1
|
Pizzamiglio M, Soulabaille A, Lahlou W, Pilla L, Zaanan A, Taieb J. Advances and challenges in targeted therapies for HER2-amplified colorectal cancer. Eur J Cancer 2025; 222:115471. [PMID: 40311507 DOI: 10.1016/j.ejca.2025.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/03/2025]
Abstract
Colorectal cancer is the third most common cancer in terms of incidence rate in adults and the second most common cause of cancer-related death in Europe. Despite an increase in overall survival throughout the years, the prognosis of metastatic colorectal cancer remains poor. Until recently, its treatment was based on the use of standard chemotherapy combined with, anti-epidermal growth factor receptor (for RAS wild-type tumors) or anti-vascular endothelial growth factor, or immunotherapy for tumors with mismatch repair deficiency. Over the last years, precision medicine has become a challenge in oncology and there has been an increasing development of biomarker-driven therapies for metastatic colorectal cancer leading to better outcomes for specific molecular subgroups of patients. Human epidermal growth factor receptor 2 (HER2) amplification/overexpression has been identified in about 6 % of patients with RAS wild-type metastatic CRC and established as an important and drugable biomarker. Its prognostic and predictive implications are still debated but HER2 becoming a therapeutic target with promising results of anti-HER2 therapies for HER2-positive metastatic CRC. Multiple HER2-targeted regimens are now part of National Comprehensive Cancer Network and European Society for Medical Oncology guidelines with two recent Food and Drug Administration approvals for previously treated HER2-positive metastatic colorectal cancer for tucatinib (in combination with trastuzumab) and for trastuzumab-deruxtecan in patients with previously treated HER2-positive metastatic colorectal cancer. This review explores the prognostic and predictive value of HER2 as a biomarker in CRC, describing its molecular structure, the clinical characteristics of patients with HER2 alterations, diagnostic approaches and the most relevant clinical trials assessing its current and future role as a therapeutic target in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Margot Pizzamiglio
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Audrey Soulabaille
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Widad Lahlou
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Lorenzo Pilla
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Aziz Zaanan
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France
| | - Julien Taieb
- Université Paris Cité, Assistance Publique - Hôpitaux de Paris, Department of Digestive Oncology, Hôpital européen Georges Pompidou, Paris, France.
| |
Collapse
|
2
|
Kurmi SPC, Karati D. Molecular Targets and Mechanisms of Piperine Against Breast Cancer: A Network Pharmacology, Molecular Docking Analysis, and Toxicity Prediction. Chem Biodivers 2025:e03180. [PMID: 40424641 DOI: 10.1002/cbdv.202403180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/18/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
Breast cancer is still one of the major causes of cancer-related death worldwide, which highlights the need for cutting-edge therapeutic strategies. An alkaloid called piperine, which comes from Piper longum, has demonstrated encouraging anticancer effects. Piperine modulates different cancer signaling pathways and enzymes such as P53, apoptosis, and cell cycle regulation. Protein function and signaling pathway enrichment studies were made easier using the DAVID Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, while the SwissTarget Prediction database was used to identify the target genes for piperine. Using STRING, Cytoscape, and the CytoHubba degree approach, protein-protein interaction networks were investigated. Ninety-three possible piperine target sites in breast cancer were found, most of which were connected to important cancer pathways. The therapeutic effect of piperine was demonstrated by analysis of KEGG pathways, molecular functions, cellular components, and biological processes. Following the identification of the top ten hub gene targets, further molecular docking and dynamic simulations (iMODS server) were performed on SRC, HSP90AA1, MTOR, and MDM2 to evaluate binding affinity, flexibility, and stability. These results were confirmed by survival, correlation, and Humane FP analyses, highlighting the function of piperine in focusing on the genes responsible with pathogenic breast cancer. This thorough investigation opens the door for more research and clinical uses by demonstrating piperine's potential as a new therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, West Bengal, Kolkata, India
| |
Collapse
|
3
|
Ye B, Lin C, Huang H, Chen P, Liu X, Wang K, Zhang H, Liu J, Zhang C, Li L. Sophora compounds against non-small cell lung cancer: Research status and mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156890. [PMID: 40414045 DOI: 10.1016/j.phymed.2025.156890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/11/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer, characterized by dysregulated signaling pathways. Many Sophora compounds exhibit potential anti-NSCLC properties. However, the research status, particularly regarding the underlying mechanisms, remains fragmented. PURPOSE To review the research status as well as mechanisms of Sophora compounds against NSCLC. METHODS A systematic review was conducted on publications retrieved from PubMed, Web of Science and CNKI. The retrieval keywords are paired in various forms of "Sophora compound name" and "non-small cell lung cancer" (including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). Only experimental (at cell or animal level) or clinical studies demonstrating therapeutic effects of Sophora compounds were included. RESULTS >52 Sophora compounds have demonstrated potential anti-NSCLC effects through various signaling pathways, primarily targeting apoptosis induction, cell cycle arrest, and metastasis suppression. Investigated signaling pathways mainly include apoptosis, PI3K/Akt/mTOR, MAPK, STAT3/NF-κB, and EGFR signaling. The expression of apoptotic caspases, Bcl-2, Bax, Akt, mTOR, PI3K, Erk, Jnk, p38, STAT3 and NF-κB is frequently assayed. Notably, most researches have focused on cell models of A549 and H1299, primarily on aforementioned signaling pathways at the protein level. CONCLUSION Many Sophora compounds, particularly flavonoids, show promise as multi-target agents against NSCLC. However, animal experiments and clinical evidence remain limited, and future studies could prioritize investigations on deeper molecular mechanisms, and on little-explored toxicology.
Collapse
Affiliation(s)
- Baibai Ye
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Cheng Lin
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Hao Huang
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Ping Chen
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Xinyu Liu
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Keke Wang
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Han Zhang
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jiahui Liu
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Chenning Zhang
- Department of Pharmacy, Hubei University of Medicine, Xiangyang No 1 People's Hospital, Xiangyang 441100, China.
| | - Linfu Li
- Pharmacy College, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
4
|
Masullo LA, Kowalewski R, Honsa M, Heinze L, Xu S, Steen PR, Grabmayr H, Pachmayr I, Reinhardt SCM, Perovic A, Kwon J, Oxley EP, Dickins RA, Bastings MMC, Parish IA, Jungmann R. Spatial and stoichiometric in situ analysis of biomolecular oligomerization at single-protein resolution. Nat Commun 2025; 16:4202. [PMID: 40328783 PMCID: PMC12056017 DOI: 10.1038/s41467-025-59500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
Latest advances in super-resolution microscopy allow the study of subcellular features at the level of single proteins, which could lead to discoveries in fundamental biological processes, specifically in cell signaling mediated by membrane receptors. Despite these advances, accurately extracting quantitative information on molecular arrangements of proteins at the 1-20 nm scale through rigorous image analysis remains a significant challenge. Here, we present SPINNA (Single-Protein Investigation via Nearest-Neighbor Analysis): an analysis framework that compares nearest-neighbor distances from experimental single-protein position data with those obtained from realistic simulations based on a user-defined model of protein oligomerization states. We demonstrate SPINNA in silico, in vitro, and in cells. In particular, we quantitatively assess the oligomerization of the epidermal growth factor receptor (EGFR) upon EGF treatment and investigate the dimerization of CD80 and PD-L1, key surface ligands involved in immune cell signaling. Importantly, we offer an open-source Python implementation and a GUI to facilitate SPINNA's widespread use in the scientific community.
Collapse
Affiliation(s)
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Monique Honsa
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Larissa Heinze
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Shuhan Xu
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Philipp R Steen
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Heinrich Grabmayr
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Isabelle Pachmayr
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Jisoo Kwon
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Maartje M C Bastings
- Institute of Materials and Interfaculty Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany.
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
5
|
Wang B, Li D, Ilnytskyy Y, Khachigian LM, Zhong N, Rodriguez-Juarez R, Kovalchuk I, Kovalchuk O. A Positive Feedback DNA-PK/MYT1L-CXCR1-ERK1/2 Proliferative Signaling Loop in Glioblastoma. Int J Mol Sci 2025; 26:4398. [PMID: 40362634 PMCID: PMC12072392 DOI: 10.3390/ijms26094398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults. Our previous studies revealed a functional interplay of myelin transcription factor 1-like (MYT1L) with the DNA-dependent protein kinase (DNA-PK) in the regulation of p21 transcription. However, the contributing role of this functional interplay in glioblastoma remains largely unknown. Here, we used cell lines with normal DNA-PK (HEK293 and M059K) or deficient DNA-PK (M059J) as a model system to demonstrate the importance of the DNA-PK-dependent activation of MYT1L in controlling the transcription of CXC chemokine receptor 1 (CXCR1) in a positive-feedback proliferative signaling loop in glioblastoma with numerous conventional techniques. In normal DNA-PK cells, MYT1L acted as an oncogene by promoting cell proliferation, inhibiting apoptosis, and shortening a cell cycle S phase. However, in DNA-PK-deficient cells, MYT1L functioned as a tumor suppressor by inhibiting cell proliferation and inducing a G1 arrest. The enforced expression of MYT1L promoted CXCR1 transcription in DNA-PK-normal cells but attenuated transcription in DNA-PK-deficient cells. Bioinformatics analysis predicted a MYT1L-binding sequence at the CXCR1 promoter. The functional dependence of MYT1L on DNA-PK in CXCR1 transcription was validated by luciferase assay. Although the expression of CXCR1 was lower in M059J cells as compared to M059K cells, it was higher than in normal brain tissue. The CXCR1 ligands interleukin 8 (IL-8) and GRO protein alpha (GROα) expressed in M059J and M059K cells may signal through the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway that can be blocked by CXCR1 siRNA. Our findings demonstrate the existence of a positive feedback DNA-PK/MYT1L-CXCR1-ERK1/2 proliferation loop in glioblastoma cells that may represent a pharmacological target loop for therapeutic intervention.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Levon M. Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Nuanying Zhong
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Rocio Rodriguez-Juarez
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| |
Collapse
|
6
|
Garrett JT, Tendler S, Feroz W, Kilroy MK, Yu H. Emerging importance of HER3 in tumorigenesis and cancer therapy. Nat Rev Clin Oncol 2025; 22:348-370. [PMID: 40087402 DOI: 10.1038/s41571-025-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
HER3 is a member of the HER/ErbB family of receptor tyrosine kinases, together with EGFR (HER1), HER2 and HER4. Despite having only weak intrinsic kinase activity, HER3 can contribute to oncogenic signalling via ligand-induced heterodimerization with other HER family members. Evidence indicates that HER3 is altered or aberrantly expressed across a variety of tumour types and can be associated with poor clinical outcomes. Whereas anticancer agents targeting EGFR and HER2 have been approved for decades, no drug targeting HER3 had been approved until very recently. Initial targeting of HER3 with monoclonal antibodies as single agents or in combination with other therapeutics produced disappointing clinical results. Subsequently, efforts have been made to target HER3 with novel agents such as antibody-drug conjugates and bispecific antibodies, with promising efficacy observed in several trials encompassing various tumour types. In December 2024, the HER3 × HER2 bispecific antibody zenocutuzumab was granted FDA Accelerated Approval for the treatment of non-small-cell lung cancers or pancreatic cancers harbouring fusions involving NRG1, the gene encoding the high-affinity HER3 ligand neuregulin 1. In this Review, we provide an essential guide to HER3 signalling and oncogenesis, HER3 expression in cancer and its prognostic implications, oncogenic HER3 somatic mutations as well as rare NRG1 fusions that might depend on HER3 signalling, and the roles of HER3 in resistance to cancer therapies. We also highlight efforts to target HER3 with diverse therapeutic strategies and the potential interplay between HER3 and the antitumour immune response.
Collapse
Affiliation(s)
- Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Salomon Tendler
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wasim Feroz
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Kate Kilroy
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Helena Yu
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
8
|
Röder J, Alekseeva T, Kiefer A, Kühnel I, Prüfer M, Zhang C, Bodden M, Rosigkeit S, Waldmann A, Tonn T, Bockamp E, Stein S, Wels WS. ErbB2/HER2-targeted CAR-NK cells eliminate breast cancer cells in an organoid model that recapitulates tumor progression. Mol Ther 2025:S1525-0016(25)00312-0. [PMID: 40285353 DOI: 10.1016/j.ymthe.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Chimeric antigen receptor-engineered NK cells hold promise for adoptive cancer immunotherapy. In one such approach, the ErbB2 (HER2)-specific CAR-NK cell line NK-92/5.28.z is under investigation as an off-the-shelf therapy in a phase I trial in glioblastoma patients. To evaluate activity of NK-92/5.28.z cells against ErbB2-positive breast cancer, here we developed an organoid model derived from CKP mice that allows conditional activation of oncogenic driver mutations. Expression of ErbB2 and Cre recombinase in CKP mammary epithelial cells induced malignant transformation, with the resulting EC-CKP cells characterized by neoplastic morphology, loss of p53, and constitutive activation of the MAP kinase pathway. NK-92/5.28.z cells demonstrated potent CAR-mediated cytotoxicity against EC-CKP organoids, with tumor cell lysis dependent on exposure time and organoid size. In vivo passaging of EC-CKP organoids revealed cellular plasticity and induced an EMT phenotype associated with increased resistance to standard therapies. Importantly, NK-92/5.28.z cells retained high and specific cytotoxicity against these breast cancer cells in vitro and in an aggressive organoid-based in vivo mouse model that reflects advanced-stage disease. Our data highlight the therapeutic potential of NK-92/5.28.z cells against ErbB2-positive breast cancer, supporting their further development toward clinical application.
Collapse
Affiliation(s)
- Jasmin Röder
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt, Germany
| | - Tijna Alekseeva
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Anne Kiefer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Ines Kühnel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Maren Prüfer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Malena Bodden
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology and Research Centre for Immunotherapy, Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Torsten Tonn
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt, Germany; Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, 60528 Frankfurt, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology and Research Centre for Immunotherapy, Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt, Germany; German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, 60596 Frankfurt, Germany.
| |
Collapse
|
9
|
Zhou H, Fu H, Shao X, Cai W. Identification of novel inhibitors for epidermal growth factor receptor tyrosine kinase using absolute binding free-energy simulations. Int J Biol Macromol 2025; 304:140989. [PMID: 39952524 DOI: 10.1016/j.ijbiomac.2025.140989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Mutations in the kinase domain of the epidermal growth factor receptor (EGFR), a critical biological macromolecule involved in cell growth and division, can lead to drug resistance in patients undergoing chemotherapy with kinase inhibitors. Notably, the emergence of the C797S mutation poses new challenges for targeted EGFR therapy, highlighting the urgent need for agents effective against this triple mutation (L858R/T790M/C797S, EGFR™). Building on our previous finding that sulfonyl and piperidinyl groups significantly contribute to the EGFR™-inhibitor interactions, we have identified the best-in-class inhibitors containing these groups through functional-group-based screening and formally exact absolute binding free-energy calculations. Our new strategy offers greater flexibility than traditional workflows leaning on relative binding free-energy calculations and accommodates ligands with substantial structural variations. The result shows that the top candidate exhibits a binding affinity of -15.8 kcal/mol towards the EGFR™ mutant, surpassing BLU-945, a state-of-the-art fourth-generation inhibitor with a binding free energy of -12.6 kcal/mol. Subsequent free-energy decomposition indicates that the presented top candidate primarily enhances interactions with the K745, D800 and R841 residues, suggesting its potential to overcome resistance from the C797S mutation. Notably, K745 forms highly favorable hydrogen bonds and cation-π interactions with C6. Targeting lysine has emerged as a promising strategy, especially in cases where the C797S mutation renders traditional covalent inhibitors ineffective. We propose that these novel inhibitors represent promising drug candidates for non-small cell lung cancer treatment and offer new strategies to overcome drug resistance caused by EGFR mutation.
Collapse
Affiliation(s)
- Huaxin Zhou
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Xueguang Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
10
|
Dabiri M, Tehrani M, Rafiei A, Valadan R. Production and functional analysis of a phage displayed scFv recombinant antibody targeting EGFR/HER2 dimerization domain. Protein Expr Purif 2025; 228:106649. [PMID: 39722421 DOI: 10.1016/j.pep.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Tumor cells exploit epidermal growth factor receptor (EGFR) family to develop resistance against therapeutic antibodies, such as Herceptin. Upon ligand binding, dimerization between EGFR and HER2 is one of the most important causes of treatment failure in breast cancer and other cancers expressing EGFR and HER2. The aim of this study was to develop and evaluate the function of a human recombinant single-chain variable fragment (scFv) antibody against the dimerization domain of EGFR to inhibit its interaction with other members of the epidermal growth factor receptor family, especially HER2. METHODS scFv against EGFR was expressed and purified. Cell-ELISA, MTT assay, inhibition of STAT3 phosphorylation, quantitative RT-PCR, and dimerization inhibition were performed on EGFR and HER2 expressing cell lines to characterize functional properties of the produced scFv. The conformational structure of the produced scFv and its binding ability to EGFR was computationally investigated. RESULTS In vitro binding analysis by cell-ELISA revealed the EGFR binding ability of the purified antibodies and confirmed by immunoblotting. ScFvs preferentially reduced the proliferation and survival of MCF7, MDA-MB-468, and SKOV3 cell lines with no effect on the VERO line. More considerably, MCF7 cells treated with the scFv antibody showed reduced STAT3 phosphorylation, decreased Bcl-2 expression, and increased Bax expression. Finally, the scFvs hindered EGFR and HER2 dimerization. CONCLUSION The produced scFv antibody showed to be functional in a simultaneous blockade of EGFR and HER2, suggesting its potential as a promising candidate for targeted therapy against various EGFR overexpressing tumors.
Collapse
Affiliation(s)
- Mina Dabiri
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, United States.
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Sato S, Shintani D, Kaneda Y, Nakamura R, Katoh T, Yano M, Hanaoka M, Yagishita S, Yasuda M, Nagata M, Hasegawa K. Human epidermal growth factor receptor 3 expression in patients with epithelial ovarian cancer: a potential target for ovarian mucinous and clear cell carcinoma. Int J Clin Oncol 2025; 30:805-813. [PMID: 39937426 DOI: 10.1007/s10147-024-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/09/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Human epidermal growth factor receptor 3 (HER3), a tyrosine kinase belonging to the HER family, is a known target for cancer therapy; recently, an anti-HER3 antibody-drug conjugate (ADC) is developing. To understand HER3 expression in epithelial ovarian cancer (EOC), this study was conducted. METHODS We investigated the expression of HER3 in 202 patients with EOC using immunohistochemistry (IHC), and the association between HER3 expression, clinicopathological features, prognosis, and treatment timing. RESULTS Of all the cases, 55.4% had a HER3 IHC score ≥ 1 + . In particular, 78.0% of the patients with clear cell carcinoma (CCC) and 87.9% of the patients with mucinous carcinoma (MC) had a HER3 IHC score ≥ 1 + . Regarding clinicopathological features, early disease stage, feasibility of primary debulking surgery, no residual tumor, and low CA125 levels were more frequently observed in patients with a HER3 IHC score ≥ 1 + . Furthermore, a HER3 no-expression showed a significant association with a relatively short progression-free survival (PFS). And, for patients with mucinous carcinoma, those with a HER3 IHC score ≥ 1 + had poorer PFS and overall survival than those with a HER3 no-expression (no statistically significant difference). In addition, we analyzed HER3 expression at primary tumor and recurrence tumor in same patients. Thus, we observed the HER3 IHC score tended to change from 0 to ≥ 1 + in recurrence cases compared with primary cases. CONCLUSIONS These observations suggested that patients with MC, CCC and recurrence of all histological type may potentially benefit from future clinical trials of HER3-directed therapies.
Collapse
MESH Headings
- Humans
- Female
- Middle Aged
- Carcinoma, Ovarian Epithelial/pathology
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Aged
- Adenocarcinoma, Mucinous/pathology
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/drug therapy
- Adult
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/drug therapy
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/biosynthesis
- Prognosis
- Aged, 80 and over
- Biomarkers, Tumor
- Immunohistochemistry
- Progression-Free Survival
Collapse
Affiliation(s)
- Sho Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yuki Kaneda
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, 140-8710, Japan
| | - Ryuichi Nakamura
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, 140-8710, Japan
| | - Tomomi Katoh
- Department of Pathology, Saitama Medical University International Medical, Center, Hidaka, Saitama, 350-1298, Japan
| | - Mitsutake Yano
- Department of Pathology, Saitama Medical University International Medical, Center, Hidaka, Saitama, 350-1298, Japan
| | - Mieko Hanaoka
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji, Tokyo, Japan
- Department of Pharmacology and Therapeutics, National Cancer Center Research Institute, Tsukiji, Tokyo, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical, Center, Hidaka, Saitama, 350-1298, Japan
| | - Motoko Nagata
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, 140-8710, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| |
Collapse
|
12
|
Osman TE, Guo Y, Li S. Exploring the combined roles of GALNT1 and GALNT2 in hepatocellular carcinoma malignancy and EGFR modulation. Discov Oncol 2025; 16:337. [PMID: 40095226 PMCID: PMC11914428 DOI: 10.1007/s12672-025-02069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the most formidable subtype of primary liver cancers, is becoming increasingly concerning due to its rising incidence worldwide. HCC ranks as the sixth most diagnosed cancer globally and is the third leading cause of cancer-related deaths. Glycosylation, a common post-translational modification of proteins, is frequently altered in tumors and is associated with the progression of malignancies. GALNT1 and GALNT2 are GalNAc-transferases that initiate protein O-glycosylation and are closely linked to cancer development. Investigating the relationship between GALNT1 and GALNT2 in HCC could provide new insights into the disease's pathogenesis. Thus, this study aimed to explore the combined effects of GALNT1 and GALNT2 transfection on HCC, compared to the effects of modifying each gene individually. MATERIALS AND METHODS GALNT1 and GALNT2 were assessed by bioinformatics, qPCR, and Western blot analyses to detect their expression in HCC tissues and cell lines. The effects of GALNT1/GALNT2 overexpression and knockdown on cell viability, proliferation, migration, invasion, and apoptosis were evaluated in HCC cells using CCK8, colony formation, transwell migration and invasion, wound healing, TUNEL, and flow cytometry assays. EGFR protein levels were also analyzed by Western blotting. RESULTS Co-transfection of GALNT1 knockdown with GALNT2 overexpression significantly suppressed proliferation, migration, and invasion, while promoting apoptosis in HCC cells. Conversely, co-transfection of GALNT1 overexpression with GALNT2 knockdown enhanced these malignant characteristics compared to the modified single gene. Notably, we observed that GALNT1 and GALNT2 modulated EGFR protein expression. Overall, our findings suggest that the combined activity of GALNT1 and GALNT2 is critical in regulating HCC malignant behaviors.
Collapse
Affiliation(s)
- Tagwa E Osman
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
- Clinical Laboratory Department, Dalian Medical University First Affiliated Hospital, Dalian, 116011, Liaoning Province, China
| | - Yanru Guo
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
- Clinical Laboratory Department, Dalian Medical University First Affiliated Hospital, Dalian, 116011, Liaoning Province, China
| | - Shijun Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
- Clinical Laboratory Department, Dalian Medical University First Affiliated Hospital, Dalian, 116011, Liaoning Province, China.
| |
Collapse
|
13
|
Millan-Casarrubias EJ, García-Tejeda YV, González-De la Rosa CH, Ruiz-Mazón L, Hernández-Rodríguez YM, Cigarroa-Mayorga OE. Molecular Docking and Pharmacological In Silico Evaluation of Camptothecin and Related Ligands as Promising HER2-Targeted Therapies for Breast Cancer. Curr Issues Mol Biol 2025; 47:193. [PMID: 40136447 PMCID: PMC11941075 DOI: 10.3390/cimb47030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Breast cancer is one of the leading causes of cancer-related mortality in women worldwide, highlighting the importance of effective therapies. This study evaluates the interaction between camptothecin, a potent anticancer agent, and two key receptors implicated in breast cancer progression: HER2 (human epidermal growth factor receptor 2) and EGFR (epidermal growth factor receptor), using molecular docking. The results reveal a stronger binding affinity between camptothecin and HER2 than EGFR, in contrast to neratinib, which demonstrated affinity exclusively for HER2. Camptothecin exhibits significant hydrophobic and pi-alkyl interactions with HER2, whereas its interactions with EGFR are primarily mediated by hydrogen bonds. Molecular dynamics (MD) simulations of the camptothecin-HER2 complex indicate stable binding, with minimal fluctuations observed over 100 nanoseconds, confirming the stability of the ligand-receptor interaction. Pharmacokinetic evaluations, based on Lipinski's rule of five, demonstrate that camptothecin adheres to essential drug-likeness parameters, suggesting favorable bioavailability. Furthermore, the analysis comparing the pharmacological properties of camptothecin with other well-known anticancer compounds, such as neratinib, shows that camptothecin exhibited superior compliance with drug-likeness rules. Despite its low solubility, the binding stability and pharmacokinetic profile suggest its potential as an effective therapeutic agent for breast cancer, particularly when combined with drug delivery systems that enhance solubility. This work underscores the importance of receptor-specific ligand interactions in drug design and highlights the need for further studies into camptothecin's clinical applications, especially in HER2-positive breast cancer treatment.
Collapse
Affiliation(s)
- Elmer Joel Millan-Casarrubias
- Department of Advanced Technologies, UPIITA-Instituto Politécnico Nacional, Av. IPN 2580, Mexico City 07340, Mexico; (E.J.M.-C.); (Y.V.G.-T.); (Y.M.H.-R.)
| | - Yunia Verónica García-Tejeda
- Department of Advanced Technologies, UPIITA-Instituto Politécnico Nacional, Av. IPN 2580, Mexico City 07340, Mexico; (E.J.M.-C.); (Y.V.G.-T.); (Y.M.H.-R.)
| | | | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Yazmín Mariela Hernández-Rodríguez
- Department of Advanced Technologies, UPIITA-Instituto Politécnico Nacional, Av. IPN 2580, Mexico City 07340, Mexico; (E.J.M.-C.); (Y.V.G.-T.); (Y.M.H.-R.)
| | - Oscar Eduardo Cigarroa-Mayorga
- Department of Advanced Technologies, UPIITA-Instituto Politécnico Nacional, Av. IPN 2580, Mexico City 07340, Mexico; (E.J.M.-C.); (Y.V.G.-T.); (Y.M.H.-R.)
| |
Collapse
|
14
|
Chen Z, He R, Huang S, Zhou Y, Zhang Z, Wang Z, Ding K. Discovery of CZY43 as a new small-molecule degrader of pseudokinase HER3. Eur J Med Chem 2025; 285:117258. [PMID: 39818014 DOI: 10.1016/j.ejmech.2025.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The pseudokinase HER3 emerges as a promising anti-cancer target, especially for HER2-driven breast cancer and EGFR-mediated non-small cell lung cancer. However, it is challenging to target HER3 by ATP-competitive small molecules because HER3 is catalytically impaired. Herein, we report the discovery of a series of HER3 degraders by connecting a HER3 binder bosutinib with a hydrophobic tag adamantane. The optimal compound CZY43 effectively induced HER3 degradation in dose- and time-dependent manners in breast cancer SKBR3 cells. Mechanistic studies revealed compound CZY43 to induce HER3 degradation via autophagy. Importantly, compound CZY43 potently inhibited HER3-dependent signaling, cancer cell growth and cell adhesion, and was more potent than bosutinib. This study further suggested that HER3 can be modulated by small-molecule degraders, and compound CZY43 can serve as a lead compound for further optimization.
Collapse
Affiliation(s)
- Zhiyuan Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China; University of Chinese Academy of Sciences, No. 1 Yanxihu Road Huairou District, Beijing, 101408, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Shengjie Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China; Ningbo Zhongke Creation Center of New Materials, Ningbo, 315000, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd, Shanghai, 200032, China.
| |
Collapse
|
15
|
Hoyek C, Zheng-Lin B, Jones J, Bekaii-Saab T. Tucatinib in the treatment of HER2-overexpressing gastrointestinal cancers: current insights and future prospects. Expert Opin Investig Drugs 2025; 34:161-168. [PMID: 40019490 DOI: 10.1080/13543784.2025.2472411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Over the past 20 years, the treatment landscape of HER2-amplified tumors has considerably evolved. Until now, no approved targeted therapies were available for patients with HER2-amplified metastatic colorectal cancer (mCRC). Tucatinib, a highly selective tyrosine kinase inhibitor, demonstrated significant efficacy in combination with trastuzumab in patients with refractory mCRC, leading to its approval by the Food and Drug Administration (FDA). AREAS COVERED This review dives into the efficacy of tucatinib-based regimens in gastrointestinal malignancies, with a focus on the pivotal MOUNTAINEER trial, which led to the FDA approval of tucatinib plus trastuzumab in chemo-refractory HER2-amplified mCRC. Additionally, ongoing trials are exploring tucatinib in earlier treatment lines and across other gastrointestinal cancers, including biliary tract, gastric, and pancreatic malignancies. The mechanistic basis of dual HER2 inhibition and its implications for clinical practice are discussed. EXPERT COMMENTARY The future of tucatinib-based therapeutic strategies in GI malignancies depends on their integration into different treatment lines. Addressing acquired resistance using liquid biopsy-guided strategies and other TKIs like lapatinib will be paramount to improve outcomes.
Collapse
Affiliation(s)
- Celine Hoyek
- Department of Hematology and Oncology, Mayo Clinic, Arizona, AZ, USA
| | - Binbin Zheng-Lin
- Department of Hematology and Oncology, Mayo Clinic, Arizona, AZ, USA
| | - Jeremy Jones
- Department of Hematology and Oncology, Mayo Clinic, Florida, FL, USA
| | | |
Collapse
|
16
|
Okines AFC, Curigliano G, Mizuno N, Oh DY, Rorive A, Soliman H, Takahashi S, Bekaii-Saab T, Burkard ME, Chung KY, Debruyne PR, Fox JR, Gambardella V, Gil-Martin M, Hamilton EP, Monk BJ, Nakamura Y, Nguyen D, O'Malley DM, Olawaiye AB, Pothuri B, Reck M, Sudo K, Sunakawa Y, Van Marcke C, Yu EY, Ramos J, Tan S, Bieda M, Stinchcombe TE, Pohlmann PR. Tucatinib and trastuzumab in HER2-mutated metastatic breast cancer: a phase 2 basket trial. Nat Med 2025; 31:909-916. [PMID: 39825152 PMCID: PMC11922774 DOI: 10.1038/s41591-024-03462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated. SGNTUC-019 is an open-label, phase 2 basket study evaluating tucatinib, a HER2-targeted tyrosine kinase inhibitor, in combination with trastuzumab in patients with HER2-altered solid tumors. The study included a cohort of 31 heavily pretreated female patients with HER2-mutated metastatic breast cancer who were also HER2 negative per local testing. Hormone receptor (HR)-positive patients also received fulvestrant. The overall response rate (primary endpoint) was 41.9% (90% confidence interval (CI): 26.9-58.2). Secondary endpoints of duration of response and progression-free survival were 12.6 months (90% CI: 4.7 to not estimable) and 9.5 months (90% CI: 5.4-13.8), respectively. No new safety signals were detected. Responses were observed across various HER2 mutations, including mutations in the tyrosine kinase and extracellular domains. The chemotherapy-free regimen of tucatinib and trastuzumab showed clinically meaningful antitumor activity with durable responses and favorable tolerability in heavily pretreated patients with HER2 mutations. These data support further investigation of HER2-targeted therapies in this patient population. ClinicalTrials.gov registration: NCT04579380 .
Collapse
Affiliation(s)
| | - Giuseppe Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milan, Italy
- University of Milano, Milan, Italy
| | | | - Do-Youn Oh
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, South Korea
| | - Andree Rorive
- CHU Sart Tilman Liège, University of Liège, Liège, Belgium
| | - Hatem Soliman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Ki Y Chung
- Prisma Health Institute, Greenville, SC, USA
| | - Philip R Debruyne
- Kortrijk Cancer Centre, General Hospital AZ Groeninge, Kortrijk, Belgium
- Medical Technology Research Centre (MTRC), School of Life Sciences, Anglia Ruskin University, Cambridge, UK
- School of Nursing and Midwifery, University of Plymouth, Plymouth, UK
| | - Jenny R Fox
- Rocky Mountain Cancer Center, Boulder, CO, USA
| | | | - Marta Gil-Martin
- Institut Català d'Oncologia L'Hospitalet-IDIBELL, Hospitalet de Llobregat, Spain
| | | | - Bradley J Monk
- Florida Cancer Specialists and Research Institute, West Palm Beach, FL, USA
| | | | - Danny Nguyen
- City of Hope National Medical Center, Duarte, CA, USA
| | - David M O'Malley
- The Ohio State University and James Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Bhavana Pothuri
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Martin Reck
- Department of Thoracic Oncology, Airway Research Center North, Germany Center for Lung Disease, Grosshansdorf, Germany
| | | | - Yu Sunakawa
- St. Marianna University Hospital, Kawasaki, Japan
| | | | - Evan Y Yu
- Fred Hutchinson Cancer Center/University of Washington, Seattle, WA, USA
| | | | | | | | | | - Paula R Pohlmann
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Lamtha T, Jongkon N, Lertvanithphol T, Horprathum M, Seetaha S, Choowongkomon K. Cannabinoids as Promising Inhibitors of HER2-Tyrosine Kinase: A Novel Strategy for Targeting HER2-Positive Ovarian Cancer. ACS OMEGA 2025; 10:6191-6200. [PMID: 39989803 PMCID: PMC11840771 DOI: 10.1021/acsomega.4c11108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a transmembrane receptor within the ErbB family that plays a pivotal role in the progression of various aggressive cancers. HER2-positive tumors often develop resistance to standard therapies, necessitating the exploration of innovative treatment options. Cannabinoids, bioactive compounds from Cannabis sativa such as cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN), have gained attention for their potential anticancer properties. This study evaluates the efficacy of CBD, CBG, and CBN in targeting HER2-positive ovarian cancer through kinase inhibition assays, surface plasmon resonance (SPR), molecular docking, and cell viability assessments. SPR analysis revealed that cannabinoids bind strongly to HER2-tyrosine kinase (HER2-TK), with CBD showing the highest affinity (K D = 6.16 μM), significantly better than afatinib (K D = 26.30 μM), and CBG demonstrating moderate affinity (K D = 17.07 μM). In kinase inhibition assays, CBG was the most potent inhibitor (IC50 = 24.7 nM), followed by CBD (IC50 = 38 nM), suggesting their ability to disrupt HER2-mediated signaling pathways. Molecular docking studies highlighted critical interactions between cannabinoids and essential HER2 residues (Leu796, Thr862, Asp863). In cell viability assays, CBD and CBG effectively inhibited the growth of HER2-positive SKOV3 cells (IC50 = 13.8 μM and 16.6 μM, respectively), comparable to traditional tyrosine kinase inhibitors. These findings underscore the therapeutic potential of cannabinoids, particularly CBD and CBG, as alternative or adjunct therapies for HER2-positive cancers, with the promise of mitigating resistance and adverse effects associated with existing treatments.
Collapse
Affiliation(s)
- Thomanai Lamtha
- Laboratory
of Protein Engineering and Bioinformatics (PROTEP), Department of
Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Department
of Clinical Chemistry, Faculty of Medical Technology, Nation University, Lampang 52000, Thailand
| | - Nathjanan Jongkon
- Department
of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North
Bangkok, Bangkok 10800, Thailand
| | - Tossaporn Lertvanithphol
- The
National Electronics and Computer Technology Center (NECTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum
Thani 12120, Thailand
| | - Mati Horprathum
- The
National Electronics and Computer Technology Center (NECTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum
Thani 12120, Thailand
| | - Supaphorn Seetaha
- Laboratory
of Protein Engineering and Bioinformatics (PROTEP), Department of
Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Laboratory
of Protein Engineering and Bioinformatics (PROTEP), Department of
Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Wang Z, Gao L, Jia Z, Liu L, Gu A, Liu Z, Zhu Q, Zuo Y, Yang M, Wang S, Ma J, Zhang J, Qiu S, Li Z, Wang J, Xiang D, Liu F, Shao R, Li Y, Li M, Wei W, Liu Y. Full-length transcriptome atlas of gallbladder cancer reveals trastuzumab resistance conferred by ERBB2 alternative splicing. Signal Transduct Target Ther 2025; 10:54. [PMID: 39948369 PMCID: PMC11825701 DOI: 10.1038/s41392-025-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Aberrant RNA alternative splicing in cancer generates varied novel isoforms and protein variants that facilitate cancer progression. Here, we employed the advanced long-read full-length transcriptome sequencing on gallbladder normal tissues, tumors, and cell lines to establish a comprehensive full-length gallbladder transcriptomic atlas. It is of note that receptor tyrosine kinases were one of the most dynamic components with highly variable transcript, with Erb-B2 receptor tyrosine kinase 2 (ERBB2) as a prime representative. A novel transcript, designated ERBB2 i14e, was identified for encoding a novel functional protein, and its protein expression was elevated in gallbladder cancer and strongly associated with worse prognosis. With the regulation of splicing factors ESRP1/2, ERBB2 i14e was alternatively spliced from intron 14 and the encoded i14e peptide was proved to facilitate the interaction with ERBB3 and downstream signaling activation of AKT. ERBB2 i14e was inducible and its expression attenuated anti-ERBB2 treatment efficacy in tumor xenografts. Further studies with patient derived xenografts models validated that ERBB2 i14e blockage with antisense oligonucleotide enhanced the tumor sensitivity to trastuzumab and its drug conjugates. Overall, this study provides a gallbladder specific long-read transcriptome profile and discovers a novel mechanism of trastuzumab resistance, thus ultimately devising strategies to improve trastuzumab therapy.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Li Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ziheng Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Ao Gu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Zhaonan Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Qin Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Yichen Zuo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingjie Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Shijia Wang
- Changzhou No.2 People Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiyao Ma
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Jingyun Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Shimei Qiu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Zhizhen Li
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jinghan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongxi Xiang
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Fatao Liu
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Rong Shao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjing Li
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China.
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China.
| | - Wu Wei
- Lingang Laboratory, Shanghai, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation (CSRCT-SHANGHAI), Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University school of Medicine, Shanghai, China.
- Department of General Surgery, Jiading Branch of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Strickler JH, Bekaii-Saab T, Cercek A, Heinemann V, Nakamura Y, Raghav K, Siena S, Tabernero J, Van Cutsem E, Yoshino T, Ramos J, Guan X, Andre T. MOUNTAINEER-03 phase III study design: first-line mFOLFOX6 + tucatinib + trastuzumab for HER2+ metastatic colorectal cancer. Future Oncol 2025; 21:303-311. [PMID: 39723627 PMCID: PMC11792820 DOI: 10.1080/14796694.2024.2441101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Patients diagnosed with metastatic colorectal cancer (mCRC) have a poor prognosis with survival ranging 2-3 years. The prevalence of human epidermal growth factor receptor 2 (HER2) amplification is approximately 3-4% in mCRC and increases up to 8% in patients with KRAS/NRAS/BRAF wild-type (WT) CRC tumors. Tucatinib is a highly selective HER2-directed tyrosine kinase inhibitor that, in combination with trastuzumab, has demonstrated clinically meaningful activity in patients with chemotherapy-refractory, HER2-positive (HER2+), RAS WT mCRC in the MOUNTAINEER trial. The MOUNTAINEER-03 phase III trial is designed to investigate the efficacy and safety of first-line tucatinib in combination with trastuzumab and modified FOLFOX6 (mFOLFOX6) versus standard of care (mFOLFOX6 plus bevacizumab or cetuximab) in patients with untreated HER2+, RAS WT locally advanced unresectable or mCRC. MOUNTAINEER-03 will include two arms of approximately 400 patients randomized 1:1 to either treatment arm. The primary endpoint is progression-free survival per RECIST v1.1 by blinded independent central review (BICR). Key secondary endpoints are overall survival and confirmed objective response rate (according to RECIST v1.1 per BICR). Safety assessments will include surveillance and recording of adverse events, physical examination findings, vital signs, cardiac assessments, Eastern Cooperative Oncology Group performance status, concomitant medications, and laboratory tests.Clinical trial registration: NCT05253651 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- John H Strickler
- Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Tanios Bekaii-Saab
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Volker Heinemann
- Department of Haematology and Oncology, LMU Klinikum, University of Munich, Comprehensive Cancer Center, Munich, Germany
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital Japan East, Kashiwa, Japan
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology,MD Anderson Cancer Center, Houston, TX,USA
| | - Salvatore Siena
- Department of Hematology and Oncology, Università degli Studi di Milano, and Grande Ospedale Metropolitano Niguard, Milan, Italy
- Niguarda Cancer Center, Università degli Studi di Milano, and Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Josep Tabernero
- Department of Medical Oncology, Vall D’Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain
| | - Eric Van Cutsem
- Department of Digestive Oncology, University Hospital Gasthuisberg and University of Leuven, Leuven, Belgium
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital Japan East, Kashiwa, Japan
| | - Jorge Ramos
- Oncology Research and Development, Pfizer Inc, Bothell, WA, USA
| | - Xuesong Guan
- Oncology Biostatistics, Pfizer Inc, Bothell, WA, USA
| | - Thierry Andre
- Department of Medical Oncology, Sorbonne Université et Hôpital Saint Antoine, Paris, France
| |
Collapse
|
20
|
Ezaddoustdar A, Kalina D, Bielohuby M, Boehm M, Wygrecka M. dEREGulated pathways: unraveling the role of epiregulin in skin, kidney, and lung fibrosis. Am J Physiol Cell Physiol 2025; 328:C617-C626. [PMID: 39750963 DOI: 10.1152/ajpcell.00813.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is an evolutionary conserved mechanism to control cell behavior during tissue development and homeostasis. Deregulation of this pathway has been associated with abnormal cell behavior, including hyperproliferation, senescence, and an inflammatory cell phenotype, thereby contributing to pathologies across a variety of organs, including the kidneys, skin, and lungs. To date, there are seven distinct EGFR ligands described. Although binding of these ligands to the receptor is cell type-specific and spatio-temporally controlled with distinct affinities and kinetics, epiregulin (EREG) stands out as a long-acting EGFR ligand that emerges under pathological conditions, particularly in tissue fibrosis. Although EREG has been extensively studied in cancer, its contribution to the maladaptive remodeling of tissue is elusive. The aim of this review is to highlight the role of EREG in skin, kidney, and lung fibrosis and to discuss opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aysan Ezaddoustdar
- Center for Infection and Genomics of the Lung, Faculty of Medicine, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
| | | | | | | | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Faculty of Medicine, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
- CSL Innovation GmbH, Marburg, Germany
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| |
Collapse
|
21
|
Zhao R, Wang M, Wu Z, Zhao P, Dong H, Su Y, Zhao C, Qi M, Ling S, Jiang X. DET induces apoptosis and suppresses tumor invasion in glioma cells via PI3K/AKT pathway. Front Oncol 2025; 14:1528454. [PMID: 39850823 PMCID: PMC11755766 DOI: 10.3389/fonc.2024.1528454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches. Methods Using PharmMapper, the chemical structure of DET was examined for possible targets after being acquired from PubChem. GBM-related targets were obtained through multi-omics approaches. A protein-protein interaction (PPI) network was constructed using Cytoscape and STRING, and target binding was evaluated through molecular docking. Enrichment analysis was conducted using Metascape. The effects of DET on GBM cell invasion, apoptosis, and proliferation were assessed through in vitro assays, including Transwell, EDU, CCK8, and flow cytometry. Western blot analysis was performed to examine the components of the PI3K/AKT signaling pathway. Results Among the sixty-four shared targets identified, JUN and CCND1 were the most frequently observed. Enrichment analysis demonstrated that DET influenced the MAPK and PI3K/AKT signaling pathways. In Transwell assays, DET significantly inhibited the invasive behavior of glioma cells. Western blot analysis further confirmed the downregulation of EGFR, JUN, and PI3K/AKT. Conclusion DET inhibits GBM cell invasion, proliferation, and apoptosis via modulating the PI3K/AKT signaling pathway, highlighting its potential as a novel therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Rui Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Mengran Wang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Panpan Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Huiling Dong
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Yue Su
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Chenghui Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Min Qi
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, Higher Education Park, Wuhu, Anhui, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, Higher Education Park, Wuhu, Anhui, China
| |
Collapse
|
22
|
Yang X, Yang D, Qi X, Luo X, Zhang G. Endocrine treatment mechanisms in triple-positive breast cancer: from targeted therapies to advances in precision medicine. Front Oncol 2025; 14:1467033. [PMID: 39845328 PMCID: PMC11753220 DOI: 10.3389/fonc.2024.1467033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Triple-positive breast cancer (TPBC), defined by the co-expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), poses unique therapeutic challenges due to complex signaling interactions and resulting treatment resistance. This review summarizes key findings on the molecular mechanisms and cross-talk among ER, PR, and HER2 pathways, which drive tumor proliferation and resistance to conventional therapies. Current strategies in TPBC treatment, including endocrine and HER2-targeted therapies, are explored alongside emerging approaches such as immunotherapy and CRISPR/Cas9 gene editing. Additionally, we discuss the tumor microenvironment (TME) and its role in treatment resistance, highlighting promising avenues for intervention through combination therapies and predictive biomarkers. By addressing these interdependent pathways and optimizing therapeutic strategies, precision medicine holds significant potential for improving TPBC patient outcomes and advancing individualized cancer care.
Collapse
Affiliation(s)
| | | | | | | | - Guangmei Zhang
- Department of Medical Oncology, Third Division, Jilin City Second People’s Hospital, Jilin, China
| |
Collapse
|
23
|
Hommel T, Meisel PF, Camera E, Bottillo G, Teufelberger AR, Benezeder TH, Wolf P, Kleissl L, Stary G, Posch C, Schneider MR, Dahlhoff M. Loss of ERBB2 and ERBB3 Receptors Impacts Epidermal Differentiation in Mice. J Invest Dermatol 2025; 145:204-208.e6. [PMID: 38987017 DOI: 10.1016/j.jid.2024.06.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Affiliation(s)
- Theresa Hommel
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Paula F Meisel
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Grazia Bottillo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | | | | | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Posch
- Department for Dermatology, Vienna Healthcare Group, Vienna, Austria; Department of Dermatology and Allergy, School of Medicine, German Cancer Consortium (DKTK), Technical University of Munich, Munich, Germany; School of Medicine, Sigmund Freud University, Vienna, Austria
| | - Marlon R Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
25
|
Bharali P, Chand S, Chander H. A Cost-Effective and Robust Cell-Based Bioassay Method for Evaluating the Bioactivity of Trastuzumab-like Antibodies. Biomedicines 2024; 13:23. [PMID: 39857607 PMCID: PMC11762710 DOI: 10.3390/biomedicines13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Trastuzumab is an effective therapeutic intervention for treating HER2-positive breast cancers. The cost-effectiveness, global demand, and patent expiration of trastuzumab have led to the inflow of its biosimilars in the global market. With the rise of biosimilars in the biopharmaceutical market, it has become crucial to ensure that the biosimilar is at par with the original monoclonal antibody (mAb)in terms of efficacy, safety, and quality. Bioassay is one of the critical quality attributes (CQAs), hence developing a reliable and robust bioassay is essential for the evaluation of their biological activity and the harmonization of the quality of these biologics, supporting their safe and effective use in clinical practice. Methods: The present study aimed to develop a robust cell-based bioassay to assess the bioactivity of trastuzumab and its biosimilars for quality control testing. For this purpose, molecular characterization of different HER2-positive breast cancer cell lines of SKBR3, BT474, MDA-MD-453, MDA-MB-175, MCF-7, and MDA-MB-231 was performed to select a suitable cell line for the cell-based bioassay. Results: The SKBR3 cell line was found to express the HER2 receptors significantly higher in comparison to the other cell lines, and it was thereby selected for further bioassay optimization. The biological activity of trastuzumab was determined using the inhibition of proliferation (IOP) assay on the SKBR3, which was optimized based on the parameters of cell seeding density, drug dilution range, and incubation time, and it was further validated as per the compendial guidelines and found valid for the parameters of specificity, accuracy (% relative bias = 0.0067%), precision (repeatability: % GCV = 1.21%), linearity (R2 = 0.99), and range (50% to 200%). Additionally, the biological activity of different trastuzumab biosimilars was assessed using the validated IOP assay and compared to the HER2 binding assay performed by flow cytometry. The biological activity of different trastuzumab biosimilars was found to be comparable to the WHO primary reference standard of trastuzumab in terms of its relative potency using the IOP assay and binding assay by flow cytometry. Conclusions: Thus, an economic and robust cell-based bioassay method was successfully developed to assess the bioactivity of trastuzumab and its biosimilars.
Collapse
Affiliation(s)
| | - Subhash Chand
- National Institute of Biologicals, Ministry of Health & Family Welfare, Govt. of India, A-32, Sector-62, Noida 201309, UP, India;
| | - Harish Chander
- National Institute of Biologicals, Ministry of Health & Family Welfare, Govt. of India, A-32, Sector-62, Noida 201309, UP, India;
| |
Collapse
|
26
|
Tsutsumi C, Ohuchida K, Tsutsumi H, Shimada Y, Yamada Y, Son K, Hayashida S, Katayama N, Mochida Y, Iwamoto C, Torata N, Horioka K, Shindo K, Mizuuchi Y, Ikenaga N, Nakata K, Ota K, Iwama E, Yamamoto M, Tsukamoto T, Nomura S, Morisaki T, Oda Y, Okamoto I, Nakamura M. TIM3 on natural killer cells regulates antibody-dependent cellular cytotoxicity in HER2-positive gastric cancer. Cancer Lett 2024; 611:217412. [PMID: 39722406 DOI: 10.1016/j.canlet.2024.217412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Therapies targeting HER2 are the standard treatment for HER2-positive gastric cancer (GC). Trastuzumab, a monoclonal antibody against HER2, exerts anti-tumor activity through cell growth regulation and antibody-dependent cellular cytotoxicity (ADCC). ADCC is induced by the binding of trastuzumab to Fcγ receptor III (CD16) in natural killer (NK) cells. However, the relationship between immune checkpoint (IC) molecules of NK cells and trastuzumab-induced ADCC is poorly understood. We performed single-cell RNA sequencing (scRNA-seq) and immunohistochemistry to identify IC molecules associated with CD16 expression in NK cells of GC patients. Additionally, we conducted in vitro assays with HER2-transfected GC cells and in vivo experiments using a mouse HER2-positive GC model to assess expression changes in IC molecules in NK cells and their ligands during trastuzumab treatment. In GC patients, the expression of TIM3, an IC molecule, was strongly correlated with that of CD16 in NK cells. In vitro assays showed that ADCC with trastuzumab increased TIM3 expression in NK cells. scRNA-seq analysis revealed that TIM3 expression of cytotoxic NK cells was elevated in HER2-positive GC patients treated with trastuzumab. HMGB1, a TIM3 ligand, was expressed at higher levels in HER2-transfected GC cells than in controls. Furthermore, HMGB1 expression was higher in HER2-positive GC patients treated with trastuzumab compared to untreated HER2-positive GC patients. In the mouse HER2-positive GC model, anti-TIM3 antibodies and trastuzumab demonstrated synergistic anti-tumor effects without toxicity. This study suggests the combined anti-TIM3 antibody and trastuzumab therapy may have potential as a new treatment strategy for HER2-positive GC.
Collapse
Affiliation(s)
- Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hirono Tsutsumi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Shimada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiwa Son
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayuri Hayashida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiichi Ota
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Mehta K, Hegde M, Girisa S, Vishwa R, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Kunnumakkara AB. Targeting RTKs/nRTKs as promising therapeutic strategies for the treatment of triple-negative breast cancer: evidence from clinical trials. Mil Med Res 2024; 11:76. [PMID: 39668367 PMCID: PMC11636053 DOI: 10.1186/s40779-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
The extensive heterogeneity and the limited availability of effective targeted therapies contribute to the challenging prognosis and restricted survival observed in triple-negative breast cancer (TNBC). Recent research indicates the aberrant expression of diverse tyrosine kinases (TKs) within this cancer, contributing significantly to tumor cell proliferation, survival, invasion, and migration. The contemporary paradigm shift towards precision medicine has highlighted TKs and their receptors as promising targets for pharmacotherapy against a range of malignancies, given their pivotal roles in tumor initiation, progression, and advancement. Intensive investigations have focused on various monoclonal antibodies (mAbs) and small molecule inhibitors that specifically target proteins such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), cellular mesenchymal-epithelial transition factor (c-MET), human epidermal growth factor receptor 2 (HER2), among others, for combating TNBC. These agents have been studied both in monotherapy and in combination with other chemotherapeutic agents. Despite these advances, a substantial terrain of unexplored potential lies within the realm of TK targeted therapeutics, which hold promise in reshaping the therapeutic landscape. This review summarizes the various TK targeted therapeutics that have undergone scrutiny as potential therapeutic interventions for TNBC, dissecting the outcomes and revelations stemming from diverse clinical investigations. A key conclusion from the umbrella clinical trials evidences the necessity for in-depth molecular characterization of TNBCs for the maximum efficiency of TK targeted therapeutics, either as standalone treatments or a combination. Moreover, our observation highlights that the outcomes of TK targeted therapeutics in TNBC are substantially influenced by the diversity of the patient cohort, emphasizing the prioritization of individual patient genetic/molecular profiles for precise TNBC patient stratification for clinical studies.
Collapse
Affiliation(s)
- Kasshish Mehta
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Department of Human-Anatomy, Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
28
|
Saad MA, Allen D, Sweeney A, Xavierselvan M, Mallidi S, Hasan T. Temporal dynamics of fluorescence and photoacoustic signals of a Cetuximab-IRDye800 conjugate in EGFR-overexpressing tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625469. [PMID: 39677759 PMCID: PMC11642854 DOI: 10.1101/2024.11.26.625469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Molecular fluorescence-guided surgery has shown promise for tumor margin delineation but is limited by its depth profiling capability. Interestingly, most fluorophores, either clinically approved or in clinical trials, can also be used as photoacoustic contrast agents, yet their use is limited due to the low light fluence permitted for clinical use and the limited sensitivity of current photoacoustic imaging systems. There is therefore an urgent unmet need to establish methods for enhancing contrast in molecular targeted PA imaging which could potentially complement and overcome limitations in molecular fluorescence guided therapies. In this study, we compare the photoacoustic (PA) and fluorescence imaging capabilities of a cetuximab-IRDye800 conjugate in a subcutaneous tumor xenograft model. We demonstrate that while the fluorescence signal increases steadily over time after administration of cetuximab-IRDye800, PA signal peaks early (~2 fold higher at 6-hour as compared to pre-injection controls) and then decreases (~1.3 fold higher at 24-hour as compared to pre-injection controls). This pattern aligns with previous findings using other antibody-conjugated PA contrast agents. Mechanistically, we demonstrate that the formation of H-aggregates upon antibody conjugation enhances PA contrast of the IRDye800. The disruption of these H-aggregates, as the antibody-dye conjugate is degraded post receptor-mediated endocytosis, decreases PA signal intensity. The timeframe of maximum PA signal and decrease thereafter is consistent with the time frame of receptor-mediated endocytosis of cetuximab-IRDye800. Our data suggests that tumor cell surface binding results in peak PA signal while lysosomal localization and degradation results in a significant drop in PA signal. Our study sheds light on the distinct temporal dynamics of PA and fluorescence signals of Cetuximab-IRDye800 conjugate and we propose that optimizing IRDye800 conjugation to antibodies can further enhance PA signal intensity when timed to precisely to capture IRDye800 in an H-aggregate form.
Collapse
Affiliation(s)
- Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Derek Allen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Allison Sweeney
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA, USA
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA, USA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, Medford, MA, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Manaithiya A, Bhowmik R, Acharjee S, Sharma S, Kumar S, Imran M, Mathew B, Parkkila S, Aspatwar A. Elucidating molecular mechanism and chemical space of chalcones through biological networks and machine learning approaches. Comput Struct Biotechnol J 2024; 23:2811-2836. [PMID: 39045026 PMCID: PMC11263914 DOI: 10.1016/j.csbj.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
We developed a bio-cheminformatics method, exploring disease inhibition mechanisms using machine learning-enhanced quantitative structure-activity relationship (ML-QSAR) models and knowledge-driven neural networks. ML-QSAR models were developed using molecular fingerprint descriptors and the Random Forest algorithm to explore the chemical spaces of Chalcones inhibitors against diverse disease properties, including antifungal, anti-inflammatory, anticancer, antimicrobial, and antiviral effects. We generated and validated robust machine learning-based bioactivity prediction models (https://github.com/RatulChemoinformatics/QSAR) for the top genes. These models underwent ROC and applicability domain analysis, followed by molecular docking studies to elucidate the molecular mechanisms of the molecules. Through comprehensive neural network analysis, crucial genes such as AKT1, HSP90AA1, SRC, and STAT3 were identified. The PubChem fingerprint-based model revealed key descriptors: PubchemFP521 for AKT1, PubchemFP180 for SRC, PubchemFP633 for HSP90AA1, and PubchemFP145 and PubchemFP338 for STAT3, consistently contributing to bioactivity across targets. Notably, chalcone derivatives demonstrated significant bioactivity against target genes, with compound RA1 displaying a predictive pIC50 value of 5.76 against HSP90AA1 and strong binding affinities across other targets. Compounds RA5 to RA7 also exhibited high binding affinity scores comparable to or exceeding existing drugs. These findings emphasize the importance of knowledge-based neural network-based research for developing effective drugs against diverse disease properties. These interactions warrant further in vitro and in vivo investigations to elucidate their potential in rational drug design. The presented models provide valuable insights for inhibitor design and hold promise for drug development. Future research will prioritize investigating these molecules for mycobacterium tuberculosis, enhancing the comprehension of effectiveness in addressing infectious diseases.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Satarupa Acharjee
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore 560043, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Health Sciences Campus, Kochi, India
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Health Sciences Campus, Kochi, India
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
30
|
Geddis A, Mendive-Tapia L, Sujantho A, Liu E, McAughtrie S, Goodwin R, Vendrell M, Campbell CJ. Label-Free SERS Sensors for Real-Time Monitoring of Tyrosine Phosphorylation. Anal Chem 2024; 96:17978-17983. [PMID: 39472080 PMCID: PMC11561882 DOI: 10.1021/acs.analchem.4c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/13/2024]
Abstract
Dysregulation of receptor tyrosine kinases (RTKs) has been shown to correlate with cancer cell proliferation and drug resistance. Thus, monitoring the activity of RTKs at a chemical level could provide new biomedical insights and methods to assess the drug efficacy. However, direct monitoring of kinase activity is challenging and most commonly relies on in vitro techniques such as Western blotting and ELISAs. Herein, we report the development of a gold nanoparticle-based surface-enhanced Raman scattering (SERS) sensor, which allows the real-time monitoring of tyrosine phosphorylation of a reporter peptide (Axltide) by the Axl enzyme. We demonstrate that our sensor shows strong signal localization, and we are able to detect tyrosine phosphorylation of the reporter peptide through chemical phosphorylation and enzymatically with similar peak changes to those observed in the spontaneous Raman spectra. Through monitoring the SERS spectrum, we can observe changes in phosphorylation in real time.
Collapse
Affiliation(s)
- Ailsa Geddis
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Audreylia Sujantho
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Erica Liu
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Sarah McAughtrie
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Richard Goodwin
- Clinical
Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Colin J. Campbell
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| |
Collapse
|
31
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
32
|
Roney M, Dubey A, Hassan Nasir M, Tufail A, Tajuddin SN, Mohd Aluwi MFF, Huq AM. Computer-aided anti-cancer drug discovery of EGFR protein based on virtual screening of drug bank, ADMET, docking, DFT and molecular dynamic simulation studies. J Biomol Struct Dyn 2024; 42:9662-9677. [PMID: 37676262 DOI: 10.1080/07391102.2023.2252092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Numerous malignancies, including breast cancer, non-small cell lung cancer, and chronic myeloid leukemia, are brought on by aberrant tyrosine kinase signaling. Since the current chemotherapeutic medicines are toxic, there is a great need and demand from cancer patients to find novel chemicals that are toxic-free or have low toxicity and that can kill tumor cells and stop their growth. This work describes the in-silico examination of substances from the drug bank as EGFR inhibitors. Firstly, drug-bank was screened using the pharmacophore technique to select the ligands and Erlotinib (DB00530) was used as matrix compound. The selected ligands were screened using ADMET and the hit compounds were subjected to docking. The lead compound from the docking was subjected to DFT and MD simulation study. Using the pharmacophore technique, 23 compounds were found through virtual drug bank screening. One hit molecule from the ADMET prediction was the subject of docking study. According to the findings, DB03365 molecule fits to the EGFR active site by several hydrogen bonding interactions with amino acids. Furthermore, DFT analysis revealed high reactivity for DB03365 compound in the binding pocket of the target protein, based on ELUMO, EHOMO and band energy gap. Furthermore, MD simulations for 100 ns revealed that the ligand interactions with the residues of EGFR protein were part of the essential residues for structural stability and functionality. However, DB03365 was a promising lead molecule that outperformed the reference compound in terms of performance and in-vitro and in-vivo experiments needs to validate the study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malafysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Pahang, Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Pahang, Darul Makmur, Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Muhammad Hassan Nasir
- Faculty of Medicine, University Sultan Zainal Abidin (UniSZA), Terengganu, Darul Iman, Malaysia
| | - Aisha Tufail
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Saiful Nizam Tajuddin
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Pahang, Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malafysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Pahang, Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Pahang, Darul Makmur, Malaysia
| | - Akm Moyeenul Huq
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Pahang, Darul Makmur, Malaysia
- Department of Pharmacy, School of Medicine, University of Asia Pacific 74/A, Dhaka, Bangladesh
| |
Collapse
|
33
|
Liang Y, Lin H, Jiang Z, Zhao Q, Cui R, Li S. HOXB8 mediates resistance to cetuximab in colorectal cancer cells through activation of the STAT3 pathway. Discov Oncol 2024; 15:603. [PMID: 39472327 PMCID: PMC11522251 DOI: 10.1007/s12672-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Homeobox B8 (HOXB8) belongs to the HOX family and was essential to the development of colorectal carcinoma. Among the prevalent monoclonal antibodies for treating RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients, cetuximab stands out, but resistance to cetuximab frequently arises in targeted treatments. Currently, the role of HOXB8 in cetuximab-resistant mCRC remains unclear. By comparing drug-sensitive cell lines (SW48) with drug-resistant cell lines (HCT116, CACO2), we discovered that HOXB8 was substantially expressed in cetuximab-resistant cell lines, and furthermore, in drug-resistant cell lines (HCT116, CACO2), HOXB8 knockdown increased the cytotoxicity of cetuximab via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Conversely, the excessive expression of HOXB8 reduced the growth suppression in SW48 cells caused by cetuximab by triggering the STAT3 signaling pathway. Conclusively, we conclude that HOXB8 has played an essential role in cetuximab-resistant mCRC and that treating HOXB8 specifically may be a useful treatment approach for certain cetuximab-resistant mCRC patients.
Collapse
Affiliation(s)
- Yunan Liang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Han Lin
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Zongsheng Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Qi Zhao
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China.
| | - Shaotang Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
34
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
35
|
Deiana C, Ricci C, Vahabi M, Ali M, Brandi G, Giovannetti E. Advances in target drugs and immunotherapy for biliary tract cancer. Expert Rev Gastroenterol Hepatol 2024; 18:605-630. [PMID: 39544174 DOI: 10.1080/17474124.2024.2416230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION After years of treatment stagnation in biliary tract cancers (BTC), there has been a notable shift with the emergence of targeted therapies and immunotherapy, leading to substantial progress in tackling this aggressive disease. AREAS COVERED We provide a comprehensive overview of the target therapies that are already part of the treatment algorithm for BTC, such as FGFR, IDH, and HER2 inhibitors. Additionally, we delve into some less known targets that are being explored, such as KRAS proto-oncogene, MAPK cascade, PI3K/AKT/mTOR pathway and novel molecules directed against P53, claudin, histones, and mitochondrial metabolism. Furthermore, we discuss agnostic drugs and analyze the efficacy data available for BTC specifically. We also examine the expanding world of immunotherapy, with an eye on predictive factors of response for immune checkpoint inhibitors, and on novel immune drugs such as chimeric antigen receptor (CAR)-T and vaccines. EXPERT OPINION In the expert opinion, we discuss the problem of the scarcity of patients eligible for target therapies and how can clinical trials be designed to overcome this challenge. We also summarize the most promising trials that have the potential to change clinical practice both for immunotherapies and target drugs.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Mahsoem Ali
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
36
|
Zeng L, Dai Y, Liu Y, Song B, Lin H, Xiao J. A Comprehensive Review of Epidermal Growth Factor Receptor Mutation Abundance in Non-Small Cell Lung Cancer Treated with Tyrosine Kinase Inhibitors. Oncol Res Treat 2024; 47:602-609. [PMID: 39353410 PMCID: PMC11633905 DOI: 10.1159/000541520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Lung cancer is a major contributor to cancer-related death worldwide. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are currently viewed as the established first-line therapy for patients with advanced NSCLC with EGFR mutations. SUMMARY The potential predictive value of the quantitative abundance of epidermal growth factor receptor (EGFR) mutations in the treatment of NSCLC is widely recognized and regarded as a significant indicator. The definition of mutation abundance in the EGFR gene in most current studies is mainly calculated based on the ratio of mutation to wild-type gene copy number or based on the ratio of allele number; for example, variant allele frequency is the ratio of the number of mutant alleles to the total number of alleles at a particular locus. Results of the included primary studies are as follows. (1) Significant association between EGFR mutation abundance and progression-free survival (PFS): median PFS was significantly longer in the high abundance group (11.0 months, 95% CI: 9.7-12.3 months) than in the low abundance group (5.3 months, 95% CI: 3.6-7.0 months) in the study by Liu et al. High mutation abundance (HR: 0.77, 95% CI: 0.66-0.82, p = 0.037) was an independent prognostic determinant of PFS in the study by Wang et al. Among patients receiving EGFR-TKI as first-line therapy, the median PFS was significantly longer in the high mutation abundance group than in the low mutation abundance group (12.7 months vs. 8.7 months, p = 0.002). EGFR mutation abundance ≥30% was an independent risk factor for PFS (HR: 1.64, 95% CI: 1.17-2.31). (2) Significant association between EGFR mutation abundance and overall survival (OS): the median OS in the high abundance group in the study by Liu et al. was 20.9 months (95% CI: 18.3-23.5 months), while that in the low abundance group was 13.0 months (95% CI: 10.0 months) (95% CI: 10.3-15.7 months); longer OS was independently associated with high mutation abundance (HR: 0.62, 95% CI: 0.50-0.79, p = 0.027). KEY MESSAGES The objective of this article was to conduct a comprehensive examination and analysis of the association between the abundance of EGFR mutations in NSCLC and the effectiveness of treatment with TKIs while also considering the development of drug resistance.
Collapse
Affiliation(s)
- Linmiao Zeng
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu’an City, China
| | - Yiqun Dai
- Fujian Medical University, Fuzhou City, Shangjie Town, Minhou County, Fuzhou, China
| | - Yuting Liu
- Fujian Medical University, Fuzhou City, Shangjie Town, Minhou County, Fuzhou, China
| | - Bin Song
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu’an City, China
| | - Hui Lin
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu’an City, China
| | - Jianhong Xiao
- Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fu’an City, China
| |
Collapse
|
37
|
Alkhateeb MA, Aljarba NH, Yousafi Q, Anwar F, Biswas P. Elucidating gastric cancer mechanisms and therapeutic potential of Adociaquinone A targeting EGFR: A genomic analysis and Computer Aided Drug Design (CADD) approach. J Cell Mol Med 2024; 28:e70133. [PMID: 39434198 PMCID: PMC11493557 DOI: 10.1111/jcmm.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Gastric cancer predominantly adenocarcinoma, accounts for over 85% of gastric cancer diagnoses. Current therapeutic options are limited, necessitating the discovery of novel drug targets and effective treatments. The Affymetrix gene expression microarray dataset (GSE64951) was retrieved from NCBI-GEO data normalization and DEGs identification was done by using R-Bioconductor package. Gene Ontology (GO) analysis of DEGs was performed using DAVID. The protein-protein interaction network was constructed by STRING database plugin in Cytoscape. Subclusters/modules of important interacting genes in main network were extracted by using MCODE. The hub genes from in the network were identified by using Cytohubba. The miRNet tool built a hub gene/mRNA-miRNA network and Kaplan-Meier-Plotter conducted survival analysis. AutoDock Vina and GROMACS MD simulations were used for docking and stability analysis of marine compounds against the 5CNN protein. Total 734 DEGs (507 up-regulated and 228 down-regulated) were identified. Differentially expressed genes (DEGs) were enriched in processes like cell-cell adhesion and ATP binding. Eight hub genes (EGFR, HSPA90AA1, MAPK1, HSPA4, PPP2CA, CDKN2A, CDC20, and ATM) were selected for further analysis. A total of 23 miRNAs associated with hub genes were identified, with 12 of them targeting PPP2CA. EGFR displayed the highest expression and hazard rate in survival analyses. The kinase domain of EGFR (PDBID: 5CNN) was chosen as the drug target. Adociaquinone A from Petrosia alfiani, docked with 5CNN, showed the lowest binding energy with stable interactions across a 50 ns MD simulation, highlighting its potential as a lead molecule against EGFR. This study has identified crucial DEGs and hub genes in gastric cancer, proposing novel therapeutic targets. Specifically, Adociaquinone A demonstrates promising potential as a bioactive drug against EGFR in gastric cancer, warranting further investigation. The predicted miRNA against the hub gene/proteins can also be used as potential therapeutic targets.
Collapse
Affiliation(s)
| | - Nada H. Aljarba
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Qudsia Yousafi
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Fatima Anwar
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJashoreBangladesh
| |
Collapse
|
38
|
Pandey P, Chaudhary R, Tripathi D, Lavudi K, Dua K, Weinfeld M, Lavasanifar A, Rajinikanth PS. Personalized treatment approach for HER2-positive metastatic breast cancer. Med Oncol 2024; 41:252. [PMID: 39320608 DOI: 10.1007/s12032-024-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Breast cancer (BC) is a leading global concern for women, with 30% being HER2-positive cases linked to poorer outcomes. Targeted therapies like trastuzumab deruxtecan (T-DXd), trastuzumab, pertuzumab, and T-DM1 have revolutionized HER2-positive metastatic breast cancer (MBC) treatment. Although these therapies have improved MBC management and patient outcomes, resistance can develop, reducing effectiveness. Personalized strategies based on tumor characteristics offer hope for better responses and longer outcomes. This review outlines insights into MBC patients responding well to anti-HER2 treatments, even across multiple treatment regimen. Recent immunotherapy, locoregional therapy, and liquid biopsy breakthroughs are covered, suggesting ways to increase long-term responders. Personalized approaches have boosted HER2-positive MBC outcomes, and ongoing research is crucial to uncover new treatments and biomarkers, potentially elevating long-term response rates and prognoses. This may aid in providing new direction to breast cancer clinics.
Collapse
Affiliation(s)
- Prashant Pandey
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Michael Weinfeld
- Cross Cancer Institute and Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
39
|
Wang J, Zhu QW, Mai JH, Zhang S, Wang Y, Liang J, Zhou JY. A multi-omics study of brain tissue transcription and DNA methylation revealing the genetic pathogenesis of ADHD. Brief Bioinform 2024; 25:bbae502. [PMID: 39406522 PMCID: PMC11479714 DOI: 10.1093/bib/bbae502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disease that often affects a patient's whole life. Research has found that genetics plays an important role in the development of ADHD. However, there is still a lack of knowledge about the tissue-specific causal effects of biological processes beyond gene expression, such as alternative splicing (AS) and DNA methylation (DNAm), on ADHD. In this paper, a multi-omics study was conducted to investigate the causal effects of the transcription and the DNAm on ADHD, by integrating ADHD genome-wide association data with quantitative trait loci data of gene expression, AS, and DNAm across 14 different brain tissues. The causal effects were estimated using four different two-sample Mendelian randomization methods. Finally, we also prioritized the expression of 866 genes showing significant causal effects, including COMMD5, ENSG00000271904, HYAL3, etc., within at least one brain tissue. We prioritized 966 unique genes that have statistically significant causal AS events, within at least one of the 14 different brain tissues. These genes include PPP1R16A, GGT7, TREM2, etc. Furthermore, through mediation analysis, 106 regulatory pathways were inferred where DNAm influences ADHD through gene expression or AS processes. Our research findings provide guidance for future experimental studies on the molecular mechanisms of ADHD development, and also put forward valuable knowledge for the prevention, diagnosis, and treatment of ADHD.
Collapse
Affiliation(s)
- Jingkai Wang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Wen Zhu
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hao Mai
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shun Zhang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuqing Wang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiatong Liang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ji-Yuan Zhou
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
40
|
Ye J, Chen Z, Liao X, Wang X, Zhang C, Han P, Wei Q, Bao Y. HER2 expression in upper tract urothelial carcinoma and the relationship with clinicopathological characteristics-an analysis of 155 patients in Southwest China. World J Urol 2024; 42:521. [PMID: 39271562 DOI: 10.1007/s00345-024-05222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE We aimed to evaluate the expression of HER2 in patients with upper tract urothelial carcinoma (UTUC) in Southwest China by using a relatively large cohort, and to determine the relationship between HER2 expression and clinicopathological characters. MATERIALS AND METHODS We retrospectively enrolled the clinical data of 155 UTUC patients who have undergone radical nephroureterectomy (RNU) from March 2019 to September 2022. HER2 expression was assessed using immunohistochemistry and scored according to the HercepTest (Scores of 0 or 1 + were considered as negative and 2 + or 3 + as positive). Tumor molecular phenotype was classified by the panel of CK20, CK5/6, and CD44. RESULTS HER2 was overexpressed in 55 (35.5%) patients. It was associated with pathologic characteristics such as grade (p = 0.017), tumor molecular phenotype (p < 0.001) and Ki-67 expression (p = 0.017). On univariate and multivariable logistic regression analysis, HER2 overexpression remained associated with higher grade (HR, 10.6; 95% CI 1.0-112.6; p = 0.050) and luminal molecular phenotype (HR, 8.0; 95% CI 1,6-38.4; p = 0.010). During disease progression after nephroureterectomy, the phenotype of the tumor might change and a switch phenomenon in phenotype after recurrence in the bladder was reported. CONCLUSION According to our study, in Southwest China, one-third of UTUC patients overexpressed HER2. Tumors with high grade or luminal phenotype tended to be HER2 positive. HER2 may represent a promising target for therapy in UTUC.
Collapse
Affiliation(s)
- Jianjun Ye
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xinyang Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingyuan Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chichen Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yige Bao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
41
|
Yao H, Ren Y, Wu F, Liu J, Li J, Cao L, Yan M, Li X. Discovery of new cyclopropane sulfonamide derivatives as EGFR inhibitors to overcome C797S-mediated resistance and EGFR double mutation. Eur J Med Chem 2024; 275:116590. [PMID: 38908104 DOI: 10.1016/j.ejmech.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
The C797S mutation of EGFR leads to Osimertinib resistance by blocking the covalent binding of Cys797. To develop new agents that can overcome EGFR mutation resistance, thirty seven new cyclopropane sulfonamide derivatives were synthesized and evaluated as EGFRL858R/T790M/C797S or EGFRDel19/T790M/C797S inhibitors by structure-based screening. Most of the synthesized compounds exhibit good to excellent anti proliferation activity against to BaF3-EGFR L858R/T790M/C797S and BaF3-C797S/Del19/T790M cancer cell lines. Representative compounds 8l showed inhibitory activity against the two cancer cell lines with the IC50 values of 0.0012 and 0.0013 μM, respectively. Another compound 8h, exhibited slightly lower activity (0.0042 and 0.0034 μM of the IC50 values) to both of the two tri-mutation cell lines, but excellent activities against H1975 and PC9 cells with IC50 values of 13 and 19 nM, respectively. Considering the acquired drug resistance of tumors is a gradual process, we chose 8h for further in vivo and mechanism study. 8h was demonstrated significantly inhibited tumor growth with 72.1 % of the TGI in the BaF3/EGFR-TM xenograft tumor model and 83.5 % in the H1975-DM xenograft tumor model. Compound 8h was confirmed to be safe with no significant side effects as showed by the results of in vitro assay of human normal cells and the sections of animals major organs. Mechanism studies showed that in addition to inhibiting EGFR mutations, 8h can also target the tumor microenvironment and induce tumor cell apoptosis. All these results indicate that 8h deserves further investigation as an EGFR inhibitor to overcome C797S-mediated resistance.
Collapse
Affiliation(s)
- Han Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Ren
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Feng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiadai Liu
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Jianheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Longcai Cao
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Ming Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China.
| |
Collapse
|
42
|
Nami B, Wang Z. A Non-Canonical p75HER2 Signaling Pathway Underlying Trastuzumab Action and Resistance in Breast Cancer. Cells 2024; 13:1452. [PMID: 39273024 PMCID: PMC11394428 DOI: 10.3390/cells13171452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Overexpression of HER2 occurs in 25% of breast cancer. Targeting HER2 has proven to be an effective therapeutic strategy for HER2-positive breast cancer. While trastuzumab is the most commonly used HER2 targeting agent, which has significantly improved outcomes, the overall response rate is low. To develop novel therapies to boost trastuzumab efficacy, it is critical to identify the mechanisms underlying trastuzumab action and resistance. We recently showed that the inhibition of breast cancer cell growth by trastuzumab is not through the inhibition of HER2 canonical signaling. Here we report the identification of a novel non-canonical HER2 signaling pathway and its interference by trastuzumab. We showed that HER2 signaled through a non-canonical pathway, regulated intramembrane proteolysis (RIP). In this pathway, HER2 is first cleaved by metalloprotease ADAM10 to produce an extracellular domain (ECD) that is released and the p95HER2 that contains the transmembrane domain (TM) and intracellular domain (ICD). p95HER2, if further cleaved by an intramembrane protease, γ-secretase, produced a soluble ICD p75HER2 with nuclear localization signal (NLS). p75HER2 is phosphorylated and translocated to the nucleus. Nuclear p75HER2 promotes cell proliferation. Trastuzumab targets this non-canonical HER2 pathway via inhibition of the proteolytic cleavage of HER2 by both ADAM10 and γ-secretase. However, p75HER2 pathway also confers resistance to trastuzumab once aberrantly activated. Combination of trastuzumab with ADAM10 and γ-secretase inhibitors completely blocks p75HER2 production in both BT474 and SKBR3 cells. We concluded that HER2 signals through the RIP signaling pathway that promotes cell proliferation and is targeted by trastuzumab. The aberrant HER2 RIP signaling confers resistance to trastuzumab that could be overcome by the application of inhibitors to ADAM10 and γ-secretase.
Collapse
Affiliation(s)
| | - Zhixiang Wang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
43
|
Wang Q, Zhu Y, Pei J. Targeting EGFR with molecular degraders as a promising strategy to overcome resistance to EGFR inhibitors. Future Med Chem 2024; 16:1923-1944. [PMID: 39206853 PMCID: PMC11485768 DOI: 10.1080/17568919.2024.2389764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal activation of EGFR is often associated with various malignant tumors, making it an important target for antitumor therapy. However, traditional targeted inhibitors have several limitations, such as drug resistance and side effects. Many studies have focused on the development of EGFR degraders to overcome this resistance and enhance the therapeutic effect on tumors. Proteolysis targeting chimeras (PROTAC) and Lysosome-based degradation techniques have made significant progress in degrading EGFR. This review provides a summary of the structural and function of EGFR, the resistance, particularly the research progress and activity of EGFR degraders via the proteasome and lysosome. Furthermore, this review aims to provide insights for the development of the novel EGFR degraders.
Collapse
Affiliation(s)
- Qiangfeng Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
44
|
Liao S, Wang Q, Chen S, Huang Q, Zhou L, Liu H, He S, Zhou Z. Mito-LND and (E)-Akt inhibitor-IV: novel compounds inducing endoplasmic reticulum stress and ROS accumulation against hepatocellular carcinoma. J Transl Med 2024; 22:792. [PMID: 39198815 PMCID: PMC11351498 DOI: 10.1186/s12967-024-05545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. Although multi-kinase inhibitors can prolong the overall survival of late-stage HCC patients, the emergence of drug resistance diminishes these benefits, ultimately resulting in treatment failure. Therefore, there is an urgent need for novel and effective drugs to impede the progression of liver cancer. METHODS This study employed a concentration gradient increment method to establish acquired sorafenib or regorafenib-resistant SNU-449 cells. Cell viability was assessed using the cell counting kit-8 assay. A library of 793 bioactive small molecules related to metabolism screened compounds targeting both parental and drug-resistant cells. The screened compounds will be added to both the HCC parental cells and the drug-resistant cells, followed by a comprehensive assessment. Intracellular adenosine triphosphate (ATP) levels were quantified using kits. Flow cytometry was applied to assess cell apoptosis and reactive oxygen species (ROS). Real-time quantitative PCR studied relative gene expression, and western blot analysis assessed protein expression changes in HCC parental and drug-resistant cells. A xenograft model in vivo evaluated Mito-LND and (E)-Akt inhibitor-IV effects on liver tumors, with hematoxylin and eosin staining for tissue structure and immunohistochemistry staining for endoplasmic reticulum stress protein expression. RESULTS From the compound library, we screened out two novel compounds, Mito-LND and (E)-Akt inhibitor-IV, which could potently kill both parental cells and drug-resistant cells. Mito-LND could significantly suppress proliferation and induce apoptosis in HCC parental and drug-resistant cells by upregulating glycolytic intermediates and downregulating those of the tricarboxylic acid (TCA) cycle, thereby decreasing ATP production and increasing ROS. (E)-Akt inhibitor-IV achieved comparable results by reducing glycolytic intermediates, increasing TCA cycle intermediates, and decreasing ATP synthesis and ROS levels. Both compounds trigger apoptosis in HCC cells through the interplay of the AMPK/MAPK pathway and the endoplasmic reticulum stress response. In vivo assays also showed that these two compounds could significantly inhibit the growth of HCC cells and induce endoplasmic reticulum stress. CONCLUSION Through high throughput screening, we identified that Mito-LND and (E)-Akt inhibitor-IV are two novel compounds against both parental and drug-resistant HCC cells, which could offer new strategies for HCC patients.
Collapse
Affiliation(s)
- Siqi Liao
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingliang Wang
- The Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyuan Chen
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qixuan Huang
- The Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongtao Liu
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhihang Zhou
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
45
|
Fang Z, Bunston C, Xu Y, Ruge F, Sui L, Liu M, Al-Sarireh B, Griffiths P, Murphy K, Pugh MR, Hao C, Jiang WG, Ye L. Implication of Capillary Morphogenesis Gene 2 (CMG2) in the Disease Progression and Peritoneal Metastasis of Pancreatic Cancer. Cancers (Basel) 2024; 16:2893. [PMID: 39199664 PMCID: PMC11352480 DOI: 10.3390/cancers16162893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Capillary morphogenesis gene 2 (CMG2) mediates cell-matrix interactions to facilitate cell adhesion and migration. CMG2 has been implicated in the disease progression of breast cancer, prostate cancer and gastric cancer. The present study aims to determine the role of CMG2 in the disease progression and peritoneal metastasis of pancreatic cancer. Pancreatic tumour samples were collected from Peking University Cancer Hospital. CMG2 expression was determined using quantitative PCR. After the creation of knockdown and overexpression of CMG2 in pancreatic cancer cells, the effect of CMG2 on several cell functions and adhesion to the peritoneum was examined. Potential pathways regulated by CMG2 were found via proteomics analysis and drug tests. CMG2 was upregulated in pancreatic cancer tissues and associated with a poor prognosis. CMG2 was increased in metastatic lesions and those primary tumours with distant metastases. CMG2 promotes cell-cell, cell-matrix and cell-hyaluronic acid adhesion, which may be mediated by epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK) pathway activation.
Collapse
Affiliation(s)
- Ziqian Fang
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (Z.F.); (Y.X.); (F.R.); (L.S.); (M.L.); (W.G.J.)
| | - Carly Bunston
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (Z.F.); (Y.X.); (F.R.); (L.S.); (M.L.); (W.G.J.)
| | - Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (Z.F.); (Y.X.); (F.R.); (L.S.); (M.L.); (W.G.J.)
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (Z.F.); (Y.X.); (F.R.); (L.S.); (M.L.); (W.G.J.)
| | - Laijian Sui
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (Z.F.); (Y.X.); (F.R.); (L.S.); (M.L.); (W.G.J.)
| | - Ming Liu
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (Z.F.); (Y.X.); (F.R.); (L.S.); (M.L.); (W.G.J.)
| | - Bilal Al-Sarireh
- Department of Surgery, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK;
| | - Paul Griffiths
- Department of Pathology, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK; (P.G.); (M.R.P.)
| | - Kate Murphy
- Department of Pathology, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK; (P.G.); (M.R.P.)
| | - Matthew R. Pugh
- Department of Pathology, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK; (P.G.); (M.R.P.)
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China;
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (Z.F.); (Y.X.); (F.R.); (L.S.); (M.L.); (W.G.J.)
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (Z.F.); (Y.X.); (F.R.); (L.S.); (M.L.); (W.G.J.)
| |
Collapse
|
46
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
47
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
48
|
Zhao X, Qian W, Hou S, Wu Y, Guo H, Xu J, Zhang D, Li J, Fu R, Xu M, Wang F. Development of a reliable cell-based reporter gene assay to measure the bioactivity of anti-HER2 therapeutic antibodies. J Pharm Biomed Anal 2024; 245:116185. [PMID: 38723556 DOI: 10.1016/j.jpba.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a key player in the pathogenesis and progression of breast cancer and is currently a primary target for breast cancer immunotherapy. Bioactivity determination is necessary to guarantee the safety and efficacy of therapeutic antibodies targeting HER2. Nevertheless, currently available bioassays for measuring the bioactivity of anti-HER2 mAbs are either not representative or have high variability. Here, we established a reliable reporter gene assay (RGA) based on T47D-SRE-Luc cell line that expresses endogenous HER2 and luciferase controlled by serum response element (SRE) to measure the bioactivity of anti-HER2 antibodies. Neuregulin-1 (NRG-1) can lead to the heterodimerization of HER2 on the cell membrane and induce the expression of downstream SRE-controlled luciferase, while pertuzumab can dose-dependently reverse the reaction, resulting in a good dose-response curve reflecting the activity of the antibody. After optimizing the relevant assay parameters, the established RGA was fully validated based on ICH-Q2 (R1), which demonstrated that the method had excellent specificity, accuracy, precision, linearity, and stability. In summary, this robust and innovative bioactivity determination assay can be applied in the development and screening, release control, biosimilar assessment and stability studies of anti-HER2 mAbs.
Collapse
Affiliation(s)
- Xiang Zhao
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| | - Weizhu Qian
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China.
| | - Sheng Hou
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Yimei Wu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Jin Xu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Dapeng Zhang
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shang Hai 200120, China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| | - Rongrong Fu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| | - Mengjiao Xu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| | - Fugui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
49
|
Ding M, Shen Q, Lu W, Zhu S. Synthesis, and biological evaluation of EGFR/HER2-NAMPT conjugates for tumor treatment. Mol Divers 2024; 28:2617-2636. [PMID: 37481750 DOI: 10.1007/s11030-023-10701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Throughout the reported applications of EGFR inhibitors, it is usually employed with HDAC or other targets to design multi-target inhibitors for cancer treatment. In this paper, we designed a drug conjugate that targeted EGFR&HER2 and had inhibitory activity of NAMPT simultaneously. Compound 20c significantly inhibited the EGFR&HER2 and NAMPT enzyme activities, and had comparable or even higher anti-proliferative activity than lapatinib in various cancer cells with over-expressed EGFR and HER2. Importantly, 20c was expected to increase sensitivity to EGFR inhibitor-resistant cells. In Osimertinib-resistant cells (NCI-1975 cells with the L858R/T790M/C797S triple mutation and Ba/F3 cells with the Del19/T790M/C797S triple mutation), the anti-proliferative activity of compound 20c was increased by more than twofold compared with Osimertinib, so as to obtain better curative effect. This strategy is a promising method of embedding multiple pharmacophores into a single molecule, which lays a good foundation for the design and synthesis of small molecule drug conjugates with strong targeting ability and high cytotoxicity.
Collapse
Affiliation(s)
- Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Qianqian Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
50
|
Qin Y, Han S, Yu Y, Qi D, Ran M, Yang M, Liu Y, Li Y, Lu L, Liu Y, Li Y. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy. Liver Int 2024; 44:1808-1831. [PMID: 38700443 DOI: 10.1111/liv.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent and destructive causes of cancer-related deaths worldwide, approximately 70% of patients with HCC exhibit advanced disease at diagnosis, limiting the potential for radical treatment. For such patients, lenvatinib, a long-awaited alternative to sorafenib for first-line targeted therapy, has become a key treatment. Unfortunately, despite some progress, the prognosis for advanced HCC remains poor because of drug resistance development. However, the molecular mechanisms underlying lenvatinib resistance and ways to relief drug resistance in HCC are largely unknown and lack of systematic summary; thus, this review not only aims to explore factors contributing to lenvatinib resistance in HCC, but more importantly, summary potential methods to conquer or mitigate the resistance. The results suggest that abnormal activation of pathways, drug transport, epigenetics, tumour microenvironment, cancer stem cells, regulated cell death, epithelial-mesenchymal transition, and other mechanisms are involved in the development of lenvatinib resistance in HCC and subsequent HCC progression. To improve the therapeutic outcomes of lenvatinib, inhibiting acquired resistance, combined therapies, and nano-delivery carriers may be possible approaches.
Collapse
Affiliation(s)
- Yongqing Qin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Shisong Han
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Ding Qi
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Mengnan Ran
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yunyi Li
- Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| |
Collapse
|