1
|
Li C, Ji H, Zhuang S, Xie X, Cui D, Zhang C. Update on the correlation between mitochondrial function and osteonecrosis of the femoral head osteocytes. Redox Rep 2025; 30:2491846. [PMID: 40249372 PMCID: PMC12010656 DOI: 10.1080/13510002.2025.2491846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Mitochondrial health is maintained in a steady state through mitochondrial dynamics and autophagy processes. Recent studies have identified healthy mitochondria as crucial regulators of cellular function and survival. This process involves adenosine triphosphate (ATP) synthesis by mitochondrial oxidative phosphorylation (OXPHOS), regulation of calcium metabolism and inflammatory responses, and intracellular oxidative stress management. In the skeletal system, they participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes, and osteocytes to external stimuli. Indeed, mitochondrial damage or dysfunction occurs in the development of a few bone diseases. For example, mitochondrial damage may lead to an imbalance in osteoblasts and osteoclasts, resulting in osteoporosis, osteomalacia, or poor bone production, and chondrocyte death and inflammatory infiltration in osteoarthritis are the main causes of cartilage degeneration due to mitochondrial damage. However, the opposite exists for osteosarcoma, where overactive mitochondrial metabolism is able to accelerate the proliferation and migration of osteosarcoma cells, which is a major disease feature. Bone is a dynamic organ and osteocytes play a fundamental role in all regions of bone tissue and are involved in regulating bone integrity. This review examines the impact of mitochondrial physiological function on osteocyte health and summarizes the microscopic molecular mechanisms underlying its effects. It highlights that targeted therapies focusing on osteocyte mitochondria may be beneficial for osteocyte survival, providing a new insight for the diagnosis, prevention, and treatment of diseases associated with osteocyte death.
Collapse
Affiliation(s)
- Chengming Li
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Hangyu Ji
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Suyang Zhuang
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Xinhui Xie
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Daping Cui
- Department of Orthopedics, Shenzhen Bao’an District Central Hospital, Shenzhen, People’s Republic of China
| | - Cong Zhang
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Tian R, Li X, Su J, Yu H, Fei J, Xu C, Du X, Yu B, Cao Y, Yin Z. Regional uterine contractility differences during pregnancy: The role of hypoxia and ferroptosis in vitro. Life Sci 2025; 371:123603. [PMID: 40185467 DOI: 10.1016/j.lfs.2025.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Regional variations in uterine contractility during pregnancy have been well-documented. However, the molecular mechanisms underlying these differences remain unclear. To address this, isotonic contraction experiments were conducted on pregnant rat uteri, revealing significantly lower contractility on the placenta-attached side compared to the non-attached side. Interestingly, lactic acid accumulation was higher in the placenta-attached tissue, suggesting metabolic differences between these regions. Muscle contraction requires substantial energy, with adenosine triphosphate (ATP) serving as the direct source of energy, which is predominantly supplied by mitochondria, the cellular energy production centers. Mitochondrial energy generation relies heavily on oxygen availability. To explore the impact of oxygen conditions on uterine smooth muscle cell (USMC) contraction, we cultured these cells under hypoxic conditions. Hypoxia was found to reduce cell contraction and disrupt mitochondrial integrity. Specifically, mitochondria exhibited shrinkage and deformation, characterized by reduced cristae and a collapse of the mitochondrial membrane potential. These structural and functional changes align with hallmarks of ferroptosis. Furthermore, hypoxia stimulated the translocation of dynamic related protein 1 (Drp1) to mitochondria, a process linked to mitochondrial fragmentation. Ferroptosis was downregulated when Drp1 activity was inhibited, highlighting its regulatory role in this process. Collectively, these findings demonstrate that hypoxia induced-ferroptosis impairs mitochondria, leading to reduced energy production and cell viability. This ultimately decreases the contractility of pregnant USMC, providing new insights into the molecular mechanisms underlying regional differences in uterine contractility during pregnancy.
Collapse
Affiliation(s)
- Ruixian Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Jingjing Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Huihui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Jiajia Fei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Chenyi Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Xue Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; Center for Big Data and Population Health of IHM, Hefei 230022, Anhui, China
| | - Biao Yu
- NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China.
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei 230032, Anhui, China; Center for Big Data and Population Health of IHM, Hefei 230022, Anhui, China.
| |
Collapse
|
3
|
de Oliveira MR. Pre-clinical evidence for mitochondria as a therapeutic target for luteolin: A mechanistic view. Chem Biol Interact 2025; 413:111492. [PMID: 40154935 DOI: 10.1016/j.cbi.2025.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pre-clinical evidence indicates that mitochondria may be a therapeutic target for luteolin (3',4',5,7-tetrahydroxyflavone; LUT) in different conditions. LUT modulates mitochondrial physiology in in vitro, ex vivo, and in vivo experimental models. This flavone exerted mitochondria-related antioxidant and anti-apoptotic effects, stimulated mitochondrial fusion and fission, induced mitophagy, and promoted mitochondrial biogenesis in human and animal cells and tissues. Moreover, LUT modulated the activity of components of the oxidative phosphorylation (OXPHOS) system, improving the ability of mitochondria to produce adenosine triphosphate (ATP) in certain circumstances. The mechanism of action by which LUT promoted mitochondrial benefits and protection are not completely clear yet. Nonetheless, LUT is a potential candidate to be utilized in mitochondrial therapy in the future. In this work, it is explored the mechanisms of action by which LUT modulates mitochondrial physiology in different pre-clinical experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), CEP 78060-900, Cuiaba, Mato Grosso, Brazil; Grupo de Estudos em Terapia Mitocondrial, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Zhang Y, Ye Y, Feng Y, Li X, Chen L, Zou X, Yan G, Chen Y, Nan L, Xu W, Chen L, Li H. Kirenol alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the CK2/AKT pathway. Free Radic Biol Med 2025; 232:353-366. [PMID: 40090600 DOI: 10.1016/j.freeradbiomed.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Ischemic stroke represents a predominant cause of morbidity and mortality globally, resulting from abrupt vascular occlusion or rupture, which precipitates considerable neuronal damage. This study aims to shed more light on the specific neuroprotective mechanisms of Kirenol, a bioactive diterpene derived from traditional herbal medicine, with a particular focus on its regulation of mitochondrial dynamics via the CK2/AKT signalling pathway and its impact on the mitochondrial fusion protein Optic atrophy 1 (Opa1). The effects of Kirenol on neuronal viability, mitochondrial function, and pertinent signalling pathways were evaluated by employing a middle cerebral artery occlusion (MCAO) model in rats and subjecting HT22 neuronal cells to oxidative stress. Treatment with Kirenol significantly improved neurological outcomes, augmented Opa1 expression, and restored apoptotic-related protein markers, antioxidative factors, mitochondrial membrane potential, and adenosine triphosphate (ATP) levels (P < 0.01). Mechanistically, Kirenol elevated CK2 levels and phosphorylated AKT while inhibiting CK2/AKT signalling attenuated Kirenol's protective effects on Opa1 expression. Furthermore, silencing Opa1 using siRNA diminished the neuroprotective effects of Kirenol on oxidative stress and apoptosis-related markers, underscoring the critical role of Opa1. In vitro assessments demonstrated that Kirenol effectively mitigated oxidative stress-induced neuronal damage, restoring cell morphology and viability. Kirenol exhibited dose-dependent neuroprotective effects in the MCAO model (P < 0.01). These findings elucidate the neuroprotective role of Kirenol in ischemic stroke through Opa1-mediated mitochondrial fusion and highlight the CK2/AKT pathway as a promising therapeutic target.
Collapse
Affiliation(s)
- Yuqin Zhang
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yonghua Ye
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yi Feng
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xuezhen Li
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lingxuan Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xiaoxue Zou
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Guohong Yan
- Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yaping Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lihong Nan
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China; Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
5
|
Liu P, Zhou S, Zhou Z, Jin Z, Chen W, Li Z, Xu J, Chen F, Li Y, Wen Y, Zhang S, Zhang C, Li B, Zhao J, Chen H. Discovery and antitumor evaluation of a mitochondria-targeting ruthenium complex for effective cancer therapy. Cancer Lett 2025; 616:217582. [PMID: 40021041 DOI: 10.1016/j.canlet.2025.217582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Ruthenium-based metallodrugs have garnered attention as a promising alternative for anticancer therapy, aiming to overcome chemoresistance and severe side effects linked to platinum-based drugs. However, ruthenium complexes tested in clinical trials to date have yielded unsatisfactory results. This study synthesized a positively charged ruthenium complex (Ru-2) that effectively penetrated cancer cells and exhibited superior cytotoxicity to cisplatin in vitro against cancer cell lines and organoids. Ru-2 selectively targeted mitochondria, disrupting their function by depolarizing mitochondrial membrane potential, elevating reactive oxygen species production, and impairing both oxidative phosphorylation and the tricarboxylic acid cycle. Furthermore, Ru-2 triggered endoplasmic reticulum (ER) stress and apoptosis. Integrative transcriptomic and proteomic analyses, performed using RNA sequencing and mass spectrometry, identified key molecular changes in cancer cells treated with Ru-2. For enhanced in vivo application, we developed a transferrin-based nanomedicine formulation, TF/Ru-2, incorporating Ru-2 into transferrin. In vivo studies demonstrated that both Ru-2 and TF/Ru-2 exhibited superior antitumor efficacy and improved biosafety compared to cisplatin. This study presents a novel ruthenium complex and a transferrin-based drug delivery platform with significant potential for future cancer therapies.
Collapse
Affiliation(s)
- Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shangbo Zhou
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zihan Jin
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wei Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Feng Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China; Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Binbin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China; Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
6
|
Liu Q, Chen W, Wu Y, Guo Z, Chen J, Tian C, Wang P, Zeng S, Xu B, Duan J, Han S, Xiong X, Zhang J. CNS Mitochondria-Derived Vesicle in Blood: Potential Biomarkers for Brain Mitochondria Dysfunction. Ann Clin Transl Neurol 2025. [PMID: 40276966 DOI: 10.1002/acn3.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
OBJECTIVE Mitochondrial dysfunction is a hallmark of neurodegenerative diseases like Alzheimer's (AD) and Parkinson's (PD). Our goal was to develop practical, noninvasive methods to assess mitochondrial status through the detection of mitochondria-derived vesicles (MDVs). METHODS We explored blood-borne MDVs, a recently identified class of extracellular vesicles, as potential biomarkers for CNS mitochondrial status. RESULTS The study identified MDVs from neurons, astrocytes, and oligodendrocytes specifically in human plasma. A novel nanoflow cytometry was developed to evaluate the level of neuron-, astrocyte-, and oligodendrocyte-derived MDVs in plasma in AD and PD patients. Importantly, analyses of discovery and validation cohorts revealed significantly lower brain cell-specific MDVs in AD and PD patients compared to healthy controls. INTERPRETATION This study suggests that blood MDVs could serve as noninvasive biomarkers for mitochondrial dysfunction in AD, PD, and beyond, potentially aiding in monitoring mitochondrial-focused therapies for neurological disorders.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wentao Chen
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yahong Wu
- The Central Laboratory, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhen Guo
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Wang
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shaopeng Zeng
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Xu
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Duan
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shilong Han
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Xiong
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- National Human Brain Bank for Health and Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Neto JC, Lucantoni F, González LV, Falomir E, Miravet JF, Galindo F. Introducing TAPY as a Versatile Alternative to TPP for Selective Mitochondrial Targeting in Cancer Cells. Bioconjug Chem 2025; 36:697-706. [PMID: 40162705 DOI: 10.1021/acs.bioconjchem.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The understanding of diseases such as cancer and Alzheimer's, along with natural aging processes, heavily relies on the study of mitochondrial function. Optical techniques like fluorescence imaging microscopy are pivotal for this purpose, enabling precise mapping of subcellular structures, including mitochondria. In this study, we explored TAPY (triarylpyridinium) cations, a novel family of mitochondrial carriers resembling the well-known triphenylphosphonium cation (TPP). Six TAPY-bodipy (BDP) dyads were prepared and chemically characterized. Confocal Laser Scanning Microscopy (CLSM) studies demonstrated that the systems were delivered selectively to the mitochondria of cancer cells (MCF-7, A549, HT-29). Remarkably, these dyads did not target the mitochondria of normal cells (HEK-293, HMEC-1), suggesting their potential use in distinguishing cancerous cells from healthy ones. A model compound comprised of the same bodipy cargo but attached to TPP was also synthesized and tested. Notably, in preliminary comparative assays with MCF-7 cells, the dyad TAPY(OMe)-BDP outperformed the TPP derivative in mitochondrial imaging, achieving twice the final fluorescence intensity. The potential chemical diversity achievable with TAPY cations is considerable, with many derivatives being accessible starting from readily available commercial products. This implies that, based on the strategy outlined in this study, carefully optimized TAPY derivatives for targeted mitochondrial delivery could potentially be developed in the future as alternatives or complements to TPP, with the present work acting as a proof of concept.
Collapse
Affiliation(s)
- Jean C Neto
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Federico Lucantoni
- Laboratory of Cellular Stress and Cell Death Pathways, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Leydy V González
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Eva Falomir
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Juan F Miravet
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Francisco Galindo
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
8
|
Li T, Huang L, Guo C, Ren J, Chen X, Ke Y, Xun Z, Hu W, Qi Y, Wang H, Gong Z, Liang XJ, Xue X. Massage-Mimicking Nanosheets Mechanically Reorganize Inter-organelle Contacts to Restore Mitochondrial Functions in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413376. [PMID: 40223359 DOI: 10.1002/advs.202413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Parkinson's disease (PD) is exacerbated by dysfunction of inter-organelle contact, which depends on cellular responses to the mechanical microenvironment and can be regulated by external mechanical forces. Delivering dynamic mechanical forces to neural cells proves challenging due to the skull. Inspired by the effects of massage; here PEGylated black phosphorus nanosheets (PEG-BPNS), known for their excellent biocompatibility, biodegradability, specific surface area, mechanical strength, and flexibility, are introduced, which are capable of adhering to neural cell membrane and generating mechanical stimulation with their lateral size of 200 nm, exhibiting therapeutic potential in a 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine-induced PD mouse model by regulating inter-organelle contacts. Specifically, it is found that 200 nm PEG-BPNS, acting as "NanoMassage," significantly increase plasma membrane tension, as evidenced by fluorescent lipid tension reporter fluorescence lifetime analysis. This mechanical force modulates actin reorganization, subsequently regulating the contacts between actin, mitochondria, and endoplasmic reticulum, further controlling mitochondrial fission and mitigating mitochondrial dysfunction in PD, exhibiting therapeutic efficacy via intranasal administration. These findings provide a noninvasive strategy for applying mechanical stimulation to deep brain areas and elucidate the mechanism of NanoMassage mediating inter-organelle contacts, suggesting the rational design of "NanoMassage" to remodel inter-organelle communications in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Chenxiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Jing Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yachu Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Wenzhuo Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, P. R. China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
9
|
Zou X, Pan M, Liu Y, Wang S, Xu H, Chu X. Effects of co-exposure to microplastics and perfluorooctanoic acid on the Caco-2 cells. Toxicology 2025; 515:154152. [PMID: 40220582 DOI: 10.1016/j.tox.2025.154152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
As plastics are produced and used, humans are inevitably exposed to microplastics (MPs) on a daily basis. The pollution of MPs has aroused widespread human concern. Perfluorooctanoic acid (PFOA), a persistent organic pollutant (POP), can be adsorbed by microplastics and may exacerbate human health hazards. In this study, we investigated the effects of co-exposure of PET MPs and PFOA on the human intestinal tract in terms of both cytotoxicity and intestinal barrier through in vitro experiments. The results showed that PFOA induced cellular oxidative stress, mitochondrial dysfunction exerted cytotoxic effects, and inhibited tight junction (TJ) protein expression causing intestinal barrier damage. PET MPs can synergize with PFOA to exacerbate the deleterious effects on the intestinal tract by decreasing cell membrane permeability to increase PFOA accumulation in the cell and enhancing the ability of PFOA to inhibit zonula occludens-1 (ZO-1) proteins.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengjun Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hongye Xu
- Tongling Institutes for Food and Drug Control, Tongling 244000, China.
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui Province 230012, China.
| |
Collapse
|
10
|
Liu R, Du X, Chen Y, Zhu Z, Jiang Z, Zhang C, Jiang D, Zhang Z. HNGF6A ameliorates oxidative stress-mediated mitochondrial dysfunction in degenerative meniscus. Bone Joint Res 2025; 14:315-327. [PMID: 40192588 PMCID: PMC11975064 DOI: 10.1302/2046-3758.144.bjr-2024-0318.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Aims Meniscus injury can lead to knee synovitis and cartilage deterioration, ultimately resulting in osteoarthritis (OA). Mitochondrial dysfunction has been identified as an induction factor in OA development, owing to an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of cells. However, the contribution of mitochondrial function in the meniscus to OA remains unclear. The purpose of this work was to elucidate the impact of HNGF6A, a mitochondrial-derived protective peptide, on meniscus senescence and degeneration to clarify the underlying mechanisms of ROS-induced OA pathogenesis. Methods Primary human meniscus cells were subjected to oxidative stress using tert-butyl hydrogen peroxide (TBHP). Mitochondrial function and ROS levels were evaluated using transmission electron microscopy (TEM), cytometry, and immunofluorescence. C57BL/6 mice subjected to destabilization of the medial meniscus (DMM) were either administered or not administered HNGF6A, and gait analysis was performed at eight weeks after surgery. Knee joints were collected for graft micro-CT and histological staining. Results Mitochondrial function was found to be impaired in the degraded menisci in OA. Pretreatment with HNGF6A significantly restored the matrix degradation and cell apoptosis induced by TBHP, and maintained mitochondrial redox homeostasis, which corresponded with the activation of autophagy and FUN14 domain containing 1 (FUNDC1) upon HNGF6A treatment. The animal studies also revealed that HNGF6A alleviates meniscus degeneration and osteophyte volume, and ameliorates the OA phenotype in vivo. Conclusion HNGF6A was found to protect meniscus cells by restoring FUNDC1-mediated mitochondrial redox homeostasis and autophagy. Thus, HNGF6A may have therapeutic applications in the prevention and treatment of meniscal degeneration and OA progression.
Collapse
Affiliation(s)
- Ruonan Liu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xue Du
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yufeng Chen
- Department of Traumatic Orthopedics, Foshan First People's Hospital, Foshan, China
| | - Zijing Zhu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongrui Jiang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengyun Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dong Jiang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Yin C, Wang Y, Yang H, Li G, Gao Z, Li K, Zhou G, Zhang X, Xu X, Tan H, Jin J. Association of Mitochondrial DNA Copy Number in Peripheral Blood with Risk and Prognosis in Acute Aortic Syndrome. J Mol Diagn 2025; 27:270-281. [PMID: 39863017 DOI: 10.1016/j.jmoldx.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Previous studies have reported that mitochondrial DNA copy number (mtDNA-CN) of blood was associated with a series of aging-related diseases. However, it remains unknown whether mtDNA-CN can be a potential biomarker of acute aortic syndromes (AASs). The mtDNA-CN in blood of 190 male patients with AAS and 207 healthy controls were detected by standardized real-time quantitative PCR-based assay. The mtDNA sequencing data of blood and myocardial muscle in 134 individuals were used to analyze mtDNA somatic mutations in blood. mtDNA-CN in peripheral blood was negatively correlated with age of individuals. Further analysis based on next-generation sequencing data demonstrated numbers and heteroplasmy of mtDNA mutations were positively correlated with age. Remarkably, mtDNA-CN of patients with AAS was lower than that of healthy controls. Logistic regression also showed that mtDNA-CN was independently associated with risk of AAS. During follow-up, patients with the lowest mtDNA-CN quartile had a hazard ratio of 2.543 for all-cause-mortality and 1.964 for composite end points compared with the other patients. Moreover, multivariate Cox regression indicated that lowest mtDNA-CN quartile was independently associated with all-cause mortality in patients with AAS. Our study demonstrated a negative correlation between mtDNA-CN and age. Moreover, lower mtDNA-CN in peripheral blood was significantly associated with higher risk and worse prognosis of AAS. It provided crucial evidence supporting the potential of mtDNA-CN as a novel biomarker of AAS.
Collapse
Affiliation(s)
- Chun Yin
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Department of Cardiology, The 902nd Hospital of People's Liberation Army Joint Service Support Force, Bengbu, China
| | - Ying Wang
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Hao Yang
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoshan Li
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhichun Gao
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kunyan Li
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guiquan Zhou
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuan Zhang
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiangzheng Xu
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hu Tan
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Jin
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
12
|
Pan D, Chen P, Zhang H, Zhao Q, Fang W, Ji S, Chen T. Mitochondrial quality control: A promising target of traditional Chinese medicine in the treatment of cardiovascular disease. Pharmacol Res 2025; 215:107712. [PMID: 40154932 DOI: 10.1016/j.phrs.2025.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cardiovascular disease remains the leading cause of death globally, and drugs for new targets are urgently needed. Mitochondria are the primary sources of cellular energy, play crucial roles in regulating cellular homeostasis, and are tightly associated with pathological processes in cardiovascular disease. In response to physiological signals and external stimuli in cardiovascular disease, mitochondrial quality control, which mainly includes mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, is initiated to meet cellular requirements and maintain cellular homeostasis. Traditional Chinese Medicine (TCM) has been shown to have pharmacological effects on alleviating cardiac injury in various cardiovascular diseases, including myocardial ischemia/reperfusion, myocardial infarction, and heart failure, by regulating mitochondrial quality control. Recently, several molecular mechanisms of TCM in the treatment of cardiovascular disease have been elucidated. However, mitochondrial quality control by TCM for treating cardiovascular disease has not been investigated. In this review, we aim to decipher the pharmacological effects and molecular mechanisms of TCM in regulating mitochondrial quality in various cardiovascular diseases. We also present our perspectives regarding future research in this field.
Collapse
Affiliation(s)
- Deng Pan
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| | - Pengfei Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Wei Fang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Siyan Ji
- Stomatology Department of Qiqihar Medical College School, Heilongjiang, China
| | - Tielong Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
13
|
Mao X, Fei X, Cai T, Xu S, Zhang D, Pu S, Li Z. A turn-on mitochondria-targeted iridium (Ⅲ) Complex-Based probe for glutathione detection and photodynamic therapy of cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125579. [PMID: 39689545 DOI: 10.1016/j.saa.2024.125579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
As one of the most abundant biothiols in cells, glutathione (GSH) usually exists in a dynamic equilibrium of oxidized glutathione (GSSG) and reduces glutathione redox, and plays an essential reducing substance to maintain the REDOX balance of the microenvironment. So, the development of a reliable GSH sensor will be important for living cells and organisms. We fabricated a mitochondria targeted "turn-on" fluorescent sensor based on Ir (III) complex and successfully detected endogenous and exogenous GSH in living cells and zebrafish. For the probe Ir-DINI, a robust electron-withdrawing group 2,4-dinitrobenzoyl was introduced to quench the fluorescence, which could be broken through electrostatic interaction with GSH, following exposing a strong fluorescent Ir (Ⅲ) complex Ir-OH. On the other hand, photodynamic therapy (PDT) has attracted much attention in recent years due to its minimally invasive treatment. We found that singlet oxygen yields of probe Ir-DINI displayed an enhancement before and after the detection of GSH. Additionally, photodynamic studies in living cells illustrated that after reacting with GSH, probe Ir-DINI exhibited more obvious phototoxicity than before the detection of GSH. So the probe Ir-DINI could be served as a GSH sensor and potential GSH-activated photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Xueting Mao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xiao Fei
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Tangxuan Cai
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Sha Xu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Daobin Zhang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Shouzhi Pu
- Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang 330031, China.
| | - Zhijian Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
14
|
Kang K, Wu Y, Zhang X, Wang S, Ni S, Shao J, Du Y, Yu Y, Shen Y, Chen Y, Chen W. An endoplasmic reticulum and lipid droplets dual-localized strategy to develop small molecular photosensitizers that induce ferroptosis during photodynamic therapy. Eur J Med Chem 2025; 286:117306. [PMID: 39854940 DOI: 10.1016/j.ejmech.2025.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Organelle-localized photosensitizers have been well-developed to enhance the photodynamic therapy (PDT) efficacy through triggering given cell death. The endoplasmic reticulum (ER) and lipid droplets (LDs) are two key organelles mutually regulating ferroptosis. Thus, in this study, small molecular photosensitizer CAR PSs were developed through fragment integration strategy and the heavy-atom modification. It was showed that the integration strategy did not affect the organelle localization and CAR PSs successfully achieved ER/LDs dual location. Besides, the heavy-atom modification help CAR PSs display good ROS generation efficiency. Importantly, ER/LDs dual-localized CAR PSs exhibited superior photo-toxicity and lower dark-toxicity against multiple breast cancer cell lines than the only ER-targeting Ce6, which further explained the superposition effect of dual organelle targeting. Preliminary studies revealed that CAR PSs induced enhanced ferroptosis via simultaneously triggering the ER stress and lipid peroxidation during PDT. Moreover, CAR-2 demonstrated significant in vivo PDT activity to suppress the tumor growth in 4T1 tumor bearing mice. These findings not only provide a promising photosensitizer CAR-2 exerting excellent in vitro and in vivo PDT effect through stimulating ferroptosis, but also propose a design strategy for the development of ER/LDs dual localized PSs.
Collapse
Affiliation(s)
- Ke Kang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - You Wu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xi Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China
| | - Shuqi Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shaokai Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yongping Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China
| | - Yong Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Yiding Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Wenteng Chen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, China.
| |
Collapse
|
15
|
Rivera-Alvarez I, Vázquez-Lizárraga R, Mendoza-Viveros L, Sotelo-Rivera I, Viveros-Ruiz TL, Morales-Maza J, Orozco L, Romano MC, Noriega LG, Tovar AR, Aguilar-Arnal L, Cruz-Bautista I, Aguilar-Salinas C, Orozco-Solis R. Transcriptional dynamics in type 2 diabetes progression is linked with circadian, thermogenic, and cellular stress in human adipose tissue. Commun Biol 2025; 8:398. [PMID: 40057615 PMCID: PMC11890630 DOI: 10.1038/s42003-025-07709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/10/2025] [Indexed: 04/03/2025] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased significantly over the past three decades, with an estimated 30-40% of cases remaining undiagnosed. Brown and beige adipose tissues are known for their remarkable catabolic capacity, and their ability to diminish blood glucose plasma concentration. Beige adipose tissue can be differentiated from adipose-derived stem cells or through transdifferentiation from white adipocytes. However, the impact of T2D progression on beige adipocytes' functional capacity remains unclear. Transcriptomic profiling of subcutaneous adipose tissue biopsies from healthy normal-weight, obese, prediabetic obese, and obese subjects diagnosed with T2D, reveals a progressive alteration in cellular processes associated with catabolic metabolism, circadian rhythms, thermogenesis-related signaling pathways, cellular stress, and inflammation. MAX is a potential transcription factor that links inflammation with the circadian clock and thermogenesis during the progression of T2D. This study unveils an unrecognized transcriptional circuit that increasingly disrupts subcutaneous adipose tissue oxidative capacity during the progression of T2D. These findings could open new research venues for developing chrono-pharmaceutical strategies to treat and prevent T2D.
Collapse
Affiliation(s)
| | - Rosa Vázquez-Lizárraga
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| | - Lucía Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, S.L.P., México
| | | | - Tannia L Viveros-Ruiz
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Jesús Morales-Maza
- Departamento de Cirugía Endocrina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Marta C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados (CINVESTAV), México City, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Carlos Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, México City, México
| | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México.
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México.
| |
Collapse
|
16
|
Cao S, Lv B, Tai Y, Zuo HX, Xing Y, Surh YJ, Li MY, Ma J, Jin X. Formononetin ameliorates DSS-induced colitis by inhibiting the MAPK/PPAR-γ/NF-κB/ROS signaling pathways. Toxicol Appl Pharmacol 2025; 496:117239. [PMID: 39855309 DOI: 10.1016/j.taap.2025.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND AND AIM Formononetin (FMN) is a compound isolated from Astragalus membranaceus, that exhibits a range of pharmacological activities, including antitumor, anti-inflammatory, hypolipidemic, and antioxidant effects. Although preliminary study suggests that FMN have a therapeutic role in Inflammatory Bowel Disease (IBD), its specific mechanism of action requires further investigation. This study aimed to investigate the mechanism by which FMN treats DSS-induced colitis in mice. METHODS RAW264.7 and Bone marrow-derived macrophages (BMDMs) were treated with LPS to establish an inflammatory cell model. Biochemical parameters and morphological characteristics were assessed in the present or absent of FMN. 4 % solution of DSS was administered to C57BL/6 mice to induce IBD, which served as an animal model for investigating the pharmacodynamics of FMN. RESULTS FMN significantly reduced colitis-associated injury, as evidenced by a decrease in the disease activity index (DAI), weight gain, and restoration of colon length. Furthermore, FMN inhibits protein expression of NLRP3 inflammasome, suppressed the nuclear translocation of NF-κB/p65, and prevented mitochondrial damage, this process results in a reduction in the accumulation of reactive oxygen species (ROS). Additionally, FMN inhibited the mitogen-activated protein kinase (MAPK) signaling pathway, upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) in the nucleus, and decreased the release of inflammatory factors, thereby exerting anti-inflammatory effects. CONCLUSION By inhibiting mitochondrial damage, activating the MAPK/PPAR-γ/ROS signaling pathway, reducing the nuclear translocation of NF-κB, and suppressing the expression of NLRP3 inflammasome-associated proteins, FMN exerts anti-inflammatory effects.
Collapse
Affiliation(s)
- Shen Cao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Baojiang Lv
- Medical Supplies Center of PLA General Hospital, Beijing 100853, China
| | - Yi Tai
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul 03080, South Korea.
| | - Ming Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
17
|
Keethedeth N, Anantha Shenoi R. Mitochondria-targeted nanotherapeutics: A new frontier in neurodegenerative disease treatment. Mitochondrion 2025; 81:102000. [PMID: 39662651 DOI: 10.1016/j.mito.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mitochondria are the seat of cellular energy and play key roles in regulating several cellular processes such as oxidative phosphorylation, respiration, calcium homeostasis and apoptotic pathways. Mitochondrial dysfunction results in error in oxidative phosphorylation, redox imbalance, mitochondrial DNA mutations, and disturbances in mitochondrial dynamics, all of which can lead to several metabolic and degenerative diseases. A plethora of studies have provided evidence for the involvement of mitochondrial dysfunction in the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Hence mitochondria have been used as possible therapeutic targets in the regulation of neurodegenerative diseases. However, the double membranous structure of mitochondria poses an additional barrier to most drugs even if they are able to cross the plasma membrane. Most of the drugs acting on mitochondria also required very high doses to exhibit the desired mitochondrial accumulation and therapeutic effect which in-turn result in toxic effects. Mitochondrial targeting has been improved by direct conjugation of drugs to mitochondriotropic molecules like dequalinium (DQA) and triphenyl phosphonium (TPP) cations. But being cationic in nature, these molecules also exhibit toxicity at higher doses. In order to further improve the mitochondrial localization with minimal toxicity, TPP was conjugated with various nanomaterials like liposomes. inorganic nanoparticles, polymeric nanoparticles, micelles and dendrimers. This review provides an overview of the role of mitochondrial dysfunction in neurodegenerative diseases and various nanotherapeutic strategies for efficient targeting of mitochondria-acting drugs in these diseases.
Collapse
Affiliation(s)
- Nishad Keethedeth
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| | - Rajesh Anantha Shenoi
- Inter-University Centre for Biomedical Research and Super Speciality Hospital, Thalappady, Rubber Board P.O, Kottayam, 686009 Kerala, India.
| |
Collapse
|
18
|
Palabiyik AA, Palabiyik E. Pharmacological approaches to enhance mitochondrial biogenesis: focus on PGC-1Α, AMPK, and SIRT1 in cellular health. Mol Biol Rep 2025; 52:270. [PMID: 40019682 DOI: 10.1007/s11033-025-10368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Mitochondrial biogenesis is essential for cellular energy balance and metabolic stability. Its dysregulation is linked to various metabolic and neurodegenerative diseases, making it a significant therapeutic target. Pharmacological approaches aimed at enhancing mitochondrial function have gained attention for their potential to restore cellular metabolism. OBJECTIVES This review examines recent advancements in pharmacological strategies targeting mitochondrial biogenesis, focusing on the roles of PGC-1α, AMPK, and SIRT1, alongside novel therapeutic agents and drug delivery systems. METHODS A systematic review of studies published between 2018 and 2023 was conducted using databases such as PubMed, Web of Science, and Elsevier. Keywords related to mitochondrial biogenesis and pharmacological modulation were used to identify relevant literature. RESULTS Various pharmacological agents, including resveratrol, curcumin, and metformin, activate mitochondrial biogenesis through different pathways. SIRT1 activators and AMPK agonists have shown promise in improving mitochondrial function. Advances in mitochondria-targeted drug delivery systems enhance therapeutic efficacy, yet challenges remain in clinical translation due to the complexity of mitochondrial regulation. CONCLUSION Pharmacological modulation of mitochondrial biogenesis holds therapeutic potential for metabolic and neurodegenerative diseases. While preclinical studies are promising, further research is needed to optimize drug efficacy, delivery methods, and personalized treatment strategies.
Collapse
Affiliation(s)
| | - Esra Palabiyik
- Department of Molecular Biology and Genetics, Department of Genetics, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
19
|
Nadtochy JA, Medvedev SP, Grigor’eva EV, Pavlova SV, Minina JM, Chechushkov AV, Malakhova AA, Kovalenko LV, Zakian SM. Transgenic iPSC Lines with Genetically Encoded MitoTimer to Study Mitochondrial Biogenesis in Dopaminergic Neurons with Tauopathy. Biomedicines 2025; 13:550. [PMID: 40149527 PMCID: PMC11940372 DOI: 10.3390/biomedicines13030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Tauopathy has been identified as a prevalent causative agent of neurodegenerative diseases, including frontotemporal dementia with parkinsonism-17 (FTDP-17). This rare hereditary neurodegenerative condition is characterised by the manifestation of parkinsonism and behavioural changes. The majority of cases of FTDP-17 are associated with mutations in the MAPT gene, which encodes the tau protein. MAPT mutations lead to disruption of the balance between 3R and 4R tau forms, which causes destabilisation of microtubules and impairment of cellular organelle functions, particularly mitochondrial dysfunction. The development of model systems and tools for studying the molecular, genetic, and biochemical mechanisms underlying FTDP-17 and testing therapies at the cellular level is an urgent necessity. Methods: In this study, we generated transgenic lines of induced pluripotent stem cells (iPSCs) from a patient carrying the pathogenic mutation c.2013T > G (rs63750756, p.N279K) of MAPT and a healthy donor. A doxycycline-controlled transgene of the genetically encoded biosensor MitoTimer was integrated into the AAVS1 locus of these cells. The MitoTimer biosensor allows for lifetime monitoring of the turnover of mitochondria in neuronal cells derived from directed iPSC differentiation. The fact that transcription of the transgene can be induced by doxycycline provides additional possibilities for pulse labelling of newly formed mitochondria. Results: Transgenic iPSC lines provide a unique tool to study the molecular and genetic mechanisms of FTDP-17 caused by the presence of the c.2013T > G (p.N279K) mutation, as well as to test potential drugs in vitro.
Collapse
Affiliation(s)
- Julia A. Nadtochy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Sophia V. Pavlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Julia M. Minina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
| | - Anton V. Chechushkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Federal Research Center of Fundamental and Translational Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Liudmila V. Kovalenko
- Department of Pathophysiology and General Pathology, Medical Institute, Khanty-Mansiysk Autonomous Okrug–Ugra Surgut State University, Surgut 628403, Russia;
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| |
Collapse
|
20
|
Rai Y, Singh S, Sah DK, Chauhan A, Kumari N, Pandey R, Paliwal K, Choudhary A, Bhatt AN. Mitochondrial uncoupler 2,4-dinitrophenol (DNP) confers protection from the acute effect of ionizing radiation by regulating redox homeostasis in radio-sensitive organs of C57BL/6 mice. Int J Radiat Biol 2025; 101:358-369. [PMID: 39970336 DOI: 10.1080/09553002.2025.2462077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE The development of radiation countermeasures is an unmet need. Several cytoprotective approaches have been demonstrated to minimize ionizing radiation-induced tissue toxicity. Previously, our research indicated that mild mitochondrial uncoupling by 2,4-dinitrophenol (DNP) potentially counteract the IR-induced cell death. Herein, our investigation delves into the radio-protective efficacy of DNP following total-body irradiation (TBI) in C57BL/6 mice. METHOD DNP was administered orally 2 h prior to TBI (7.6 Gy gamma (γ)-radiation) as a prophylactic approach against acute radiation syndrome (ARS), and survival analysis was performed for 30 days in C57BL/6 mice. Radiation-induced reactive oxygen species (ROS) and macromolecular oxidation (lipid and protein) were examined in radiation-sensitive organs, including the spleen, bone marrow, liver, and gastrointestinal tract (GI). GI damage was examined using tissue histology and correlated with the level of antioxidant catalase, superoxide dismutase, and reduced glutathione (GSH). RESULTS DNP conferred radioprotection in mice, as evidenced by a 41% increase in survival. DNP pretreatment facilitates a substantial regulation of TBI-induced ROS production and macromolecular oxidation as early as 30 min to 24 h post-irradiation across various radiation-sensitive organs. Moreover, antioxidant analysis in GI tissue showed that DNP played a crucial role in maintaining redox homeostasis. This was evident through the elevation of catalase, superoxide dismutase, and GSH, eventually protecting from radiation-induced GI damage. CONCLUSION The study confirms that DNP-mediated regulation of redox homeostasis in the hematopoietic and GI systems enhances survival efficacy while mitigating the risk of acute tissue damage and provides protection against ARS in C57BL/6 mice.
Collapse
Affiliation(s)
- Yogesh Rai
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Saurabh Singh
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Dhananjay K Sah
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ankit Chauhan
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Neeraj Kumari
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Rakesh Pandey
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Kumudini Paliwal
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ankit Choudhary
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Anant Narayan Bhatt
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
21
|
Qin Y, Liu H, Wu H. Cellular Senescence in Health, Disease, and Lens Aging. Pharmaceuticals (Basel) 2025; 18:244. [PMID: 40006057 PMCID: PMC11859104 DOI: 10.3390/ph18020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cellular senescence is a state of irreversible cell cycle arrest that serves as a critical regulator of tissue homeostasis, aging, and disease. While transient senescence contributes to development, wound healing, and tumor suppression, chronic senescence drives inflammation, tissue dysfunction, and age-related pathologies, including cataracts. Lens epithelial cells (LECs), essential for maintaining lens transparency, are particularly vulnerable to oxidative stress-induced senescence, which accelerates lens aging and cataract formation. This review examines the dual role of senescence in LEC function and its implications for age-related cataractogenesis, alongside emerging senotherapeutic interventions. Methods: This review synthesizes findings on the molecular mechanisms of senescence, focusing on oxidative stress, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). It explores evidence linking LEC senescence to cataract formation, highlighting key studies on stress responses, DNA damage, and antioxidant defense. Recent advances in senotherapeutics, including senolytics and senomorphics, are analyzed for their potential to mitigate LEC senescence and delay cataract progression. Conclusions: LEC senescence is driven by oxidative damage, mitochondrial dysfunction, and impaired redox homeostasis. These factors activate senescence path-ways, including p53/p21 and p16/Rb, resulting in cell cycle arrest and SASP-mediated inflammation. The accumulation of senescent LECs reduces regenerative capacity, disrupts lens homeostasis, and contributes to cataractogenesis. Emerging senotherapeutics, such as dasatinib, quercetin, and metformin, show promise in reducing the senescent cell burden and modulating the SASP to preserve lens transparency.
Collapse
Affiliation(s)
- Ying Qin
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Haoxin Liu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
22
|
Guillermain C, Tirard S, Bannwarth S, Procaccio V. ["Mitochondrial medicine" in the light of the fourth national plan for rare diseases (PNMR4): The example of the MITOMICS project]. Med Sci (Paris) 2025; 41:173-179. [PMID: 40028956 DOI: 10.1051/medsci/2025016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The aim of the MITOMICS project is to establish a clinical database of patients diagnosed with mitochondrial diseases, combined with a « multiomics » integrated approach in order to gain a better understanding of the molecular mechanisms underlying these diseases, and ultimately, to offer better patient care. The MITOMICS project thus contributes to the consolidation of a French "mitochondrial medicine", a notion that deserves to be examined. With the upcoming launch of the fourth national plan for rare diseases, it is an example of the study and management of rare and ultrarare diseases in France. This article traces the emergence of mitochondrial medicine since the early 1960s. It presents its main characteristics (genocentrism, strong techno-dependence), as well as its major technical and theoretical limitations, with a view to developing personalized mitochondrial medicine for the years to come.
Collapse
Affiliation(s)
- Clémence Guillermain
- Centre François Viète d'épistémologie et d'histoire des sciences et des techniques, Nantes Université, Nantes, France
| | - Stéphane Tirard
- Centre François Viète d'épistémologie et d'histoire des sciences et des techniques, Nantes Université, Nantes, France
| | - Sylvie Bannwarth
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Cote d'Azur, CNRS UMR 7284, Inserm U1081, Institut de recherche sur le cancer et le vieillissement (IRCAN), Nice, France
| | - Vincent Procaccio
- Service de génétique, Institut de biologie en santé, CHU Angers, Université d'Angers, Inserm U1083, CNRS UMR 6015, MITOVASC, Équipe Mitolab, Structure fédérative de recherche Interactions cellulaires et applications (SFR ICAT), Angers, France
| |
Collapse
|
23
|
Zhu Z, Luan G, Wu S, Song Y, Shen S, Wu K, Qian S, Jia W, Yin J, Ren T, Ye J, Wei L. Single-cell atlas reveals multi-faced responses of losartan on tubular mitochondria in diabetic kidney disease. J Transl Med 2025; 23:90. [PMID: 39838394 PMCID: PMC11748887 DOI: 10.1186/s12967-025-06074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs. METHODS After high fat diet (HFD), mice were intraperitoneally injected with streptozotocin (STZ) to induce DKD, and then divided into three subsets: CON (healthy) subset, DKD (vehicle) subset, and LST (losartan; 25 mg/kg/day) subset. Divide HK-2 cell into LG (low glucose; 5 mM) and HG (high glucose; 30 mM) and HG + LST (losartan; 1 µ M) subsets. snRNA-seq was performed on the renal tissues of LST and DKD subset mice. To reveal the effects of losartan on gene function and pathway changes in renal tubular mitochondria, Gene Ontology (GO) enrichment analysis and GSEA/GSVA scoring were performed to analyze the specific response of proximal tubular (PT) cell mitochondria to losartan treatment, including key events in mitochondrial homeostasis such as mitochondrial morphology, dynamics, mitophagy, autophagic flux, mitochondrial respiratory chain, apoptosis, and ROS generation. Preliminary validation through in vitro and in vivo experiments, including observation of changes in mitochondrial morphology and dynamics using probes such as Mitotracker Red, and evaluation of the effect of losartan on key events of mitochondrial homeostasis perturbation using electron microscopy, laser confocal microscopy, immunofluorescence, and Western blotting. Detection of autophagic flux in cells by transfecting Ad-mCherry-GFP-LC3B dual fluorescence labeled adenovirus. Various fluorescent probes and energy detector are used to detect mitochondrial apoptosis, ROS, and respiration of mitochondrion. RESULTS Through the single-cell atlas of DKD mouse kidneys, it was found that losartan treatment significantly increased the percentage of PT cells. Gene Ontology (GO) enrichment analysis of differentially expressed genes showed enrichment of autophagy of mitochondrion pathway. Further GSEA analysis and GSVA scoring revealed that mitophagy and other key mitochondrial perturbation events, such as ROS production, apoptosis, membrane potential, adenosine triphosphate (ATP) synthesis, and mitochondrial dynamics, were involved in the protective mechanism of losartan on PT cells, thereby improving mitochondrial homeostasis. Consistent results were also obtained in mice and cellular experiments. In addition, we highlighted a specific renal tubular subpopulation with mitophagy phenotype found in single-cell data, and preliminarily validated it with co-localization and increased expression of Pink1 and Gclc in kidney specimens of DKD patients treated with losartan. CONCLUSIONS Our research suggests that scRNA-seq can reflect the multifaceted mitochondrial landscape of DKD renal tubular cells after drug treatment, and these findings may provide new targets for DKD therapy at the organelle level.
Collapse
Affiliation(s)
- Zhen Zhu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China
| | - Guangxin Luan
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China
| | - Song Wu
- Department of Cardiothoracic Surgery, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China
| | - Yiyi Song
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China
| | - Shuang Shen
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China
| | - Kaiyue Wu
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China
| | - Shengnan Qian
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China
| | - Jun Yin
- Department of Endocrine Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, Chin, China.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China.
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, China.
| | - Li Wei
- Department of Endocrine Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, Chin, China.
| |
Collapse
|
24
|
Huang A, Xue H, Xie T, Xiang L, Chen Z, Ma A, Yan H, Yuan J. A review of the pathogenesis of mitochondria in breast cancer and progress of targeting mitochondria for breast cancer treatment. J Transl Med 2025; 23:70. [PMID: 39815317 PMCID: PMC11734335 DOI: 10.1186/s12967-025-06077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
With breast cancer being the most common tumor among women in the world today, it is also the leading cause of cancer-related deaths. Standard treatments include chemotherapy, surgery, endocrine therapy, and targeted therapy. However, the heterogeneity, drug resistance, and poor prognosis of breast cancer highlight an urgent need for further exploration of its underlying mechanisms. Mitochondria, highly dynamic intracellular organelles, play a pivotal role in maintaining cellular energy metabolism. Altered mitochondrial function plays a critical role in various diseases, and recent studies have elucidated its pathophysiological mechanisms in breast carcinogenesis. This review explores the role of mitochondrial dysfunction in breast cancer pathogenesis and assesses potential mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Aoling Huang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Haochen Xue
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Zhengzhuo Chen
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Aolong Ma
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China.
| |
Collapse
|
25
|
Lin J, Li X, Lu K, Song K, Wang L, Dai W, Mohamed M, Zhang C. Low Phosphorus Causes Hepatic Energy Metabolism Disorder Through Dynamin-Related Protein 1-Mediated Mitochondrial Fission in Fish. J Nutr 2025; 155:132-152. [PMID: 39491675 DOI: 10.1016/j.tjnut.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Low phosphorus (LP) diets perturb hepatic energy metabolism homeostasis in fish. However, the specific mechanisms in LP-induced hepatic energy metabolism disorders remain to be fully elucidated. OBJECTIVES This study sought to elucidate the underlying mechanisms of mitochondria involved in LP-induced energy metabolism disorders. METHODS Spotted seabass were fed diets with 0.72% (S-AP, control) or 0.36% (S-LP) available phosphorus for 10 wk. Drp1 was knocked down or protein kinase (PK) A was activated using 8Br-cAMP (5 μM, a PKA activator) in spotted seabass hepatocytes under LP medium. Zebrafish were fed Z-LP diets (0.30% available phosphorus) containing Mdivi-1 (5 mg/kg, a Drp1 inhibitor) or 8Br-cAMP (0.5 mg/kg) for 6 wk. Biochemical and molecular parameters, along with transmission electron microscopy and immunofluorescence, were used to assess hepatic glycolipid metabolism, mitochondrial function, and morphology. RESULTS Spotted seabass fed S-LP diets showed reduced ATP (52%) and cAMP (52%) concentrations, along with reduced Drp1 (s582) (38%) and PKA (61%) phosphorylation concentrations in the liver compared with those fed S-AP diets (P < 0.05). Drp1 knockdown elevated ATP concentrations (1.99-fold), decreased mitochondrial DRP1 protein amounts (45%), and increased mitochondrial aspect ratio (1.82-fold) in LP-treated hepatocytes (P < 0.05). Furthermore, 8Br-cAMP-treated hepatocytes exhibited higher PKA phosphorylation (2.85-fold), ATP concentrations (1.60-fold), and mitochondrial aspect ratio (2.00-fold), along with decreased mitochondrial DRP1 protein concentrations (29%) under LP medium (P < 0.05). However, mutating s582 to alanine mimic Drp1 dephosphorylation decreased ATP concentrations (63%) and mitochondrial aspect ratio (53%) in 8Br-cAMP-treated hepatocytes (P < 0.05). In addition, zebrafish fed Z-LP diets containing Mdivi-1 or 8Br-cAMP had higher ATP concentrations (3.44-fold or 1.98-fold) than those fed Z-LP diets (P < 0.05). CONCLUSIONS These findings provide a potential mechanistic elucidation for LP-induced energy metabolism disorders through the cAMP/PKA/Drp1-mediated mitochondrial fission signaling pathway.
Collapse
Affiliation(s)
- Jibin Lin
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Xueshan Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Kangle Lu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Kai Song
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Ling Wang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Weiwei Dai
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China
| | - Mohsen Mohamed
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China
| | - Chunxiao Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, PR China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, PR China.
| |
Collapse
|
26
|
Zhan D, Du Z, Zhang S, Huang J, Zhang J, Zhang H, Liu Z, Menu E, Wang J. Targeting Caveolin-1 in Multiple Myeloma Cells Enhances Chemotherapy and Natural Killer Cell-Mediated Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408373. [PMID: 39630017 PMCID: PMC11789597 DOI: 10.1002/advs.202408373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/18/2024] [Indexed: 01/30/2025]
Abstract
The cell membrane transport capacity and surface targets of multiple myeloma (MM) cells heavily influence chemotherapy and immunotherapy. Here, it is found that caveolin-1 (CAV1), a primary component of membrane lipid rafts and caveolae, is highly expressed in MM cells and is associated with MM progression and drug resistance. CAV1 knockdown decreases MM cell adhesion to stromal cells and attenuates cell adhesion-mediated drug resistance to bortezomib. CAV1 inhibition in MM cells enhances natural killer cell-mediated cytotoxicity through increasing CXCL10, SLAMF7, and CD112. CAV1 suppression reduces mitochondrial membrane potential, increases reactive oxygen species, and inhibits autophagosome-lysosome fusion, resulting in the disruption of redox homeostasis. Additionally, CAV1 knockdown enhances glutamine addiction by increasing ASCT2 and LAT1 and dysregulates glutathione metabolism. As a result of CAV1 inhibition, MM cells are more sensitive to starvation, glutamine depletion, and glutamine transporter inhibition, and grow more slowly in vivo in a mouse model treated with bortezomib. The observation that CAV1 inhibition modulated by 6-mercaptopurine, daidzin, and statins enhances the efficacy of bortezomib in vitro and in vivo highlights the translational significance of these FDA-approved drugs in improving MM outcomes. These data demonstrate that CAV1 serves as a potent therapeutic target for enhancing chemotherapy and immunotherapy for MM.
Collapse
Affiliation(s)
- Dewen Zhan
- The Affiliated Traditional Chinese Medicine HospitalGuangzhou Medical UniversityGuangzhou510130China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Zhimin Du
- School of NursingGuangzhou Medical UniversityGuangzhou510182China
| | - Shang Zhang
- The Affiliated Traditional Chinese Medicine HospitalGuangzhou Medical UniversityGuangzhou510130China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Juanru Huang
- The Affiliated Traditional Chinese Medicine HospitalGuangzhou Medical UniversityGuangzhou510130China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Jian Zhang
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou511436China
| | - Hui Zhang
- The Affiliated Traditional Chinese Medicine HospitalGuangzhou Medical UniversityGuangzhou510130China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Zhongrui Liu
- The Affiliated Traditional Chinese Medicine HospitalGuangzhou Medical UniversityGuangzhou510130China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Eline Menu
- Department of Hematology and ImmunologyMyeloma Center BrusselsVrije Universiteit BrusselBrusselsB‐1090Belgium
| | - Jinheng Wang
- The Affiliated Traditional Chinese Medicine HospitalGuangzhou Medical UniversityGuangzhou510130China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
27
|
Liu Y, Li XQ, Yu Q, Kang B, Zhao X, Xu JJ. Gas Empowered Dual-Cascade Strategy for Augmented Single-Atom Nanotherapies. Adv Healthc Mater 2025; 14:e2404001. [PMID: 39618025 DOI: 10.1002/adhm.202404001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/17/2024] [Indexed: 01/29/2025]
Abstract
Single-atom nanotherapies have received numerous attention in malignant oncotherapy. However, the insufficient enzyme substrate and the upregulation of heat shock proteins during therapeutic interventions are seldom concurrently noticed. Herein, a novel gas empowered dual-cascade synergistic treatment strategy is demonstrated with domino effect, which can sequentially reinforce single-atom nanozyme (SAzyme)-based enzymatic therapeutics and mild photothermal therapy (PTT) (< 45 °C). In the proof-of-concept study, Fe single atom nanozyme (Fe/SAzyme) loaded with hydrogen sulfide (H2S) donor NaHS is developed for HSPs-silencing mediated mild PTT. The generated H2S suppresses the catalase activity to achieve "intracellular H2O2 conservation", thereby furnishing the enzyme substrate to Fe/SAzyme to produce abundant cytotoxic hydroxyl radicals (·OH) for augmented enzymatic therapeutics. Then, excess ·OH induced mitochondrial dysfunction blocks adenosine triphosphate (ATP) energy supply to realize cellular energy remodeling, which hinders overexpression of HSPs and enhances mild PTT of Fe/SAzyme both in vitro and vivo. Consequently, the gas-triggered dual-cascade strategy achieves domino H2S/·OH/mitochondrial dysfunction synergistic effect, endowing SAzymes with maximum antitumor efficacy via enzymatic therapeutics combined with mild PTT. This dual-cascaded gas/enzymatic/mild PTT synergistic oncotherapy not only exhibits a new pathway for gas-facilitated mild PTT, but also offers a valuable paradigm for the application of "1 + 1 + 1 > 3" multimodal synergistic tumor therapy.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xueli Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Bharadwaj A. A Review over Mitochondrial Diseases Due to mtDNA Mutations: Recent Advances and Remedial Aspects. Infect Disord Drug Targets 2025; 25:e18715265304029. [PMID: 39234902 DOI: 10.2174/0118715265304029240801092834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria, also called 'powerhouse of the cell', is meant for energy generation in eukaryotic cells. This action is performed by mitochondria through the oxidative phosphorylation (OXPHOS) of the respiratory chain (RC). Based on the functioning of the cell, the number of mitochondria varies up to thousands in number. Mutations in the mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA) genes may lead to the generation of primary mitochondrial disease (PMD) that affects the structure and function of mitochondria. The diagnosis of such mitochondrial diseases occurs in early childhood and it can lead to serious, fetal and multi-organ diseases. Understanding epigenetic events and changes in the pathway can help improve the effectiveness of treatment. However, there are several reasons lack of the disease symptoms (age, sign, symptoms, morbidity and lethality), restricted availability of preclinical models along with extensive phenotypes that hamper the development of efficient drugs. Despite the introduction of new treatments and the encouraging results of treatments and therapies, there is no effective cure for PMD. This article contains information about the changes associated with cytopathic diseases that make possible the analysis of various diseases by genetic techniques. Increasing our understanding of how mitochondrial DNA mutations affect mitochondrial metabolism and subsequently result in neurodegenerative disease will prove vital to the development of targeted therapies and treatments.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura (U.P.), India
| |
Collapse
|
29
|
Arojojoye AS, Awuah SG. Functional utility of gold complexes with phosphorus donor ligands in biological systems. Coord Chem Rev 2025; 522:216208. [PMID: 39552640 PMCID: PMC11563041 DOI: 10.1016/j.ccr.2024.216208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metallo-phosphines are ubiquitous in organometallic chemistry with widespread applications as catalysts in various chemical transformations, precursors for organic electronics, and chemotherapeutic agents or chemical probes. Here, we provide a comprehensive review of the exploration of the current biological applications of Au complexes bearing phosphine donor ligands. The goal is to deepen our understanding of the synthetic utility and reactivity of Au-phosphine complexes to provide insights that could lead to the design of new molecules and enhance the cross-application or repurposing of these complexes.
Collapse
Affiliation(s)
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536
- Markey Cancer Centre, University of Kentucky, Lexington KY, 40536
- University of Kentucky Bioelectronics and Nanomedicine Research Center, Lexington, Kentucky 40506, United States
| |
Collapse
|
30
|
Liu Z, Fu H, Dong H, Lai K, Yang Z, Fan C, Luo Y, Qin W, Guo L. Triphenylphosphine-Modified Iridium III, Rhodium III, and Ruthenium II Complexes to Achieve Enhanced Anticancer Selectivity by Targeting Mitochondria. Inorg Chem 2024; 63:24736-24753. [PMID: 39681494 DOI: 10.1021/acs.inorgchem.4c03975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The incorporation of an organelle-targeting moiety into compounds has proven to be an effective strategy in the development of targeted anticancer drugs. We herein report the synthesis, characterization, and biological evaluation of novel triphenylphosphine-modified half-sandwich iridiumIII, rhodiumIII, and rutheniumII complexes. The primary goal was to enhance anticancer selectivity through mitochondrial targeting. All these triphenylphosphine-modified complexes exhibited promising cytotoxicity in the micromolar range (5.13-23.22) against A549 and HeLa cancer cell lines, surpassing the activity of comparative complexes that lack the triphenylphosphine moiety. Noteworthy is their good selectivity toward cancer cells compared to normal BEAS-2B cells, underscored by selectivity index ranging from 7.3 to >19.5. Mechanistically, these complexes primarily target mitochondria rather than interacting with DNA. The targeting of mitochondria and triggering mitochondrial dysfunction were confirmed using both confocal microscopy and flow cytometry. Their ability to depolarize mitochondrial membrane potential (MMP) and enhance reactive oxygen species (ROS) was observed, thereby leading to intrinsic apoptotic pathways. Moreover, these complexes lead to cell cycle arrest in the G2/M phase and demonstrated antimigration effects, significantly inhibiting the migration of A549 cells in wound-healing assays.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuting Luo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenting Qin
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
31
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
32
|
Wang Y, Liu N, Hu L, Yang J, Han M, Zhou T, Xing L, Jiang H. Nanoengineered mitochondria enable ocular mitochondrial disease therapy via the replacement of dysfunctional mitochondria. Acta Pharm Sin B 2024; 14:5435-5450. [PMID: 39807326 PMCID: PMC11725173 DOI: 10.1016/j.apsb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 01/16/2025] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is an ocular mitochondrial disease that involves the impairment of mitochondrial complex I, which is an important contributor to blindness among young adults across the globe. However, the disorder has no available cures, since the approved drug idebenone for LHON in Europe relies on bypassing complex I defects rather than fixing them. Herein, PARKIN mRNA-loaded nanoparticle (mNP)-engineered mitochondria (mNP-Mito) were designed to replace dysfunctional mitochondria with the delivery of exogenous mitochondria, normalizing the function of complex I for treating LHON. The mNP-Mito facilitated the supplementation of healthy mitochondria containing functional complex I via mitochondrial transfer, along with the elimination of dysfunctional mitochondria with impaired complex I via an enhanced PARKIN-mediated mitophagy process. In a mouse model induced with a complex I inhibitor (rotenone, Rot), mNP-Mito enhanced the presence of healthy mitochondria and exhibited a sharp increase in complex I activity (76.5%) compared to the group exposed to Rot damage (29.5%), which greatly promoted the restoration of ATP generation and mitigation of ocular mitochondrial disease-related phenotypes. This study highlights the significance of nanoengineered mitochondria as a promising and feasible tool for the replacement of dysfunctional mitochondria and the repair of mitochondrial function in mitochondrial disease therapies.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Nahui Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lifan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jingsong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengmeng Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tianjiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
33
|
Shi J, Piao M, Liu C, Yang J, Guan X, Liu H, Li Q, Zhang Y, Yu J. Electroacupuncture pretreatment maintains mitochondrial quality control via HO-1/MIC60 signaling pathway to alleviate endotoxin-induced acute lung injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167480. [PMID: 39209235 DOI: 10.1016/j.bbadis.2024.167480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Electroacupuncture has been demonstrated to mitigate endotoxin-induced acute lung injury by enhancing mitochondrial function. This study investigates whether electroacupuncture confers lung protection through the regulation of mitochondrial quality control mediated by heme oxygenase-1 (HO-1) and the mitochondrial inner membrane protein MIC60. HO-1, an inducible stress protein, is crucial for maintaining mitochondrial homeostasis and protecting against lung injury. MIC60, a key component of the mitochondrial contact site and cristae organizing system, supports mitochondrial integrity. We employed genetic knockout/silencing and cell transfection techniques to model lipopolysaccharide (LPS)-induced lung injury, assessing changes in mitochondrial structure, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and the expression of proteins essential for mitochondrial quality control. Our findings reveal that electroacupuncture alleviates endotoxin-induced acute lung injury and associated mitochondrial dysfunction, as evidenced by reductions in lung injury scores, decreased ROS production, and suppressed expression of proteins involved in mitochondrial fission and mitophagy. Additionally, electroacupuncture enhanced MMP and upregulated proteins that facilitate mitochondrial fusion and biogenesis. Importantly, the protective effects of electroacupuncture were reduced in models with Hmox1 knockout or Mic60 silencing, and in macrophages transfected with Hmox1-siRNA or Mic60-siRNA. Moreover, HO-1 was found to influence MIC60 expression during electroacupuncture preconditioning and LPS challenge, demonstrating that these proteins not only co-localize but also interact directly. In conclusion, electroacupuncture effectively modulates mitochondrial quality control through the HO-1/MIC60 signaling pathway, offering an adjunctive therapeutic strategy to ameliorate endotoxin-induced acute lung injury in both in vivo and in vitro settings.
Collapse
Affiliation(s)
- Jia Shi
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Meiling Piao
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Chuanning Liu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Jing Yang
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Xin Guan
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Huayang Liu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Qiujia Li
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Yuan Zhang
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair
| | - Jianbo Yu
- Tianjin Nankai Hospital, Tianjin Medical University; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair.
| |
Collapse
|
34
|
Huang R, Zhang C, Xiang Z, Lin T, Ling J, Hu H. Role of mitochondria in renal ischemia-reperfusion injury. FEBS J 2024; 291:5365-5378. [PMID: 38567754 DOI: 10.1111/febs.17130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 12/19/2024]
Abstract
Acute kidney injury (AKI) induced by renal ischemia-reperfusion injury (IRI) has a high morbidity and mortality, representing a worldwide problem. The kidney is an essential organ of metabolism that has high blood perfusion and is the second most mitochondria-rich organ after the heart because of the high ATP demands of its essential functions of nutrient reabsorption, acid-base and electrolyte balance, and hemodynamics. Thus, these energy-intensive cells are particularly vulnerable to mitochondrial dysfunction. As the bulk of glomerular ultrafiltrate reabsorption by proximal tubules occurs via active transport, the mitochondria of proximal tubules must be equipped for detecting and responding to fluctuations in energy availability to guarantee efficient basal metabolism. Any insults to mitochondrial quality control mechanisms may lead to biological disruption, blocking the clearance of damaged mitochondria and resulting in morphological change and tissue dysfunction. Extensive research has shown that mitochondria have pivotal roles in acute kidney disease, so in this article, we discuss the role of mitochondria, their dynamics and mitophagy in renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Zhengjie Xiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Tao Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Jian Ling
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
35
|
Wang L, Tian S, Deng S, Wu J, Wang H, Guo X, Han C, Ren W, Han Y, Zhou J, Lin Y, Bu M. Design and synthesis of novel mitochondria-targeted ergosterol peroxide derivatives as potential anti-cancer agents. Bioorg Chem 2024; 153:107862. [PMID: 39362080 DOI: 10.1016/j.bioorg.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Ergosterol peroxide (EP) is a natural steroid compound that has been reported to have significant antitumor activity. However, its poor water solubility and cellular uptake mean that it has weak efficacy against tumor cells. Herein, we designed and synthesized a series of EP derivatives with mitochondrial targeting properties. Of these, compound 15a showed an IC50 value of 0.32 μM against MCF-7 cells, which was 67-fold higher than that of the parental EP (IC50 = 21.46 μM), and was better than cisplatin (IC50 = 4.23 μM), had a selectivity index of 25.28 (IC50MCF-10A/IC50MCF-7). Additionally, compound 15a promoted an increase in intracellular reactive oxygen species levels and a decrease in mitochondrial membrane potential, and blocked the cell cycle in the G0/G1 phase. In a mouse model of breast cancer, 15a showed 89.85 % tumor inhibition at a dose of 20 mg/kg, which is similar to the therapeutic effect of the cisplatin. On the basis of these results, 15a could be considered for further preclinical evaluation for cancer therapy.
Collapse
Affiliation(s)
- Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Shuang Tian
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jiale Wu
- College of Pharmacy, Hainan University, Haikou 570228, Hainan, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenkang Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yinglong Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jianwen Zhou
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
36
|
Lv M, Zheng Y, Dai X, Zhao J, Hu G, Ren M, Shen Z, Su Z, Wu C, Liu HK, Xue X, Mao ZW. Ruthenium(ii)-Arene Complex Triggers Immunogenic Ferroptosis for Reversing Drug Resistance. J Med Chem 2024; 67:20156-20171. [PMID: 39312756 DOI: 10.1021/acs.jmedchem.4c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chemoresistance remains an arduous challenge in oncology, but ferroptosis shows potential for overcoming it by stimulating the immune system. Herein, a novel high-performance ruthenium(II)-based arene complex [Ru(η6-p-cym)(BTBpy)Cl] (RuBTB) is developed for ferroptosis-enhanced antitumor immunity and drug resistance reversal via glutathione (GSH) metabolism imbalance. RuBTB shows significantly enhanced antiproliferation activity against cisplatin (CDDP)-resistant lung cancer cells (A549R), with 26.35-fold better anticancer effects than CDDP. Immunogenic ferroptosis is induced by GSH depletion/glutathione peroxidase 4 (GPX4) inactivation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in RuBTB-treated cells. Mechanism studies indicate that RuBTB regulates ferroptosis and immune-related pathways, coordinating with GSH metabolism-mediated glutathione S-transferase (GST) inhibition to reverse drug resistance in platinum-combined therapy. Tumor vaccination experiments demonstrate the intensified antitumor effects endowed by highly immunogenic ferroptosis in vivo. This study provides the first example of a metal-arene complex for achieving satisfactory ferroptosis therapeutic effects with efficient immunogenicity to overcome drug resistance in metal-based immunochemotherapy.
Collapse
Affiliation(s)
- Mengdi Lv
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, PR China
| | - Xiangyu Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingyue Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Guojing Hu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Meng Ren
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhengqi Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhi Su
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Chao Wu
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hong-Ke Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xuling Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, PR China
| |
Collapse
|
37
|
Gao G, Zhang Z, Wang Q, Xie Z, Liu B, Huang H. A peptide alleviated oxidative damages in the L02 cells and mice liver. Biochem Biophys Res Commun 2024; 734:150643. [PMID: 39241619 DOI: 10.1016/j.bbrc.2024.150643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The liver is vitally metabolic for a multitude of biochemical reactions. Consequently, it generates many free radicals and reactive oxygen species, rendering it more susceptible to oxidative stress-induced damage. Oxidative stress represents a pivotal factor in the pathogenesis of liver diseases. We screened some antioxidant peptides previously. Here we investigated whether the peptides could attenuate oxidative damage with APPH in L02 cells. The results showed that one of the peptides, sequence FETLMPLWGNK, could decrease the excessive reactive oxygen species, increase antioxidant enzyme activity and protect mitochondrial function, reduce the ratio of apoptosis and S phase cycle arrest, and improve the survival rate of L02 cells damaged by APPH compared to cells of the control group. Then the peptide was evaluated in mice that CCl4 injured. We found that CCl4-injured mice had significantly increased serum inflammatory factors and liver injury markers, a large number of inflammatory cell infiltration, and local necrosis in the liver. The peptide could reduce inflammation, and improve liver pathological changes. This phenomenon may be associated with the activation of the Nrf2 signaling pathway. Concurrently, the peptide protects the liver by regulating the expression of proteins related to the mitochondrial apoptosis pathway (p53, Bax, Bcl-2, and Caspase3) and mitophagy-related proteins (PINK1, Parkin, and AMPKα). Therefore, the results indicated that the peptide is an active substance with antioxidant activity and anti-inflammatory effects.
Collapse
Affiliation(s)
- Gan Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiyang Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiheng Wang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhihui Xie
- Xie Zhihui Biomedical Research Institute Guangzhou Co. Ltd., Guangzhou, 510006, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hongliang Huang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Al Tahan MA, Al Tahan S. Pioneering Advances and Innovative Applications of Mesoporous Carriers for Mitochondria-Targeted Therapeutics. Br J Biomed Sci 2024; 81:13707. [PMID: 39624468 PMCID: PMC11608979 DOI: 10.3389/bjbs.2024.13707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025]
Abstract
Mitochondria, known as the cell's powerhouse, play a critical role in energy production, cellular maintenance, and stemness regulation in non-cancerous cells. Despite their importance, using drug delivery systems to target the mitochondria presents significant challenges due to several barriers, including cellular uptake limitations, enzymatic degradation, and the mitochondrial membranes themselves. Additionally, barriers in the organs to be targetted, along with extracellular barriers formed by physiological processes such as the reticuloendothelial system, contribute to the rapid elimination of nanoparticles designed for mitochondrial-based drug delivery. Overcoming these challenges has led to the development of various strategies, such as molecular targeting using cell-penetrating peptides, genomic editing, and nanoparticle-based systems, including porous carriers, liposomes, micelles, and Mito-Porters. Porous carriers stand out as particularly promising candidates as drug delivery systems for targeting the mitochondria due to their large pore size, surface area, and ease of functionalisation. Depending on the pore size, they can be classified as micro-, meso-, or macroporous and are either ordered or non-ordered based on both size and pore uniformity. Several methods are employed to target the mitochondria using porous carriers, such as surface modifications with polyethylene glycol (PEG), incorporation of targeting ligands like triphenylphosphonium, and capping the pores with gold nanoparticles or chitosan to enable controlled and triggered drug delivery. Photodynamic therapy is another approach, where drug-loaded porous carriers generate reactive oxygen species (ROS) to enhance mitochondrial targeting. Further advancements have been made in the form of functionalised porous silica and carbon nanoparticles, which have demonstrated potential for effective drug delivery to mitochondria. This review highlights the various approaches that utilise porous carriers, specifically focusing on silica-based systems, as efficient vehicles for targeting mitochondria, paving the way for improved drug delivery strategies in mitochondrial therapies.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Sana Al Tahan
- Faculty of Pharmacy, Arab International University, Daraa, Syria
| |
Collapse
|
39
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Zhuang J, Pan Q, Zhou C, Cai Z, Li N, Zhao N. The cyano positional isomerism strategy for constructing mitochondria-targeted AIEgens with type I reactive oxygen species generation capability. J Mater Chem B 2024; 12:11359-11367. [PMID: 39405092 DOI: 10.1039/d4tb01847h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
In this work, a series of cationic luminogens (designated as PSMP isomers) were developed based on the cyano positional isomerism strategy. The isomerism of the cyano substituent on the molecular skeleton can finely regulate the optical behaviour, the type of photoinduced reactive oxygen species (ROS), and mitochondria-targeted capability of isomers. Interestingly, PSMP-4, with the cyano group installed at an appropriate location, exhibits a special aggregation-induced emission effect and potent O2˙- generation efficacy through the type I photochemistry pathway. Notably, PSMP-4 can accumulate in mitochondria with high specificity. Taking advantage of its excellent photostability, PSMP-4 realizes in situ mitochondria imaging in a washing-free manner and sensitive response to the change of mitochondrial membrane potential. The integration of comprehensive photophysical properties and mitochondrial specificity enable PSMP-4 to successfully trigger the death of cancer cells through an efficient type I photodynamic therapy process both in vitro and in multicellular tumor spheroid models.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Quan Pan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Chunli Zhou
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Ziying Cai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| |
Collapse
|
41
|
Manna S, Agrawal R, Yadav T, Kumar TA, Kumari P, Dalai A, Kanade S, Balasubramanian N, Singh A, Chakrapani H. Orthogonal Persulfide Generation through Precision Tools Provides Insights into Mitochondrial Sulfane Sulfur. Angew Chem Int Ed Engl 2024; 63:e202411133. [PMID: 39091222 DOI: 10.1002/anie.202411133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
The sulfane sulfur pool, comprised of persulfide (RS-SH) and polysulfide (RS-SnH) derived from hydrogen sulfide (H2S), has emerged as a major player in redox biochemistry. Mitochondria, besides energy generation, serve as significant cellular redox hubs, mediate stress response and cellular health. However, the effects of endogenous mitochondrial sulfane sulfur (MSS) remain largely uncharacterized as compared with their cytosolic counterparts, cytosolic sulfane sulfur (CSS). To investigate this, we designed a novel artificial substrate for mitochondrial 3-mercaptopyruvate sulfurtransferase (3-MST), a key enzyme involved in MSS biosynthesis. Using cells expressing a mitochondrion-localized persulfide biosensor, we demonstrate this tool's ability to selectively enhance MSS. While H2S was previously known to suppress human immunodeficiency virus (HIV-1), we found that MSS profoundly affected the HIV-1 life cycle, mediating viral reactivation from latency. Additionally, we provide evidence for the role of the host's mitochondrial redox state, membrane potential, apoptosis, and respiration rates in managing HIV-1 latency and reactivation. Together, dynamic fluctuations in the MSS pool have a significant and possibly conflicting effect on HIV-1 viral latency. The precision tools developed herein allow for orthogonal generation of persulfide within both mitochondria and the cytosol and will be useful in interrogating disease biology.
Collapse
Affiliation(s)
- Suman Manna
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Ragini Agrawal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Tarun Yadav
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - T Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Pooja Kumari
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Aadishakti Dalai
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Shaunak Kanade
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Nagaraj Balasubramanian
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| |
Collapse
|
42
|
Song BL, Wang JQ, Zhang GX, Yi NB, Zhang YJ, Zhou L, Guan YH, Zhang XH, Zheng WF, Qiao ZY, Wang H. A Coupling-Induced Assembly Strategy for Constructing Artificial Shell on Mitochondria in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202411725. [PMID: 39045805 DOI: 10.1002/anie.202411725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The strategy of in vivo self-assembly has been developed for improved enrichment and long-term retention of anticancer drug in tumor tissues. However, most self-assemblies with non-covalent bonding interactions are susceptible to complex physiological environments, leading to weak stability and loss of biological function. Here, we develop a coupling-induced assembly (CIA) strategy to generate covalently crosslinked nanofibers, which is applied for in situ constructing artificial shell on mitochondria. The oxidation-responsive peptide-porphyrin conjugate P1 is synthesized, which self-assemble into nanoparticles. Under the oxidative microenvironment of mitochondria, the coupling of thiols in P1 causes the formation of dimers, which is further ordered and stacked into crosslinked nanofibers. As a result, the artificial shell is constructed on the mitochondria efficiently through multivalent cooperative interactions due to the increased binding sites. Under ultrasound (US) irradiation, the porphyrin molecules in the shell produce a large amount of reactive oxygen species (ROS) that act on the adjacent mitochondrial membrane, exhibiting ~2-fold higher antitumor activity than nanoparticles in vitro and in vivo. Therefore, the mitochondria-targeted CIA strategy provides a novel perspective on improved sonodynamic therapy (SDT) and shows potential applications in antitumor therapies.
Collapse
Affiliation(s)
- Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia-Qi Wang
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin, 150001, China
| | - Guang-Xu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ning-Bo Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying-Jin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying-Hua Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wen-Fu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
43
|
Bailey DM, Bain AR, Hoiland RL, Barak OF, Drvis I, Stacey BS, Iannetelli A, Davison GW, Dahl RH, Berg RMG, MacLeod DB, Dujic Z, Ainslie PN. Severe hypoxaemic hypercapnia compounds cerebral oxidative-nitrosative stress during extreme apnoea: Implications for cerebral bioenergetic function. J Physiol 2024; 602:5659-5684. [PMID: 38348606 DOI: 10.1113/jp285555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/16/2024] [Indexed: 11/01/2024] Open
Abstract
We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, ON, Canada
| | - Ryan L Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Otto F Barak
- Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
- Department of Sports Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Gareth W Davison
- Department of Exercise Biochemistry and Physiology, Sport and Exercise Science Research Institute, Ulster University Belfast, United Kingdom of Great Britain and Northern Ireland, Ulster, UK
| | - Rasmus H Dahl
- Department of Radiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ronan M G Berg
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
| | - Philip N Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
- School of Health and Exercise Sciences, Faculty of Health and Social Development, Center for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
44
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
45
|
Yin Y, Li Y, Ma B, Ren C, Zhao S, Li J, Gong Y, Yang H, Li J. Mitochondrial-Derived Peptide MOTS-c Suppresses Ovarian Cancer Progression by Attenuating USP7-Mediated LARS1 Deubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405620. [PMID: 39321430 DOI: 10.1002/advs.202405620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Mitochondrial-nuclear communication plays a vital role in maintaining cellular homeostasis. MOTS-c, a short peptide derived from the 12S rRNA of mitochondrial DNA, has been suggested as a retrograde mitochondrial signal. Although recent clinical studies have suggested a possible link between MOTS-c and human cancer, the role of MOTS-c in tumorigenesis has yet to be investigated. Here, MOTS-c levels are found to be reduced in both serum and tumor tissues from ovarian cancer (OC) patients, which are associated with poor patients' prognosis. Exogenous MOTS-c inhibits the proliferation, migration and invasion of OC cells, and induces cell cycle arrest and apoptosis. Mechanistically, MOTS-c interacts with LARS1 and promotes its ubiquitination and proteasomal degradation. In addition, USP7 was identified as a deubiquitinase of LARS1, and MOTS-c can attenuates USP7-mediated LARS1 deubiquitination by competing with USP7 for binding to LARS1. Besides, LARS1 was found to be increased and play an important oncogenic function in OC. More importantly, MOTS-c displays a marked anti-tumor effect on OC growth without systemic toxicity in vivo. In conclusion, this study reveals a crucial role of MOTS-c in OC and provides a possibility for MOTS-c as a therapeutic target for the treatment of this manlignacy.
Collapse
Affiliation(s)
- Yadong Yin
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yujie Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Boyi Ma
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Chenlu Ren
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shuhua Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jia Li
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yun Gong
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jibin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, 710032, China
| |
Collapse
|
46
|
Hu FF, Pan SY, Chu JY, Liu JJ, Duan TT, Luo Y, Zhou W, Wang ZM, Liu W, Zeng Y. Xanthohumol Protects Against Neuronal Excitotoxicity and Mitochondrial Dysfunction in APP/PS1 Mice: An Omics-Based Study. Nutrients 2024; 16:3754. [PMID: 39519590 PMCID: PMC11548031 DOI: 10.3390/nu16213754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Neuronal excitotoxicity and metabolic decline, which begin in the early stages of Alzheimer's disease (AD), pose challenges for effective amelioration. Our previous work suggested that the natural compound xanthohumol, the most abundant prenylated flavonoid in hops, prevents memory deficits in APP/PS1 mice; however, the underlying mechanisms remain unclear. Methods: This study utilized APP/PS1 mice and cutting-edge omics techniques to investigate the effects of xanthohumol on hippocampal proteome, serum metabolome, and microbiome. Results: Our findings revealed that xanthohumol reduces the postsynaptic overexpression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, N-methyl-D-aspartate, and metabotropic glutamate receptors, but enhances ATP synthesis and mitophagy in the young AD hippocampus. Further mechanistic analyses suggested systemic regulatory effects, particularly on the decreasing glutamate synthesis in the blood and intestines of AD mice following xanthohumol administration. Conclusions: These results underscore the potential of xanthohumol in mitigating AD pathology through multifaceted mechanisms, sparking interest and curiosity in its preventive and therapeutic potential in AD.
Collapse
Affiliation(s)
- Fei-Fei Hu
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shi-Yao Pan
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jin-Yu Chu
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian-Jun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Ting-Ting Duan
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu Luo
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wen Zhou
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhi-Ming Wang
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Yan Zeng
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
47
|
Liu C, Cheng S, Zhou X, Li L, Wang C, Zhang L. Mitochondrial dynamics and energy metabolism interference therapy for promoting photothermal sensitization. J Colloid Interface Sci 2024; 680:429-440. [PMID: 39522238 DOI: 10.1016/j.jcis.2024.10.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.
Collapse
Affiliation(s)
- Cuimei Liu
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical and Materials Engineering, Bohai University, 19 Science and Technology Road, Jinzhou 121013, PR China
| | - Sihang Cheng
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical and Materials Engineering, Bohai University, 19 Science and Technology Road, Jinzhou 121013, PR China
| | - Xue Zhou
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Lu Li
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Chungang Wang
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Lingyu Zhang
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China.
| |
Collapse
|
48
|
Yuan Y, Li R, Zhang Y, Zhao Y, Liu Q, Wang J, Yan X, Su J. Attenuating mitochondrial dysfunction-derived reactive oxygen species and reducing inflammation: the potential of Daphnetin in the viral pneumonia crisis. Front Pharmacol 2024; 15:1477680. [PMID: 39494349 PMCID: PMC11527716 DOI: 10.3389/fphar.2024.1477680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Amidst the global burden of viral pneumonia, mitigating the excessive inflammatory response induced by viral pneumonia has emerged as a significant challenge. Pneumovirus infections can lead to the persistent activation of M1 macrophages, culminating in cytokine storms that exacerbate pulmonary inflammation and contribute to the development of pulmonary fibrosis. Mitochondria, beyond their role as cellular powerhouses, are pivotal in integrating inflammatory signals and regulating macrophage polarization. Mitochondrial damage in alveolar macrophages is postulated to trigger excessive release of reactive oxygen species (ROS), thereby amplifying macrophage-mediated inflammatory pathways. Recent investigations have highlighted the anti-inflammatory potential of Daphnetin, particularly in the context of cardiovascular and renal disorders. This review elucidates the mechanisms by which viral infection-induced mitochondrial damage promotes ROS generation, leading to the phenotypic shift of alveolar macrophages towards a pro-inflammatory state. Furthermore, we propose a mechanism whereby Daphnetin attenuates inflammatory signaling by inhibiting excessive release of mitochondrial ROS, thus offering mitochondrial protection. Daphnetin may represent a promising pharmacological intervention for viral pneumonia and could play a crucial role in addressing future pandemics.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Runyuan Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinji Zhang
- Jilin Province Xidian Pharmaceutical Sci-Tech Development Co.,Ltd, Panshi, Jilin, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
49
|
Gicquel T, Marchiano F, Reyes-Castellanos G, Audebert S, Camoin L, Habermann BH, Giannesini B, Carrier A. Integrative study of skeletal muscle mitochondrial dysfunction in a murine pancreatic cancer-induced cachexia model. eLife 2024; 13:RP93312. [PMID: 39422661 PMCID: PMC11488855 DOI: 10.7554/elife.93312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic cancer, is a deadly cancer, often diagnosed late and resistant to current therapies. PDAC patients are frequently affected by cachexia characterized by muscle mass and strength loss (sarcopenia) contributing to patient frailty and poor therapeutic response. This study assesses the mechanisms underlying mitochondrial remodeling in the cachectic skeletal muscle, through an integrative exploration combining functional, morphological, and omics-based evaluation of gastrocnemius muscle from KIC genetically engineered mice developing autochthonous pancreatic tumor and cachexia. Cachectic PDAC KIC mice exhibit severe sarcopenia with loss of muscle mass and strength associated with reduced muscle fiber's size and induction of protein degradation processes. Mitochondria in PDAC atrophied muscles show reduced respiratory capacities and structural alterations, associated with deregulation of oxidative phosphorylation and mitochondrial dynamics pathways. Beyond the metabolic pathways known to be altered in sarcopenic muscle (carbohydrates, proteins, and redox), lipid and nucleic acid metabolisms are also affected. Although the number of mitochondria per cell is not altered, mitochondrial mass shows a twofold decrease and the mitochondrial DNA threefold, suggesting a defect in mitochondrial genome homeostasis. In conclusion, this work provides a framework to guide toward the most relevant targets in the clinic to limit PDAC-induced cachexia.
Collapse
Affiliation(s)
- Tristan Gicquel
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| | | | - Gabriela Reyes-Castellanos
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| | - Stephane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
| | | | | | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| |
Collapse
|
50
|
Walter ERH, Leung PKK, Lee LCC, Lo KKW, Long NJ. Potent BODIPY-based photosensitisers for selective mitochondrial dysfunction and effective photodynamic therapy. J Mater Chem B 2024; 12:10409-10415. [PMID: 39297339 DOI: 10.1039/d4tb01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The development of new and improved mitochondria-targeting photosensitisers (PSs) for photodynamic therapy (PDT) remains highly desirable, due to the critical role the mitochondria play in maintaining healthy cellular function. Here, we report the design, synthesis, photophysical properties and biological characterisation of a series of di-iodinated BODIPY-based PSs, BODIPY-Mito-I-n, for mitochondria-targeted PDT applications. Six BODIPY-Mito-I-n analogues were synthesised in good yields, with fast reaction times of between 30 and 60 min under mild conditions. The di-iodination of the BODIPY scaffold enabled highly efficient population of the triplet state, leading to high singlet oxygen (1O2) photosensitisation efficiencies (ΦΔ = 0.55-0.65). All BODIPY-Mito-I-n compounds exhibited very high photocytotoxic activity towards HeLa cells, with IC50,light values of between 1.30 and 6.93 nM, due to photoinduced 1O2 generation. Notably, the poly(ethylene glycol) (PEG)-modified BODIPY-Mito-I-6 showed remarkably lower dark cytotoxicity (IC50,dark = 6.68-7.25 μM) than the non-PEGylated analogues BODIPY-Mito-I-1 to BODIPY-Mito-I-5 (IC50,dark = 0.58-1.09 μM), resulting in photocytotoxicity indices up to 2120. Mechanistic studies revealed that BODIPY-Mito-I-6 induced reactive oxygen species overproduction and mitochondrial dysfunction in cells upon irradiation, leading to significant cell death through a combination of apoptosis and necrosis. It is anticipated that our design will contribute to the development of more effective mitochondria-targeting PSs for cancer therapy.
Collapse
Affiliation(s)
- Edward R H Walter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Lawrence Cho-Cheung Lee
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
- State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK.
| |
Collapse
|