1
|
Gao X, Yang C, Feng Z, Liu P, Liu Z. The signature of the small intestinal epithelial and immune cells in health and diseases. Chin Med J (Engl) 2025:00029330-990000000-01558. [PMID: 40394804 DOI: 10.1097/cm9.0000000000003615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Indexed: 05/22/2025] Open
Abstract
ABSTRACT The small intestine is essential for digestion, nutrient absorption, immune regulation, and microbial balance. Its epithelial lining, containing specialized cells like Paneth and tuft cells, is crucial for maintaining intestinal homeostasis. Paneth cells produce antimicrobial peptides and growth factors that support microbial regulation and intestinal stem cells, while tuft cells act as chemosensors, detecting environmental changes and modulating immune responses. Along with immune cells such as intraepithelial lymphocytes, innate lymphoid cells, T cells, and macrophages, they form a strong defense system that protects the epithelial barrier. Disruptions in this balance contribute to chronic inflammation, microbial dysbiosis, and compromised barrier function-key features of inflammatory bowel disease, celiac disease, and metabolic syndromes. Furthermore, dysfunctions in the small intestine and immune cells are linked to systemic diseases like obesity, diabetes, and autoimmune disorders. Recent research highlights promising therapeutic strategies, including modulation of epithelial and immune cell functions, probiotics, and gene editing to restore gut health and address systemic effects. This review emphasizes the pivotal roles of small intestinal epithelia and immune cells in maintaining intestinal homeostasis, their involvement in disease development, and emerging treatments for intestinal and systemic disorders.
Collapse
Affiliation(s)
- Xiang Gao
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201801, China
| | - Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ping Liu
- Department of Gastroenterology, Wuhu First People's Hospital, Wuhu, Anhui 241000, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
2
|
Svec J, Onhajzer J, Korinek V. Origin, development and therapy of colorectal cancer from the perspective of a biologist and an oncologist. Crit Rev Oncol Hematol 2024; 204:104544. [PMID: 39490796 DOI: 10.1016/j.critrevonc.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The intestinal epithelium, a rapidly renewing tissue, is characterized by a continuous cell turnover that occurs through a well-coordinated process of cell proliferation and differentiation. This dynamic is crucial for the long-term function of the gastrointestinal tract. Disruption of this process can lead to colorectal carcinoma, a common malignancy worldwide. The first part of the review focuses on the cellular composition of the epithelium and the molecular mechanisms that control its functions, and describes the pathways that lead to epithelial transformation and tumor progression. This forms the basis for understanding the development and progression of advanced colorectal cancer. The second part deals with current therapeutic approaches and presents the latest treatment options, ongoing clinical trials and new drugs. In addition, the biological and medical perspectives of the adverse effects of therapies and models of regeneration of the intestinal epithelium are highlighted and, finally, future treatment options are discussed.
Collapse
Affiliation(s)
- Jiri Svec
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Oncology, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Shi G, Li Y, Shen H, He Q, Zhu P. Intestinal stem cells in intestinal homeostasis and colorectal tumorigenesis. LIFE MEDICINE 2024; 3:lnae042. [PMID: 39872442 PMCID: PMC11749485 DOI: 10.1093/lifemedi/lnae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
Colorectal cancer (CRC), one of the most common tumors in the world, is generally proposed to be generated from intestinal stem cells (ISCs). Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive ISCs are located at the bottom of the crypt and harbor self-renewal and differentiation capacities, serving as the resource of all intestinal epithelial cells and CRC cells as well. Here we review recent progress in ISCs both in non-tumoral and tumoral contexts. We summarize the molecular mechanisms of ISC self-renewal, differentiation, and plasticity for intestinal homeostasis and regeneration. We also discuss the function of ISCs in colorectal tumorigenesis as cancer stem cells and summarize fate dynamic, competition, niche regulation, and remote environmental regulation of ISCs for CRC initiation and propagation.
Collapse
Affiliation(s)
- Gaoli Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Maimó-Barceló A, Martín-Saiz L, Barceló-Nicolau M, Salivo S, Pérez-Romero K, Rodriguez RM, Martín J, Martínez MA, García M, Amengual I, Ginard D, Fernández JA, Barceló-Coblijn G. Lipid signature associated with chronic colon inflammation reveals a dysregulation in colonocyte differentiation process. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159528. [PMID: 38936507 DOI: 10.1016/j.bbalip.2024.159528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Inflammatory Bowel Disease (IBD) comprises a heterogeneous group of chronic inflammatory conditions of the gastrointestinal tract that include ulcerative colitis (UC) and Crohn's disease. Although the etiology is not well understood, IBD is characterized by a loss of the normal epithelium homeostasis that disrupts the intestinal barrier of these patients. Previous work by our group demonstrated that epithelial homeostasis along the colonic crypts involves a tight regulation of lipid profiles. To evaluate whether lipidomic profiles conveyed the functional alterations observed in the colonic epithelium of IBD, we performed matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) analyses of endoscopic biopsies from inflamed and non-inflamed segments obtained from UC patients. Our results indicated that lipid profiling of epithelial cells discriminated between healthy and UC patients. We also demonstrated that epithelial cells of the inflamed mucosa were characterized by a decrease in mono- and di-unsaturated fatty acid-containing phospholipids and higher levels of arachidonic acid-containing species, suggesting an alteration of the lipid gradients occurring concomitantly to the epithelial differentiation. This result was reinforced by the immunofluorescence analysis of EPHB2 and HPGD, markers of epithelial cell differentiation, sustaining that altered lipid profiles were at least partially due to a faulty differentiation process. Overall, our results showed that lipid profiling by MALDI-MSI faithfully conveys molecular and functional alterations associated with the inflamed epithelium, providing the foundation for a novel molecular characterization of UC patients.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Lucía Martín-Saiz
- Dept. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Bilbao, Spain
| | - Maria Barceló-Nicolau
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Simona Salivo
- Shimadzu/Kratos Analytical, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Ramon M Rodriguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Javier Martín
- Engineering School of Bilbao, Dept. of Computer Languages and Systems, University of the Basque Country (UPV/EHU), Rafael Moreno "Pitxitxi", 48013 Bilbao, Spain
| | - Marco A Martínez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Pathological Anatomy Unit, Hospital Universitari Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Marcelo García
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Gastroenterology Unit, Hospital Universitari Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Isabel Amengual
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Pathological Anatomy Unit, Hospital Universitari Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Daniel Ginard
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Gastroenterology Unit, Hospital Universitari Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - José A Fernández
- Dept. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Bilbao, Spain
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain.
| |
Collapse
|
5
|
Huang Z, Zhang K, Jiang Y, Wang M, Li M, Guo Y, Gao R, Li N, Wang C, Chen J, Wang J, Liu N, Liu X, Liu S, Wei M, Yang C, Yang G. Molecular glue triggers degradation of PHGDH by enhancing the interaction between DDB1 and PHGDH. Acta Pharm Sin B 2024; 14:4001-4013. [PMID: 39309493 PMCID: PMC11413658 DOI: 10.1016/j.apsb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) play a pivotal role in tumor initiation, proliferation, metastasis, drug resistance, and recurrence. Consequently, targeting CSCs has emerged as a promising avenue for cancer therapy. Recently, 3-phosphoglycerate dehydrogenase (PHGDH) has been identified as being intricately associated with the regulation of numerous cancer stem cells. Yet, reports detailing the functional regulators of PHGDH that can mitigate the stemness across cancer types are limited. In this study, the novel "molecular glue" LXH-3-71 was identified, and it robustly induced degradation of PHGDH, thereby modulating the stemness of colorectal cancer cells (CRCs) both in vitro and in vivo. Remarkably, LXH-3-71 was observed to form a dynamic chimera, between PHGDH and the DDB1-CRL E3 ligase. These insights not only elucidate the anti-CSCs mechanism of the lead compound but also suggest that degradation of PHGDH may be a more viable therapeutic strategy than the development of PHGDH inhibitors. Additionally, compound LXH-3-71 was leveraged as a novel ligand for the DDB1-CRL E3 ligase, facilitating the development of new PROTAC molecules targeting EGFR and CDK4 degradation.
Collapse
Affiliation(s)
- Ziqi Huang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yurui Jiang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mengmeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mei Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yuda Guo
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ruolin Gao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Ning Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Chenyang Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jia Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ning Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xiang Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Brandi G, Calabrese C, Tavolari S, Bridonneau C, Raibaud P, Liguori G, Thomas M, Di Battista M, Gaboriau-Routhiau V, Langella P. Intestinal Microbiota Increases Cell Proliferation of Colonic Mucosa in Human-Flora-Associated (HFA) Mice. Int J Mol Sci 2024; 25:6182. [PMID: 38892368 PMCID: PMC11172776 DOI: 10.3390/ijms25116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Intestinal epithelium renewal strictly depends on fine regulation between cell proliferation, differentiation, and apoptosis. While murine intestinal microbiota has been shown to modify some epithelial cell kinetics parameters, less is known about the role of the human intestinal microbiota. Here, we investigated the rate of intestinal cell proliferation in C3H/HeN germ-free mice associated with human flora (HFA, n = 8), and in germ-free (n = 15) and holoxenic mice (n = 16). One hour before sacrifice, all mice were intraperitoneally inoculated with 5-bromodeoxyuridine (BrdU), and the number of BrdU-positive cells/total cells (labelling index, LI), both in the jejunum and the colon, was evaluated by immunohistochemistry. Samples were also observed by scanning electron microscopy (SEM). Moreover, the microbiota composition in the large bowel of the HFA mice was compared to that of of human donor's fecal sample. No differences in LI were found in the small bowels of the HFA, holoxenic, and germ-free mice. Conversely, the LI in the large bowel of the HFA mice was significantly higher than that in the germ-free and holoxenic counterparts (p = 0.017 and p = 0.048, respectively). In the holoxenic and HFA mice, the SEM analysis disclosed different types of bacteria in close contact with the intestinal epithelium. Finally, the colonic microbiota composition of the HFA mice widely overlapped with that of the human donor in terms of dominant populations, although Bifidobacteria and Lactobacilli disappeared. Despite the small sample size analyzed in this study, these preliminary findings suggest that human intestinal microbiota may promote a high proliferation rate of colonic mucosa. In light of the well-known role of uncontrolled proliferation in colorectal carcinogenesis, these results may deserve further investigation in a larger population study.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (C.C.); (G.L.); (M.D.B.)
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Carlo Calabrese
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (C.C.); (G.L.); (M.D.B.)
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Chantal Bridonneau
- INRAe, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.B.); (P.R.); (M.T.); (V.G.-R.); (P.L.)
| | - Pierre Raibaud
- INRAe, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.B.); (P.R.); (M.T.); (V.G.-R.); (P.L.)
| | - Giuseppina Liguori
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (C.C.); (G.L.); (M.D.B.)
| | - Muriel Thomas
- INRAe, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.B.); (P.R.); (M.T.); (V.G.-R.); (P.L.)
| | - Monica Di Battista
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy; (C.C.); (G.L.); (M.D.B.)
| | - Valerie Gaboriau-Routhiau
- INRAe, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.B.); (P.R.); (M.T.); (V.G.-R.); (P.L.)
- Laboratory of Intestinal Immunity, Imagine Institute, INSERM UMR1163, Université Paris Cité, 75015 Paris, France
| | - Philippe Langella
- INRAe, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.B.); (P.R.); (M.T.); (V.G.-R.); (P.L.)
| |
Collapse
|
8
|
Zeng M, Hodges JK, Pokala A, Khalafi M, Sasaki GY, Pierson J, Cao S, Brock G, Yu Z, Zhu J, Vodovotz Y, Bruno RS. A green tea extract confection decreases circulating endotoxin and fasting glucose by improving gut barrier function but without affecting systemic inflammation: A double-blind, placebo-controlled randomized trial in healthy adults and adults with metabolic syndrome. Nutr Res 2024; 124:94-110. [PMID: 38430822 DOI: 10.1016/j.nutres.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Anti-inflammatory activities of catechin-rich green tea extract (GTE) in obese rodents protect against metabolic endotoxemia by decreasing intestinal permeability and absorption of gut-derived endotoxin. However, translation to human health has not been established. We hypothesized that GTE would reduce endotoxemia by decreasing gut permeability and intestinal and systemic inflammation in persons with metabolic syndrome (MetS) compared with healthy persons. A randomized, double-blind, placebo-controlled, crossover trial in healthy adults (n = 19, 34 ± 2 years) and adults with MetS (n = 21, 40 ± 3 years) examined 4-week administration of a decaffeinated GTE confection (890 mg/d total catechins) on serum endotoxin, intestinal permeability, gut and systemic inflammation, and cardiometabolic parameters. Compared with the placebo, the GTE confection decreased serum endotoxin (P = .023) in both healthy persons and those with MetS, while increasing concentrations of circulating catechins (P < .0001) and γ-valerolactones (P = .0001). Fecal calprotectin (P = .029) and myeloperoxidase (P = .048) concentrations were decreased by GTE regardless of health status. Following the ingestion of gut permeability probes, urinary lactose/mannitol (P = .043) but not sucralose/erythritol (P > .05) was decreased by GTE regardless of health status. No between-treatment differences (P > .05) were observed for plasma aminotransferases, blood pressure, plasma lipids, or body mass nor were plasma tumor necrosis factor-α, interleukin-6, or the ratio of lipopolysaccharide-binding protein/soluble cluster of differentiation-14 affected. However, fasting glucose in both study groups was decreased (P = .029) by the GTE confection compared with within-treatment arm baseline concentrations. These findings demonstrate that catechin-rich GTE is effective to decrease circulating endotoxin and improve glycemic control in healthy adults and those with MetS, likely by reducing gut inflammation and small intestinal permeability but without affecting systemic inflammation.
Collapse
Affiliation(s)
- Min Zeng
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, 16801, USA
| | - Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Mona Khalafi
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jillian Pierson
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Sisi Cao
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Huang X, Deng H, Zhang B, Wang K, Qu Y, Li T, Liu T. The causal relationship between cathepsins and digestive system tumors: a Mendelian randomization study. Front Oncol 2024; 14:1365138. [PMID: 38590662 PMCID: PMC10999587 DOI: 10.3389/fonc.2024.1365138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Background Multiple studies have confirmed the significant role of cathepsins in the development and progression of digestive system tumors. However, further investigation is needed to determine the causal relationships. Methods We conducted a two-sample bidirectional Mendelian randomization (MR) study using pooled data from a genome-wide association study (GWAS) to assess the causal associations between nine cathepsins (cathepsin B, E, F, G, H, L2, O, S, and Z) and six types of digestive system tumors, including hepatocellular carcinoma (HCC), pancreatic cancer (PCa), biliary tract cancer (BTC), colorectal cancer (CRC), gastric carcinoma (GC), and esophageal cancer (EC). We employed the following methods including inverse variance weighting (IVW), MR-Egger, weighted median (WM), Cochran's Q, MR-PRESSO, MR-Egger intercept test and leave-one-out sensitivity analysis. The STROBE-MR checklist for the reporting of MR studies was used in this study. Results The risk of HCC increased with high levels of cathepsin G (IVW: p = 0.029, odds ratio (OR) = 1.369, 95% confidence interval (CI) = 1.033-1.814). Similarly, BTC was associated with elevated cathepsin B levels (IVW: p = 0.025, OR = 1.693, 95% CI = 1.070-2.681). Conversely, a reduction in PCa risk was associated with increased cathepsin H levels (IVW: p = 0.027, OR = 0.896, 95% CI = 0.812-0.988). Lastly, high levels of cathepsin L2 were found to lower the risk of CRC (IVW: p = 0.034, OR = 0.814, 95% CI = 0.674-0.985). Conclusion Our findings confirm the causal relationship between cathepsins and digestive system tumors, which can offer valuable insights for the diagnosis and treatment of digestive system tumors.
Collapse
Affiliation(s)
- Xupeng Huang
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Houbo Deng
- Department of Hepatology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Bo Zhang
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Kuisong Wang
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yi Qu
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ting Li
- Department of Hepatology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Tiejun Liu
- Department of Hepatology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Kim G, Chen Z, Li J, Luo J, Castro-Martinez F, Wisniewski J, Cui K, Wang Y, Sun J, Ren X, Crawford SE, Becerra SP, Zhu J, Liu T, Wang S, Zhao K, Wu C. Gut-liver axis calibrates intestinal stem cell fitness. Cell 2024; 187:914-930.e20. [PMID: 38280375 PMCID: PMC10923069 DOI: 10.1016/j.cell.2024.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/β-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.
Collapse
Affiliation(s)
- Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Castro-Martinez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialei Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaobai Ren
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Susan E Crawford
- Department of Surgery, North Shore University Research Institute, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Zhao J, Wang X, Zhu J, Chukwudi C, Finebaum A, Zhang J, Yang S, He S, Saeidi N. PhaseFIT: live-organoid phase-fluorescent image transformation via generative AI. LIGHT, SCIENCE & APPLICATIONS 2023; 12:297. [PMID: 38097545 PMCID: PMC10721831 DOI: 10.1038/s41377-023-01296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/02/2023] [Accepted: 09/24/2023] [Indexed: 12/17/2023]
Abstract
Organoid models have provided a powerful platform for mechanistic investigations into fundamental biological processes involved in the development and function of organs. Despite the potential for image-based phenotypic quantification of organoids, their complex 3D structure, and the time-consuming and labor-intensive nature of immunofluorescent staining present significant challenges. In this work, we developed a virtual painting system, PhaseFIT (phase-fluorescent image transformation) utilizing customized and morphologically rich 2.5D intestinal organoids, which generate virtual fluorescent images for phenotypic quantification via accessible and low-cost organoid phase images. This system is driven by a novel segmentation-informed deep generative model that specializes in segmenting overlap and proximity between objects. The model enables an annotation-free digital transformation from phase-contrast to multi-channel fluorescent images. The virtual painting results of nuclei, secretory cell markers, and stem cells demonstrate that PhaseFIT outperforms the existing deep learning-based stain transformation models by generating fine-grained visual content. We further validated the efficiency and accuracy of PhaseFIT to quantify the impacts of three compounds on crypt formation, cell population, and cell stemness. PhaseFIT is the first deep learning-enabled virtual painting system focused on live organoids, enabling large-scale, informative, and efficient organoid phenotypic quantification. PhaseFIT would enable the use of organoids in high-throughput drug screening applications.
Collapse
Affiliation(s)
- Junhan Zhao
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Xiyue Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Junyou Zhu
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Shriners Hospital for Children-Boston, Boston, MA, 02114, USA
| | - Chijioke Chukwudi
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Shriners Hospital for Children-Boston, Boston, MA, 02114, USA
| | - Andrew Finebaum
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jun Zhang
- Tencent AI Lab, Shenzhen, Guangdong, 518057, China
| | - Sen Yang
- Tencent AI Lab, Shenzhen, Guangdong, 518057, China
| | - Shijie He
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Shriners Hospital for Children-Boston, Boston, MA, 02114, USA.
| | - Nima Saeidi
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
- Shriners Hospital for Children-Boston, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
12
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
13
|
Melamed D, Choi A, Reilein A, Tavaré S, Kalderon D. Spatial regulation of Drosophila ovarian Follicle Stem Cell division rates and cell cycle transitions. PLoS Genet 2023; 19:e1010965. [PMID: 37747936 PMCID: PMC10553835 DOI: 10.1371/journal.pgen.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/05/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Drosophila ovarian Follicle Stem Cells (FSCs) present a favorable paradigm for understanding how stem cell division and differentiation are balanced in communities where those activities are independent. FSCs also allow exploration of how this balance is integrated with spatial stem cell heterogeneity. Posterior FSCs become proliferative Follicle Cells (FCs), while anterior FSCs become quiescent Escort Cells (ECs) at about one fourth the frequency. A single stem cell can nevertheless produce both FCs and ECs because it can move between anterior and posterior locations. Studies based on EdU incorporation to approximate division rates suggested that posterior FSCs divide faster than anterior FSCs. However, direct measures of cell cycle times are required to ascertain whether FC output requires a net flow of FSCs from anterior to posterior. Here, by using live imaging and FUCCI cell-cycle reporters, we measured absolute division rates. We found that posterior FSCs cycle more than three times faster than anterior FSCs and produced sufficient new cells to match FC production. H2B-RFP dilution studies supported different cycling rates according to A/P location and facilitated live imaging, showing A/P exchange of FSCs in both directions, consistent with the dynamic equilibrium inferred from division rate measurements. Inversely graded Wnt and JAK-STAT pathway signals regulate FSC differentiation to ECs and FCs. JAK-STAT promotes both differentiation to FCs and FSC cycling, affording some coordination of these activities. When JAK-STAT signaling was manipulated to be spatially uniform, the ratio of posterior to anterior division rates was reduced but remained substantial, showing that graded JAK-STAT signaling only partly explains the graded cycling of FSCs. By using FUCCI markers, we found a prominent G2/M cycling restriction of posterior FSCs together with an A/P graded G1/S restriction, that JAK-STAT signaling promotes both G1/S and G2/M transitions, and that PI3 kinase signaling principally stimulates the G2/M transition.
Collapse
Affiliation(s)
- David Melamed
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Aaron Choi
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Amy Reilein
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Simon Tavaré
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
- Irving Institute for Cancer Dynamics & Department of Statistics, Columbia University, New York, New York State, United States of America
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| |
Collapse
|
14
|
Hao J, Huang J, Hua C, Zuo Y, Yu W, Wu X, Li L, Xue G, Wan X, Ru L, Guo Z, Han S, Deng W, Lin F, Guo W. A novel TOX3-WDR5-ABCG2 signaling axis regulates the progression of colorectal cancer by accelerating stem-like traits and chemoresistance. PLoS Biol 2023; 21:e3002256. [PMID: 37708089 PMCID: PMC10501593 DOI: 10.1371/journal.pbio.3002256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/17/2023] [Indexed: 09/16/2023] Open
Abstract
The eradication of cancer stem cells (CSCs) with drug resistance confers the probability of local tumor control after chemotherapy or targeted therapy. As the main drug resistance marker, ABCG2 is also critical for colorectal cancer (CRC) evolution, in particular cancer stem-like traits expansion. Hitherto, the knowledge about the expression regulation of ABCG2, in particular its upstream transcriptional regulatory mechanisms, remains limited in cancer, including CRC. Here, ABCG2 was found to be markedly up-regulated in CRC CSCs (cCSCs) expansion and chemo-resistant CRC tissues and closely associated with CRC recurrence. Mechanistically, TOX3 was identified as a specific transcriptional factor to drive ABCG2 expression and subsequent cCSCs expansion and chemoresistance by binding to -261 to -141 segments of the ABCG2 promoter region. Moreover, we found that TOX3 recruited WDR5 to promote tri-methylation of H3K4 at the ABCG2 promoter in cCSCs, which further confers stem-like traits and chemoresistance to CRC by co-regulating the transcription of ABCG2. In line with this observation, TOX3, WDR5, and ABCG2 showed abnormal activation in chemo-resistant tumor tissues of in situ CRC mouse model and clinical investigation further demonstrated the comprehensive assessment of TOX3, WDR5, and ABCG2 could be a more efficient strategy for survival prediction of CRC patients with recurrence or metastasis. Thus, our study found that TOX3-WDR5/ABCG2 signaling axis plays a critical role in regulating CRC stem-like traits and chemoresistance, and a combination of chemotherapy with WDR5 inhibitors may induce synthetic lethality in ABCG2-deregulated tumors.
Collapse
Affiliation(s)
- Jiaojiao Hao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jinsheng Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Chunyu Hua
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yan Zuo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaojun Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Liren Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Guoqing Xue
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xinyu Wan
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyuan Ru
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ziyue Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shilong Han
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Fei Lin
- Department of Oncology, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine; The Affiliated Nanhai Hospital of Traditional Chinese Medicine of Jinan University, Foshan, China
| | - Wei Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
16
|
Tirendi S, Marengo B, Domenicotti C, Bassi AM, Almonti V, Vernazza S. Colorectal cancer and therapy response: a focus on the main mechanisms involved. Front Oncol 2023; 13:1208140. [PMID: 37538108 PMCID: PMC10396348 DOI: 10.3389/fonc.2023.1208140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction The latest GLOBOCAN 2021 reports that colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Most CRC cases are sporadic and associated with several risk factors, including lifestyle habits, gut dysbiosis, chronic inflammation, and oxidative stress. Aim To summarize the biology of CRC and discuss current therapeutic interventions designed to counteract CRC development and to overcome chemoresistance. Methods Literature searches were conducted using PubMed and focusing the attention on the keywords such as "Current treatment of CRC" or "chemoresistance and CRC" or "oxidative stress and CRC" or "novel drug delivery approaches in cancer" or "immunotherapy in CRC" or "gut microbiota in CRC" or "systematic review and meta-analysis of randomized controlled trials" or "CSCs and CRC". The citations included in the search ranged from September 1988 to December 2022. An additional search was carried out using the clinical trial database. Results Rounds of adjuvant therapies, including radiotherapy, chemotherapy, and immunotherapy are commonly planned to reduce cancer recurrence after surgery (stage II and stage III CRC patients) and to improve overall survival (stage IV). 5-fluorouracil-based chemotherapy in combination with other cytotoxic drugs, is the mainstay to treat CRC. However, the onset of the inherent or acquired resistance and the presence of chemoresistant cancer stem cells drastically reduce the efficacy. On the other hand, the genetic-molecular heterogeneity of CRC often precludes also the efficacy of new therapeutic approaches such as immunotherapies. Therefore, the CRC complexity made of natural or acquired multidrug resistance has made it necessary the search for new druggable targets and new delivery systems. Conclusion Further knowledge of the underlying CRC mechanisms and a comprehensive overview of current therapeutic opportunities can provide the basis for identifying pharmacological and biological barriers that render therapies ineffective and for identifying new potential biomarkers and therapeutic targets for advanced and aggressive CRC.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna M. Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Vanessa Almonti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
17
|
Yagoobi S, Sharma N, Traulsen A. Categorizing update mechanisms for graph-structured metapopulations. J R Soc Interface 2023; 20:20220769. [PMID: 36919418 PMCID: PMC10015335 DOI: 10.1098/rsif.2022.0769] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The structure of a population strongly influences its evolutionary dynamics. In various settings ranging from biology to social systems, individuals tend to interact more often with those present in their proximity and rarely with those far away. A common approach to model the structure of a population is evolutionary graph theory. In this framework, each graph node is occupied by a reproducing individual. The links connect these individuals to their neighbours. The offspring can be placed on neighbouring nodes, replacing the neighbours-or the progeny of its neighbours can replace a node during the course of ongoing evolutionary dynamics. Extending this theory by replacing single individuals with subpopulations at nodes yields a graph-structured metapopulation. The dynamics between the different local subpopulations is set by an update mechanism. There are many such update mechanisms. Here, we classify update mechanisms for structured metapopulations, which allows to find commonalities between past work and illustrate directions for further research and current gaps of investigation.
Collapse
Affiliation(s)
- Sedigheh Yagoobi
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, Plön 24306, Germany
| | - Nikhil Sharma
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, Plön 24306, Germany
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, Plön 24306, Germany
| |
Collapse
|
18
|
Abstract
Organ development and homeostasis involve dynamic interactions between individual cells that collectively regulate tissue architecture and function. To ensure the highest tissue fidelity, equally fit cell populations are continuously renewed by stochastic replacement events, while cells perceived as less fit are actively removed by their fitter counterparts. This renewal is mediated by surveillance mechanisms that are collectively known as cell competition. Recent studies have revealed that cell competition has roles in most, if not all, developing and adult tissues. They have also established that cell competition functions both as a tumour-suppressive mechanism and as a tumour-promoting mechanism, thereby critically influencing cancer initiation and development. This Review discusses the latest insights into the mechanisms of cell competition and its different roles during embryonic development, homeostasis and cancer.
Collapse
|
19
|
Organoids transplantation as a new modality to design epithelial signature to create a membrane-protective sulfomucin-enriched segment. J Gastroenterol 2023; 58:379-393. [PMID: 36745238 DOI: 10.1007/s00535-023-01959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/08/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND The organoids therapy for ulcerative colitis (UC) is under development. It is important to dissect how the engrafted epithelium can provide benefits for overcoming the vulnerability to inflammation. We mainly focused on the deliverability of sulfomucin, which is reported to play an important role in epithelial function. METHODS We analyzed each segment of colon epithelium to determine differences in sulfomucin production in both mice and human. Subsequently, we transplanted organoids established from sulfomucin-enriched region into the injured recipient epithelium following dextran sulfate sodium-induced colitis and analyzed the engrafted epithelium in mouse model. RESULTS In human normal colon, sulfomucin production was increased in proximal colon, whereas it was decreased in the inflammatory region of UC. In murine colon epithelium, increased sulfomucin production was found in cecum compared to distal small intestine and proximal colon. RNA sequencing analysis revealed that several key genes associated with sulfomucin production such as Papss2 and Slc26a1 were enriched in isolated murine cecum crypts. Then we established murine cecum organoids and transplanted them into the injured epithelium of distal colon. Although the expression of sulfomucin was temporally decreased in cecum organoids, its secretion was restored again in the engrafted patches after transplantation. Finally, we verified a part of mechanisms controlling sulfomucin production in human samples. CONCLUSION This study illustrated the deliverability of sulfomucin in the disease-relevant grafting model to design sulfomucin-producing epithelial units in severely injured distal colon. The current study is the basis for the better promotion of organoids transplantation therapy for refractory UC.
Collapse
|
20
|
Ning Y, Lin K, Fang J, Ding Y, Zhang Z, Chen X, Zhao Q, Wang H, Wang F. Gastrointestinal pan-cancer landscape of tumor matrix heterogeneity identifies biologically distinct matrix stiffness subtypes predicting prognosis and chemotherapy efficacy. Comput Struct Biotechnol J 2023; 21:2744-2758. [PMID: 37181656 PMCID: PMC10173364 DOI: 10.1016/j.csbj.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Gastrointestinal (GI) cancers are a heterogeneous group of primary solid tumors, arising in GI tract from the esophagus to rectum. Matrix stiffness (MS) is a critical physical factor for cancer progression; however, its importance in tumor progression remains to be comprehensively recognized. Herein, we conducted a comprehensive pan-cancer analysis of MS subtypes across seven GI-cancer types. Using unsupervised clustering based on literature-derived MS-specific pathway signatures, the GI-tumor samples were divided into three MS subtypes, termed as the Soft, Mixed and Stiff. Then, distinct prognoses, biological features, tumor microenvironments and mutation landscapes among three MS subtypes were revealed. The Stiff tumor subtype was associated with the poorest prognosis, the most malignant biological behaviors, and the immunosuppressive tumor stromal microenvironment. Furthermore, multiple machine learning algorithms were used to develop an 11-gene MS-signature to identify the MS subtypes of GI-caner and predict chemotherapy sensitivity, which were further validated in two external GI-cancer cohorts. This novel MS-based classification on GI-cancers could enhance our understanding of the important role of MS in tumor progression, and may have implications for the optimization of individualized cancer management.
Collapse
Affiliation(s)
- Yumei Ning
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Zhang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaojia Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
- Corresponding authors at: Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
- Corresponding authors at: Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
- Corresponding authors at: Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Madan E, Palma AM, Vudatha V, Trevino JG, Natarajan KN, Winn RA, Won KJ, Graham TA, Drapkin R, McDonald SAC, Fisher PB, Gogna R. Cell Competition in Carcinogenesis. Cancer Res 2022; 82:4487-4496. [PMID: 36214625 PMCID: PMC9976200 DOI: 10.1158/0008-5472.can-22-2217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/29/2022] [Indexed: 01/30/2023]
Abstract
The majority of human cancers evolve over time through the stepwise accumulation of somatic mutations followed by clonal selection akin to Darwinian evolution. However, the in-depth mechanisms that govern clonal dynamics and selection remain elusive, particularly during the earliest stages of tissue transformation. Cell competition (CC), often referred to as 'survival of the fittest' at the cellular level, results in the elimination of less fit cells by their more fit neighbors supporting optimal organism health and function. Alternatively, CC may allow an uncontrolled expansion of super-fit cancer cells to outcompete their less fit neighbors thereby fueling tumorigenesis. Recent research discussed herein highlights the various non-cell-autonomous principles, including interclonal competition and cancer microenvironment competition supporting the ability of a tumor to progress from the initial stages to tissue colonization. In addition, we extend current insights from CC-mediated clonal interactions and selection in normal tissues to better comprehend those factors that contribute to cancer development.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | | | - Robert A. Winn
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Kyoung Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Trevor A. Graham
- Evolution and Cancer Laboratory, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, U.K
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stuart AC. McDonald
- Clonal Dynamics in Epithelia Laboratory, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square. London, EC1M 6BQ UK
| | - Paul B. Fisher
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Rajan Gogna
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
22
|
Zhao L, Liao H, Wang X, Chen YG. DDB1 maintains intestinal homeostasis by preventing cell cycle arrest. CELL REGENERATION 2022; 11:18. [PMID: 35641707 PMCID: PMC9156607 DOI: 10.1186/s13619-022-00119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
23
|
Gui MX, Huang B, Peng J, Chen X, Muthu R, Gao Y, Wang RG, Lin JM. Babao Dan Alleviates 5-Fluorouracil-Induced Intestinal Damage via Wnt/β-Catenin Pathway. Chin J Integr Med 2022; 28:1000-1006. [PMID: 33420580 DOI: 10.1007/s11655-021-3282-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the protective function of Babao Dan (BBD) on 5-flurouracil (5-FU)-induced intestinal mucositis (IM) and uncover the underlying mechanism. METHODS A total of 18 male mice were randomly divided into 3 groups by a random number table, including control, 5-FU and 5-FU combined BBD groups, 6 mice in each group. A single intraperitoneal injection of 5-FU (150 mg/kg) was performed in 5-FU and 5-FU combined BBD groups on day 0. Mice in 5-FU combined BBD group were gavaged with BBD (250 mg/kg) daily from day 1 to 6. Mice in the control group were gavaged with saline solution for 6 days. The body weight and diarrhea index of mice were recorded daily. On the 7th day, the blood from the heart of mice was collected to analyze the proportional changes of immunological cells, and the mice were subsequently euthanized by mild anesthesia with 2% pentobarbital sodium. Colorectal lengths and villus heights were measured. Intestinal-cellular apoptosis and proliferation were evaluated by Tunel assay and immunohistochemical staining of proliferating cell nuclear antigen, respectively. Immunohistochemistry and Western blot were performed to investigate the expressions of components in Wnt/β-catenin pathway (Wnt3, LRP5, β-catenin, c-Myc, LRG5 and CD44). RESULTS BBD obviously alleviated 5-FU-induced body weight loss and diarrhea, and reversed the decrease in the number of white blood cells, including monocyte, granulocyte and lymphocyte, and platelet (P<0.01). The shortening of colon caused by 5-FU was also reversed by BBD (P<0.01). Moreover, BBD inhibited apoptosis and promoted proliferation in jejunum tissues so as to reduce the intestinal mucosal damage and improve the integrity of villus and crypts. Mechanically, the expression levels of Wnt/β -catenin mediators such as Wnt3, LRP5, β-catenin were upregulated by BBD, activating the transcription of c-Myc, LRG5 and CD44 (P<0.01). CONCLUSIONS BBD attenuates the adverse effects induced by 5-FU via Wnt/β-catenin pathway, suggesting it may act as a potential agent against chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Meng-Xuan Gui
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xi Chen
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, 350025, China
| | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ying Gao
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rui-Guo Wang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jiu-Mao Lin
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
24
|
Choo J, Glisovic N, Matic Vignjevic D. Gut homeostasis at a glance. J Cell Sci 2022; 135:281168. [DOI: 10.1242/jcs.260248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
ABSTRACT
The intestine, a rapidly self-renewing organ, is part of the gastrointestinal system. Its major roles are to absorb food-derived nutrients and water, process waste and act as a barrier against potentially harmful substances. Here, we will give a brief overview of the primary functions of the intestine, its structure and the luminal gradients along its length. We will discuss the dynamics of the intestinal epithelium, its turnover, and the maintenance of homeostasis. Finally, we will focus on the characteristics and functions of intestinal mesenchymal and immune cells. In this Cell Science at a Glance article and the accompanying poster, we aim to present the most recent information about gut cell biology and physiology, providing a resource for further exploration.
Collapse
Affiliation(s)
- Jieun Choo
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | - Neda Glisovic
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | | |
Collapse
|
25
|
Ohmoto M, Nakamura S, Wang H, Jiang P, Hirota J, Matsumoto I. Maintenance and turnover of Sox2+ adult stem cells in the gustatory epithelium. PLoS One 2022; 17:e0267683. [PMID: 36054203 PMCID: PMC9439239 DOI: 10.1371/journal.pone.0267683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Continuous turnover of taste bud cells in the oral cavity underlies the homeostasis of taste tissues. Previous studies have demonstrated that Sox2+ stem cells give rise to all types of epithelial cells including taste bud cells and non-gustatory epithelial cells in the oral epithelium, and Sox2 is required for generating taste bud cells. Here, we show the dynamism of single stem cells through multicolor lineage tracing analyses in Sox2-CreERT2; Rosa26-Confetti mice. In the non-gustatory epithelium, unicolored areas populated by a cluster of cells expressing the same fluorescent protein grew over time, while epithelial cells were randomly labeled with multiple fluorescent proteins by short-term tracing. Similar phenomena were observed in gustatory epithelia. These results suggest that the Sox2+ stem cell population is maintained by balancing the increase of certain stem cells with the reduction of the others. In the gustatory epithelia, many single taste buds contained cells labeled with different fluorescent proteins, indicating that a single taste bud is composed of cells derived from multiple Sox2+ stem cells. Our results reveal the characteristics of Sox2+ stem cells underlying the turnover of taste bud cells and the homeostasis of taste tissues.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- * E-mail: (MO); (IM)
| | - Shugo Nakamura
- Faculty of Information Networking for Innovation and Design (INIAD), Toyo University, Kita, Tokyo, Japan
| | - Hong Wang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ichiro Matsumoto
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MO); (IM)
| |
Collapse
|
26
|
Chow PM, Dong JR, Chang YW, Kuo KL, Lin WC, Liu SH, Huang KH. The UCHL5 Inhibitor b-AP15 Overcomes Cisplatin Resistance via Suppression of Cancer Stemness in Urothelial Carcinoma. MOLECULAR THERAPY - ONCOLYTICS 2022; 26:387-398. [PMID: 36090476 PMCID: PMC9421311 DOI: 10.1016/j.omto.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
Urothelial carcinoma (UC) comprises the majority of bladder cancers. Standard platinum-based chemotherapy has a response rate of approximately 50%, but drug resistance develops after short-term treatment. Deubiquitinating (DUB) enzyme inhibitors increase protein polyubiquitination and endoplasmic reticulum (ER) stress, which might further suppress cancer stemness and overcome cisplatin resistance. Therefore, we investigated the cytotoxic effect and potential mechanisms of b-AP15 on urothelial carcinoma. Our results revealed that b-AP15 induced ER stress and apoptosis in BFTC905, T24, T24/R (cisplatin-resistant), and RT4 urothelial carcinoma cell lines. Inhibition of the MYC signaling pathway and cancer stemness by b-AP15 was confirmed by RNA sequencing, RT-PCR, immunoblotting, and sphere-forming assays. In the mouse xenograft model, the combination of b-AP15 and cisplatin showed superior therapeutic effects compared with either monotherapy.
Collapse
Affiliation(s)
- Po-Ming Chow
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jun-Ren Dong
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Wei Chang
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Kuan-Lin Kuo
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Corresponding author Kuo-How Huang, MD, PhD, Department of Urology, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei 100, Taiwan.
| |
Collapse
|
27
|
Suzuki Y, Okabayashi K, Hasegawa H, Tsuruta M, Seishima R, Tokuda T, Kitagawa Y. Role of EphB2/ephrin‑B1 signalling in the development and progression of obesity‑associated colorectal cancer. Oncol Lett 2022; 24:316. [PMID: 35949596 PMCID: PMC9353875 DOI: 10.3892/ol.2022.13436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a major problem worldwide and has been associated with colorectal cancer development, among other diseases. Ephrin receptors and ligands play an important role in the turnover of the intestinal mucosa and intestinal crypt compartmentalization. It has been hypothesised that obesity-induced inflammation affects ephrin signals, leading to carcinogenesis. Therefore, the aim of the present study was to assess the relationship between Eph-ephrin B signalling, obesity and obesity-associated colorectal cancer. An azoxymethane-induced obesity-associated cancer KKAy mouse model developed in our prior study was used. A total of 46 patients with consecutive colorectal cancer and 48 tumours were analysed. Immunohistological analyses were performed in mouse and human samples, and immunoreactive scores (IRS) were determined. KKAy mice were significantly more prone to cancer development compared with control C57/BL mice (2/15 in C57/BL vs. 10/10 in KKAy; P<0.001). TUNEL assay revealed a lower number of apoptotic cells in normal mucosa of KKAy mice (8.8% in C57/BL vs. 3.2% in KKAy; P<0.001) and obese patients (9.2% with BMI <25 vs. 3.6% with BMI ≥25; P=0.021). Immunohistological analysis revealed that ephrin-B1 was downregulated in normal mucosa from KKAy mice and obese patients (IRS, 2.86 with BMI <25 vs. 6.00 with BMI ≥25; P=0.002). Moreover, EphB2 was downregulated in tumours from KKAy mice and obese patients (IRS, 6.58 with BMI <25 vs. 3.83 with BMI ≥25; P<0.001). The distribution of infiltrated macrophages corresponded to the MCP-1 expression pattern in KKAy mice, and the number of macrophages was also significantly higher in those mice (36.3 in C57/BL vs. 120.0 in KKAy; P=0.029). The findings suggested that obesity results in disruption of EphB2/ephrin-B1 signalling, promoting colorectal cancer development and progression.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Department of Surgery, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Hirotoshi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Masashi Tsuruta
- Department of Surgery, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Ryo Seishima
- Department of Surgery, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Toshiki Tokuda
- Department of Surgery, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 1608582, Japan
| |
Collapse
|
28
|
Thomas DS, Cisneros LH, Anderson ARA, Maley CC. In Silico Investigations of Multi-Drug Adaptive Therapy Protocols. Cancers (Basel) 2022; 14:2699. [PMID: 35681680 PMCID: PMC9179496 DOI: 10.3390/cancers14112699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The standard of care for cancer patients aims to eradicate the tumor by killing the maximum number of cancer cells using the maximum tolerated dose (MTD) of a drug. MTD causes significant toxicity and selects for resistant cells, eventually making the tumor refractory to treatment. Adaptive therapy aims to maximize time to progression (TTP), by maintaining sensitive cells to compete with resistant cells. We explored both dose modulation (DM) protocols and fixed dose (FD) interspersed with drug holiday protocols. In contrast to previous single drug protocols, we explored the determinants of success of two-drug adaptive therapy protocols, using an agent-based model. In almost all cases, DM protocols (but not FD protocols) increased TTP relative to MTD. DM protocols worked well when there was more competition, with a higher cost of resistance, greater cell turnover, and when crowded proliferating cells could replace their neighbors. The amount that the drug dose was changed, mattered less. The more sensitive the protocol was to tumor burden changes, the better. In general, protocols that used as little drug as possible, worked best. Preclinical experiments should test these predictions, especially dose modulation protocols, with the goal of generating successful clinical trials for greater cancer control.
Collapse
Affiliation(s)
- Daniel S. Thomas
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA; (D.S.T.); (L.H.C.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
| | - Luis H. Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA; (D.S.T.); (L.H.C.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA; (D.S.T.); (L.H.C.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
29
|
Qiu J, Ma Y, Qiu J. Regulation of intestinal immunity by dietary fatty acids. Mucosal Immunol 2022; 15:846-856. [PMID: 35821290 DOI: 10.1038/s41385-022-00547-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
Dietary fatty acids are absorbed through the intestine and are fundamental for cellular energy provision and structural formation. Dietary fatty acids profoundly affect intestinal immunity and influence the development and progression of inflammatory bowel disease, intestinal infections and tumors. Although different types of fatty acids exert differential roles in intestinal immunity, a western diet, rich in saturated fatty acids with abundant carbohydrates and studied as high-fat diet (HFD) in animal experiments, disturbs intestinal homeostasis and plays a pathogenic role in intestinal inflammatory diseases. Here, we review recent findings on the regulation of intestinal immunity by dietary fatty acids, focusing on HFD. We summarize HFD-altered immune responses leading to susceptibility to intestinal pathology and dissect the mechanisms involving the impact of HFD on immune cells, intestinal epithelial cells and the microbiota. Understanding the perturbation of intestinal immunity by HFD will provide new strategies for prevention and treatment of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
30
|
Bouaoud J, Bossi P, Elkabets M, Schmitz S, van Kempen LC, Martinez P, Jagadeeshan S, Breuskin I, Puppels GJ, Hoffmann C, Hunter KD, Simon C, Machiels JP, Grégoire V, Bertolus C, Brakenhoff RH, Koljenović S, Saintigny P. Unmet Needs and Perspectives in Oral Cancer Prevention. Cancers (Basel) 2022; 14:cancers14071815. [PMID: 35406587 PMCID: PMC8997728 DOI: 10.3390/cancers14071815] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Oral potentially malignant disorders (OPMD) may precede oral squamous cell carcinoma (OSCC). Reported rates of malignant transformation of OPMD range from 3 to 50%. While some clinical, histological, and molecular factors have been associated with a high-risk OPMD, they are, to date, insufficiently accurate for treatment decision-making. Moreover, this range highlights differences in the clinical definition of OPMD, variation in follow-up periods, and molecular and biological heterogeneity of OPMD. Finally, while treatment of OPMD may improve outcome, standard therapy has been shown to be ineffective to prevent OSCC development in patients with OPMD. In this perspective paper, several experts discuss the main challenges in oral cancer prevention, in particular the need to (i) to define an OPMD classification system by integrating new pathological and molecular characteristics, aiming (ii) to better identify OPMD at high risk of malignant transformation, and (iii) to develop treatment strategies to eradicate OPMD or prevent malignant transformation.
Collapse
Affiliation(s)
- Jebrane Bouaoud
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France;
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
- Department of Maxillo-Facial Surgery, Assistance Publique des Hôpitaux de Paris, Sorbonne Université, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
- Correspondence: (J.B.); (P.S.)
| | - Paolo Bossi
- Medical Oncology, ASST Spedali Civili Brescia, I-25064 Brescia, Italy;
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, I-25123 Brescia, Italy
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.E.); (S.J.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Schmitz
- Department of Medical Oncology and Head and Neck Surgery, Institut Roi Albert II, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (S.S.); (J.-P.M.)
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands;
| | - Pierre Martinez
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France;
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.E.); (S.J.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ingrid Breuskin
- Department of Head and Neck Oncology, Gustave Roussy Cancer Campus, F-94805 Villejuif, France;
| | - Gerwin J. Puppels
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Room Ee-1691, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - Caroline Hoffmann
- INSERM U932 Research Unit, Department of Surgery, Institut Curie, PSL Research University, F-75006 Paris, France;
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| | - Christian Simon
- Department of Otolaryngology and Head and Neck Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Jean-Pascal Machiels
- Department of Medical Oncology and Head and Neck Surgery, Institut Roi Albert II, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (S.S.); (J.-P.M.)
| | - Vincent Grégoire
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
- Radiation Oncology Department, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France
| | - Chloé Bertolus
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
- Department of Maxillo-Facial Surgery, Assistance Publique des Hôpitaux de Paris, Sorbonne Université, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Ruud H. Brakenhoff
- Cancer Center Amsterdam, Section Head and Neck Cancer Biology & Immunology, Otolaryngology and Head and Neck Surgery, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands;
| | - Senada Koljenović
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Pierre Saintigny
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France;
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, F-69008 Lyon, France; (V.G.); (C.B.)
- Department of Medical Oncology, Centre Léon Bérard, Université Claude Bernard Lyon 1, University Lyon, 28 Promenade Léa et Napoléon Bullukian, F-69008 Lyon, France
- Correspondence: (J.B.); (P.S.)
| |
Collapse
|
31
|
Kumagai K, Shimizu T, Takai A, Kakiuchi N, Takeuchi Y, Hirano T, Takeda H, Mizuguchi A, Teramura M, Ito T, Iguchi E, Nikaido M, Eso Y, Takahashi K, Ueda Y, Miyamoto SI, Obama K, Ogawa S, Marusawa H, Seno H. Expansion of gastric intestinal metaplasia with copy number aberrations contributes to field cancerization. Cancer Res 2022; 82:1712-1723. [PMID: 35363856 DOI: 10.1158/0008-5472.can-21-1523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022]
Abstract
Intestinal metaplasia (IM) is a risk factor for gastric cancer following infection with Helicobacter pylori. To explore the susceptibility of pure gastric IM to cancer development, we investigated genetic alterations in single IM gastric glands. We isolated 50 single IM or non-IM glands from the inflamed gastric mucosa of 11 patients with intramucosal gastric carcinoma (IGC) and 4 patients without IGC; nineteen single glands in the non-inflamed gastric mucosa of 11 individuals from our cohort and previous dataset were also included as controls. Whole exome sequencing of single glands revealed significantly higher accumulation of somatic mutations in various genes within IM glands compared with non-IM glands. Clonal ordering analysis showed that IM glands expanded to form clusters with shared mutations. Additionally, targeted-capture deep sequencing and copy number (CN) analyses were performed in 96 clustered IM or non-IM gastric glands from 26 patients with IGC. CN analyses were also performed on 41 IGC samples and the Cancer Genome Atlas-Stomach Adenocarcinoma datasets. These analyses revealed that polyclonally expanded IM commonly acquired copy number aberrations (CNA), including amplification of chromosomes 8, 20, and 2. A large portion of clustered IM glands typically consisted of common CNAs rather than other cancer-related mutations. Moreover, the CNA patterns of clustered IM glands were similar to those of IGC, indicative of precancerous conditions. Taken together, these findings suggest that, in the gastric mucosa inflamed with H. pylori infection, IM glands expand via acquisition of CNAs comparable to those of IGC, contributing to field cancerization.
Collapse
Affiliation(s)
- Ken Kumagai
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Atsushi Takai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | - Haruhiko Takeda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Aya Mizuguchi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Mari Teramura
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takahiko Ito
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | | | - Yuji Eso
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takahashi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yoshihide Ueda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Kazutaka Obama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Seno
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Yu S, Peng HR, Zhang YK, Yin YQ, Zhou JW. Central dopaminergic control of cell proliferation in the colonic epithelium. Neurosci Res 2022; 180:72-82. [DOI: 10.1016/j.neures.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/10/2023]
|
33
|
Ren J, Li N, Pei S, Lian Y, Li L, Peng Y, Liu Q, Guo J, Wang X, Han Y, Zhang G, Wang H, Li Y, Jiang J, Li Q, Tan M, Peng J, Hu G, Xiao Y, Li X, Lin M, Qin J. Histone methyltransferase WHSC1 loss dampens MHC-I antigen presentation pathway to impair IFN-γ-stimulated anti-tumor immunity. J Clin Invest 2022; 132:153167. [PMID: 35230972 PMCID: PMC9012282 DOI: 10.1172/jci153167] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
IFN-γ–stimulated MHC class I (MHC-I) antigen presentation underlies the core of antitumor immunity. However, sustained IFN-γ signaling also enhances the programmed death ligand 1 (PD-L1) checkpoint pathway to dampen antitumor immunity. It remains unclear how these opposing effects of IFN-γ are regulated. Here, we report that loss of the histone dimethyltransferase WHSC1 impaired the antitumor effect of IFN-γ signaling by transcriptional downregulation of the MHC-I machinery without affecting PD-L1 expression in colorectal cancer (CRC) cells. Whsc1 loss promoted tumorigenesis via a non-cell-autonomous mechanism in an Apcmin/+ mouse model, CRC organoids, and xenografts. Mechanistically, we found that the IFN-γ/STAT1 signaling axis stimulated WHSC1 expression and, in turn, that WHSC1 directly interacted with NLRC5 to promote MHC-I gene expression, but not that of PD-L1. Concordantly, silencing Whsc1 diminished MHC-I levels, impaired antitumor immunity, and blunted the effect of immune checkpoint blockade. Patient cohort analysis revealed that WHSC1 expression positively correlated with enhanced MHC-I expression, tumor-infiltrating T cells, and favorable disease outcomes. Together, our findings establish a tumor-suppressive function of WHSC1 that relays IFN-γ signaling to promote antigen presentation on CRC cells and provide a rationale for boosting WHSC1 activity in immunotherapy.
Collapse
Affiliation(s)
- Jiale Ren
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Ni Li
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Siyu Pei
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yannan Lian
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Li Li
- Department of General Surgery, Department of Gastroenterology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuchong Peng
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Shanghai, China
| | - Jiacheng Guo
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Xuege Wang
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Ying Han
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Guoying Zhang
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Hanling Wang
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yaqi Li
- Department of Oncology, Fudan University, Shanghai, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Shanghai, China
| | - Qintong Li
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Peng
- Department of Oncology, Fudan University, Shanghai, China
| | - Guohong Hu
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yichuan Xiao
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Xiong Li
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Moubin Lin
- Department of General Surgery, Department of Gastroenterology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Qin
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| |
Collapse
|
34
|
Cuesta FA, Guerberoff G, Rojo ÁL. Bernoulli and binomial proliferation on evolutionary graphs. J Theor Biol 2022; 534:110942. [PMID: 34717934 DOI: 10.1016/j.jtbi.2021.110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
In this paper we introduce random proliferation models on graphs. We consider two types of particles: type-1/mutant/invader/red particles proliferates on a population of type-2/wild-type/resident/blue particles. Unlike the well-known Moran model on graphs -as introduced in Lieberman et al. (2005)-, type-1 particles can occupy in a single iteration several neighbouring sites previously occupied by type-2 particles. Two variants are considered, depending on the random distribution involving the proliferation mechanism: Bernoulli and binomial proliferation. By comparison with fixation probability of type-1 particles in the Moran process, critical parameters are introduced. Properties of proliferation are studied and some particular cases are analytically solved. Finally, by updating the parameters that drive the processes through a density-dependent mechanism, it is possible to capture additional relevant features as fluctuating waves of type-1 particles over long periods of time. In fact, the models can be adapted to tackle more general, complex and realistic situations.
Collapse
Affiliation(s)
- Fernando Alcalde Cuesta
- Instituto de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Gustavo Guerberoff
- Instituto de Matemática y Estadística Rafael Laguardia, Facultad de Ingeniería, Universidad de la República, J. Herrera y Reissig 565, Montevideo C.P.11300, Uruguay.
| | - Álvaro Lozano Rojo
- Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones (IUMA), Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza E-50009, Spain
| |
Collapse
|
35
|
Ramadan R, van Driel MS, Vermeulen L, van Neerven SM. Intestinal stem cell dynamics in homeostasis and cancer. Trends Cancer 2022; 8:416-425. [DOI: 10.1016/j.trecan.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
|
36
|
Ding L, Yang Y, Lu Q, Cao Z, Weygant N. Emerging Prospects for the Study of Colorectal Cancer Stem Cells using Patient-Derived Organoids. Curr Cancer Drug Targets 2022; 22:195-208. [DOI: 10.2174/1568009622666220117124546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Human colorectal cancer (CRC) patient-derived organoids (PDOs) are a powerful ex vivo platform to directly assess the impact of molecular alterations and therapies on tumor cell proliferation, differentiation, response to chemotherapy, tumor-microenvironment interactions, and other facets of CRC biology. Next-generation sequencing studies have demonstrated that CRC is a highly heterogeneous disease with multiple distinct subtypes. PDOs are a promising new tool to study CRC due to their ability to accurately recapitulate their source tumor and thus reproduce this heterogeneity. This review summarizes the state-of-the-art for CRC PDOs in the study of cancer stem cells (CSCs) and the cancer stem cell niche. Areas of focus include the relevance of PDOs to understanding CSC-related paracrine signaling, identifying interactions between CSCs and the tumor microenvironment, and modeling CSC-driven resistance to chemotherapies and targeted therapies. Finally, we summarize current findings regarding the identification and verification of CSC targets using PDOs and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Ling Ding
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Yuning Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Qin Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| |
Collapse
|
37
|
Abstract
A simple, universal and fundamental definition of adult stem cell communities is proposed. Key principles of cell lineage methods for defining adult stem cell numbers, locations and behaviors are critically evaluated, emphasizing the imperatives of capturing the full spectrum of individual stem cell behaviors, examining a variety of experimental time periods and avoiding unwarranted assumptions. The focus is first on defining fundamentals and then addresses stem cell heterogeneity, potential hierarchies and how individual cells serve the function of a stem cell community.
Collapse
|
38
|
Criss ZK, Bhasin N, Di Rienzi SC, Rajan A, Deans-Fielder K, Swaminathan G, Kamyabi N, Zeng XL, Doddapaneni H, Menon VK, Chakravarti D, Estrella C, Yu X, Patil K, Petrosino JF, Fleet JC, Verzi MP, Christakos S, Helmrath MA, Arimura S, DePinho RA, Britton RA, Maresso AW, Grande-Allen KJ, Blutt SE, Crawford SE, Estes MK, Ramani S, Shroyer NF. Drivers of transcriptional variance in human intestinal epithelial organoids. Physiol Genomics 2021; 53:486-508. [PMID: 34612061 DOI: 10.1152/physiolgenomics.00061.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.
Collapse
Affiliation(s)
- Zachary K Criss
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kali Deans-Fielder
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Vipin K Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clarissa Estrella
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James C Fleet
- Department of Nutrition Sciences, The University of Texas, Austin, Texas
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sumimasa Arimura
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
39
|
Li Y, Jin J, Bai F. Cancer biology deciphered by single-cell transcriptomic sequencing. Protein Cell 2021; 13:167-179. [PMID: 34405376 PMCID: PMC8901819 DOI: 10.1007/s13238-021-00868-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors are complex ecosystems in which heterogeneous cancer cells interact with their microenvironment composed of diverse immune, endothelial, and stromal cells. Cancer biology had been studied using bulk genomic and gene expression profiling, which however mask the cellular diversity and average the variability among individual molecular programs. Recent advances in single-cell transcriptomic sequencing have enabled a detailed dissection of tumor ecosystems and promoted our understanding of tumorigenesis at single-cell resolution. In the present review, we discuss the main topics of recent cancer studies that have implemented single-cell RNA sequencing (scRNA-seq). To study cancer cells, scRNA-seq has provided novel insights into the cancer stem-cell model, treatment resistance, and cancer metastasis. To study the tumor microenvironment, scRNA-seq has portrayed the diverse cell types and complex cellular states of both immune and non-immune cells interacting with cancer cells, with the promise to discover novel targets for future immunotherapy.
Collapse
Affiliation(s)
- Yanmeng Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jianshi Jin
- RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka, Japan
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| |
Collapse
|
40
|
Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, Ferrand M, Paul C, Bremond J, Langa F, Gerbe F, Jay P, Verheggen C, Tinari N, Helmlinger D, Lattanzio R, Bertrand E, Hahne M, Pradet-Balade B. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun 2021; 12:4810. [PMID: 34376666 PMCID: PMC8355188 DOI: 10.1038/s41467-021-24792-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claire Abeza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | | | | | | | | | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - François Gerbe
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Jay
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Verheggen
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Edouard Bertrand
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- IGH, Univ Montpellier, CNRS, Montpellier, France.
| | | | - Bérengère Pradet-Balade
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- CRBM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
41
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
42
|
Lodestijn SC, van Neerven SM, Vermeulen L, Bijlsma MF. Stem Cells in the Exocrine Pancreas during Homeostasis, Injury, and Cancer. Cancers (Basel) 2021; 13:cancers13133295. [PMID: 34209288 PMCID: PMC8267661 DOI: 10.3390/cancers13133295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal malignancies. Hence, improved therapies are urgently needed. Recent research indicates that pancreatic cancers depend on cancer stem cells (CSCs) for tumor expansion, metastasis, and therapy resistance. However, the exact functionality of pancreatic CSCs is still unclear. CSCs have much in common with normal pancreatic stem cells that have been better, albeit still incompletely, characterized. In this literature review, we address how pancreatic stem cells influence growth, homeostasis, regeneration, and cancer. Furthermore, we outline which intrinsic and extrinsic factors regulate stem cell functionality during these different processes to explore potential novel targets for treating pancreatic cancer. Abstract Cell generation and renewal are essential processes to develop, maintain, and regenerate tissues. New cells can be generated from immature cell types, such as stem-like cells, or originate from more differentiated pre-existing cells that self-renew or transdifferentiate. The adult pancreas is a dormant organ with limited regeneration capacity, which complicates studying these processes. As a result, there is still discussion about the existence of stem cells in the adult pancreas. Interestingly, in contrast to the classical stem cell concept, stem cell properties seem to be plastic, and, in circumstances of injury, differentiated cells can revert back to a more immature cellular state. Importantly, deregulation of the balance between cellular proliferation and differentiation can lead to disease initiation, in particular to cancer formation. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of only ~9%. Unfortunately, metastasis formation often occurs prior to diagnosis, and most tumors are resistant to current treatment strategies. It has been proposed that a specific subpopulation of cells, i.e., cancer stem cells (CSCs), are responsible for tumor expansion, metastasis formation, and therapy resistance. Understanding the underlying mechanisms of pancreatic stem cells during homeostasis and injury might lead to new insights to understand the role of CSCs in PDAC. Therefore, in this review, we present an overview of the current literature regarding the stem cell dynamics in the pancreas during health and disease. Furthermore, we highlight the influence of the tumor microenvironment on the growth behavior of PDAC.
Collapse
Affiliation(s)
- Sophie C. Lodestijn
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.C.L.); (S.M.v.N.); (L.V.)
- Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
43
|
Bridges AE, Ramachandran S, Tamizhmani K, Parwal U, Lester A, Rajpurohit P, Morera DS, Hasanali SL, Arjunan P, Jedeja RN, Patel N, Martin PM, Korkaya H, Singh N, Manicassamy S, Prasad PD, Lokeshwar VB, Lokeshwar BL, Ganapathy V, Thangaraju M. RAD51AP1 Loss Attenuates Colorectal Cancer Stem Cell Renewal and Sensitizes to Chemotherapy. Mol Cancer Res 2021; 19:1486-1497. [PMID: 34099522 DOI: 10.1158/1541-7786.mcr-20-0780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/25/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
DNA damage, induced by either chemical carcinogens or environmental pollutants, plays an important role in the initiation of colorectal cancer. DNA repair processes, however, are involved in both protecting against cancer formation, and also contributing to cancer development, by ensuring genomic integrity and promoting the efficient DNA repair in tumor cells, respectively. Although DNA repair pathways have been well exploited in the treatment of breast and ovarian cancers, the role of DNA repair processes and their therapeutic efficacy in colorectal cancer is yet to be appreciably explored. To understand the role of DNA repair, especially homologous recombination (HR), in chemical carcinogen-induced colorectal cancer growth, we unraveled the role of RAD51AP1 (RAD51-associated protein 1), a protein involved in HR, in genotoxic carcinogen (azoxymethane, AOM)-induced colorectal cancer. Although AOM treatment alone significantly increased RAD51AP1 expression, the combination of AOM and dextran sulfate sodium (DSS) treatment dramatically increased by several folds. RAD51AP1 expression is found in mouse colonic crypt and proliferating cells. RAD51AP1 expression is significantly increased in majority of human colorectal cancer tissues, including BRAF/KRAS mutant colorectal cancer, and associated with reduced treatment response and poor prognosis. Rad51ap1-deficient mice were protected against AOM/DSS-induced colorectal cancer. These observations were recapitulated in a genetically engineered mouse model of colorectal cancer (ApcMin /+ ). Furthermore, chemotherapy-resistant colorectal cancer is associated with increased RAD51AP1 expression. This phenomenon is associated with reduced cell proliferation and colorectal cancer stem cell (CRCSC) self-renewal. Overall, our studies provide evidence that RAD51AP1 could be a novel diagnostic marker for colorectal cancer and a potential therapeutic target for colorectal cancer prevention and treatment. IMPLICATIONS: This study provides first in vivo evidence that RAD51AP1 plays a critical role in colorectal cancer growth and drug resistance by regulating CRCSC self-renewal.
Collapse
Affiliation(s)
- Allison E Bridges
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Sabarish Ramachandran
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kavin Tamizhmani
- Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Utkarsh Parwal
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Adrienne Lester
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, Georgia
| | - Pragya Rajpurohit
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Daley S Morera
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Sarrah L Hasanali
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Pachiappan Arjunan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Periodontics, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ravirajsinh N Jedeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Nikhil Patel
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Opthalmology, Medical College of Georgia, Augusta University, Augusta, Georgia.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Vinata B Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bal L Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia. .,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
44
|
Yum MK, Han S, Fink J, Wu SHS, Dabrowska C, Trendafilova T, Mustata R, Chatzeli L, Azzarelli R, Pshenichnaya I, Lee E, England F, Kim JK, Stange DE, Philpott A, Lee JH, Koo BK, Simons BD. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 2021; 594:442-447. [PMID: 34079126 PMCID: PMC7614896 DOI: 10.1038/s41586-021-03605-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.
Collapse
Affiliation(s)
- Min Kyu Yum
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Seungmin Han
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Juergen Fink
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School at the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Catherine Dabrowska
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Teodora Trendafilova
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Roxana Mustata
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Lemonia Chatzeli
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Roberta Azzarelli
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - Irina Pshenichnaya
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Frances England
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Anna Philpott
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - Joo-Hyeon Lee
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.
| | - Benjamin D Simons
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
45
|
Abstract
Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
46
|
Organoids and Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112657. [PMID: 34071313 PMCID: PMC8197877 DOI: 10.3390/cancers13112657] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids were first established as a three-dimensional cell culture system from mouse small intestine. Subsequent development has made organoids a key system to study many human physiological and pathological processes that affect a variety of tissues and organs. In particular, organoids are becoming very useful tools to dissect colorectal cancer (CRC) by allowing the circumvention of classical problems and limitations, such as the impossibility of long-term culture of normal intestinal epithelial cells and the lack of good animal models for CRC. In this review, we describe the features and current knowledge of intestinal organoids and how they are largely contributing to our better understanding of intestinal cell biology and CRC genetics. Moreover, recent data show that organoids are appropriate systems for antitumoral drug testing and for the personalized treatment of CRC patients.
Collapse
|
47
|
Tremblay W, Mompart F, Lopez E, Quaranta M, Bergoglio V, Hashim S, Bonnet D, Alric L, Mas E, Trouche D, Vignard J, Ferrand A, Mirey G, Fernandez-Vidal A. Cytolethal Distending Toxin Promotes Replicative Stress Leading to Genetic Instability Transmitted to Daughter Cells. Front Cell Dev Biol 2021; 9:656795. [PMID: 34026755 PMCID: PMC8138442 DOI: 10.3389/fcell.2021.656795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
The cytolethal distending toxin (CDT) is produced by several Gram-negative pathogenic bacteria. In addition to inflammation, experimental evidences are in favor of a protumoral role of CDT-harboring bacteria such as Escherichia coli, Campylobacter jejuni, or Helicobacter hepaticus. CDT may contribute to cell transformation in vitro and carcinogenesis in mice models, through the genotoxic action of CdtB catalytic subunit. Here, we investigate the mechanism of action by which CDT leads to genetic instability in human cell lines and colorectal organoids from healthy patients’ biopsies. We demonstrate that CDT holotoxin induces a replicative stress dependent on CdtB. The slowing down of DNA replication occurs mainly in late S phase, resulting in the expression of fragile sites and important chromosomic aberrations. These DNA abnormalities induced after CDT treatment are responsible for anaphase bridge formation in mitosis and interphase DNA bridge between daughter cells in G1 phase. Moreover, CDT-genotoxic potential preferentially affects human cycling cells compared to quiescent cells. Finally, the toxin induces nuclear distension associated to DNA damage in proliferating cells of human colorectal organoids, resulting in decreased growth. Our findings thus identify CDT as a bacterial virulence factor targeting proliferating cells, such as human colorectal progenitors or stem cells, inducing replicative stress and genetic instability transmitted to daughter cells that may therefore contribute to carcinogenesis. As some CDT-carrying bacterial strains were detected in patients with colorectal cancer, targeting these bacteria could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- William Tremblay
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Florence Mompart
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elisa Lopez
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Quaranta
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Valérie Bergoglio
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Saleha Hashim
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Delphine Bonnet
- Department of Internale and Digestive Diseases, Pole Digestif, CHU Toulouse, Paul Sabatier University, Toulouse, France
| | - Laurent Alric
- Department of Internale and Digestive Diseases, Pole Digestif, CHU Toulouse, Paul Sabatier University, Toulouse, France
| | - Emmanuel Mas
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.,Unité de Gastroentérologie, Hépatologie, Nutrition, Diabétologie et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Gladys Mirey
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Anne Fernandez-Vidal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.,MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
48
|
Wan C, Mahara S, Sun C, Doan A, Chua HK, Xu D, Bian J, Li Y, Zhu D, Sooraj D, Cierpicki T, Grembecka J, Firestein R. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. SCIENCE ADVANCES 2021; 7:eabf2567. [PMID: 34138730 PMCID: PMC8133758 DOI: 10.1126/sciadv.abf2567] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Aberrant activation of Wnt/β-catenin pathway is a key driver of colorectal cancer (CRC) growth and of great therapeutic importance. In this study, we performed comprehensive CRISPR screens to interrogate the regulatory network of Wnt/β-catenin signaling in CRC cells. We found marked discrepancies between the artificial TOP reporter activity and β-catenin-mediated endogenous transcription and redundant roles of T cell factor/lymphoid enhancer factor transcription factors in transducing β-catenin signaling. Compiled functional genomic screens and network analysis revealed unique epigenetic regulators of β-catenin transcriptional output, including the histone lysine methyltransferase 2A oncoprotein (KMT2A/Mll1). Using an integrative epigenomic and transcriptional profiling approach, we show that KMT2A loss diminishes the binding of β-catenin to consensus DNA motifs and the transcription of β-catenin targets in CRC. These results suggest that KMT2A may be a promising target for CRCs and highlight the broader potential for exploiting epigenetic modulation as a therapeutic strategy for β-catenin-driven malignancies.
Collapse
Affiliation(s)
- Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Sylvia Mahara
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Claire Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Anh Doan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Hui Kheng Chua
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Dakang Xu
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Yue Li
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Danxi Zhu
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Dhanya Sooraj
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
49
|
Colon Fibroblasts and Inflammation: Sparring Partners in Colorectal Cancer Initiation? Cancers (Basel) 2021; 13:cancers13081749. [PMID: 33916891 PMCID: PMC8067599 DOI: 10.3390/cancers13081749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cause of cancer-related death. Patients suffering inflammatory bowel disease have an increased risk of CRC. It is admitted that CRC found its origin within crypts of the colon mucosa, which host the intestinal stem cells (ISCs) responsible of the tissue renewal. ISC behavior is controlled by the fibroblasts that surround the crypt. During inflammation, the signals delivered by fibroblasts are altered, leading to stem cells’ dysregulation, possibly turning them into cancer-initiating cells. Here, we reviewed the interplays between the fibroblast and the ISCs, possibly leading to the initiation of CRC due to chronic inflammation. Abstract Colorectal cancer (CRC) is the third most common cause of cancer-related death. Significant improvements in CRC treatment have been made for the last 20 years, on one hand thanks to a better detection, allowing surgical resection of the incriminated area, and on the other hand, thanks to a better knowledge of CRC’s development allowing the improvement of drug strategies. Despite this crucial progress, CRC remains a public health issue. The current model for CRC initiation and progression is based on accumulation of sequential known genetic mutations in the colon epithelial cells’ genome leading to a loss of control over proliferation and survival. However, increasing evidence reveals that CRC initiation is more complex. Indeed, chronic inflammatory contexts, such as inflammatory bowel diseases, have been shown to increase the risk for CRC development in mice and humans. In this manuscript, we review whether colon fibroblasts can go from the main regulators of the ISC homeostasis, regulating not only the renewal process but also the epithelial cells’ differentiation occurring along the colon crypt, to the main player in the initiation of the colorectal cancer process due to chronic inflammation.
Collapse
|
50
|
Park M, Kwon J, Youk H, Shin US, Han YH, Kim Y. Valproic acid protects intestinal organoids against radiation via NOTCH signaling. Cell Biol Int 2021; 45:1523-1532. [PMID: 33724613 DOI: 10.1002/cbin.11591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
Radiotherapy is a leading treatment for various types of cancer. However, exposure to high-dose ionizing radiation causes acute gastrointestinal injury and gastrointestinal syndrome. This has significant implications for human health, and therefore, radioprotection is a major area of research. Radiation induces the loss of intestinal stem cells; hence, the protection of stem cells expressing LGR5 (a marker of intestinal epithelial stem cells) is a key strategy for the prevention of radiation-induced injury. In this study, we identified valproic acid (VPA) as a potent radioprotector using an intestinal organoid culture system. VPA treatment increased the number of LGR5+ stem cells and organoid regeneration after irradiation. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, an inhibitor of NOTCH signaling) blocked the radioprotective effects of VPA, indicating that NOTCH signaling is a likely mechanism underlying the observed effects of VPA. In addition, VPA acted as a radiosensitizer via the inhibition of histone deacetylase (HDAC) in a colorectal cancer organoid. These results demonstrate that VPA exerts strong protective effects on LGR5+ stem cells via NOTCH signaling and that the inhibition of NOTCH signaling reduces these protective effects, providing a basis for the improved management of radiation injury.
Collapse
Affiliation(s)
- Misun Park
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon, Korea
| | - Junhye Kwon
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Heejeong Youk
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ui Sup Shin
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Young-Hoon Han
- Department of Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon, Korea.,Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Younjoo Kim
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|