Burnie J, Belanger C, Tang VA, Guzzo C. Flow virometry: recent advancements, best practices, and future frontiers. J Virol 2025; 99:e0171724. [PMID: 39868829 PMCID: PMC11853038 DOI: 10.1128/jvi.01717-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics. With examples illustrated using primary data from our recent studies, we demonstrate that FV is a powerful yet underutilized methodology that, when employed with best practices and experimental rigor, can be highly valuable for studying individual virion heterogeneity, virus phenotypes, and virus-antibody interactions. In this review, we also address the current challenges when performing FV studies, propose strategies to overcome these obstacles, and outline best practices for both new and experienced researchers. Finally, we discuss the promising future prospects of FV within the broader context of virology research.
Collapse
Affiliation(s)
- Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deepa Chaphekhar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Carolyn Belanger
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Dong X, Lin Y, Li K, Liang G, Huang X, Pan J, Wang L, Zhang D, Liu T, Wang T, Yan X, Zhang L, Li X, Qu X, Jia D, Li Y, Zhang H. Consensus statement on extracellular vesicles in liquid biopsy for advancing laboratory medicine. Clin Chem Lab Med 2025; 63:465-482. [PMID: 38896030 DOI: 10.1515/cclm-2024-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Extracellular vesicles (EVs) represent a diverse class of nanoscale membrane vesicles actively released by cells. These EVs can be further subdivided into categories like exosomes and microvesicles, based on their origins, sizes, and physical attributes. Significantly, disease-derived EVs have been detected in virtually all types of body fluids, providing a comprehensive molecular profile of their cellular origins. As a result, EVs are emerging as a valuable addition to liquid biopsy techniques. In this collective statement, the authors share their current perspectives on EV-related research and product development, with a shared commitment to translating this newfound knowledge into clinical applications for cancer and other diseases, particularly as disease biomarkers. The consensus within this document revolves around the overarching recognition of the merits, unresolved questions, and existing challenges surrounding EVs. This consensus manuscript is a collaborative effort led by the Committee of Exosomes, Society of Tumor Markers, Chinese anti-Cancer Association, aimed at expediting the cultivation of robust scientific and clinically applicable breakthroughs and propelling the field forward with greater swiftness and efficacy.
Collapse
Affiliation(s)
- Xingli Dong
- 558113 Central Laboratory, Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen Clinical Research Center for hematologic disease, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Yusheng Lin
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Thoracic Surgery, 47885 The First Affiliated Hospital of Jinan University , Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Kai Li
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Gaofeng Liang
- 74623 School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology , Luoyang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang Province, Harbin, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Tong Wang
- 47885 MOE Key Laboratory of Tumor Molecular Biology, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Xiaomei Yan
- Department of Chemical Biology, 534787 MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, China
| | - Long Zhang
- 12377 MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University , Hangzhou, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, 558113 Shenzhen Key Laboratory, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Xiujuan Qu
- Department of Medical Oncology, 159407 The First Hospital of China Medical University , Shenyang, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Wen X, Hao Z, Yin H, Min J, Wang X, Sun S, Ruan G. Engineered Extracellular Vesicles as a New Class of Nanomedicine. CHEM & BIO ENGINEERING 2025; 2:3-22. [PMID: 39975802 PMCID: PMC11835263 DOI: 10.1021/cbe.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 02/21/2025]
Abstract
Extracellular vesicles (EVs) are secreted from biological cells and contain many molecules with diagnostic values or therapeutic functions. There has been great interest in academic and industrial communities to utilize EVs as tools for diagnosis or therapeutics. In addition, EVs can also serve as delivery vehicles for therapeutic molecules. An indicator of the enormous interest in EVs is the large number of review articles published on EVs, with the focus ranging from their biology to their applications. An emerging trend in EV research is to produce and utilize "engineered EVs", which are essentially the enhanced version of EVs. EV engineering can be conducted by cell culture condition control, genetic engineering, or chemical engineering. Given their nanometer-scale sizes and therapeutic potentials, engineered EVs are an emerging class of nanomedicines. So far, an overwhelming majority of the research on engineered EVs is preclinical studies; there are only a very small number of reported clinical trials. This Review focuses on engineered EVs, with a more specific focus being their applications in therapeutics. The various approaches to producing engineered EVs and their applications in various diseases are reviewed. Furthermore, in vivo imaging of EVs, the mechanistic understandings, and the clinical translation aspects are discussed. The discussion is primarily on preclinical studies while briefly mentioning the clinical trials. With continued interdisciplinary research efforts from biologists, pharmacists, physicians, bioengineers, and chemical engineers, engineered EVs could become a powerful solution for many major diseases such as neurological, immunological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaowei Wen
- Institute
of Analytical Chemistry and Instrument for Life Science, The Key Laboratory
of Biomedical Information Engineering of Ministry of Education, School
of Life Science and Technology, Xi’an
Jiaotong University, Xi’an, China 710049
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Zerun Hao
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Haofan Yin
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Jie Min
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Xueying Wang
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Sihan Sun
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Gang Ruan
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| |
Collapse
|
7
|
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int J Mol Sci 2024; 26:189. [PMID: 39796048 PMCID: PMC11720073 DOI: 10.3390/ijms26010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites. The complexity and diversity of EVs require a robust and standardized approach. By adhering to standardized protocols and guidelines, researchers can ensure the consistency, purity, and reproducibility of isolated EVs, facilitating their use in diagnostics, therapies, and research. Exosomes and microvesicles represent an exciting frontier in modern medicine, with significant potential to transform the diagnosis and treatment of various diseases with an important role in personalized medicine and precision therapy. The primary objective of this review is to provide an updated analysis of the significance of EVs by highlighting their mechanisms of action and exploring their applications in the diagnosis and treatment of various diseases. Additionally, the review addresses the existing limitations and future potential of EVs, offering practical recommendations to resolve current challenges and enhance their viability for clinical use. This comprehensive approach aims to bridge the gap between EV research and its practical application in healthcare.
Collapse
Affiliation(s)
| | | | | | - María Isabel Torres
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (P.L.); (J.N.D.); (T.P.)
| |
Collapse
|
8
|
Yadav A, Xuan Y, Sen CK, Ghatak S. Standardized Reporting of Research on Exosomes to Ensure Rigor and Reproducibility. Adv Wound Care (New Rochelle) 2024; 13:584-599. [PMID: 38888007 DOI: 10.1089/wound.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Significance: The study of extracellular vesicles (EVs), especially exosomes, has unlocked new avenues in understanding cellular communication and potential therapeutic applications. Recent Advances: Advancements in EV research have shown significant contributions from the International Society for Extracellular Vesicles (ISEV), in establishing methodological standards. The evolution of the Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines from 2014 to 2023 reflects enhanced research rigor and reproducibility. The launch of EV-TRACK platform promotes uniformity and reproducibility by providing a centralized repository for data sharing and standardization practices. Furthermore, databases like EVpedia and ExoCarta have facilitated data sharing and collaboration within the scientific community. Concurrently, exosome-based therapies have emerged as a forefront area within regenerative medicine and targeted drug delivery, showcasing the potential of exosomes in promoting tissue regeneration. Critical Issues: Despite advancements, the field grapples with challenges such as vesicular heterogeneity, EV isolation complexity, and standardization. These issues impact research reproducibility and clinical applications. The inconsistency in exosomal preparations in clinical trials poses significant challenges to therapeutic efficacy and safety. Future Directions: The review outlines critical areas for future research, including the need for technological innovation in EV isolation and characterization, the establishment of standardized protocols, and a deeper understanding of exosome biology. The review also highlights the need to reassess guidelines, develop new EV isolation and characterization technologies, and establish standardized protocols to overcome current limitations. Emphasis is placed on interdisciplinary research and collaboration to address the complexities of EV biology, improve clinical trial design, and ultimately realize exosome's therapeutic and diagnostic potential. Continued evaluation and rigorous scientific validation are essential for successful exosome integration.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi Xuan
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Dlugolecka M, Czystowska-Kuzmicz M. Factors to consider before choosing EV labeling method for fluorescence-based techniques. Front Bioeng Biotechnol 2024; 12:1479516. [PMID: 39359260 PMCID: PMC11445045 DOI: 10.3389/fbioe.2024.1479516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
A well-designed fluorescence-based analysis of extracellular vesicles (EV) can provide insights into the size, morphology, and biological function of EVs, which can be used in medical applications. Fluorescent nanoparticle tracking analysis with appropriate controls can provide reliable data for size and concentration measurements, while nanoscale flow cytometry is the most appropriate tool for characterizing molecular cargoes. Label selection is a crucial element in all fluorescence methods. The most comprehensive data can be obtained if several labeling approaches for a given marker are used, as they would provide complementary information about EV populations and interactions with the cells. In all EV-related experiments, the influence of lipoproteins and protein corona on the results should be considered. By reviewing and considering all the factors affecting EV labeling methods used in fluorescence-based techniques, we can assert that the data will provide as accurate as possible information about true EV biology and offer precise, clinically applicable information for future EV-based diagnostic or therapeutic applications.
Collapse
|
10
|
Kurikawa Y, Koyama-Honda I, Tamura N, Koike S, Mizushima N. Organelle landscape analysis using a multiparametric particle-based method. PLoS Biol 2024; 22:e3002777. [PMID: 39288101 PMCID: PMC11407678 DOI: 10.1371/journal.pbio.3002777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Organelles have unique structures and molecular compositions for their functions and have been classified accordingly. However, many organelles are heterogeneous and in the process of maturation and differentiation. Because traditional methods have a limited number of parameters and spatial resolution, they struggle to capture the heterogeneous landscapes of organelles. Here, we present a method for multiparametric particle-based analysis of organelles. After disrupting cells, fluorescence microscopy images of organelle particles labeled with 6 to 8 different organelle markers were obtained, and their multidimensional data were represented in two-dimensional uniform manifold approximation and projection (UMAP) spaces. This method enabled visualization of landscapes of 7 major organelles as well as the transitional states of endocytic organelles directed to the recycling and degradation pathways. Furthermore, endoplasmic reticulum-mitochondria contact sites were detected in these maps. Our proposed method successfully detects a wide array of organelles simultaneously, enabling the analysis of heterogeneous organelle landscapes.
Collapse
Affiliation(s)
- Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norito Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiichi Koike
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
12
|
Kim J, Xu S, Jung S, Nguyen A, Cheng Y, Zhao M, Fujimoto BS, Nelson W, Schiro P, Franklin JL, Higginbotham JN, Coffey RJ, Shi M, Vojtech LN, Hladik F, Tewari M, Tigges J, Ghiran I, Jovanovic‐Talisman T, Laurent LC, Das S, Gololobova O, Witwer KW, Xu T, Charest A, Jensen KVK, Raffai RL, Jones JC, Welsh JA, Nolan JP, Chiu DT. Comparison of EV characterization by commercial high-sensitivity flow cytometers and a custom single-molecule flow cytometer. J Extracell Vesicles 2024; 13:e12498. [PMID: 39140467 PMCID: PMC11322860 DOI: 10.1002/jev2.12498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
High-sensitivity flow cytometers have been developed for multi-parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high-sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single-molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di-8-ANEPPS and with PE-conjugated anti-EGFR or anti-tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross-calibrated, hard-dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di-8-ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin-labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super-resolution/single-molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter-platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter-instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi-quantitative LOD values for other flow cytometers.
Collapse
Affiliation(s)
- James Kim
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Shihan Xu
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Alya Nguyen
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Yuanhua Cheng
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Mengxia Zhao
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Wyatt Nelson
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Jeffrey L. Franklin
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Robert J. Coffey
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Min Shi
- Department of PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Lucia N. Vojtech
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWashingtonUSA
| | - Florian Hladik
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWashingtonUSA
- Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Muneesh Tewari
- Division of Hematology/OncologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Rogel Comprehensive Cancer CenterUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Center for Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- VA Ann Arbor Healthcare SystemAnn ArborMichiganUSA
| | - John Tigges
- Department of MedicineBeth Israel Deaconess Medical CenterBoston and CambridgeMassachusettsUSA
| | - Ionita Ghiran
- Department of MedicineBeth Israel Deaconess Medical CenterBoston and CambridgeMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Molecular MedicineBeckman Research Institute of the City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General HospitalHarvard Medical schoolBostonMassachusettsUSA
| | - Olesia Gololobova
- Department of Molecular and Comparative PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tuoye Xu
- Cancer Research InstituteBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Al Charest
- Cancer Research InstituteBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Robert L. Raffai
- Department of Veterans AffairsSurgical Service (112G), San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | - Daniel T. Chiu
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
13
|
Niu Y, Yu Y, Shi X, Fu F, Yang H, Mu Q, Crespy D, Landfester K, Jiang S. In Situ Measurement of Nanoparticle-Blood Protein Adsorption and Its Heterogeneity with Single-Nanoparticle Resolution via Dual Fluorescence Quantification. NANO LETTERS 2024; 24:9202-9211. [PMID: 39037031 PMCID: PMC11299225 DOI: 10.1021/acs.nanolett.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.
Collapse
Affiliation(s)
- Yuanyuan Niu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Yingjie Yu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Xinyang Shi
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Fangqin Fu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| | - Hai Yang
- Department
of Pharmacy, Qingdao Central Hospital, University
of Health and Rehabilitation Sciences, Qingdao 266042, China
| | - Qiang Mu
- The
First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao
Central Medical Group), Qingdao 266042, China
| | - Daniel Crespy
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Jiang
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao
Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
14
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
15
|
Lim W, Lee S, Koh M, Jo A, Park J. Recent advances in chemical biology tools for protein and RNA profiling of extracellular vesicles. RSC Chem Biol 2024; 5:483-499. [PMID: 38846074 PMCID: PMC11151817 DOI: 10.1039/d3cb00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted by cells that contain various cellular components such as proteins, nucleic acids, and lipids from the parent cell. EVs are abundant in body fluids and can serve as circulating biomarkers for a variety of diseases or as a regulator of various biological processes. Considering these characteristics of EVs, analysis of the EV cargo has been spotlighted for disease diagnosis or to understand biological processes in biomedical research. Over the past decade, technologies for rapid and sensitive analysis of EVs in biofluids have evolved, but detection and isolation of targeted EVs in complex body fluids is still challenging due to the unique physical and biological properties of EVs. Recent advances in chemical biology provide new opportunities for efficient profiling of the molecular contents of EVs. A myriad of chemical biology tools have been harnessed to enhance the analytical performance of conventional assays for better understanding of EV biology. In this review, we will discuss the improvements that have been achieved using chemical biology tools.
Collapse
Affiliation(s)
- Woojeong Lim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Soyeon Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science Seoul 03722 Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
16
|
Defourny KAY, Pei X, van Kuppeveld FJM, Nolte-T Hoen ENM. Picornavirus security proteins promote the release of extracellular vesicle enclosed viruses via the modulation of host kinases. PLoS Pathog 2024; 20:e1012133. [PMID: 38662794 DOI: 10.1371/journal.ppat.1012133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/07/2024] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
The discovery that extracellular vesicles (EVs) serve as carriers of virus particles calls for a reevaluation of the release strategies of non-enveloped viruses. Little is currently known about the molecular mechanisms that determine the release and composition of EVs produced by virus-infected cells, as well as conservation of these mechanisms among viruses. We previously described an important role for the Leader protein of the picornavirus encephalomyocarditis virus (EMCV) in the induction of virus-carrying EV subsets with distinct molecular and physical properties. EMCV L acts as a 'viral security protein' by suppressing host antiviral stress and type-I interferon (IFN) responses. Here, we tested the ability of functionally related picornavirus proteins of Theilers murine encephalitis virus (TMEV L), Saffold virus (SAFV L), and coxsackievirus B3 (CVB3 2Apro), to rescue EV and EV-enclosed virus release when introduced in Leader-deficient EMCV. We show that all viral security proteins tested were able to promote virus packaging in EVs, but that only the expression of EMCV L and CVB3 2Apro increased overall EV production. We provide evidence that one of the main antiviral pathways counteracted by this class of picornaviral proteins, i.e. the inhibition of PKR-mediated stress responses, affected EV and EV-enclosed virus release during infection. Moreover, we show that the enhanced capacity of the viral proteins EMCV L and CVB3 2Apro to promote EV-enclosed virus release is linked to their ability to simultaneously promote the activation of the stress kinase P38 MAPK. Taken together, we demonstrate that cellular stress pathways involving the kinases PKR and P38 are modulated by the activity of non-structural viral proteins to increase the release EV-enclosed viruses during picornavirus infections. These data shed new light on the molecular regulation of EV production in response to virus infection.
Collapse
Affiliation(s)
- Kyra A Y Defourny
- Infection Biology Section, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Xinyi Pei
- Infection Biology Section, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther N M Nolte-T Hoen
- Infection Biology Section, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Dimitriadis S, Dova L, Kotsianidis I, Hatzimichael E, Kapsali E, Markopoulos GS. Imaging Flow Cytometry: Development, Present Applications, and Future Challenges. Methods Protoc 2024; 7:28. [PMID: 38668136 PMCID: PMC11054958 DOI: 10.3390/mps7020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Imaging flow cytometry (ImFC) represents a significant technological advancement in the field of cytometry, effectively merging the high-throughput capabilities of flow analysis with the detailed imaging characteristics of microscopy. In our comprehensive review, we adopt a historical perspective to chart the development of ImFC, highlighting its origins and current state of the art and forecasting potential future advancements. The genesis of ImFC stemmed from merging the hydraulic system of a flow cytometer with advanced camera technology. This synergistic coupling facilitates the morphological analysis of cell populations at a high-throughput scale, effectively evolving the landscape of cytometry. Nevertheless, ImFC's implementation has encountered hurdles, particularly in developing software capable of managing its sophisticated data acquisition and analysis needs. The scale and complexity of the data generated by ImFC necessitate the creation of novel analytical tools that can effectively manage and interpret these data, thus allowing us to unlock the full potential of ImFC. Notably, artificial intelligence (AI) algorithms have begun to be applied to ImFC, offering promise for enhancing its analytical capabilities. The adaptability and learning capacity of AI may prove to be essential in knowledge mining from the high-dimensional data produced by ImFC, potentially enabling more accurate analyses. Looking forward, we project that ImFC may become an indispensable tool, not only in research laboratories, but also in clinical settings. Given the unique combination of high-throughput cytometry and detailed imaging offered by ImFC, we foresee a critical role for this technology in the next generation of scientific research and diagnostics. As such, we encourage both current and future scientists to consider the integration of ImFC as an addition to their research toolkit and clinical diagnostic routine.
Collapse
Affiliation(s)
- Savvas Dimitriadis
- Hematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45100 Ioannina, Greece; (S.D.); (L.D.)
| | - Lefkothea Dova
- Hematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45100 Ioannina, Greece; (S.D.); (L.D.)
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 69100 Alexandroupolis, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (E.H.); (E.K.)
| | - Eleni Kapsali
- Department of Hematology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (E.H.); (E.K.)
| | - Georgios S. Markopoulos
- Hematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 45100 Ioannina, Greece; (S.D.); (L.D.)
- Department of Surgery, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
18
|
Bojmar L, Kim HS, Sugiura K, Heissel S, Lucotti S, Cioffi M, Johnson KE, Cohen-Gould L, Zhang H, Molina H, Matei IR, Lyden D, Hoshino A. Protocol for cross-platform characterization of human and murine extracellular vesicles and particles. STAR Protoc 2024; 5:102754. [PMID: 38096060 PMCID: PMC10762520 DOI: 10.1016/j.xpro.2023.102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Characterization of isolated extracellular vesicles and particles (EVPs) is crucial for determining functions and biomarker potential. Here, we present a protocol to analyze size, number, morphology, and EVP protein cargo and to validate EVP proteins in both humans and mice. We describe steps for nanoparticle tracking analysis, transmission electron microscopy, single-EVP immunodetection, EVP proteomic mass spectrometry and bioinformatic analysis, and EVP protein validation by ExoELISA and western blot analysis. This allows for EVP cross-validation across different platforms. For complete details on the use and execution of this protocol, please refer to Hoshino et al.1.
Collapse
Affiliation(s)
- Linda Bojmar
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Han Sang Kim
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 FOUR Project, Yonsei University College of Medicine, Seoul, Korea
| | - Kei Sugiura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kofi Ennu Johnson
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Leona Cohen-Gould
- Microscopy & Image Analysis, Core Facilities, Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Irina R Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
19
|
Clarke E, Varela L, Jenkins RE, Lozano-Andrés E, Cywińska A, Przewozny M, van Weeren PR, van de Lest CH, Peffers M, Wauben MH. Proteome and phospholipidome interrelationship of synovial fluid-derived extracellular vesicles in equine osteoarthritis: An exploratory 'multi-omics' study to identify composite biomarkers. Biochem Biophys Rep 2024; 37:101635. [PMID: 38298208 PMCID: PMC10828605 DOI: 10.1016/j.bbrep.2023.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis causes progressive joint deterioration, severe morbidity, and reduced mobility in both humans and horses. Currently, osteoarthritis is diagnosed at late stages through clinical examination and radiographic imaging, hence it is challenging to address and provide timely therapeutic interventions to slow disease progression or ameliorate symptoms. Extracellular vesicles are cell-derived vesicles that play a key role in cell-to-cell communication and are potential sources for specific composite biomarker panel discovery. We here used a multi-omics strategy combining proteomics and phospholipidomics in an integral approach to identify composite biomarkers associated to purified extracellular vesicles from synovial fluid of healthy, mildly and severely osteoarthritic equine joints. Although the number of extracellular vesicles was unaffected by osteoarthritis, proteome profiling of extracellular vesicles by mass spectrometry identified 40 differentially expressed proteins (non-adjusted p < 0.05) in osteoarthritic joints associated with 7 significant canonical pathways in osteoarthritis. Moreover, pathway analysis unveiled changes in disease and molecular functions during osteoarthritis development. Phospholipidome profiling by mass spectrometry showed a relative increase in sphingomyelin and a decrease in phosphatidylcholine, phosphatidylinositol, and phosphatidylserine in extracellular vesicles derived from osteoarthritic joints compared to healthy joints. Unsupervised data integration revealed positive correlations between the proteome and the phospholipidome. Comprehensive analysis showed that some phospholipids and their related proteins increased as the severity of osteoarthritis progressed, while others decreased or remained stable. Altogether our data show interrelationships between synovial fluid extracellular vesicle-associated phospholipids and proteins responding to osteoarthritis pathology and which could be explored as potential composite diagnostic biomarkers of disease.
Collapse
Affiliation(s)
- Emily Clarke
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rosalind E. Jenkins
- Centre for Drug Safety Science Bioanalytical Facility, Liverpool Shared Research Facilities, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Estefanía Lozano-Andrés
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Anna Cywińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | | | - P. René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Chris H.A. van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mandy Peffers
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Marca H.M. Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
20
|
Miotto PM, Yang CH, Keenan SN, De Nardo W, Beddows CA, Fidelito G, Dodd GT, Parker BL, Hill AF, Burton PR, Loh K, Watt MJ. Liver-derived extracellular vesicles improve whole-body glycaemic control via inter-organ communication. Nat Metab 2024; 6:254-272. [PMID: 38263317 DOI: 10.1038/s42255-023-00971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Small extracellular vesicles (EVs) are signalling messengers that regulate inter-tissue communication through delivery of their molecular cargo. Here, we show that liver-derived EVs are acute regulators of whole-body glycaemic control in mice. Liver EV secretion into the circulation is increased in response to hyperglycaemia, resulting in increased glucose effectiveness and insulin secretion through direct inter-organ EV signalling to skeletal muscle and the pancreas, respectively. This acute blood glucose lowering effect occurs in healthy and obese mice with non-alcoholic fatty liver disease, despite marked remodelling of the liver-derived EV proteome in obese mice. The EV-mediated blood glucose lowering effects were recapitulated by administration of liver EVs derived from humans with or without progressive non-alcoholic fatty liver disease, suggesting broad functional conservation of liver EV signalling and potential therapeutic utility. Taken together, this work reveals a mechanism whereby liver EVs act on peripheral tissues via endocrine signalling to restore euglycaemia in the postprandial state.
Collapse
Affiliation(s)
- Paula M Miotto
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stacey N Keenan
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Cait A Beddows
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Gio Fidelito
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
| | - Paul R Burton
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Victoria, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Lozano-Andrés E, Van Den Broeck T, Wang L, Mehrpouyan M, Tian Y, Yan X, Arkesteijn GJA, Wauben MHM. Intrinsic variability of fluorescence calibrators impacts the assignment of MESF or ERF values to nanoparticles and extracellular vesicles by flow cytometry. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102720. [PMID: 38007067 DOI: 10.1016/j.nano.2023.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
Flow cytometry allows to characterize nanoparticles (NPs) and extracellular vesicles (EVs) but results are often expressed in arbitrary units of fluorescence. We evaluated the precision and accuracy of molecules of equivalent soluble fluorophores (MESF) beads for calibration of NPs and EVs. Firstly, two FITC-MESF bead sets, 2 and 6 um in size, were measured on three flow cytometers. We showed that arbitrary units could not be compared between instruments but after calibration, comparable FITC MESF units were achieved. However, the two calibration bead sets displayed varying slopes that were consistent across platforms. Further investigation revealed that the intrinsic uncertainty related to the MESF beads impacts the robust assignment of values to NPs and EVs based on extrapolation into the dim fluorescence range. Similar variations were found with PE MESF calibration. Therefore, the same calibration materials and numbers of calibration points should be used for reliable comparison of submicron sized particles.
Collapse
Affiliation(s)
- Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | | | - Lili Wang
- Biosystems and Biomaterials Division, National Institutes of Standards and Technology (NIST), Gaithersburg, MD 20899, United States of America
| | | | - Ye Tian
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ger J A Arkesteijn
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
22
|
Barranco I, Alvarez-Barrientos A, Parra A, Martínez-Díaz P, Lucas X, Roca J. Immunophenotype profile by flow cytometry reveals different subtypes of extracellular vesicles in porcine seminal plasma. Cell Commun Signal 2024; 22:63. [PMID: 38263049 PMCID: PMC10807091 DOI: 10.1186/s12964-024-01485-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Porcine seminal plasma (SP) is endowed with a heterogeneous population of extracellular vesicles (sEVs). This study evaluated the immunophenotypic profile by high-sensitivity flow cytometry of eight sEV subpopulations isolated according to their size (small [S-sEVs] and large [L-sEVs]) from four different SP sources, namely three ejaculate fractions (the first 10 mL of the sperm rich fraction [SRF-P1], the remaining SRF [SRF-P2], and the post-SRF [PSRF]) and entire ejaculate (EE). METHODS Seminal EVs were isolated using a size exclusion chromatography-based protocol from six SP pools (five ejaculates/pool) of each SP source and characterized using complementary approaches including total protein (BCA™assay), particle size distribution (dynamic light scattering), morphology (transmission electron microscopy), and purity (albumin by Western blot). Expression of CD9, CD63, CD81, CD44 and HSP90β was analyzed in all sEV subpopulations by high-sensitivity flow cytometry according to MIFlowCyt-EV guidelines, including an accurate calibration, controls, and discrimination by CFSE-labelling. RESULTS Each sEV subpopulation exhibited a specific immunophenotypic profile. The percentage of sEVs positive for CD9, CD63, CD81 and HSP90β differed between S- and L-sEVs (P < 0.0001). Specifically, the percentage of sEVs positive for CD9 and CD63 was higher and that for CD81 was lower in S- than L-sEVs in the four SP sources. However, the percentage of HSP90β-positive sEVs was lower in S-sEVs than L-sEVs in the SRF-P1 and EE samples. The percentage of sEVs positive for CD9, CD63, and CD44 also differed among the four SP sources (P < 0.0001), being highest in PSRF samples. Notably, virtually all sEV subpopulations expressed CD44 (range: 88.04-98.50%). CONCLUSIONS This study demonstrated the utility of high-sensitivity flow cytometry for sEV immunophenotyping, allowing the identification of distinct sEV subpopulations that may have different cellular origin, cargo, functions, and target cells.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain.
| | | | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| |
Collapse
|
23
|
Zhu L, Wang Q, Guo M, Fang H, Li T, Zhu Y, Jiang H, Xiao P, Hu M. Mesenchymal Stem Cell-Derived Exosomes in Various Chronic Liver Diseases: Hype or Hope? J Inflamm Res 2024; 17:171-189. [PMID: 38223423 PMCID: PMC10788055 DOI: 10.2147/jir.s439974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
Chronic liver conditions are associated with high mortality rates and have a large adverse effect on human well-being as well as a significant financial burden. Currently, the only effective treatment available for the effects of liver failure and cirrhosis resulting from the progression of several chronic liver diseases is liver transplantation carried out at the original location. This implies that developing novel and effective treatments is imperative. Regenerative medicine has long been associated with stem cell therapy. Mesenchymal stem cells (MSCs), a type of cell with great differentiation potential, have become the preferred source for stem cell therapy. According to recent studies, MSCs' paracrine products-rather than their capacity for differentiation-play a significant therapeutic effect. MSC exosomes, a type of extracellular vesicle (MSC-EV), came into view as the paracrine substances of MSCs. According to research, MSC exosomes can maintain tissue homeostasis, which is necessary for healthy tissue function. All tissues contain them, and they take part in a variety of biological activities that support cellular activity and tissue regeneration in order to preserve tissue homeostasis. The outcomes support the use of MSCs and the exosomes they produce as a therapeutic option for a range of diseases. This review provides a brief overview of the source of MSC-EVs and outlines their physiological roles and biochemical capabilities. The elucidation of the role of MSC-EVs in the recovery and repair of hepatic tissues, as well as their contribution to maintaining tissue homeostasis, is discussed in relation to different chronic liver diseases. This review aims to provide new insights into the unique roles that MSC-EVs play in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hao Fang
- Department of Traumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Li
- Department of Emergency Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Peiguang Xiao
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
24
|
Ruiz-Navarro J, Calvo V, Izquierdo M. Extracellular vesicles and microvilli in the immune synapse. Front Immunol 2024; 14:1324557. [PMID: 38268920 PMCID: PMC10806406 DOI: 10.3389/fimmu.2023.1324557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
T cell receptor (TCR) binding to cognate antigen on the plasma membrane of an antigen-presenting cell (APC) triggers the immune synapse (IS) formation. The IS constitutes a dedicated contact region between different cells that comprises a signaling platform where several cues evoked by TCR and accessory molecules are integrated, ultimately leading to an effective TCR signal transmission that guarantees intercellular message communication. This eventually leads to T lymphocyte activation and the efficient execution of different T lymphocyte effector tasks, including cytotoxicity and subsequent target cell death. Recent evidence demonstrates that the transmission of information between immune cells forming synapses is produced, to a significant extent, by the generation and secretion of distinct extracellular vesicles (EV) from both the effector T lymphocyte and the APC. These EV carry biologically active molecules that transfer cues among immune cells leading to a broad range of biological responses in the recipient cells. Included among these bioactive molecules are regulatory miRNAs, pro-apoptotic molecules implicated in target cell apoptosis, or molecules triggering cell activation. In this study we deal with the different EV classes detected at the IS, placing emphasis on the most recent findings on microvilli/lamellipodium-produced EV. The signals leading to polarized secretion of EV at the synaptic cleft will be discussed, showing that the IS architecture fulfills a fundamental task during this route.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
25
|
Driedonks TAP, Ressel S, Tran Ngoc Minh T, Buck AH, Nolte‐‘t Hoen ENM. Intracellular localisation and extracellular release of Y RNA and Y RNA binding proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e123. [PMID: 38938676 PMCID: PMC11080805 DOI: 10.1002/jex2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 06/29/2024]
Abstract
Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.
Collapse
Affiliation(s)
- Tom A. P. Driedonks
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Department CDL ResearchUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thi Tran Ngoc Minh
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Amy H. Buck
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Esther N. M. Nolte‐‘t Hoen
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
26
|
Beaumont JEJ, Ju J, Barbeau LMO, Demers I, Savelkouls KG, Derks K, Bouwman FG, Wauben MHM, Zonneveld MI, Keulers TGH, Rouschop KMA. GABARAPL1 is essential in extracellular vesicle cargo loading and metastasis development. Radiother Oncol 2024; 190:109968. [PMID: 37898438 DOI: 10.1016/j.radonc.2023.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND PURPOSE Hypoxia is a common feature of tumours, associated with poor prognosis due to increased resistance to radio- and chemotherapy and enhanced metastasis development. Previously we demonstrated that GABARAPL1 is required for the secretion of extracellular vesicles (EV) with pro-angiogenic properties during hypoxia. Here, we explored the role of GABARAPL1+ EV in the metastatic cascade. MATERIALS AND METHODS GABARAPL1 deficient or control MDA-MB-231 cells were injected in murine mammary fat pads. Lungs were dissected and analysed for human cytokeratin 18. EV from control and GABARAPL1 deficient cells exposed to normoxia (21% O2) or hypoxia (O2 < 0.02%) were isolated and analysed by immunoblot, nanoparticle tracking analysis, high resolution flow cytometry, mass spectrometry and next-generation sequencing. Cellular migration and invasion were analysed using scratch assays and transwell-invasion assays, respectively. RESULTS The number of pulmonary metastases derived from GABARAPL1 deficient tumours decreased by 84%. GABARAPL1 deficient cells migrate slower but display a comparable invasive capacity. Both normoxic and hypoxic EV contain proteins and miRNAs associated with metastasis development and, in line, increase cancer cell invasiveness. Although GABARAPL1 deficiency alters EV content, it does not alter the EV-induced increase in cancer cell invasiveness. CONCLUSION GABARAPL1 is essential for metastasis development. This is unrelated to changes in migration and invasion and suggests that GABARAPL1 or GABARAPL1+ EV are essential in other processes related to the metastatic cascade.
Collapse
Affiliation(s)
- Joel E J Beaumont
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jinzhe Ju
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lydie M O Barbeau
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imke Demers
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marca H M Wauben
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marijke I Zonneveld
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tom G H Keulers
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper M A Rouschop
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Asleh K, Dery V, Taylor C, Davey M, Djeungoue-Petga MA, Ouellette RJ. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology. Biomark Res 2023; 11:99. [PMID: 37978566 PMCID: PMC10655470 DOI: 10.1186/s40364-023-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
While the field of precision oncology is rapidly expanding and more targeted options are revolutionizing cancer treatment paradigms, therapeutic resistance particularly to immunotherapy remains a pressing challenge. This can be largely attributed to the dynamic tumor-stroma interactions that continuously alter the microenvironment. While to date most advancements have been made through examining the clinical utility of tissue-based biomarkers, their invasive nature and lack of a holistic representation of the evolving disease in a real-time manner could result in suboptimal treatment decisions. Thus, using minimally-invasive approaches to identify biomarkers that predict and monitor treatment response as well as alert to the emergence of recurrences is of a critical need. Currently, research efforts are shifting towards developing liquid biopsy-based biomarkers obtained from patients over the course of disease. Liquid biopsy represents a unique opportunity to monitor intercellular communication within the tumor microenvironment which could occur through the exchange of extracellular vesicles (EVs). EVs are lipid bilayer membrane nanoscale vesicles which transfer a plethora of biomolecules that mediate intercellular crosstalk, shape the tumor microenvironment, and modify drug response. The capture of EVs using innovative approaches, such as microfluidics, magnetic beads, and aptamers, allow their analysis via high throughput multi-omics techniques and facilitate their use for biomarker discovery. Artificial intelligence, using machine and deep learning algorithms, is advancing multi-omics analyses to uncover candidate biomarkers and predictive signatures that are key for translation into clinical trials. With the increasing recognition of the role of EVs in mediating immune evasion and as a valuable biomarker source, these real-time snapshots of cellular communication are promising to become an important tool in the field of precision oncology and spur the recognition of strategies to block resistance to immunotherapy. In this review, we discuss the emerging role of EVs in biomarker research describing current advances in their isolation and analysis techniques as well as their function as mediators in the tumor microenvironment. We also highlight recent lung cancer and melanoma studies that point towards their application as predictive biomarkers for immunotherapy and their potential clinical use in precision immuno-oncology.
Collapse
Affiliation(s)
- Karama Asleh
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada.
| | - Valerie Dery
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Catherine Taylor
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Michelle Davey
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | | | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Dr Georges L. Dumont University Hospital, Vitalite Health Network, Moncton, New Brunswick, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
Lozano‐Andrés E, Enciso‐Martinez A, Gijsbers A, Ridolfi A, Van Niel G, Libregts SFWM, Pinheiro C, van Herwijnen MJC, Hendrix A, Brucale M, Valle F, Peters PJ, Otto C, Arkesteijn GJA, Wauben MHM. Physical association of low density lipoprotein particles and extracellular vesicles unveiled by single particle analysis. J Extracell Vesicles 2023; 12:e12376. [PMID: 37942918 PMCID: PMC10634195 DOI: 10.1002/jev2.12376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co-isolated. Furthermore, physical EV-LPP complexes have been observed in purified EV preparations. Since co-isolation or association of LPPs can impact EV-based analysis and biomarker profiling, we investigated the presence and formation of EV-LPP complexes in biological samples by using label-free atomic force microscopy, cryo-electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence-based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike-in experiments of purified tumour cell line-derived EVs in different classes of purified human LPPs. Based on orthogonal single-particle analysis techniques we demonstrate that EV-LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence-based flow cytometric EV analysis staining of LPPs, as well as EV-LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down-stream EV analysis and EV biomarker profiling.
Collapse
Affiliation(s)
- Estefanía Lozano‐Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Agustin Enciso‐Martinez
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Medical Cell Biophysics GroupUniversity of TwenteEnschedeThe Netherlands
| | - Abril Gijsbers
- Maastricht Multimodal Molecular Imaging Institute, Division of NanoscopyMaastricht UniversityMaastrichtThe Netherlands
| | - Andrea Ridolfi
- Department of Physics and Astronomy and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Guillaume Van Niel
- Institute for Psychiatry and Neuroscience of ParisHopital Saint‐Anne, Université DescartesParisFrance
| | - Sten F. W. M. Libregts
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Cláudio Pinheiro
- Laboratory of Experimental Cancer ResearchDepartment of Human Structure and Repair Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - An Hendrix
- Laboratory of Experimental Cancer ResearchDepartment of Human Structure and Repair Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN)Italian National Research Council (CNR)BolognaItaly
| | - Francesco Valle
- Institute for the Study of Nanostructured Materials (ISMN)Italian National Research Council (CNR)BolognaItaly
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute, Division of NanoscopyMaastricht UniversityMaastrichtThe Netherlands
| | - Cees Otto
- Medical Cell Biophysics GroupUniversity of TwenteEnschedeThe Netherlands
| | - Ger J. A. Arkesteijn
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
29
|
Varela L, van de Lest CHA, Boere J, Libregts SFWM, Lozano-Andrés E, van Weeren PR, Wauben MHM. Acute joint inflammation induces a sharp increase in the number of synovial fluid EVs and modifies their phospholipid profile. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159367. [PMID: 37473834 DOI: 10.1016/j.bbalip.2023.159367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Inflammation is the hallmark of most joint disorders. However, the precise regulation of induction, perpetuation, and resolution of joint inflammation is not entirely understood. Since extracellular vesicles (EVs) are critical for intercellular communication, we aim to unveil their role in these processes. Here, we investigated the EVs' dynamics and phospholipidome profile from synovial fluid (SF) of healthy equine joints and from horses with lipopolysaccharide (LPS)-induced synovitis. LPS injection triggered a sharp increase of SF-EVs at 5-8 h post-injection, which started to decline at 24 h post-injection. Importantly, we identified significant changes in the lipid profile of SF-EVs after synovitis induction. Compared to healthy joint-derived SF-EVs (0 h), SF-EVs collected at 5, 24, and 48 h post-LPS injection were strongly increased in hexosylceramides. At the same time, phosphatidylserine, phosphatidylcholine, and sphingomyelin were decreased in SF-EVs at 5 h and 24 h post-LPS injection. Based on the lipid changes during acute inflammation, we composed specific lipid profiles associated with healthy and inflammatory state-derived SF-EVs. The sharp increase in SF-EVs during acute synovitis and the correlation of specific lipids with either healthy or inflamed states-derived SF-EVs are findings of potential interest for unveiling the role of SF-EVs in joint inflammation, as well as for the identification of EV-biomarkers of joint inflammation.
Collapse
Affiliation(s)
- Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Chris H A van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janneke Boere
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sten F W M Libregts
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Estefanía Lozano-Andrés
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division of Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - P René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marca H M Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Chen K, Duong BTV, Ahmed SU, Dhavarasa P, Wang Z, Labib M, Flynn C, Xu J, Zhang YY, Wang H, Yang X, Das J, Zargartalebi H, Ma Y, Kelley SO. A magneto-activated nanoscale cytometry platform for molecular profiling of small extracellular vesicles. Nat Commun 2023; 14:5576. [PMID: 37696888 PMCID: PMC10495366 DOI: 10.1038/s41467-023-41285-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Exosomal PD-L1 (exoPD-L1) has recently received significant attention as a biomarker predicting immunotherapeutic responses involving the PD1/PD-L1 pathway. However, current technologies for exosomal analysis rely primarily on bulk measurements that do not consider the heterogeneity found within exosomal subpopulations. Here, we present a nanoscale cytometry platform NanoEPIC, enabling phenotypic sorting and exoPD-L1 profiling from blood plasma. We highlight the efficacy of NanoEPIC in monitoring anti-PD-1 immunotherapy through the interrogation of exoPD-L1. NanoEPIC generates signature exoPD-L1 patterns in responders and non-responders. In mice treated with PD1-targeted immunotherapy, exoPD-L1 is correlated with tumor growth, PD-L1 burden in tumors, and the immune suppression of CD8+ tumor-infiltrating lymphocytes. Small extracellular vesicles (sEVs) with different PD-L1 expression levels display distinctive inhibitory effects on CD8 + T cells. NanoEPIC offers robust, high-throughput profiling of exosomal markers, enabling sEV subpopulation analysis. This platform holds the potential for enhanced cancer screening, personalized treatment, and therapeutic response monitoring.
Collapse
Affiliation(s)
- Kangfu Chen
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Bill T V Duong
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Zongjie Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Connor Flynn
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jingya Xu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Yi Y Zhang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Xiaolong Yang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hossein Zargartalebi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Yuan Ma
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Xu X, Qu S, Zhang C, Zhang M, Qin W, Ren G, Bao H, Li L, Zen K, Liu Z. CD8 T Cell-Derived Exosomal miR-186-5p Elicits Renal Inflammation via Activating Tubular TLR7/8 Signal Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301492. [PMID: 37395441 PMCID: PMC10477851 DOI: 10.1002/advs.202301492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/27/2023] [Indexed: 07/04/2023]
Abstract
T cells play an important role in the development of focal segmental glomerulosclerosis (FSGS). The mechanism underlying such T cell-based kidney disease, however, remains elusive. Here the authors report that activated CD8 T cells elicit renal inflammation and tissue injury via releasing miR-186-5p-enriched exosomes. Continuing the cohort study identifying the correlation of plasma level of miR-186-5p with proteinuria in FSGS patients, it is demonstrated that circulating miR-186-5p is mainly derived from activated CD8 T cell exosomes. Renal miR-186-5p, which is markedly increased in FSGS patients and mice with adriamycin-induced renal injury, is mainly delivered by CD8 T cell exosomes. Depleting miR-186-5p strongly attenuates adriamycin-induced mouse renal injury. Supporting the function of exosomal miR-186-5p as a key circulating pathogenic factor, intravenous injection of miR-186-5p or miR-186-5p-containing T cell exosomes results in mouse renal inflammation and tissue injury. Tracing the injected T cell exosomes shows their preferential distribution in mouse renal tubules, not glomerulus. Mechanistically, miR-186-5p directly activates renal tubular TLR7/8 signal and initiates tubular cell apoptosis. Mutating the TLR7-binding sequence on miR-186-5p or deleting mouse TLR7 largely abolishes renal tubular injuries induced by miR-186-5p or adriamycin. These findings reveal a causative role of exosomal miR-186-5p in T cell-mediated renal dysfunction.
Collapse
Affiliation(s)
- Xiaodong Xu
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Changming Zhang
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Weisong Qin
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Guisheng Ren
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Hao Bao
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| | - Limin Li
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing University School of Life SciencesNanjingJiangsu210093China
| | - Zhihong Liu
- National Clinical Research Center of Kidney DiseasesJinling HospitalNanjing University School of MedicineNanjingJiangsu210002China
| |
Collapse
|
32
|
Chen C, Cai N, Niu Q, Tian Y, Hu Y, Yan X. Quantitative assessment of lipophilic membrane dye-based labelling of extracellular vesicles by nano-flow cytometry. J Extracell Vesicles 2023; 12:e12351. [PMID: 37525378 PMCID: PMC10390660 DOI: 10.1002/jev2.12351] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
Although lipophilic membrane dyes (LMDs) or probes (LMPs) are widely used to label extracellular vesicles (EVs) for detection and purification, their labelling performance has not been systematically characterized. Through concurrent side scattering and fluorescence detection of single EVs as small as 40 nm in diameter by a laboratory-built nano-flow cytometer (nFCM), present study identified that (1) PKH67 and PKH26 could maximally label ∼60%-80% of EVs isolated from the conditioned cell culture medium (purity of ∼88%) and ∼40%-70% of PFP-EVs (purity of ∼73%); (2) excessive PKH26 could cause damage to the EV structure; (3) di-8-ANEPPS and high concentration of DiI could achieve efficient and uniform labelling of EVs with nearly 100% labelling efficiency for di-8-ANEPPS and 70%-100% for DiI; (4) all the four tested LMDs can aggregate and form micelles that exhibit comparable side scatter and fluorescence intensity with those of labelled EVs and thus hardly be differentiate from each other; (5) as the LMD concentration went up, the particle number of self-aggregates increased while the fluorescence intensity of aggregates remained constant; (6) PKH67 and PKH26 tend to form more aggregated micelles than di-8-ANEPPS and DiI, and the effect of LMD self-aggregation can be negligible at optimal staining conditions. (7) All the four tested LMDs can label almost all the very-low-density lipoprotein (VLDL) particles, indicating potential confounding factor in plasma-EV labelling. Besides, it was discovered that DSPE-PEG2000 -biotin can only label ∼50% of plasma-EVs. The number of LMP inserted into the membrane of single EVs was measured for the first time and it was confirmed that membrane labelling by lipophilic dyes did not interfere with the immunophenotyping of EVs. nFCM provides a unique perspective for a better understanding of EV labelling by LMD/LMP.
Collapse
Affiliation(s)
- Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Niangui Cai
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Qian Niu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Ye Tian
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Yunyun Hu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| |
Collapse
|
33
|
Jalali M, Del Real Mata C, Montermini L, Jeanne O, I Hosseini I, Gu Z, Spinelli C, Lu Y, Tawil N, Guiot MC, He Z, Wachsmann-Hogiu S, Zhou R, Petrecca K, Reisner WW, Rak J, Mahshid S. MoS 2-Plasmonic Nanocavities for Raman Spectra of Single Extracellular Vesicles Reveal Molecular Progression in Glioblastoma. ACS NANO 2023. [PMID: 37366177 DOI: 10.1021/acsnano.2c09222] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Extracellular vesicles (EVs) are continually released from cancer cells into biofluids, carrying actionable molecular fingerprints of the underlying disease with considerable diagnostic and therapeutic potential. The scarcity, heterogeneity and intrinsic complexity of tumor EVs present a major technological challenge in real-time monitoring of complex cancers such as glioblastoma (GBM). Surface-enhanced Raman spectroscopy (SERS) outputs a label-free spectroscopic fingerprint for EV molecular profiling. However, it has not been exploited to detect known biomarkers at the single EV level. We developed a multiplex fluidic device with embedded arrayed nanocavity microchips (MoSERS microchip) that achieves 97% confinement of single EVs in a minute amount of fluid (<10 μL) and enables molecular profiling of single EVs with SERS. The nanocavity arrays combine two featuring characteristics: (1) An embedded MoS2 monolayer that enables label-free isolation and nanoconfinement of single EVs due to physical interaction (Coulomb and van der Waals) between the MoS2 edge sites and the lipid bilayer; and (2) A layered plasmonic cavity that enables sufficient electromagnetic field enhancement inside the cavities to obtain a single EV level signal resolution for stratifying the molecular alterations. We used the GBM paradigm to demonstrate the diagnostic potential of the SERS single EV molecular profiling approach. The MoSERS multiplexing fluidic achieves parallel signal acquisition of glioma molecular variants (EGFRvIII oncogenic mutation and MGMT expression) in GBM cells. The detection limit of 1.23% was found for stratifying these key molecular variants in the wild-type population. When interfaced with a convolutional neural network (CNN), MoSERS improved diagnostic accuracy (87%) with which GBM mutations were detected in 12 patient blood samples, on par with clinical pathology tests. Thus, MoSERS demonstrates the potential for molecular stratification of cancer patients using circulating EVs.
Collapse
Affiliation(s)
- Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Laura Montermini
- Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec H4A 3J1, Canada
| | - Olivia Jeanne
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Imman I Hosseini
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cristiana Spinelli
- Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec H4A 3J1, Canada
| | - Yao Lu
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Nadim Tawil
- Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec H4A 3J1, Canada
| | - Marie Christine Guiot
- Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zhi He
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | | | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Kevin Petrecca
- Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Walter W Reisner
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre (RIMUHC), Montreal, Quebec H4A 3J1, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
34
|
Timofeeva AM, Paramonik AP, Sedykh SS, Nevinsky GA. Milk Exosomes: Next-Generation Agents for Delivery of Anticancer Drugs and Therapeutic Nucleic Acids. Int J Mol Sci 2023; 24:10194. [PMID: 37373342 DOI: 10.3390/ijms241210194] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Exosomes are nanovesicles 40-120 nm in diameter secreted by almost all cell types and providing humoral intercellular interactions. Given the natural origin and high biocompatibility, the potential for loading various anticancer molecules and therapeutic nucleic acids inside, and the surface modification possibility for targeted delivery, exosomes are considered to be a promising means of delivery to cell cultures and experimental animal organisms. Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities. Milk exosomes are highly resistant to the harsh conditions of the gastrointestinal tract. In vitro studies have demonstrated that milk exosomes have an affinity to epithelial cells, are digested by cells by endocytosis mechanism, and can be used for oral delivery. With milk exosome membranes containing hydrophilic and hydrophobic components, exosomes can be loaded with hydrophilic and lipophilic drugs. This review covers a number of scalable protocols for isolating and purifying exosomes from human, cow, and horse milk. Additionally, it considers passive and active methods for drug loading into exosomes, as well as methods for modifying and functionalizing the surface of milk exosomes with specific molecules for more efficient and specific delivery to target cells. In addition, the review considers various approaches to visualize exosomes and determine cellular localization and bio-distribution of loaded drug molecules in tissues. In conclusion, we outline new challenges for studying milk exosomes, a new generation of targeted delivery agents.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anastasia P Paramonik
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey S Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
35
|
He Y, Xing Y, Jiang T, Wang J, Sang S, Rong H, Yu F. Fluorescence labeling of extracellular vesicles for diverse bio-applications in vitro and in vivo. Chem Commun (Camb) 2023; 59:6609-6626. [PMID: 37161668 DOI: 10.1039/d3cc00998j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles enclosed in a lipid membrane that are sustainably released by nearly all cell types. EVs have been deemed as valuable biomarkers for diagnostics and effective drug carriers, owing to the physiological function of transporting biomolecules for intercellular communication. To investigate their biological properties, efficient labeling strategies have been constructed for EV research, among which fluorescence labeling exerts a powerful function due to the capability of visualizing the nanovesicles with high sensitivity both in vitro and in vivo. In one aspect, with the help of functional fluorescence tags, EVs could be differentiated and categorized in vitro by various analytical techniques, which exert vital roles in disease diagnosis, prognosis, and treatment monitoring. Additionally, innovative EV reporters have been utilized for visualizing EVs, in combination with powerful microscopy techniques, which provide potential tools for investigating the dynamic events of EV release and intercellular communication in suitable animal models. In this feature article, we survey the latest advances regarding EV fluorescence labeling strategies and their application in biomedical application and in vivo biology investigation, highlighting the progresses in individual EV imaging. Finally, the challenges and future perspectives in unravelling EV physiological properties and further biomedical application are discussed.
Collapse
Affiliation(s)
- Yun He
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Yanlong Xing
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Juan Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Shenggang Sang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Hong Rong
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
36
|
Gajula SNR, Nalla LV. Small extracellular vesicle biomarkers in breast cancer: a real-time snapshot for early diagnosis and prognosis? Bioanalysis 2023; 15:367-370. [PMID: 37154153 DOI: 10.4155/bio-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, 522302, India
| |
Collapse
|
37
|
Brezgin S, Parodi A, Kostyusheva A, Ponomareva N, Lukashev A, Sokolova D, Pokrovsky VS, Slatinskaya O, Maksimov G, Zamyatnin AA, Chulanov V, Kostyushev D. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol Adv 2023; 64:108122. [PMID: 36813011 DOI: 10.1016/j.biotechadv.2023.108122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived biological nanoparticles that gained great interest for drug delivery. EVs have numerous advantages compared to synthetic nanoparticles, such as ideal biocompatibility, safety, ability to cross biological barriers and surface modification via genetic or chemical methods. On the other hand, the translation and the study of these carriers resulted difficult, mostly because of significant issues in up-scaling, synthesis and impractical methods of quality control. However, current manufacturing advances enable EV packaging with any therapeutic cargo, including DNA, RNA (for RNA vaccines and RNA therapeutics), proteins, peptides, RNA-protein complexes (including gene-editing complexes) and small molecules drugs. To date, an array of new and upgraded technologies have been introduced, substantially improving EV production, isolation, characterization and standardization. The used-to-be "gold standards" of EV manufacturing are now outdated, and the state-of-art requires extensive revision. This review re-evaluates the pipeline for EV industrial production and provides a critical overview of the modern technologies required for their synthesis and characterization.
Collapse
Affiliation(s)
- Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | | | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia
| | - Darina Sokolova
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Vadim S Pokrovsky
- Sirius University of Science and Technology, Sochi 354340, Russia; Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; People's Friendship University, Moscow 117198, Russia
| | - Olga Slatinskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Vladimir Chulanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia; Department of Infectious Diseases, Sechenov University, Moscow 119048, Russia; National Medical Research Center for Tuberculosis and Infectious Diseases, Moscow 127994, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow 119048, Russia; Sirius University of Science and Technology, Sochi 354340, Russia.
| |
Collapse
|
38
|
Gupta D, Wiklander OP, Wood MJ, El-Andaloussi S. Biodistribution of therapeutic extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:170-190. [PMID: 39697988 PMCID: PMC11648525 DOI: 10.20517/evcna.2023.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 12/20/2024]
Abstract
The field of extracellular vesicles (EVs) has seen a tremendous paradigm shift in the past two decades, from being regarded as cellular waste bags to being considered essential mediators in intercellular communication. Their unique ability to transfer macromolecules across cells and biological barriers has made them a rising star in drug delivery. Mounting evidence suggests that EVs can be explored as efficient drug delivery vehicles for a range of therapeutic macromolecules. In contrast to many synthetic delivery systems, these vesicles appear exceptionally well tolerated in vivo. This tremendous development in the therapeutic application of EVs has been made through technological advancement in labelling and understanding the in vivo biodistribution of EVs. Here in this review, we have summarised the recent findings in EV in vivo pharmacokinetics and discussed various biological barriers that need to be surpassed to achieve tissue-specific delivery.
Collapse
Affiliation(s)
- Dhanu Gupta
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Oscar P.B Wiklander
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Matthew J.A Wood
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
| | - Samir El-Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| |
Collapse
|
39
|
Cha M, Jeong SH, Bae S, Park JH, Baeg Y, Han DW, Kim SS, Shin J, Park JE, Oh SW, Gho YS, Shon MJ. Efficient Labeling of Vesicles with Lipophilic Fluorescent Dyes via the Salt-Change Method. Anal Chem 2023; 95:5843-5849. [PMID: 36990442 PMCID: PMC10100391 DOI: 10.1021/acs.analchem.2c05166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Fluorescent labeling allows for imaging and tracking of vesicles down to single-particle level. Among several options to introduce fluorescence, staining of lipid membranes with lipophilic dyes provides a straightforward approach without interfering with vesicle content. However, incorporating lipophilic molecules into vesicle membranes in an aqueous solution is generally not efficient because of their low water solubility. Here, we describe a simple, fast (<30 min), and highly effective procedure for fluorescent labeling of vesicles including natural extracellular vesicles. By adjusting the ionic strength of the staining buffer with NaCl, the aggregation status of DiI, a representative lipophilic tracer, can be controlled reversibly. Using cell-derived vesicles as a model system, we show that dispersion of DiI under low-salt condition improved its incorporation into vesicles by a factor of 290. In addition, increasing NaCl concentration after labeling induced free dye molecules to form aggregates, which can be filtered and thus effectively removed without ultracentrifugation. We consistently observed 6- to 85-fold increases in the labeled vesicle count across different types of dyes and vesicles. The method is expected to reduce the concern about off-target labeling resulting from the use of high concentrations of dyes.
Collapse
Affiliation(s)
- Minkwon Cha
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic Korea
| | - Sang Hyeok Jeong
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seoyoon Bae
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jun Hyuk Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yoonjin Baeg
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Dong Woo Han
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Sang Soo Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyeon Shin
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong Eun Park
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Min Ju Shon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
40
|
Clinically Expired Platelet Concentrates as a Source of Extracellular Vesicles for Targeted Anti-Cancer Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030953. [PMID: 36986815 PMCID: PMC10056378 DOI: 10.3390/pharmaceutics15030953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The short shelf life of platelet concentrates (PC) of up to 5–7 days leads to higher wastage due to expiry. To address this massive financial burden on the healthcare system, alternative applications for expired PC have emerged in recent years. Engineered nanocarriers functionalized with platelet membranes have shown excellent targeting abilities for tumor cells owing to their platelet membrane proteins. Nevertheless, synthetic drug delivery strategies have significant drawbacks that platelet-derived extracellular vesicles (pEV) can overcome. We investigated, for the first time, the use of pEV as a carrier of the anti-breast cancer drug paclitaxel, considering it as an appealing alternative to improve the therapeutic potential of expired PC. The pEV released during PC storage showed a typical EV size distribution profile (100–300 nm) with a cup-shaped morphology. Paclitaxel-loaded pEV showed significant anti-cancer effects in vitro, as demonstrated by their anti-migratory (>30%), anti-angiogenic (>30%), and anti-invasive (>70%) properties in distinct cells found in the breast tumor microenvironment. We provide evidence for a novel application for expired PC by suggesting that the field of tumor treatment research may be broadened by the use of natural carriers.
Collapse
|
41
|
Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers (Basel) 2023; 15:cancers15041307. [PMID: 36831648 PMCID: PMC9953862 DOI: 10.3390/cancers15041307] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Lukas Maas
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- West German Cancer Center, University Hospital Münster, 48149 Munster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- Correspondence:
| |
Collapse
|
42
|
Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer 2023; 22:33. [PMID: 36797736 PMCID: PMC9933347 DOI: 10.1186/s12943-023-01741-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Current clinical tools for breast cancer (BC) diagnosis are insufficient but liquid biopsy of different bodily fluids has recently emerged as a minimally invasive strategy that provides a real-time snapshot of tumour biomarkers for early diagnosis, active surveillance of progression, and post-treatment recurrence. Extracellular vesicles (EVs) are nano-sized membranous structures 50-1000 nm in diameter that are released by cells into biological fluids. EVs contain proteins, nucleic acids, and lipids which play pivotal roles in tumourigenesis and metastasis through cell-to-cell communication. Proteins and miRNAs from small EVs (sEV), which range in size from 50-150 nm, are being investigated as a potential source for novel BC biomarkers using mass spectrometry-based proteomics and next-generation sequencing. This review covers recent developments in sEV isolation and single sEV analysis technologies and summarises the sEV protein and miRNA biomarkers identified for BC diagnosis, prognosis, and chemoresistance. The limitations of current sEV biomarker research are discussed along with future perspective applications.
Collapse
Affiliation(s)
- Yujin Lee
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Jie Ni
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Julia Beretov
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia ,grid.416398.10000 0004 0417 5393Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Valerie C. Wasinger
- grid.1005.40000 0004 4902 0432Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Medical Science, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Peter Graham
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
43
|
Tian MY, Hao DX, Liu Y, He J, Zhao ZH, Guo TY, Li X, Zhang Y. Milk exosomes: an oral drug delivery system with great application potential. Food Funct 2023; 14:1320-1337. [PMID: 36722924 DOI: 10.1039/d2fo02013k] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exosomes are extracellular vesicles with the smallest diameter, usually divided into cellular sources and body fluid sources. Due to their special properties different from cell-derived exosomes, the application of milk exosomes as an oral drug delivery system has increased greatly. This article introduces the physical and chemical properties of exosomes, separation technology, dyeing and labeling technology, targeted modification technology, and the application of milk exosomes in drug loading and disease therapies.
Collapse
Affiliation(s)
- Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Dong-Xia Hao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Yang Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Jin He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Zhuo-Hua Zhao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Ting-Yu Guo
- The International Department of the High School Affiliated to Shaanxi Normal University, Xi'an, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
44
|
Heterogeneity of Extracellular Vesicles and Particles: Molecular Voxels in the Blood Borne "Hologram" of Organ Function, Disfunction and Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:5. [PMID: 36729313 DOI: 10.1007/s00005-023-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/17/2022] [Indexed: 02/03/2023]
Abstract
Extracellular vesicles (EVs) and particles (EPs) serve as unique carriers of complex molecular information with increasingly recognized roles in health and disease. Individual EVs/EPs collectively contribute to the molecular fingerprint of their producing cell, reflecting its identity, state, function and phenotype. This property is of particular interest in cancer where enormous heterogeneity of cancer cells is compounded by the presence of altered stromal, vascular and immune cell populations, which is further complicated by systemic responses elicited by the disease in individual patients. These diverse and interacting cellular compartments are dynamically represented by myriads of EVs/EPs released into the circulating biofluids (blood) during cancer progression and treatment. Current approaches of liquid biopsy seek to follow specific elements of the EV/EP cargo that may have diagnostic utility (as biomarkers), such as cancer cell-derived mutant oncoproteins or nucleic acids. However, with emerging technologies enabling high-throughput EV/EP analysis at a single particle level, a more holistic approach may be on the horizon. Indeed, each EV/EP carries multidimensional information (molecular "voxel") that could be integrated across thousands of particles into a larger and unbiased landscape (EV/EP "hologram") reflecting the true cellular complexity of the disease, along with cellular interactions, systemic responses and effects of treatment. Thus, the longitudinal molecular mapping of EV/EP populations may add a new dimension to crucial aspects of cancer biology, personalized diagnostics, and therapy.
Collapse
|
45
|
Welsh JA, Arkesteijn GJA, Bremer M, Cimorelli M, Dignat-George F, Giebel B, Görgens A, Hendrix A, Kuiper M, Lacroix R, Lannigan J, van Leeuwen TG, Lozano-Andrés E, Rao S, Robert S, de Rond L, Tang VA, Tertel T, Yan X, Wauben MHM, Nolan JP, Jones JC, Nieuwland R, van der Pol E. A compendium of single extracellular vesicle flow cytometry. J Extracell Vesicles 2023; 12:e12299. [PMID: 36759917 PMCID: PMC9911638 DOI: 10.1002/jev2.12299] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 02/11/2023] Open
Abstract
Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.
Collapse
Affiliation(s)
- Joshua A Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ger J A Arkesteijn
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Cimorelli
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Chemical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Clinical Research Center, Department for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Evox Therapeutics Ltd, Oxford, UK
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Martine Kuiper
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Dutch Metrology Institute, VSL, Delft, The Netherlands
| | - Romaric Lacroix
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Joanne Lannigan
- Flow Cytometry Support Services, LLC, Arlington, Virginia, USA
| | - Ton G van Leeuwen
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shoaib Rao
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stéphane Robert
- Aix Marseille Univ, INSERM, INRAE, C2VN, UFR de Pharmacie, Marseille, France
- Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Leonie de Rond
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Vera A Tang
- Flow Cytometry & Virometry Core Facility, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - John P Nolan
- Scintillon Institute, San Diego, California, USA
- Cellarcus Biosciences, San Diego, California, USA
| | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rienk Nieuwland
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Vesicle Observation Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Experimental Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Biomedical Engineering & Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Zhou C, Cox-Vázquez SJ, Chia GW, Vázquez RJ, Lai HY, Chan SJ, Limwongyut J, Bazan GC. Water-soluble extracellular vesicle probes based on conjugated oligoelectrolytes. SCIENCE ADVANCES 2023; 9:eade2996. [PMID: 36630497 PMCID: PMC9833659 DOI: 10.1126/sciadv.ade2996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We developed a series of transmembrane conjugated oligoelectrolytes (COEs) with tunable optical emissions from the UV to the near IR to address the false-positive problem when detecting nanometer-sized extracellular vesicles (EVs) by flow cytometry. The amphiphilic molecular framework of COEs is defined by a linear conjugated structure and cationic charged groups at each terminal site. Consequently, COEs have excellent water solubility and the absence of nanoaggregates at concentrations up to 50 μM, and unbound COE dyes can be readily removed through ultrafiltration. These properties enable unambiguous and simple detection of COE-labeled small EVs using flow cytometry with negligible background signals. We also demonstrated the time-lapsed tracking of small EV uptake into mammalian cells and the endogenous small EV labeling using COEs. Briefly, COEs provide a class of membrane-targeting dyes that behave as biomimetics of the lipid bilayer and a general and practical labeling strategy for nanosized EVs.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, PR China
| | - Sarah J. Cox-Vázquez
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Geraldine W. N. Chia
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ricardo Javier Vázquez
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Hui Ying Lai
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Samuel J. W. Chan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jakkarin Limwongyut
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Guillermo C. Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
47
|
Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina - putative roles in physiology and disease. Front Mol Neurosci 2023; 15:1042469. [PMID: 36710933 PMCID: PMC9877344 DOI: 10.3389/fnmol.2022.1042469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.
Collapse
Affiliation(s)
- Aikaterini A. Kalargyrou
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Siobhan E. Guilfoyle
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Alexander J. Smith
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Robin R. Ali
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Rachael A. Pearson
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| |
Collapse
|
48
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
49
|
Ortega-Sanchez FG, Teresa V, Widmann T, Regiart M, Jerez-Salcedo MT, Fernández-Baldo MA, de Miguel-Perez D. Microfluidic systems in extracellular vesicles single analysis. A systematic review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extracellular vesicles. Anal Bioanal Chem 2023; 415:1087-1106. [PMID: 36683059 PMCID: PMC9867925 DOI: 10.1007/s00216-023-04530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
To tackle cancer and provide prompt diagnoses and prognoses, the constantly evolving biosensing field is continuously on the lookout for novel markers that can be non-invasively analysed. Extracellular vesicles (EVs) may represent a promising biomarker that also works as a source of biomarkers. The augmented cellular activity of cancerous cells leads to the production of higher numbers of EVs, which can give direct information on the disease due to the presence of general and cancer-specific surface-tethered molecules. Moreover, the intravesicular space is enriched with other molecules that can considerably help in the early detection of neoplasia. Even though EV-targeted research has indubitably received broad attention lately, there still is a wide lack of practical and effective quantitative procedures due to difficulties in pre-analytical and analytical phases. This review aims at providing an exhaustive outline of the recent progress in EV detection using electrochemical and photoelectrochemical biosensors, with a focus on handling approaches and trends in the selection of bioreceptors and molecular targets related to EVs that might guide researchers that are approaching such an unstandardised field.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Serena Pillozzi
- grid.24704.350000 0004 1759 9494Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Gerolama Condorelli
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy ,grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Ilaria Palchetti
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|