1
|
Floor E, Su J, Chatterjee M, Kuipers ES, IJssennagger N, Heidari F, Giordano L, Wubbolts RW, Mihăilă SM, Stapels DAC, Vercoulen Y, Strijbis K. Development of a Caco-2-based intestinal mucosal model to study intestinal barrier properties and bacteria-mucus interactions. Gut Microbes 2025; 17:2434685. [PMID: 39714032 DOI: 10.1080/19490976.2024.2434685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for in vitro assays, particularly the generation of a mucus layer, has proven to be challenging. The intestinal cell-line Caco-2 is widely used in academic and industrial laboratories due to its capacity to polarize, form an apical brush border, and reproducibly grow into confluent cell layers in different culture systems. However, under normal culture conditions, Caco-2 cultures lack a mucus layer. Here, we demonstrate for the first time that Caco-2 cultures can form a robust mucus layer when cultured under air-liquid interface (ALI) conditions on Transwell inserts with addition of vasointestinal peptide (VIP) in the basolateral compartment. We demonstrate that unique gene clusters are regulated in response to ALI and VIP single stimuli, but the ALI-VIP combination treatment resulted in a significant upregulation of multiple mucin genes and proteins, including secreted MUC2 and transmembrane mucins MUC13 and MUC17. Expression of tight junction proteins was significantly altered in the ALI-VIP condition, leading to increased permeability to small molecules. Commensal Lactiplantibacillus plantarum bacteria closely associated with the Caco-2 mucus layer and differentially colonized the surface of the ALI cultures. Pathogenic Salmonella enterica were capable of invading beyond the mucus layer and brush border. In conclusion, Caco-2 ALI-VIP cultures provide an accessible and straightforward way to culture an in vitro intestinal mucosal model with improved biomimetic features. This novel in vitro intestinal model can facilitate studies into mucus and epithelial barrier functions and in-depth molecular characterization of pathogenic and commensal microbe-mucus interactions.
Collapse
Affiliation(s)
- Evelien Floor
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jinyi Su
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maitrayee Chatterjee
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- The TIM Company, Delft, the Netherlands
| | - Elise S Kuipers
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Noortje IJssennagger
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Danone Research and Innovation Center, Utrecht, The Netherlands
| | - Faranak Heidari
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Laura Giordano
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Richard W Wubbolts
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Silvia M Mihăilă
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daphne A C Stapels
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Vercoulen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Wu H, Chen J, Guo S, Deng J, Zhou Z, Zhang X, Qi T, Yu F, Yang Q. Advances in the acting mechanism and treatment of gut microbiota in metabolic dysfunction-associated steatotic liver disease. Gut Microbes 2025; 17:2500099. [PMID: 40394806 PMCID: PMC12101596 DOI: 10.1080/19490976.2025.2500099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease(MASLD) is increasing in prevalence worldwide and has become the greatest potential risk for cirrhosis and hepatocellular liver cancer. Currently, the role of gut microbiota in the development of MASLD has become a research hotspot. The development of MASLD can affect the homeostasis of gut microbiota, and significant changes in the composition or abundance of gut microbiota and its metabolite abnormalities can influence disease progression. The regulation of gut microbiota is an important strategy and novel target for the treatment of MASLD with good prospects. In this paper, we summarize the role of gut microbiota and its metabolites in the pathogenesis of MASLD, and describe the potential preventive and therapeutic efficacy of gut microbiota as a noninvasive marker to regulate the pathogenesis of MASLD based on the "gut-hepatic axis", which will provide new therapeutic ideas for the clinic.
Collapse
Affiliation(s)
- Huaying Wu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Jingjing Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Shuyuan Guo
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jinhao Deng
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Zimeng Zhou
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Xuan Zhang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - TianTian Qi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Spine Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qi Yang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Chen LR, Zhou SS, Yang JX, Liu XQ. Effect of hypoxia on the mucus system and intragastric microecology in the gastrointestinal tract. Microb Pathog 2025; 205:107615. [PMID: 40355054 DOI: 10.1016/j.micpath.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Digestive diseases have a high incidence worldwide, with various geographic, age, and gender factors influencing the occurrence and development of the diseases. The main etiologic factors involve genetics, environment, lifestyle, and dietary habits. In a low-oxygen environment, however, the body's tissue cells activate hypoxia-inducible factor (HIF), which produces different inflammatory mediators. Hypoxia impacts health at the molecular level by modulating cellular stress responses, metabolic pathways, and immune functions. It also alters gene expression and cellular behavior, thereby affecting gastrointestinal function. Under normal physiological conditions, the gastrointestinal mucus system serves as a crucial protective barrier, defending against mechanical injury, pathogenic invasion, and exposure to harmful chemicals. The integrity and functionality of this barrier are dependent on the synthesis and regulation of mucins and mucus, which are influenced by multiple factors. Additionally, the composition and diversity of the gastric microbiota are shaped by factors such as Helicobacter pylori infection, diet, and lifestyle. A balanced gastric microbiota supports gastrointestinal health and fortifies the mucus barrier. However, hypoxia can disrupt this equilibrium, leading to inflammation, alterations in the mucus layer, and destabilization of the gastric microbiota. Understanding the interplay between hypoxia, the mucus system, and the gastric microbiota is essential for identifying novel therapeutic strategies. Future research should elucidate the mechanisms through which hypoxia influences these systems and develop interventions to mitigate its adverse effects on gastrointestinal health. We examined the impact of hypoxia on the gastrointestinal mucus system and gastric microbiota, highlighting its implications for human health and potential therapeutic approaches.
Collapse
Affiliation(s)
- Li Rong Chen
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Si Si Zhou
- Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China; Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, 810001, PR China; Qinghai Provincial Clinical Medical Research Center for Digestive Diseases, Xining, 810001, PR China.
| | - Ji Xiang Yang
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Xiao Qian Liu
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| |
Collapse
|
4
|
Liu Z, Zhang H, Wang J, Yao Y, Wang X, Liu Y, Fang W, Liu X, Zheng Y. Clca1 deficiency exacerbates colitis susceptibility via impairment of mucus barrier integrity and gut microbiota homeostasis. Microbiol Res 2025; 297:128191. [PMID: 40300372 DOI: 10.1016/j.micres.2025.128191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
The intestinal mucus barrier has emerged as a promising therapeutic target for inflammatory bowel disease. Understanding its regulatory mechanisms is critical for elucidating ulcerative colitis (UC) pathogenesis, improving diagnostics, guiding treatments, and preventing relapse. Chloride Channel Accessory 1 (Clca1), a constituent of the mucus layer, remains understudied in colitis. Here, we investigated Clca1's role in mucosal immunity and intestinal homeostasis using experimental colitis models. Clca1-deficient (Clca1-/-) mice displayed compromised mucus layer integrity, reduced neutrophil infiltration, and gut microbiota dysbiosis. Notably, Clca1-/- mice exhibited exacerbated colitis severity following dextran sulfate sodium (DSS) challenge, accompanied by a diminished goblet cell populations. Fecal microbiota transplantation (FMT) studies revealed that gut microbiota critically modulates divergent phenotypic outcomes between genotypes. Our findings establish Clca1 as a multifunctional regulator of mucus barrier integrity through mechanisms involving goblet cell maintenance, neutrophil-mediated immunity, and host-microbiota crosstalk. These results advance the understanding of UC pathogenesis and identify Clca1-associated pathways as potential targets for barrier restoration therapies.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hong Zhang
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jingjing Wang
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yutong Yao
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyi Wang
- Core Facility Center, The First Afliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xingyin Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
5
|
Engle EM, Yang S, Boboltz A, Kumar S, Stern A, Duncan GA. Microrheology of gel-forming airway mucins isolated from porcine trachea. SOFT MATTER 2025; 21:4999-5004. [PMID: 40495797 PMCID: PMC12152714 DOI: 10.1039/d4sm01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 06/01/2025] [Indexed: 06/28/2025]
Abstract
Mucus produced in the lungs has important protective barrier functions that strongly depend on its biomolecular composition, biopolymer network architecture, and viscoelastic properties. However, to date, there has yet to be a readily available source of reconstituted, gel-forming mucins from the lungs to model and study its biophysical properties. To address this, we established an in-house procedure to extract airway mucins from pig trachea with minimal DNA contamination consisting of ∼70% by weight protein. Particle tracking microrheology was used to evaluate the biophysical properties of porcine trachea mucins for comparison to other reconstituted mucin and native mucus gels. At an ionic strength and pH reflective of conditions in the lungs, we found that porcine tracheal mucins formed a tighter mesh network and possessed a significantly greater microviscosity compared to mucins extracted from the porcine small intestine. In comparison to mucus harvested from human airway tissue cultures, we found that porcine tracheal mucins also possessed a greater microviscosity, suggesting that these mucins can form into a gel at physiological total solid concentrations.
Collapse
Affiliation(s)
- Elizabeth M Engle
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
- Molecular and Cellular Biology Program, University of Maryland, College Park, Maryland 20742, USA
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
| | - Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
| | - Sahana Kumar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
- Molecular and Cellular Biology Program, University of Maryland, College Park, Maryland 20742, USA
| | - Alexa Stern
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
- Molecular and Cellular Biology Program, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
6
|
Veloso Soares SP, Jarquín-Díaz VH, Veiga MM, Karl S, Czirják GÁ, Weyrich A, Metzger S, East ML, Hofer H, Heitlinger E, Benhaiem S, Ferreira SCM. Mucosal immune responses and intestinal microbiome associations in wild spotted hyenas (Crocuta crocuta). Commun Biol 2025; 8:924. [PMID: 40514454 PMCID: PMC12166089 DOI: 10.1038/s42003-025-08243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 05/16/2025] [Indexed: 06/16/2025] Open
Abstract
Little is known about host-gut microbiome interactions within natural populations at the intestinal mucosa, the primary interface. We investigate associations between the intestinal microbiome and mucosal immune measures while controlling for host, social and ecological factors in 199 samples of 158 wild spotted hyenas (Crocuta crocuta) in the Serengeti National Park, Tanzania. We profile the microbiome composition using a multi-amplicon approach and measure faecal immunoglobulin A and mucin. Probabilistic models indicate that both immune measures predicted microbiome similarity among individuals in an age-dependent manner. These associations are the strongest within bacteria, intermediate within parasites, and weakest within fungi communities. Machine learning models accurately predicted both immune measures and identify the taxa driving these associations: symbiotic bacteria reported in humans and laboratory mice, unclassified bacteria, parasitic hookworms and fungi. These findings improve our understanding of the gut microbiome, its drivers, and interactions in wild populations under natural selection.
Collapse
Affiliation(s)
- Susana P Veloso Soares
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany.
- Department of Wildlife Diseases, IZW, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany.
| | - Victor H Jarquín-Díaz
- Institute for Biology, Department of Molecular Parasitology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, IZW, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Miguel M Veiga
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
- Department of Wildlife Diseases, IZW, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| | - Stephan Karl
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| | - Gábor Á Czirják
- Department of Wildlife Diseases, IZW, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| | - Alexandra Weyrich
- Department of Evolutionary Genetics, IZW, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Sonja Metzger
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| | - Heribert Hofer
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| | - Emanuel Heitlinger
- Institute for Biology, Department of Molecular Parasitology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, IZW, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany.
| | - Susana C M Ferreira
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| |
Collapse
|
7
|
Kallumkal G, Barnes EL. Optimal Approaches to Treating and Preventing Acute and Chronic Pouchitis by Altering Microbial Profiles. Gastroenterol Clin North Am 2025; 54:469-483. [PMID: 40348499 PMCID: PMC12066834 DOI: 10.1016/j.gtc.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Pouchitis is the most common complication after restorative proctocolectomy with ileal pouch-anal anastomosis for ulcerative colitis. The authors review the role of the microbiota in both the pathogenesis of pouchitis, primarily via dysbiosis, as well as the resultant treatment strategies focused on correcting dysbiosis among patients with pouchitis. These include the role of antibiotics, probiotics, and potentially metabolomics in both treatment and risk stratification.
Collapse
Affiliation(s)
- Govind Kallumkal
- Internist, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Edward L. Barnes
- Associate Professor, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Multidisciplinary Center for Inflammatory Bowel Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
8
|
McIntire-Ray HJ, Rose ES, Krick S, Barnes JW. Simple and accessible methods for quantifying isolated mucins for further evaluation. MethodsX 2025; 14:103267. [PMID: 40207064 PMCID: PMC11981757 DOI: 10.1016/j.mex.2025.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In this study, we present a detailed workflow for the isolation, quantitation, and evaluation of mucin proteins. These methods are applicable to a variety of biological, mucin-containing samples from the airways and other mucosal organ systems. While this report focuses on the salivary MUC5B protein from the respiratory system, the presented methodologies can be applied to other mucins, contributing to a broader application of these techniques. We used a simplified isopycnic centrifugation to purify and enrich MUC5B from human saliva. Isolated MUC5B was then subjected to a Bradford protein assay using a bovine submaxillary mucin (BSM) standard, which more accurately reflects the mucin concentration in our samples compared to a bovine serum albumin (BSA) standard. Additionally, we compare the mucin levels following quantitation using agarose polyacrylamide gel electrophoresis. Our findings show a near 2-fold increase in quantitation from the more representative, BSM standard, suggesting its importance for mucin studies. These methods support a wide range of experimental applications looking to assess mucins, thereby contributing to the broader field of mucin studies and advancing our understanding of the implications of mucins in health and disease.•A streamlined, one-step isopycnic ultracentrifugation to isolate MUC5B from human saliva•A Mucin Bradford assay that is modified from existing Bradford assay techniques to better quantitate mucin for mucin studies•An agarose-polyacrylamide gel electrophoresis method used to visualize and confirm the isolation and quantitation of mucin.
Collapse
Affiliation(s)
- Hannah J. McIntire-Ray
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elex S. Rose
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod W. Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Quan T, Li R, Chen Y, Gao T. Regulatory Mechanism of Intestinal Stem Cells Based on Hippo Pathway and Signaling Crosstalk in Chicken. Int J Mol Sci 2025; 26:5067. [PMID: 40507877 PMCID: PMC12155279 DOI: 10.3390/ijms26115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/16/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Recently, there has been a gradual increase in the demand for chicken and eggs. The gut, as the vital place of nutrient digestion and absorption, is highly associated with the development of livestock and poultry and the quality of meat, eggs, and milk. Intestinal stem cells, as an important source of intestinal cell proliferation and renewal, exert a vital effect on repairing injured intestinal epithelial cells and keeping homeostasis. Intestinal stem cell-regulated intestinal epithelial balance is closely controlled and modulated by interlinked developmental loops that maintain cell proliferation and differentiation processes in balance. Some conservative signaling pathways, including the Wnt, Notch, hedgehog, and bone morphogenetic protein (BMP) loops, have been proved to modulate intestinal health in poultry. Meanwhile, studies have revealed the importance of the Hippo pathway in gastrointestinal tract physiology by regulating intestinal stem cells. Moreover, crosstalk between Hippo and other signaling pathways provides tight, yet versatile, regulation of tissue homeostasis. In this review, we summarize studies on the role of the Hippo pathway in the intestine in these physiological processes and the underlying mechanisms responsible via interacting with these signaling pathways and discuss future research directions and potential therapeutic strategies targeting Hippo signaling in intestinal disease. A comprehensive understanding of how these signaling pathways regulate stem cell proliferation, differentiation, and self-renewal will help to understand the regulation of intestinal homeostasis. In addition, it has the capacity for creative ways to govern intestinal damage, enteritis, and associated disorders induced by different factors.
Collapse
Affiliation(s)
| | | | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.); (Y.C.)
| |
Collapse
|
10
|
Cheng HS, Tey YH, Hu SY, Yeo AYN, Ngo ZH, Kim JHS, Tan NS. Advancements and Challenges in Modeling Mechanobiology in Intestinal Host-Microbiota Interaction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40382722 DOI: 10.1021/acsami.4c20961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The gastrointestinal tract is a dynamic biomechanical environment where physical forces, cellular processes, and microbial interactions converge to shape the gut health and disease. In this review, we examine the unique mechanical properties of the gut, including peristalsis, viscoelasticity, shear stress, and tissue stiffness, and their roles in modulating host mechanosignaling and microbial behavior under physiological and pathological conditions. We discuss how these mechanical forces regulate gut epithelial integrity, immune responses, and microbial colonization, leading to distinct ecological niches across different intestinal segments. Furthermore, we highlight recent advancements in 3D culture systems and gut-on-a-chip models that accurately recapitulate the complex interplay between biomechanics and gut microbiota. By elucidating the intricate relationship between mechanobiology and gut function, this review underscores the potential for mechanotherapeutic strategies to modulate host-microbe interactions, offering promising avenues for the prevention and treatment of disorders such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Yee Han Tey
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Si Yuan Hu
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Alethea Yen Ning Yeo
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Zong Heng Ngo
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Joseph Han Sol Kim
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| |
Collapse
|
11
|
Jiang M, Incarnato D, Modderman R, Lazaro AA, Jonkers IH, Bianchi F, van den Bogaart G. Low butyrate concentrations exert anti-inflammatory and high concentrations exert pro-inflammatory effects on macrophages. J Nutr Biochem 2025:109962. [PMID: 40381959 DOI: 10.1016/j.jnutbio.2025.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Butyrate is a four-carbon short-chain fatty acid produced from microbial fermentation of dietary fibers present at high millimolar concentrations in the colonic lumen. However, in an intact epithelium, macrophages residing in the lamina propria are exposed to only micromolar butyrate concentrations. Current studies show anti-inflammatory properties of butyrate and suggest that it might have therapeutic applications in inflammatory bowel disease and colonic cancer. We now show that the effect of butyrate on human macrophages is strongly concentration dependent: 0.1 mM butyrate suppresses LPS-induced production of the pro-inflammatory cytokine tumor necrosis factor (TNF)-α. Experiments with siRNA knockdown and small molecule inhibitors suggest that this is mediated by a mechanism involving PPAR-γ signaling, whereas we observed no or only a minor effect of histone acetylation. In contrast, 10 mM butyrate promotes macrophage cell death, does not inhibit LPS-induced production of TNF-α, and promotes production of IL-1β, while production of anti-inflammatory IL-10 is reduced in a mechanism involving G protein-coupled receptors, the lipid transporter CD36, and the kinase SRC. We propose that butyrate is a signaling molecule for intestinal integrity, since intestinal disruption exposes macrophages to high butyrate concentrations.
Collapse
Affiliation(s)
- Muwei Jiang
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Rutger Modderman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aina Altimira Lazaro
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Wang Z, Zhang Z, He C, Wang Q. Advances in the application of hydrogel adhesives for wound closure and repair in abdominal digestive organs. Biomater Sci 2025; 13:2606-2627. [PMID: 40208243 DOI: 10.1039/d5bm00093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The abdominal cavity houses the majority of the digestive system organs, which frequently suffer from diseases with limited responsiveness to pharmacological treatments, such as bleeding, perforation, cancer, and mechanical obstruction. Invasive procedures, including endoscopy and surgery, are typically employed to manage these conditions. Currently, sutures and staplers remain the gold standard for internal wound closure. However, these methods inevitably cause secondary tissue damage. Unlike superficial organs such as the skin, the abdominal cavity presents a relatively confined environment where postoperative complications tend to be more severe. To achieve wound closure and repair, hydrogel adhesives have garnered attention due to their minimal invasiveness, robust sealing, and ease of application. Nonetheless, the application of hydrogel adhesives within the abdominal cavity faces several challenges, including adhesion in moist environments, selective adhesion, and resistance to acids and digestive enzymes. To date, there has been no comprehensive review focused on the use of hydrogel adhesives for wound closure in abdominal digestive organs. This review introduces the design principles of hydrogel adhesives tailored for abdominal organs and provides a detailed overview of recent advances in their applications for esophageal endoscopic submucosal dissection, gastric perforation, hepatic bleeding, pancreatic leakage, and intestinal anastomotic leakage. Additionally, the current challenges and future directions of hydrogel adhesives are discussed. This review aims to provide valuable insights for the development of next-generation hydrogel adhesives for wound closure and repair in abdominal digestive organs.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
Liu H, Li S, Yu X, Xu Q, Tang C, Yin C. Modulating the Protein Corona on Nanoparticles by Finely Tuning Cross-Linkers Improves Macrophage Targeting in Oral Small Interfering RNA Delivery. ACS NANO 2025; 19:16469-16487. [PMID: 40275505 DOI: 10.1021/acsnano.4c18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The protein corona (PC) plays an important role in regulating the in vivo fate of nanoparticles (NPs). Modulating the surface chemical properties of NPs to control PC formation provides an alternative impetus for the oral delivery of small interfering RNA (siRNA). Herein, using tripolyphosphate (TPP), hyaluronic acid, and poly-γ-glutamic acid as cross-linkers, three types of mannose-modified trimethyl chitosan-cysteine (MTC)-based NPs with distinct surface chemistries were prepared to encapsulate siRNA via ionic gelation. The MTC-based NPs that were cross-linked exclusively with TPP (MTC/TPP/siRNA NPs) exhibited greater thiol group accessibility on their surfaces, resulting in a stronger affinity for apolipoprotein (APO) B48 during translocation across intestinal epithelia. Moreover, intracellular transport of MTC/TPP/siRNA NPs via the endoplasmic reticulum and Golgi apparatus further increased adsorption of APOB48, a key component of chylomicrons, which follow a similar transport pathway. Benefiting from the elevated APOB48 levels within the PC, the orally delivered MTC/TPP/siRNA NPs showed higher uptake by hepatic macrophages and better therapeutic efficacy for acute liver injury. Our results elucidate the role of NP surface chemical characteristics and translocation mechanisms across intestinal epithelia in forming oral PC, providing valuable insights for designing NPs that achieve effective oral gene delivery by customizing PC formation in vivo.
Collapse
Affiliation(s)
- Hengqing Liu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shengqi Li
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin Yu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Xu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Yang H, Xia R, Teame T, Meng D, Li S, Wang T, Ding Q, Yao Y, Xu X, Yang Y, Ran C, Zhang Y, Li S, Niemann B, Guan LL, Zhang Z, Zhou Z. Activation of Gut Microbiota-HIF1α Axis Effectively Restores Resistance to Aeromonas veronii Caused by Improper Administration of AiiO-AIO6. J Nutr 2025; 155:1429-1441. [PMID: 40064423 DOI: 10.1016/j.tjnut.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Feeding adult zebrafish a diet supplemented with quenching enzyme AiiO-AIO6 (AIO6) for 3 wk improved the growth performance and disease resistance. However, when the feeding period was extended to 8 wk, zebrafish's disease resistance to Aeromonas veronii decreased. OBJECTIVES We investigated the mechanisms of the reduced disease resistance of zebrafish induced by feeding on an AIO6 supplemented diet for a long term (8 wk) and assessed the effectiveness of feed additives in restoring the low disease resistance. METHODS One-month-old (adult) zebrafish were fed with a basal diet and the basal diet supplemented with AIO6 (10 U/g) for 8 wk (experiment 1). Furthermore, the zebrafish larvae model (experiment 2) was developed and used to study the mechanisms of how AIO6 affected disease resistance (experiment 3). We also investigated the effectiveness of selected prebiotic tributyrin, β-glucan or mannan in activating gut microbiota- HIF1α to restore the low disease resistance of adult zebrafish fed with AIO6 for 8 wk (experiment 4). Lastly, the effects of Bacillus subtilis in activating the gut microbiota-HIF1α and improving the low disease resistance of zebrafish larvae induced by AIO6 were examined (experiment 5). RESULTS Feeding adult zebrafish with AIO6 for 8 wk promoted growth but disordered the gut microbiota and reduced disease resistance. The zebrafish larvae model confirmed that feeding AIO6 for 2 d increased disease resistance, whereas 7 d decreased the resistance by suppressing HIF1α. Using a germ-free zebrafish larvae model, we also demonstrated that AIO6-induced gut microbiota mediated inhibition of HIF1α. Furthermore, zebrafish fed on the AIO6-containing diet supplement with tributyrin, β-glucan, mannan, or Bacillus subtilis activated the gut microbiota-HIF1α axis to reverse the low resistance caused by AIO6. CONCLUSIONS Activating the gut microbiota-HIF1α axis has a vital role in improving intestinal health and restores the low resistance to Aeromonas veronii caused by improper administration of dietary AIO6 in zebrafish.
Collapse
Affiliation(s)
- Hongwei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Marine Sciences, Shantou University, Shantou, China
| | - Rui Xia
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China
| | - Tsegay Teame
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Aquaculture and Fisheries, Tigray Agricultural Research Institute (TARI), Mekelle, Tigray, Ethiopia
| | - Delong Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shenghui Li
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiantian Wang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqing Zhang
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Shengkang Li
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Benjamin Niemann
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada.
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
Lin W, Ruishi X, Caijiao X, Haoming L, Xuefeng H, Jiyou Y, Minqiang L, Shuo Z, Ming Z, Dongyang L, Xiaoxue F. Potential applications and mechanisms of natural products in mucosal-related diseases. Front Immunol 2025; 16:1594224. [PMID: 40370438 PMCID: PMC12075308 DOI: 10.3389/fimmu.2025.1594224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
The mucosal barrier serves as a crucial defense against external pathogens and allergens, being widely distributed across the respiratory, gastrointestinal, urogenital tracts, and oral cavity. Its disruption can lead to various diseases, including inflammatory bowel disease, asthma, urinary tract infections, and oral inflammation. Current mainstream treatments for mucosa-associated diseases primarily involve glucocorticoids and immunosuppressants, but their long-term use may cause adverse effects. Therefore, the development of safer and more effective therapeutic strategies has become a focus of research. Natural products, with their multi-target and multi-system regulatory advantages, offer a promising avenue for the treatment of mucosal diseases. This review summarizes the potential applications of natural products in diseases of mucosal barrier dysfunction through mechanisms such as immune modulation, inflammation inhibition, tight junction protein restoration, and gut microbiota regulation, with the aim of providing insights for the exploration of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wang Lin
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xie Ruishi
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xu Caijiao
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Luo Haoming
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hua Xuefeng
- The First People’s Hospital of Guangzhou, Department of Hepatobiliary and Pancreatic Surgery, Guangzhou, China
| | - Yao Jiyou
- The First People’s Hospital of Guangzhou, Department of Hepatobiliary and Pancreatic Surgery, Guangzhou, China
| | - Lu Minqiang
- The First People’s Hospital of Guangzhou, Department of Hepatobiliary and Pancreatic Surgery, Guangzhou, China
| | - Zhou Shuo
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhu Ming
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Dongyang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Fang Xiaoxue
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Graziosi A, Senatore M, Gazzaniga G, Agliardi S, Pani A, Scaglione F. Ketoprofen Lysine Salt vs. Ketoprofen Acid: Assessing the Evidence for Enhanced Safety and Efficacy. Life (Basel) 2025; 15:659. [PMID: 40283213 PMCID: PMC12028567 DOI: 10.3390/life15040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Endoscopic investigations reveal that a significant majority of individuals taking NSAIDs exhibit acute hemorrhages and mucosal erosions within the gastroduodenal lining. Ketoprofen acid (KA) is a potent NSAID with established efficacy and cardiovascular tolerability, but its gastric tolerability is a recognized limitation. To mitigate this, ketoprofen lysine salt (KLS) was developed. This review evaluates the pharmacological advantages of KLS over KA. While both KA and KLS maintain similar potency, KLS offers distinct advantages. Firstly, KLS demonstrates superior gastrointestinal protection through enhanced antioxidant properties and upregulation of mucosal defenses, as evidenced by both in vitro and in vivo studies. Secondly, KLS exhibits significantly faster absorption, leading to a more rapid onset of analgesic effects; this is attributed to its increased solubility and faster achievement of therapeutic concentrations. In essence, KLS addresses the gastric tolerability issues of KA while providing a quicker onset of action, making it a valuable alternative for patients requiring NSAID therapy, particularly those with gastric sensitivities or in need of rapid pain relief.
Collapse
Affiliation(s)
- Agnese Graziosi
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Michele Senatore
- Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Gianluca Gazzaniga
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefano Agliardi
- Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Arianna Pani
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Francesco Scaglione
- Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
- Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| |
Collapse
|
17
|
Ndeh DA, Nakjang S, Kwiatkowski KJ, Sawyers C, Koropatkin NM, Hirt RP, Bolam DN. A Bacteroides thetaiotaomicron genetic locus encodes activities consistent with mucin O-glycoprotein processing and N-acetylgalactosamine metabolism. Nat Commun 2025; 16:3485. [PMID: 40216766 PMCID: PMC11992087 DOI: 10.1038/s41467-025-58660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The gut microbiota is a key modulator of human health and the status of major diseases including cancer, diabetes and inflammatory bowel disease. Central to microbiota survival is the ability to metabolise complex dietary and host-derived glycans, including intestinal mucins. The prominent human gut microbe Bacteroides thetaiotaomicron (B. theta) is a versatile and highly efficient complex glycan degrader thanks to the expansion of gene clusters termed polysaccharide utilisation loci (PULs). While the mechanism of action for several singular dietary glycan-induced PULs have been elucidated, studies on the unusually high number of mucin-inducible PULs in B. theta significantly lag behind. Here we show that a mucin inducible PUL BT4240-50 encodes activities consistent with the processing and metabolism of mucin O-glycoproteins and their core sugar N-acetylgalactosamine (GalNAc). PUL BT4240-50 was also shown to be important for competitive growth on mucins in vitro, encoding a kinase (BT4240) critical for GalNAc metabolism. Additionally, BT4240-kinase was shown to be essential for glycosaminoglycan metabolism, extending the PULs function beyond mucins. These data advance our understanding of glycoprotein metabolism at mucosal surfaces, highlighting GalNAc as a key metabolite for competitive microbial survival in the human gut.
Collapse
Affiliation(s)
- Didier A Ndeh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Sirintra Nakjang
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Kurt J Kwiatkowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claire Sawyers
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Hirt
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - David N Bolam
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
18
|
Li X, Chen Y, Lan R, Liu P, Xiong K, Teng H, Tao L, Yu S, Han G. Transmembrane mucins in lung adenocarcinoma: understanding of current molecular mechanisms and clinical applications. Cell Death Discov 2025; 11:163. [PMID: 40210618 PMCID: PMC11985918 DOI: 10.1038/s41420-025-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
The mucin family is a group of highly glycosylated macromolecules widely present in human epithelial cells and with subtypes of secreted and membrane-associated forms. The membrane-associated mucins, known as transmembrane mucins, are not only involved in the formation of mucus barrier but also regulate cell signal transduction in physiological and pathological status. Transmembrane mucins could contribute to lung adenocarcinoma (LUAD) proliferation, apoptosis, angiogenesis, invasion, and metastasis, and remodel the immune microenvironment involved in immune escape. Furthermore, transmembrane mucins have been explored as potential LUAD indicators for diagnosis and prognosis. The development of targeted therapy and immunotherapeutic drugs targeting transmembrane mucins has also provided broad application prospects for clinic. In the following review, we summarize the characteristic structures of diverse transmembrane mucins, regulatory roles in promoting the progression of LUAD, and the current situation of diagnosis, prognosis, and therapeutic strategies based on transmembrane mucins.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Chen
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Lan
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Statistic, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Hetai Teng
- Department of General Surgery, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Lili Tao
- Department of Pathology, Peking University, Shenzhen Hospital, Shenzhen, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Mental Hospital, Harbin, China.
| | - Guiping Han
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
19
|
Wang Z, Zhang L, Wei J, Hao H, Hamid SM, Gao S, Li W, Nie Z. Morphological and Histological Analysis of the Gastrointestinal Systems in Triplophysa strauchii and Triplophysa tenuis: Insights into Digestive Adaptations. Animals (Basel) 2025; 15:1095. [PMID: 40281929 PMCID: PMC12024309 DOI: 10.3390/ani15081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Fish are vital for material cycling and energy flow in aquatic ecosystems. The genus Triplophysa, with over 100 known species, is significant in the Central Asian highlands' freshwater ecosystems. T. strauchii and T. tenuis, as representatives, occupy distinct ecological niches and face challenges from climate change and human activities. There is a lack of research on Triplophysa fishes' digestive systems, especially comparative studies, so this research aims to fill this gap. In September 2024, 40 samples of T. strauchii were collected from Sayram Lake and 40 samples of T. tenuis were collected from the Muzat River in Xinjiang. After acclimation, morphological observations (measuring fish and digestive tract parameters) and histological analyses (paraffin sectioning, HE staining, and microscopy) were carried out. The data were sorted in Excel and analyzed with an independent samples t-test in SPSS 27.0. Morphologically, T. strauchii has an obtuse snout, terminal mouth, specific upper lip papillae, and an S-shaped intestine about (1.45 ± 0.11) times its body length, while T. tenuis has an arc-shaped subterminal mouth, fringed papillae, and a spiral-shaped intestine around (0.82 ± 0.09) times its body length. Both possess a digestive tract, glands, and a hepatopancreas attached to the mesentery. Histologically, a large number of club cells were found in the oropharyngeal cavities of both species; their secretions have an adhesive effect on food, aiding food selection. Their digestive systems vary in structure and cell composition: the oropharyngeal cavity has three layers; the esophagus has four layers with more goblet cells in T. strauchii; the stomach has three regions without goblet cells and a thicker muscular layer in T. strauchii; the intestinal wall has four layers with different villi and goblet cell distributions; the hepatopancreas has lobules; and T. strauchii has a typical portal area. In conclusion, this study systematically compared the gastrointestinal systems of T. strauchii and T. tenuis for the first time, revealing significant structural differences related to their niches and feeding patterns as adaptations to specific environments. It fills the research gap, provides a basis for exploring fish ecological adaptation and environmental impacts on digestion, offers new ideas for Triplophysa protection strategies, and guides fish evolutionary biology research and Triplophysa resource protection and utilization.
Collapse
Affiliation(s)
- Zhengwei Wang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Lirong Zhang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Jie Wei
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Huimin Hao
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Syeda Maira Hamid
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Shixin Gao
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Wenjun Li
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Zhulan Nie
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Z.W.); (L.Z.); (J.W.); (H.H.); (S.M.H.); (S.G.); (W.L.)
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| |
Collapse
|
20
|
Bu F, Chen K, Chen S, Jiang Y. Gut microbiota and intestinal immunity interaction in ulcerative colitis and its application in treatment. Front Cell Infect Microbiol 2025; 15:1565082. [PMID: 40292216 PMCID: PMC12031664 DOI: 10.3389/fcimb.2025.1565082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory bowel disease characterized by inflammation and injury of the colonic mucosa, exhibiting an increasing global incidence. Although research into UC pathogenesis is ongoing, the precise mechanisms remain to be fully elucidated. Studies indicate that UC development results from a complex interplay of factors, including genetic predisposition, environmental exposures, gut microbial dysbiosis, and immune dysregulation. Specifically, UC pathogenesis involves aberrant immune responses triggered by interactions between the host and gut microbiota. A complex, dynamic relationship exists between the microbial community and the host immune system throughout UC pathogenesis. Accumulating evidence suggests that changes in microbiota composition significantly impact gut immunity. This review will examine the intricate balance between the gut microbiota and mucosal immunity in UC progression and discuss potential therapeutic applications, providing a reference for further clinical treatment of this patient population.
Collapse
Affiliation(s)
| | | | - Siche Chen
- Department of Colorectal Surgery, Zhejiang Provincial People’s Hospital,
Affiliated People’s Hospital of Hangzhou Medical College, HangZhou, China
| | - Yi Jiang
- Department of Colorectal Surgery, Zhejiang Provincial People’s Hospital,
Affiliated People’s Hospital of Hangzhou Medical College, HangZhou, China
| |
Collapse
|
21
|
Khavani M, Mehranfar A, Mofrad MRK. Unravelling the Glycan Code: Molecular Dynamics and Quantum Chemistry Reveal How O-Glycan Functional Groups Govern OgpA Selectivity in Mucin Degradation by Akkermansia muciniphila. Microb Biotechnol 2025; 18:e70091. [PMID: 40181232 PMCID: PMC11968330 DOI: 10.1111/1751-7915.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 04/05/2025] Open
Abstract
Mucins, heavily O-glycosylated glycoproteins, are a key component of mucus, and certain gut microbiota, including Akkermansia muciniphila, can utilise mucin glycans as a carbon source. Akkermansia muciniphila produces the O-glycopeptidase enzyme OgpA, which cleaves peptide bonds at the N-terminus of serine (Ser) or threonine (Thr) residues carrying O-glycan substitutions, with selectivity influenced by the O-glycan functional groups. Using molecular dynamics (MD) simulations and quantum chemistry calculations, we explored how different O-glycan groups affect OgpA's selectivity. Our results show that peptides bind to the enzyme via hydrogen bonds, π-π interactions, van der Waals forces and electrostatic interactions, with key residues, including Tyr90, Val138, Gly176, Tyr210 and Glu91, playing important roles. The primary determinant of selectivity is the interaction between the peptide's functional group and the enzyme's binding cavity, while peptide-enzyme interface interactions are secondary. Quantum chemistry calculations reveal that OgpA prefers peptides with a lower electrophilic character. This study provides new insights into mucin degradation by gut microbiota enzymes, advancing our understanding of this critical biological process.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrative Bioimaging DivisionLawrence Berkeley National LabBerkeley, CAUSA
| |
Collapse
|
22
|
Dold CA, Sahin AW, Giblin L. Dairy Foods: A Matrix for Human Health and Precision Nutrition-Effect of processing infant milk formula on protein digestion and gut barrier health (in vitro and preclinical). J Dairy Sci 2025; 108:3088-3108. [PMID: 39694254 DOI: 10.3168/jds.2024-25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 12/20/2024]
Abstract
The infant gut is immature and permeable with high gastric pH, low protease activities, and underdeveloped intestinal architecture. Protein digestion in the upper gastrointestinal tract of infants is slow and incomplete. During manufacture, infant milk formula (IMF) is typically heat-treated so it is safe for human consumption. This heat treatment causes denaturation and aggregation of milk proteins, and formation of undesirable Maillard reaction products. The aim of this review is to critically summarize the in vitro and preclinical data available on the effect of IMF thermal processing on protein digestion and gut barrier physiology in the immature infant gut. Recent research efforts have focused on reducing thermal loads during IMF manufacturing by sourcing ingredients with low thermal loads, by reducing temperatures during IMF processing itself, and by seeking alternative processing technologies. This review also aims to evaluate whether these thermal reductions have a knock-on effect on protein digestion and gut barrier health in the infant. The ultimate aim is to create a safe next-generation IMF product that more closely mimics human breast milk in its protein digestion kinetics and its ability to promote gut barrier maturity in the infant.
Collapse
Affiliation(s)
- Cathal A Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| |
Collapse
|
23
|
He J, Wu J, Tan J, Yang P, Bai T, Song J, Hou X, Zhang L. Role of declined electrogenic Na +/HCO 3- cotransporter NBCe1 in mucus barrier impairment and colonic inflammation. Int Immunopharmacol 2025; 150:114282. [PMID: 39946770 DOI: 10.1016/j.intimp.2025.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Electrogenic Na+/HCO3- co-transporter 1 (NBCe1) plays a pivotal role in epithelial bicarbonate transport involved in the maintenance of the intestinal mucus barrier. However, the specific role of NBCe1 in colitis remains unknown. METHODS NBCe1 was identified by bioinformatics analysis methods including GO/KEGG/GSEA, protein-protein interaction (PPI) network analysis, immune infiltration analysis, and Mendelian randomization (MR) analysis. Expression level of NBCe1 was detected in patients with IBD and in DSS-induced colitis mice. The role of NBCe1 in intestinal mucus barrier and colitis was accessed by S0859 pretreatment in DSS model. The function of NBCe1 and related bicarbonate secretion were evaluated using short-circuit current (Isc) measurements in Ussing chamber system. RESULTS Bioinformatic analyses indicated that SLC4A4 (NBCe1) was a signature gene in bicarbonate transport implicated in ulcerative colitis (UC) development and was negatively associated with the risk of UC. NBCe1's expression was significantly diminished in colonic mucosa of UC patients and DSS-treated mice. More severe intestinal inflammation and impaired mucus barrier were observed in S0859-treated mice. Moreover, S0859 administration led a significant decrease in mucus secretion rate and an significant increase in Isc of colonic mucosa. The forskolin-induced ΔIsc was also suppressed by S0859 pretreatment. CONCLUSION NBCe1 has been identified as a valuable signature gene may have a protective effect against the onset of colitis. Function of NBCe1 is diminished in colitis, which is associated with impaired mucus barrier and declined HCO3- secretion both contributing to the development of IBD.
Collapse
Affiliation(s)
- Jing He
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Jiacheng Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Jun Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Pengcheng Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| |
Collapse
|
24
|
Ghorbani Siavashani A, Rehan M, Travas-Sejdic J, Thomas D, Diller E, Stine J, Ghodssi R, Avci E. Ingestible Smart Capsules for Chemical Sensing in the Gut. Anal Chem 2025; 97:5343-5354. [PMID: 40047504 DOI: 10.1021/acs.analchem.4c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The development of novel ingestible sensors can aid physicians and patients in obtaining precise data on the health status of the gut at a local level. This in turn can facilitate earlier and more accurate disease diagnosis, improve the delivery of point-of-care medicine, and allow monitoring of the gastrointestinal (GI) tract status. This Tutorial overviews characteristics of the gut for inexpert readers and reviews emerging chemical sensing technologies for the GI tract from an analytical chemistry viewpoint.
Collapse
Affiliation(s)
| | - Muhammad Rehan
- Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Thomas
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Eric Diller
- Microrobotics Lab, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College St., Toronto, ON M5S 3G8, Canada
| | - Justin Stine
- Department of Electrical and Computer Engineering, Institute for Systems Research, and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Reza Ghodssi
- Department of Electrical and Computer Engineering, Institute for Systems Research, and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Ebubekir Avci
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
25
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
26
|
Richter KM, Wrage M, Krekeler C, De Oliveira T, Conradi LC, Menck K, Bleckmann A. Model systems to study tumor-microbiome interactions in early-onset colorectal cancer. EMBO Mol Med 2025; 17:395-413. [PMID: 39948421 PMCID: PMC11903813 DOI: 10.1038/s44321-025-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major health problem, with an alarming increase of early-onset CRC (EO-CRC) cases among individuals under 50 years of age. This trend shows the urgent need for understanding the underlying mechanisms leading to EO-CRC development and progression. There is significant evidence that the gut microbiome acts as a key player in CRC by triggering molecular changes in the colon epithelium, leading to tumorigenesis. However, a comprehensive collection and comparison of methods to study such tumor-microbiome interactions in the context of EO-CRC is sparse. This review provides an overview of the available in vivo, ex vivo as well as in vitro approaches to model EO-CRC and assess the effect of gut microbes on tumor development and growth. By comparing the advantages and limitations of each model system, it highlights that, while no single model is perfect, each is suitable for studying specific aspects of microbiome-induced tumorigenesis. Taken together, multifaceted approaches can simulate the human body's complexity, aiding in the development of effective treatment and prevention strategies for EO-CRC.
Collapse
Affiliation(s)
- Katharina M Richter
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Marius Wrage
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Kerstin Menck
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany.
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany.
| |
Collapse
|
27
|
Zhang Y, Yan Z, Jiao Y, Feng Y, Zhang S, Yang A. Innate Immunity in Helicobacter pylori Infection and Gastric Oncogenesis. Helicobacter 2025; 30:e70015. [PMID: 40097330 PMCID: PMC11913635 DOI: 10.1111/hel.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Helicobacter pylori is an extremely common cause of gastritis that can lead to gastric adenocarcinoma over time. Approximately half of the world's population is infected with H. pylori, making gastric cancer the fourth leading cause of cancer-related deaths worldwide. Innate immunity significantly contributes to systemic and local immune responses, maintains homeostasis, and serves as the vital link to adaptive immunity, and in doing so, mediates H. pylori infection outcomes and consequent cancer risk and development. The gastric innate immune system, composed of gastric epithelial and myeloid cells, is uniquely challenged by its need to interact simultaneously and precisely with commensal microbiota, exogenous pathogens, ingested substances, and endogenous exfoliated cells. Additionally, innate immunity can be detrimental by promoting chronic infection and fibrosis, creating an environment conducive to tumor development. This review summarizes and discusses the complex role of innate immunity in H. pylori infection and subsequent gastric oncogenesis, and in doing so, provides insights into how these pathways can be exploited to improve prevention and treatment.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Eight‐Year Medical Doctor Program, Peking Union Medical CollegeChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yunlu Feng
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Shengyu Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
28
|
Zeng X, Yin L, Zhang Y, Wang Q, Li J, Yin Y, Wang Q, Li J, Yang H. Dietary Iron Alleviates Dextran Sodium Sulfate-Induced Intestinal Injury by Regulating Regeneration of Intestinal Stem Cells in Weaned Mice. Biol Trace Elem Res 2025:10.1007/s12011-025-04546-9. [PMID: 39998602 DOI: 10.1007/s12011-025-04546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Iron deficiency is the most common comorbidity of inflammatory bowel disease (IBD), but the effect of iron supplementation on the repair processes of intestinal injury in weaned mice is unknown. This study aimed to evaluate the potential mechanism of dietary iron on intestinal injury and intestinal regeneration in the dextran sodium sulfate (DSS)-induced colitis of the weaned mouse model. The mice were fed either a control diet containing (45.00 mg/kg Fe) or iron supplemental (448.30 mg/kg Fe) diet for 14 days, followed by a 7-day oral administration of 2.5% DSS to all mice. The result showed that at day 0 of the recovery period (0 DRP), the impact of iron on the gut index and intestinal morphology was found to be more significant in weaned mice compared to adult mice. At 3 DRP, the iron diet alleviated inflammation-induced weight loss, shortening of colon length, thickening of the muscle layer, and disruption of gut morphology. At 0, 3, and 7 DRP, we found that an iron diet increased intestinal stem cell (ISC) viability and protected epithelial integrity. Furthermore, FeSO4 significantly enhanced organoid viability and increased mRNA expression of differentiation, ISC, and retinol metabolism-related marker genes in the organoids compared with the control group. Overall, this study demonstrates that the iron diet accelerates intestinal regeneration after intestinal injury in weaned mice by activating the retinol metabolic pathway to regulate the proliferation and differentiation of ISCs.
Collapse
Affiliation(s)
- Xianglin Zeng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| | - Yitong Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
29
|
Li C, Han T, Zhong P, Zhang Y, Zhao T, Wang S, Wang X, Tian Y, Gong G, Liu Y, Huang L, Lu Y, Wang Z. α2,6-linked sialylated oligosaccharides riched in goat milk alleviate food allergy by regulating the gut flora and mucin O-glycosylation. Carbohydr Polym 2025; 350:123049. [PMID: 39647952 DOI: 10.1016/j.carbpol.2024.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
The nutritious goat milk has low allergenicity. Oligosaccharides represent one of the crucial functional constituents in goat milk, which are structurally similar to human milk oligosaccharides (HMOs). Currently, the anti-allergic activity of GMOs has not been reported. In this study, GMOs were efficiently separated into neutral (NGMOs) and sialylated (SGMOs) fractions, following by qualitative and quantitative analysis at the isomer level using online LC-MS/MS. Fifteen NGMOs and 28 SGMOs were detected in goat milk, with 10 SGMOs reported for the first time. Distinctly, α2,6-linked SGMOs were 3.9 times more abundant in goat milk than in bovine milk, with the total relative content of 6'SL, 3'SLN and 6'NGL in SGMOs approach to 60%, which is more similar to HMOs. Orally administering GMOs, especially α2,6-linked sialylated oligosaccharides, significantly alleviated food allergy in ovalbumin-induced BALB/c mice. SGMOs restored the balance of Lachnospiraceae, Erysipelotrichaceae, and Bacteroidaceae, reconstructed the intestinal mucosal barrier, especially restored the levels of fucosylation, sialylation, and sulfation of mucin O-glycans, increased the expression of four core type 2 O-glycans (F1H2N2, F2H2N2, S1F2H2N2, and A1F1H2N2) significantly. This is the first comprehensive study of the anti-allergic activity of GMOs, and the results lay the foundation for the development of GMOs-based natural anti-allergic components.
Collapse
Affiliation(s)
- Cheng Li
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuyang Zhang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tong Zhao
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shukai Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yang Tian
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
30
|
Jiao Q, Huang Y, He J, Xu Y. Advances in Oral Biomacromolecule Therapies for Metabolic Diseases. Pharmaceutics 2025; 17:238. [PMID: 40006605 PMCID: PMC11859201 DOI: 10.3390/pharmaceutics17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic diseases like obesity and diabetes are on the rise, and therapies with biomacromolecules (such as proteins, peptides, antibodies, and oligonucleotides) play a crucial role in their treatment. However, these drugs are traditionally injected. For patients with chronic diseases (e.g., metabolic diseases), long-term injections are accompanied by inconvenience and low compliance. Oral administration is preferred, but the delivery of biomacromolecules is challenging due to gastrointestinal barriers. In this article, we introduce the available biomacromolecule drugs for the treatment of metabolic diseases. The gastrointestinal barriers to oral drug delivery and strategies to overcome these barriers are also explored. We then discuss strategies for alleviating metabolic defects, including glucose metabolism, lipid metabolism, and energy metabolism, with oral biomacromolecules such as insulin, glucagon-like peptide-1 receptor agonists, proprotein convertase subtilisin/kexin type 9 inhibitors, fibroblast growth factor 21 analogues, and peptide YY analogues.
Collapse
Affiliation(s)
- Qiuxia Jiao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Maldonado S, Fuentes P, Bernabeu E, Bertera F, Opezzo J, Lagomarsino E, Lee HJ, Martínez Rodríguez F, Choi MR, Salgueiro MJ, Damonte EB, Höcht C, Moretton MA, Sepúlveda CS, Chiappetta DA. Efavirenz Repurposing Challenges: A Novel Nanomicelle-Based Antiviral Therapy Against Mosquito-Borne Flaviviruses. Pharmaceutics 2025; 17:241. [PMID: 40006610 PMCID: PMC11859092 DOI: 10.3390/pharmaceutics17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objective: World Health Organization latest statistics state that 17% of infectious diseases are transmitted by vectors, causing more than 700,000 deaths each year. Particularly, dengue (DENV), Zika (ZIKV) and yellow fever (YFV) viral infections have generated international awareness due to their epidemic proportion and risks of international spread. In this framework, the repositioning strategy of Efavirenz (EFV) represents a key clinical feature to improve different antiviral therapies. Therefore, the development of Soluplus®-based nanomicelles (NMs) loaded with EFV (10 mg/mL) for optimized oral pharmacotherapy against ZIKV, DENV and YFV infections was investigated. Methods: EFV-NMs were obtained by an acetone diffusion technique. Micellar size and in vitro micellar interaction with mucin were assessed by dynamic light scattering. In vitro cytocompatibility was investigated in A549 and Vero cells and micellar in vitro antiviral activity against ZIKV, DENV and YFV was evaluated. In vivo oral bioavailability and histological studies were assessed in Wistar rats. Results: EFV encapsulation within Soluplus® NMs increased the drug's apparent aqueous solubility up to 4803-fold with a unimodal micellar size distribution and a micellar size of ~90 nm at 25 and 37 °C. Micellar in vitro interaction with mucin was also assessed in a pH range of 1.2-7.5 and its storage micellar physicochemical stability at 4 °C was confirmed over 2 years. In vitro cytocompatibility assays in A549 and Vero cells confirmed that EFV micellar dispersions resulted in safe nanoformulations. Interestingly, EFV-loaded NMs exhibited significantly higher in vitro antiviral activity compared with EFV solution for all the tested flaviviruses. In addition, the selectivity index (SI) values reveal that EFV-loaded NMs exhibited considerably more biological efficacy compared to EFV solution in A549 and Vero cell lines and for each viral infection (SI > 10). Further, the drug pharmacokinetics parameters were enhanced after the oral administration of EFV-loaded NMs, being biocompatible by not causing damage in the gastrointestinal segments. Conclusions: Overall, our EFV nanoformulation highlighted its potential as a novel drug delivery platform for optimized ZIKV, DENV and YFV antiviral therapy.
Collapse
Affiliation(s)
- Sofía Maldonado
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (S.M.); (P.F.); (E.B.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires CP1113, Argentina
| | - Pedro Fuentes
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (S.M.); (P.F.); (E.B.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
| | - Ezequiel Bernabeu
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (S.M.); (P.F.); (E.B.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires CP1113, Argentina
| | - Facundo Bertera
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina
| | - Javier Opezzo
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina
| | - Eduardo Lagomarsino
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Departamento de Farmacia Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina
| | - Hyun J. Lee
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (H.J.L.); (M.R.C.)
| | - Fleming Martínez Rodríguez
- Grupo de Investigaciones Farmacéutico-Fisicoquímicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia;
| | - Marcelo R. Choi
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (H.J.L.); (M.R.C.)
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina
| | - María Jimena Salgueiro
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina
| | - Elsa B. Damonte
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (E.B.D.); (C.S.S.)
| | - Christian Höcht
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina
| | - Marcela A. Moretton
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (S.M.); (P.F.); (E.B.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires CP1113, Argentina
| | - Claudia S. Sepúlveda
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (E.B.D.); (C.S.S.)
| | - Diego A. Chiappetta
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (S.M.); (P.F.); (E.B.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires CP1113, Argentina; (F.B.); (J.O.); (E.L.); (M.J.S.); (C.H.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires CP1113, Argentina
| |
Collapse
|
32
|
Zhang K, Luan G, Liu W, Shen F, Jiang M, Bai G. Ligustilide improves functional constipation by non-covalently activating TRPA1 in colon tissue. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119018. [PMID: 39489358 DOI: 10.1016/j.jep.2024.119018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels (AS), a medicinal plant renowned for its constipation-relieving properties, lacks comprehensive studies on its active pharmaceutical ingredients (APIs) and underlying mechanisms. In the gastrointestinal tract, TRP channels enhance colonic mucus secretion, expedite intestinal motility, and regulate gastrointestinal hormones; however, few reports have systematically established the relationship between TRPs and ligustilide (Lig), a key API of AS. AIM OF THE STUDY This study aimed to explore the pharmacodynamic properties of AS in alleviating functional constipation, assess the potential of Lig for activating TRPs, and elucidate its mechanism of action. METHODS The therapeutic efficacy of AS was assessed in a mouse model of loperamide hydrochloride-induced functional constipation. The APIs were screened via integrated activity-based UPLC profiling through periodic acid-Schiff (PAS) staining of the colon and immunofluorescence staining of HT-29 cells. The potential target was identified via target fishing and colocalization imaging via an alkynyl-modified Lig probe (AM-Lig). Molecular docking, microscale thermophoresis (MST), fluorescence quenching (FQ), and Fluo-4/Ca2+ influx assays were employed to reveal the interaction mode between Lig and the target protein. Finally, we assessed the efficacy of Lig in alleviating constipation in an animal model. RESULTS The efficacy of AS in improving functional constipation was demonstrated in a mouse constipation model, with Lig identified as the primary constituent responsible for inducing colon mucus secretion. Lig specifically targets TRPA1 in the colon, leading to calcium influx and subsequent mucus secretion, ultimately ameliorating functional constipation. Furthermore, a binding mode study revealed that Lig attaches to Thr684, located in the pre-S1 region, triggering TRPA1 channel activation. CONCLUSIONS Our findings demonstrate that Lig, the API in AS for constipation treatment, activates TRPA1 through non-covalent interactions, increasing mucus secretion and improving functional constipation. These findings advance our understanding of the therapeutic mechanism of AS and Lig on constipation and suggest a new approach for developing TRPA1 agonists.
Collapse
Affiliation(s)
- Kaixue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Guoqing Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| |
Collapse
|
33
|
Rubio-Casillas A, Rodríguez-Quintero CM, Hromić-Jahjefendić A, Uversky VN, Redwan EM, Brogna C. The essential role of prebiotics in restoring gut health in long COVID. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:385-411. [PMID: 40246350 DOI: 10.1016/bs.pmbts.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The gut microbiota (GM) plays an essential role in human health, influencing not only digestive processes but also the immune system´s functionality. The COVID-19 pandemic has highlighted the complex interaction between viral infections and the GM. Emerging evidence has demonstrated that SARS-CoV-2 can disrupt microbial homeostasis, leading to dysbiosis and compromised immune responses. The severity of COVID-19 has been associated with a reduction in the abundance of several beneficial bacteria in the gut. It has been proposed that consuming probiotics may help to re-colonize the GM. Although probiotics are important, prebiotics are essential for their metabolism, growth, and re-colonization capabilities. This chapter delves into the critical role of prebiotics in restoring GM after COVID-19 disease. The mechanisms by which prebiotics enhance the metabolism of beneficial bacteria will be described, and how prebiotics mediate the re-colonization of the gut with beneficial bacteria, thereby restoring microbial diversity and promoting the resilience of the gut-associated immune system. The benefits of consuming prebiotics from natural sources are superior to those from chemically purified commercial products.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Carlo Brogna
- Craniomed Group Srl, Research Facility, Montemiletto (Av), Italy
| |
Collapse
|
34
|
Ramal-Sanchez M, Bravo-Trippetta C, D’Antonio V, Corvaglia E, Kämpfer AAM, Schins RPF, Serafini M, Angelino D. Development and assessment of an intestinal tri-cellular model to investigate the pro/anti-inflammatory potential of digested foods. Front Immunol 2025; 16:1545261. [PMID: 39975553 PMCID: PMC11835836 DOI: 10.3389/fimmu.2025.1545261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Immunonutrition, defined as the potential of foods, nutrients and dietary patterns to modulate the immune system activity, has been proposed as a strategy to enhance the immune response in both metabolic and immune-mediated diseases. However, the anti-/pro-inflammatory role of foods and diets is far to be fully ascertained, and thus there is a continued needed for appropriate in vitro cell-culture models to investigate the role of foods in modulating cell-mediated inflammatory processes. This study aims to develop and test an in vitro tri-culture model, simulating the complexity of the intestinal tract and its multiple cell interactions. Methods To achieve this, the intestinal epithelial barrier was established by co-culturing human Caco-2 enterocyte-like and HT29-MTX-E12 mucus producing goblet-like colon cells, then adding human monocyte THP-1 cells to the basolateral compartment. The integrity and stability of the epithelial barrier were monitored and the inflammatory response of the model was assessed using various stressors at different concentrations, both individually and in combination (phorbol-12- myristate-13-acetate or PMA, and lipopolysaccharide or LPS), in terms of cytokines production. To test the model, different concentrations of in vitro digested broccoli (BD) were added to the apical section of the model. Results Supernatants from the basolateral compartment were collected and analyzed for cytokines production (IL-6, TNF-α, IL-12p70, IL-18 and IL-8) using automated ELISA (ELLA). Additionally, ZO-1 protein from the tight junctions of epithelial cells was analyzed by flow cytometry. The results indicated that 100 nM PMA added to the whole model for 20 h was the best stressor to simulate a mild-inflammatory status of the gut. Following treatment with BD, IL-6, TNF-α, IL-8 and IL-18 were significantly reduced compared to the control group, while ZO-1 expression increased at the lowest BD concentration. Conclusions These findings confirm the feasibility of the model for assessing the effects of food digesta on specific cytokines and permeability markers, representing a valuable strategy for investigating the role of foods in modulating the inflammatory response. The results obtained may support dietary strategies aimed at promoting wellbeing and preventing inflammatory-related metabolic diseases.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Chiara Bravo-Trippetta
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Veronica D’Antonio
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elena Corvaglia
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Angela A. M. Kämpfer
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Roel P. F. Schins
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Mauro Serafini
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Donato Angelino
- Functional Foods and Stress Prevention Laboratory, Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
35
|
Zeng T, Lu C, Wang M, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. The effect of microenvironmental viscosity on the emergence of colon cancer cell resistance to doxorubicin. J Mater Chem B 2025; 13:2180-2191. [PMID: 39803934 DOI: 10.1039/d4tb02334j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells. In this study, the influence of viscosity on their chemoresistance was elucidated by culturing colon cancer cells in media of different viscosities supplemented with doxorubicin (DOX). The viscosity range was adjusted from 99.4 mPa s to 776.6 mPa s by adding polyethylene glycol of different molecular weights in culture medium. Cell viability in the high viscosity medium was higher than that in the low viscosity medium. Expression of chemoresistance-related genes such as ABCC2 and ABCG2 increased when cells were cultured in the high viscosity medium. Furthermore, cell migration increased while proliferation decreased when cells were cultured in the high viscosity medium. The colon cancer cells cultured in the high viscosity medium exhibited high expression of p21 mRNA. The results suggested that viscosity could affect the resistance of colon cancer cells to DOX by regulating the expression of chemoresistance-related and proliferation-related genes.
Collapse
Affiliation(s)
- Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Chengyu Lu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environment Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
36
|
Manna OM, Caruso Bavisotto C, Gratie MI, Damiani P, Bonaventura G, Cappello F, Tomasello G, D’Andrea V. Targeting Helicobacter pylori Through the "Muco-Microbiotic Layer" Lens: The Challenge of Probiotics and Microbiota Nanovesicles. Nutrients 2025; 17:569. [PMID: 39940427 PMCID: PMC11819664 DOI: 10.3390/nu17030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The muco-microbiotic layer represents a critical biological frontier in gastroenterology, emphasizing the intricate interplay between the protective mucus, its resident microbiota, and extracellular vesicles. This review explores the functional morphology of the gastric mucosa, focusing on the gastric muco-microbiotic layer, its role as a protective barrier, and its dynamic interaction with some of the most insidious pathogens such as Helicobacter pylori (H. pylori). Highlighting the multifaceted mechanisms of H. pylori pathogenesis, we have delved into bacterial virulence factors, host immune responses, and the microbiota's regulatory effects. Novel therapeutic strategies for H. pylori eradication, including traditional antibiotic therapies and emerging adjuvant treatments like probiotics and probiotic-derived extracellular vesicles, are critically examined. These findings underscore the potential of targeting nanovesicular interactions in the gastric mucosa, proposing a paradigm shift in the management of H. pylori infections to improve patient outcomes while mitigating antibiotic resistance.
Collapse
Affiliation(s)
- Olga Maria Manna
- Department of Sciences for Promotion of Health and Mother and Child Care, Surgical Pathology Unit, University of Palermo, 90133 Palermo, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
| | - Celeste Caruso Bavisotto
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Melania Ionelia Gratie
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Provvidenza Damiani
- Risk Management and Quality Unit, Hospital University “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Giuseppe Bonaventura
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Giovanni Tomasello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
37
|
Bakshani CR, Ojuri TO, Pilgaard B, Holck J, McInnes R, Kozak RP, Zakhour M, Çakaj S, Kerouedan M, Newton E, Bolam DN, Crouch LI. Carbohydrate-active enzymes from Akkermansia muciniphila break down mucin O-glycans to completion. Nat Microbiol 2025; 10:585-598. [PMID: 39891011 PMCID: PMC11790493 DOI: 10.1038/s41564-024-01911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/10/2024] [Indexed: 02/03/2025]
Abstract
Akkermansia muciniphila is a human microbial symbiont residing in the mucosal layer of the large intestine. Its main carbon source is the highly heterogeneous mucin glycoprotein, and it uses an array of carbohydrate-active enzymes and sulfatases to access this complex energy source. Here we describe the biochemical characterization of 54 glycoside hydrolases, 11 sulfatases and 1 polysaccharide lyase from A. muciniphila to provide a holistic understanding of their carbohydrate-degrading activities. This was achieved using a variety of liquid chromatography techniques, mass spectrometry, enzyme kinetics and thin-layer chromatography. These results are supported with A. muciniphila growth and whole-cell assays. We find that these enzymes can act synergistically to degrade the O-glycans on the mucin polypeptide to completion, down to the core N-acetylgalactosaime. In addition, these enzymes can break down human breast milk oligosaccharide, ganglioside and globoside glycan structures, showing their capacity to target a variety of host glycans. These data provide a resource to understand the full degradative capability of the gut microbiome member A. muciniphila.
Collapse
Affiliation(s)
- Cassie R Bakshani
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Taiwo O Ojuri
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Bo Pilgaard
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Ross McInnes
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Maria Zakhour
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Çakaj
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Manon Kerouedan
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Emily Newton
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - David N Bolam
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy I Crouch
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
38
|
Qiao Y, He C, Xia Y, Ocansey DKW, Mao F. Intestinal mucus barrier: A potential therapeutic target for IBD. Autoimmun Rev 2025; 24:103717. [PMID: 39662652 DOI: 10.1016/j.autrev.2024.103717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Intestinal mucus, a viscoelastic medium with mucin2 (MUC2) as its main component, covers the surface of intestinal epithelial cells and protects the intestine from invasion, forming the first barrier of the intestinal tract. Unlike the small intestine, where the mucus layer is a single layer, the colonic mucus layer can be divided into a sterile inner layer and an outer layer with bacterial colonization. Many of the substances in the mucus layer have beneficial effects on the intestinal epithelium, but the mucus layer is often affected by a variety of factors, mainly microbiological, dietary, and immunological. Inflammatory bowel disease (IBD) is a disease of increasing morbidity worldwide, with a complex etiology and a high relapse rate. In recent years, the mucus barrier in IBD has received increasing attention and is considered a key factor in the pathogenesis of IBD. Loss of goblet cells (GCs) and changes in the composition and properties of the mucus layer material are commonly found in the colon of IBD patients. Damage to the mucus layer may make it easier for microorganisms to access the intestinal epithelium and cause inflammation. There are currently a number of herbs and other therapies that can be used to treat IBD and repair the damaged mucus barrier. This review highlights the important role of the mucus layer in IBD and the therapies that target the mucus layer in IBD.
Collapse
Affiliation(s)
- Yaru Qiao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Changer He
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212399, Jiangsu, PR China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Ghana
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
39
|
Kim YH, Park CH, Kim JM, Yoon YC. Chitooligosaccharides suppress airway inflammation, fibrosis, and mucus hypersecretion in a house dust mite-induced allergy model. FRONTIERS IN ALLERGY 2025; 6:1533928. [PMID: 39927112 PMCID: PMC11799285 DOI: 10.3389/falgy.2025.1533928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Background Respiratory allergy is a serious respiratory disorder characterized by inflammation, mucus hypersecretion, and airway tissue sclerosis. Disruption of the T helper 1 (Th1) and T helper 2 (Th2) immune systems by stimuli induced by house dust mites (HDM) and fine particulate matter leads to the secretion of various inflammatory cytokines, resulting in immune respiratory diseases characterized by airway inflammation. Chitooligosaccharides (COS) are known for their antioxidant and anti-inflammatory properties. Methods Human airway epithelial cells (BEAS-2B) were cultured in DMEM/F12 medium containing COS at concentrations of 25-100 µg/ml for 24 h. No intracellular toxicity was observed up to 1,000 µg/ml. Cell experiments were conducted at COS concentrations below 100 µg/ml, while animal experiments were performed at concentrations below 100 mg/kg body weight for 4 weeks. Samples of right lung tissue obtained from the experimental animals were used for gene and protein expression analysis, whereas samples of contralateral lung tissue were used for immunohistochemical analysis. Results COS regulated Th1 immunity by inhibiting major cytokines, including inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), in BEAS-2B cells. In the HDM-induced allergic respiratory model, COS suppressed the infiltration of inflammatory cells around the airways and inhibited the mRNA expression of Th1 immune cytokines in lung tissues, while also reducing the expression of nuclear factor kappa B (NF-κB)-related proteins. Furthermore, the results confirmed the suppression of the levels of immunoglobulin E (IgE) in the blood secreted by mast cells activated by HDM, which led to a reduction in allergic mucus hypersecretion and airway sclerosis. Conclusion In summary, COS are thought to improve airway resistance by alleviating inflammatory allergic respiratory diseases caused by HDM and are regarded as substances that regulate the balance of the Th1 and Th2 immune systems in epithelial cells affected by mucus hypersecretion.
Collapse
Affiliation(s)
| | | | | | - Yeo Cho Yoon
- Healthcare & Nutrition Laboratory, Amicogen, Inc., Seongnam, Republic of Korea
| |
Collapse
|
40
|
Zhao H, Zhang Z, Liu H, Ma M, Sun P, Zhao Y, Liu X. Multi-omics perspective: mechanisms of gastrointestinal injury repair. BURNS & TRAUMA 2025; 13:tkae057. [PMID: 39845194 PMCID: PMC11752642 DOI: 10.1093/burnst/tkae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 01/24/2025]
Abstract
In this review, we examine the significance of multi-omics technologies in understanding the plethora of intricate processes that activate gastrointestinal (GI) injury repair. Multi-omics, which includes genomics, transcriptomics, proteomics, and metabolomics, allows intricate mapping of cellular responses and molecular pathways involved in GI repair. We highlight the potential of multi-omics to discover previously unknown therapeutic targets or elucidate the molecular basis of the pathogenesis of GI. Furthermore, we explore the possibilities of integrating omics data to improve prediction models, and summarize the state-of-the-art technological developments and persisting obstacles that hinder the translation of multi-omics into clinical practice. Finally, innovative multi-omics approaches that can improve patient outcomes and advance therapeutic strategies in GI medicine are discussed.
Collapse
Affiliation(s)
- Haibin Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| | - Zhigang Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| | - Hongyu Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| | - Mingxiu Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| | - Peng Sun
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| | - Yang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| | - Xun Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| |
Collapse
|
41
|
Carroll-Portillo A, Barnes O, Coffman CN, Braun CA, Singh SB, Lin HC. Transcytosis of T4 Bacteriophage Through Intestinal Cells Enhances Its Immune Activation. Viruses 2025; 17:134. [PMID: 39861923 PMCID: PMC11769353 DOI: 10.3390/v17010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs). Given that phages reside in the same body niches as bacteria, they share the propensity to stimulate or quench immune responses depending on the nature of their interactions with host immune cells. While most in vitro research focuses on the outcomes of direct application of phages to immune cells of interest, the potential impact of their transcytosis through the intestinal barrier has yet to be considered. As transcytosis through intestinal cells is a necessary step in healthy systems for access by phage to the underlying immune cell populations, it is imperative to understand how this step may play a role in immune activation. We compared the activation of macrophages (as measured by TNFα secretion) following direct phage application to those stimulated by incubation with phage transcytosed through a polarized Caco2 epithelial barrier model. Our results demonstrate that phages capable of activating TNFα secretion upon direct contact maintain the stimulatory capability following transcytosis. Furthermore, activation of macrophages by a transcytosed phage is enhanced as compared to that occurring with an equivalent multiplicity of directly applied phage.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - October Barnes
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (O.B.); (C.N.C.); (C.A.B.); (S.B.S.)
| | - Cristina N. Coffman
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (O.B.); (C.N.C.); (C.A.B.); (S.B.S.)
| | - Cody A. Braun
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (O.B.); (C.N.C.); (C.A.B.); (S.B.S.)
| | - Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (O.B.); (C.N.C.); (C.A.B.); (S.B.S.)
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
42
|
Wang L, Jin L, Zhang L, Huang X, Li Z, Li Z, Li K, Xu Y, Di S, Cui S, Wang X. Exploring the Link Between Mucin 2 and Weaning Stress-Related Diarrhoea in Piglets. Int J Mol Sci 2025; 26:599. [PMID: 39859316 PMCID: PMC11765659 DOI: 10.3390/ijms26020599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
To explore the relationship between intestinal mucin 2 (MUC2) and weaning-induced diarrhoea in piglets, we analysed Min and Landrace piglets. The piglets were divided into a healthy weaned group, a weaned diarrhoea group, and a healthy unweaned control group. Intestinal tissues were collected, and goblet cell numbers, sizes, and degrees of intestinal injury were observed and recorded. Intestinal tissue MUC2 mRNA and protein expression were analysed via quantitative real-time PCR (qRT-PCR) and Western blotting. Min pigs presented significantly lower diarrhoea rates and intestinal injury scores than Landrace pigs (p < 0.01). The intestinal injury scores in the weaned diarrhoea group were significantly greater than those in the unweaned groups (p < 0.05), with Min pigs consistently exhibiting lower injury scores than Landrace pigs. Specifically, unweaned Min pigs presented significantly greater duodenal MUC2 mRNA (p < 0.05), and weaned healthy Min pigs presented notably greater expression in both the duodenum and jejunum (p < 0.01). These findings reveal enhanced intestinal protection against weaning stress and diarrhoea in Min pigs, with elevated MUC2 levels likely contributing to lower injury scores and milder symptoms, thus highlighting the influence of genetic differences.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Long Jin
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Liulian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Xuankai Huang
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, 2 Heyi St., Longsha District, Qiqihaer 161005, China;
| | - Ziyu Li
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Zhimin Li
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Ke Li
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Shengwei Di
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Shiquan Cui
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.W.); (L.J.); (L.Z.); (Z.L.); (Z.L.); (K.L.); (Y.X.); (S.D.)
| |
Collapse
|
43
|
Xu Q, Wang W, Li Y, Cui J, Zhu M, Liu Y, Liu Y. The oral-gut microbiota axis: a link in cardiometabolic diseases. NPJ Biofilms Microbiomes 2025; 11:11. [PMID: 39794340 PMCID: PMC11723975 DOI: 10.1038/s41522-025-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
The oral-gut microbiota axis plays a crucial role in cardiometabolic health. This review explores the interactions between these microbiomes through enteric, hematogenous, and immune pathways, resulting in disruptions in microbial balance and metabolic processes. These disruptions contribute to systemic inflammation, metabolic disorders, and endothelial dysfunction, which are closely associated with cardiometabolic diseases. Understanding these interactions provides insights for innovative therapeutic strategies to prevent and manage cardiometabolic diseases.
Collapse
Affiliation(s)
- Qian Xu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
- Key Laboratory of Disease and Syndrome Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091, Beijing, China.
| |
Collapse
|
44
|
Xu J, Abe K, Kodama T, Sultana M, Chac D, Markiewicz SM, Matsunami H, Kuba E, Tsunoda S, Alam M, Weil AA, Nakamura S, Yamashiro T. The role of morphological adaptability in Vibrio cholerae's motility. mBio 2025; 16:e0246924. [PMID: 39611848 PMCID: PMC11708025 DOI: 10.1128/mbio.02469-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Vibrio cholerae, the causative agent of cholera, displays remarkable adaptability to diverse environmental conditions through morphological changes that enhance its pathogenicity and influence the global epidemiology of the disease. This study examines the motility differences between filamentous and comma-shaped forms of the V. cholerae O1 strain under various viscosity conditions. Utilizing the El Tor strain, we induced filamentous transformation and conducted a comparative analysis with the canonical comma-shaped morphology. Our methodology involved assessing motility patterns, swimming speeds, rotation rates, kinematics, and reversal frequencies using dark-field microscopy and high-speed imaging techniques. The results show that filamentous V. cholerae cells retain enhanced motility in viscous environments, indicating an evolutionary adaptation for survival in varied habitats, particularly the human gastrointestinal tract. Filamentous forms exhibited increased reversal behavior at mucin interfaces, suggesting an advantage in penetrating the mucus layer. Furthermore, the presence of filamentous cells in bile-supplemented medium underscores their relevance in natural infection scenarios. IMPORTANCE This study highlights the enhanced motility of filamentous Vibrio cholerae in viscous environments, an adaptation that may provide a survival advantage in the human gastrointestinal tract. By demonstrating increased reversal behavior at mucin interfaces, filamentous V. cholerae cells exhibit a superior ability to penetrate the mucus layer, which is crucial for effective colonization and infection. Filamentous cells in bile-supplemented media further underscores their potential role in disease pathogenesis. These findings offer critical insights into the morphological flexibility of V. cholerae and its potential implications for infection dynamics, paving the way for more effective strategies in managing and preventing cholera outbreaks.
Collapse
Affiliation(s)
- Jun Xu
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Keigo Abe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Marzia Sultana
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Bangladesh, Dhaka
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Hideyuki Matsunami
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Erika Kuba
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Shiyu Tsunoda
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Munirul Alam
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Bangladesh, Dhaka
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
45
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
46
|
Jäverfelt S, Hellsén G, Kaji I, Goldenring JR, Pelaseyed T. The MYO1B and MYO5B motor proteins and the sorting nexin SNX27 regulate apical targeting of membrane mucin MUC17 in enterocytes. Biochem J 2025; 482:1-23. [PMID: 39661054 PMCID: PMC12172626 DOI: 10.1042/bcj20240204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
A dense glycocalyx, composed of the megaDalton-sized membrane mucin MUC17, coats the microvilli in the apical brush border of transporting intestinal epithelial cells, called enterocytes. The formation of the MUC17-based glycocalyx in the mouse small intestine occurs at the critical suckling-weaning transition. The glycocalyx extends 1 µm into the intestinal lumen and prevents the gut bacteria from directly attaching to the enterocytes. To date, the mechanism behind the positioning of MUC17 to the brush border is not known. Here, we show that the actin-based motor proteins MYO1B and MYO5B, and the sorting nexin SNX27, regulate apical targeting of MUC17 in enterocytes. We demonstrate that MUC17 turnover at the brush border is slow and controlled by MYO1B and SNX27. Furthermore, we report that MYO1B regulates MUC17 protein levels in enterocytes, whereas MYO5B specifically governs MUC17 levels at the brush border. Together, our results extend our understanding of the apical targeting of membrane mucins and provide mechanistic insights into how defective positioning of MUC17 renders enterocytes sensitive to bacterial challenges.
Collapse
Affiliation(s)
- Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Gustaf Hellsén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Izumi Kaji
- Epithelial Biology Center, Vanderbilt University Medical Center; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Nashville VA Medical Center, Nashville, TN 37232, U.S.A
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, U.S.A
| | - James R. Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Nashville VA Medical Center, Nashville, TN 37232, U.S.A
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, U.S.A
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
47
|
McCoy R, Wang K, Treiber J, Fu Y, Malliaras GG, Salleo A, Owens RM. Mucus-on-a-chip: investigating the barrier properties of mucus with organic bioelectronics. J Mater Chem B 2025; 13:577-587. [PMID: 39575664 DOI: 10.1039/d4tb01351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Gastrointestinal (GI) mucus is a biologically complex hydrogel that acts as a partially permeable barrier between the contents of the GI tract and the mucosal epithelial lining. Its structural integrity is essential for the lubrication of the tract thereby aiding smooth transit of contents, and the protection of the epithelium from pathogens that seek to colonise and invade. Understanding its physical response to drugs and the microbiome is essential for treating many gastrointestinal infectious diseases. Given this, a static in vitro model of a GI mucus-on-a-chip has been developed with integrated electronics to monitor the barrier properties of mucus hydrogels. Its application for investigating the effect of drugs and biofilm formation on the mucus structure is validated using rheological techniques, confocal microscopy and electrochemical impedance spectroscopy (EIS).
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
- Department of Electrical Engineering, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Kaixin Wang
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Jeremy Treiber
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Ying Fu
- Department of Pure and Applied Chemistry, University of Strathclyde, G1 1XQ, Glasgow, UK
| | - George G Malliaras
- Department of Electrical Engineering, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| |
Collapse
|
48
|
Zeng Z, Chen M, Liu Y, Zhou Y, Liu H, Wang S, Ji Y. Role of Akkermansia muciniphila in insulin resistance. J Gastroenterol Hepatol 2025; 40:19-32. [PMID: 39396929 DOI: 10.1111/jgh.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Insulin resistance (IR) is a pathogenic factor in numerous metabolic diseases. The gut microbiota plays a crucial role in maintaining the function of the intestinal barrier and overall human health, thereby influencing IR. Dysbiosis of the gut microbiota can contribute to the development of IR. Therefore, it is essential to maintain a balanced and diverse gut microbiota for optimal health. Akkermansia muciniphila, a widely present microorganism in the human intestine, has been shown to regulate gastrointestinal mucosal barrier integrity, reduce endotoxin penetration, decrease systemic inflammation levels, and improve insulin sensitivity. Reduced abundance of A. muciniphila is associated with an increased risk of IR and other metabolic diseases, highlighting its correlation with IR. Understanding the role and regulatory mechanism of A. muciniphila is crucial for comprehending IR pathogenesis and developing novel strategies for preventing and treating related metabolic disorders. Individual variations may exist in both the gut microbiota composition and its impact on IR among different individuals. Further investigation into individual differences between A. muciniphila and IR will facilitate advancements in personalized medicine by promoting tailored interventions based on the gut microbiota composition, which is a potential future direction that would optimize insulin sensitivity while preventing metabolic disease occurrence. In this review, we describe the physiological characteristics of A. muciniphila, emphasize its roles in underlying mechanisms contributing to IR pathology, and summarize how alterations in its abundance affect IR development, thereby providing valuable insights for further research on A. muciniphila, as well as new drug development targeting diabetes.
Collapse
Affiliation(s)
- Zhijun Zeng
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengjie Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yimin Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yun Zhou
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongning Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shaohua Wang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yanhua Ji
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
49
|
Sathiensathaporn S, Solé‐Porta A, Baowan D, Pissuwan D, Wongtrakoongate P, Roig A, Katewongsa KP. Nanoencapsulation of vitamin B 2 using chitosan-modified poly(lactic-co-glycolic acid) nanoparticles: Synthesis, characterization, and in vitro studies on simulated gastrointestinal stability and delivery. J Food Sci 2025; 90:e17631. [PMID: 39731719 PMCID: PMC11734382 DOI: 10.1111/1750-3841.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Vitamin B2, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B2 is crucial to overcoming these challenges. This study employed chitosan-coated poly(lactic-co-glycolic acid) nanoparticles (CS-PLGA NPs) as a novel delivery system to enhance the bioavailability of vitamin B2 for food fortification and nutraceutical applications. The nanoparticles, with sizes below 200 nm, exhibited greater stability than PLGA NPs after freeze-drying and in simulated body fluids. Encapsulation improved the photostability of vitamin B2 under ultraviolet light and prolonged its release in simulated body fluids compared to non-encapsulated vitamin B2. Furthermore, CS-PLGA NPs demonstrated higher uptake in intestinal epithelial cells (Caco-2), indicating enhanced transport and potential for use in fortified food systems. These findings underscore the promise of CS-PLGA NPs for delivering vitamin B2 in food, nutraceutical, and pharmaceutical applications. PRACTICAL APPLICATION: The use of chitosan-coated PLGA NPs for encapsulating vitamin B2 offers a promising solution to enhance its bioavailability, especially for individuals with gastrointestinal absorption issues. This formulation improves stability, controlled release, and cellular uptake, which can lead to more effective supplementation strategies in nutraceutical and pharmaceutical applications. It could benefit patients with vitamin B2 deficiencies, such as those with malabsorption disorders, by ensuring efficient delivery through the gastrointestinal tract. Additionally, this approach can be applied to other water-soluble vitamins or bioactive compounds, offering a versatile platform for improving the efficacy of oral supplements.
Collapse
Affiliation(s)
| | - Anna Solé‐Porta
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus UABBellaterraSpain
| | - Duangkamon Baowan
- Department of Mathematics, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Dakrong Pissuwan
- School of Materials Science and Innovation, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- Center for Neuroscience, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona (ICMAB‐CSIC), Campus UABBellaterraSpain
| | - Kanlaya Prapainop Katewongsa
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- School of Materials Science and Innovation, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
50
|
Zhang CX, Arnold SLM. Potential and challenges in application of physiologically based pharmacokinetic modeling in predicting diarrheal disease impact on oral drug pharmacokinetics. Drug Metab Dispos 2025; 53:100014. [PMID: 39884815 DOI: 10.1124/dmd.122.000964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is a physiologically relevant approach that integrates drug-specific and system parameters to generate pharmacokinetic predictions for target populations. It has gained immense popularity for drug-drug interaction, organ impairment, and special population studies over the past 2 decades. However, an application of PBPK modeling with great potential remains rather overlooked-prediction of diarrheal disease impact on oral drug pharmacokinetics. Oral drug absorption is a complex process involving the interplay between physicochemical characteristics of the drug and physiological conditions in the gastrointestinal tract. Diarrhea, a condition common to numerous diseases impacting many worldwide, is associated with physiological changes in many processes critical to oral drug absorption. In this Minireview, we outline key processes governing oral drug absorption, provide a high-level overview of key parameters for modeling oral drug absorption in PBPK models, examine how diarrheal diseases may impact these processes based on literature findings, illustrate the clinical relevance of diarrheal disease impact on oral drug absorption, and discuss the potential and challenges of applying PBPK modeling in predicting disease impacts. SIGNIFICANCE STATEMENT: Pathophysiological changes resulting from diarrheal diseases can alter important factors governing oral drug absorption, contributing to suboptimal drug exposure and treatment failure. Physiologically based pharmacokinetic (PBPK) modeling is an in silico approach that has been increasingly adopted for drug-drug interaction potential, organ impairment, and special population assessment. This Minireview highlights the potential and challenges of using physiologically based pharmacokinetic modeling as a tool to improve our understanding of how diarrheal diseases impact oral drug pharmacokinetics.
Collapse
Affiliation(s)
- Cindy X Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Samuel L M Arnold
- Department of Pharmaceutics, University of Washington, Seattle, Washington.
| |
Collapse
|