1
|
O'Mahony ET, Arian CM, Aryeh KS, Wang K, Thummel KE, Kelly EJ. Human intestinal enteroids: Nonclinical applications for predicting oral drug disposition, toxicity, and efficacy. Pharmacol Ther 2025:108879. [PMID: 40398537 DOI: 10.1016/j.pharmthera.2025.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
The application of human enteroid systems presents a significant opportunity within the drug development pipeline, highlighting considerable potential for advancements in the characterization and evaluation of new molecular entities. Derived from LGR5+ crypt-based columnar cells, enteroid systems more accurately recapitulate the microanatomy and physiological processes of the human intestinal mucosa compared to traditionally used systems. They contain the complement of major mucosal epithelial cell types, maintain the genetic identity of the donor and intestinal segment they were derived from, and exhibit biological functions and specific activities that are seen in vivo. In this review, we examine the applications of human enteroid systems in nonclinical drug development and compare findings to existing and emerging in vitro models of the small intestine. Specifically, we explore enteroid systems in the context of predicting oral drug disposition, focusing on apparent permeability, intestinal first-pass metabolism, and drug interactions, as well as their utility in assessing drug-induced gastrointestinal toxicity and screening therapeutic efficacy against enteric diseases. Additionally, we highlight aspects of enteroid systems that warrant further study.
Collapse
Affiliation(s)
- Eimear T O'Mahony
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Christopher M Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kayenat S Aryeh
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kai Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America; Center of Excellence for Natural Product Drug Interaction Research, Spokane, WA, United States of America
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America; Kidney Research Institute, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
2
|
Xu G, Zhou J, Liu K, Wang Y, Tsikari T, Qin F, van den Hil F, Boor PPC, Ayada I, de Vries AC, Li J, Jiang S, Offermans DM, Kainov DE, Janssen HLA, Peppelenbosch MP, Bijvelds MJC, Wang W, Orlova VV, Pan Q, Li P. Macrophage-augmented intestinal organoids model virus-host interactions in enteric viral diseases and facilitate therapeutic development. Nat Commun 2025; 16:4475. [PMID: 40368896 PMCID: PMC12078800 DOI: 10.1038/s41467-025-59639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
The pathogenesis of enteric viral infections is attributed to both viral replication and the resultant immune-inflammatory response. To recapitulate this complex pathophysiology, we engineer macrophage-augmented organoids (MaugOs) by integrating human macrophages into primary intestinal organoids. Echovirus 1, echovirus 6, rotavirus, seasonal coronavirus OC43 and SARS-CoV-2- known to directly invade the intestine- are used as disease modalities. We demonstrate that these viruses efficiently propagate in MaugOs and stimulate the host antiviral response. However, rotavirus, coronavirus OC43 and SARS-CoV-2, but not the two echoviruses, trigger inflammatory responses. Acetate, a microbial metabolite abundantly present in the intestine, potently inhibits virus-induced inflammatory responses in MaugOs, while differentially affecting viral replication in macrophages and organoids. Furthermore, we provide a proof-of-concept of combining antiviral agent with either anti-inflammatory regimen or acetate to simultaneously inhibit viral infection and inflammatory response in MaugOs. Collectively, these findings demonstrate that MaugOs are innovative tools for studying the complex virus-host interactions and advancing therapeutic development.
Collapse
Affiliation(s)
- Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiangrong Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Kuan Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Theano Tsikari
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fang Qin
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Francijna van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Ibrahim Ayada
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jiajing Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dewy M Offermans
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028, Trondheim, Norway
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, China
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Akagi S, Ando H, Matsuo CNA, Tajima K, Takata H, Matsushima T, Kusano T, Ishida T. A 3D Cell-Culture System That Uses Nano-Fibrillated Bacterial Cellulose to Prepare a Spherical Formulation of Culture Cells. Biol Pharm Bull 2025; 48:23-32. [PMID: 39864853 DOI: 10.1248/bpb.b24-00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method. HepG2 human liver cancer cells were cultured via these methods and formed spherical formulations in the optimized condition, 1.0% (w/v) of NFBC in the OnGel method, and 0.06-0.10% (w/v) of NFBC in the Suspension method. Non-cancerous cells such as human-induced pluripotent stem (iPS) cells and human mesenchymal stem cells (MSCs) also formed spherical formulations. It is noteworthy that both the size and cell viability of spheroids prepared via these methods were comparable to those cultured using commercially available 3D cell-culture systems. Both OnGel and Suspension methods are less complicated than the existing 3D cell-culture systems, which is an invaluable advantage for the preparation of cancer spheroids. The NFBC-based 3D cell-culture systems introduced here show great promise as a tool to prepare cultures for cell-derived spheroids for the progress of both in vitro and in vivo studies of the biological functioning of cells.
Collapse
Affiliation(s)
- Shunsuke Akagi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
- Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Cristina Nana Amorim Matsuo
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
- Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | | | | | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
- Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
4
|
Zhu Z, Cheng Y, Liu X, Ding W, Liu J, Ling Z, Wu L. Advances in the Development and Application of Human Organoids: Techniques, Applications, and Future Perspectives. Cell Transplant 2025; 34:9636897241303271. [PMID: 39874083 PMCID: PMC11775963 DOI: 10.1177/09636897241303271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing. Recent advancements have led to the successful development of a variety of organoid types, reflecting a broad range of human organs and tissues. This progress has expanded their application across several domains, including regenerative medicine, where organoids offer potential for tissue replacement and repair; disease modeling, which allows for the study of disease mechanisms and progression in a controlled environment; drug discovery and evaluation, where organoids provide a more accurate platform for testing drug efficacy and safety; and microecological research, where they contribute to understanding the interactions between microbes and host tissues. This review provides a comprehensive overview of the historical development of organoid technology, highlights the key achievements and ongoing challenges in the field, and discusses the current and emerging applications of organoids in both laboratory research and clinical practice.
Collapse
Affiliation(s)
- Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
5
|
Arian C, O'Mahony E, MacDonald JW, Bammler TK, Donowitz M, Kelly EJ, Thummel KE. Human enteroid monolayers: A novel, functionally stable model for investigating oral drug disposition. Drug Metab Dispos 2025; 53:100002. [PMID: 39884814 DOI: 10.1124/dmd.124.001551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
To further the development of an in vitro model that faithfully recapitulates drug disposition of orally administered drugs, we investigated the utility of human enteroid monolayers to simultaneously assess intestinal drug absorption and first-pass metabolism processes. We cultured human enteroid monolayers from 3 donors, derived via biopsies containing duodenal stem cells that were propagated and then differentiated atop permeable Transwell inserts, and confirmed transformation into a largely enterocyte population via RNA sequencing analysis and immunocytochemistry (ICC) assays. Proper cell morphology was assessed and confirmed via bright field microscopy and ICC imaging of tight junction proteins and other apically and basolaterally localized proteins. Enteroid monolayer barrier integrity was demonstrated by elevated transepithelial electrical resistance that stabilized after 10 days in culture and persisted for 42 days. These results were corroborated by low paracellular transport probe permeability at 7 and 21 days in culture. The activity of a prominent drug metabolizing enzyme, CYP3A, was confirmed at 7, 21, and 42 days culture under basal, 1α,25(OH)2 vitamin D3-induced, and 6',7'-dihydroxybergamottin-inhibited conditions. The duration of these experiments is particularly noteworthy, because, to our knowledge, this is the first study to assess drug metabolizing enzymes and transporters expression/function for enteroids cultured for greater than 12 days. The sum of these results suggests enteroid monolayers are a promising ex vivo model to investigate and quantitatively predict an orally administered drug's intestinal absorption and/or metabolism. SIGNIFICANCE STATEMENT: This study presents a novel ex vivo model of the human intestine, human intestinal organoid (enteroid) monolayers that maintain barrier function and metabolic functionality for up to 42 days in culture. The incorporation of both barrier integrity and metabolic function over an extended period within the same model is an advancement over historically used in vitro systems, which either lack one or both of these attributes or have limited viability.
Collapse
Affiliation(s)
- Christopher Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Eimear O'Mahony
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington; Kidney Research Institute, University of Washington, Seattle, Washington.
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington.
| |
Collapse
|
6
|
Haynes J, Palaniappan B, Crutchley JM, Sundaram U. Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers. Cells 2024; 13:1623. [PMID: 39404387 PMCID: PMC11482628 DOI: 10.3390/cells13191623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another.
Collapse
Affiliation(s)
| | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA
| |
Collapse
|
7
|
Dennison TW, Edgar RD, Payne F, Nayak KM, Ross ADB, Cenier A, Glemas C, Giachero F, Foster AR, Harris R, Kraiczy J, Salvestrini C, Stavrou G, Torrente F, Brook K, Trayers C, Elmentaite R, Youssef G, Tél B, Winton DJ, Skoufou-Papoutsaki N, Adler S, Bufler P, Azabdaftari A, Jenke A, G N, Thomas N, Miele E, Al-Mohammad A, Guarda G, Kugathasan S, Venkateswaran S, Clatworthy MR, Castro-Dopico T, Suchanek O, Strisciuglio C, Gasparetto M, Lee S, Xu X, Bello E, Han N, Zerbino DR, Teichmann SA, Nys J, Heuschkel R, Perrone F, Zilbauer M. Patient-derived organoid biobank identifies epigenetic dysregulation of intestinal epithelial MHC-I as a novel mechanism in severe Crohn's Disease. Gut 2024; 73:1464-1477. [PMID: 38857990 PMCID: PMC11347221 DOI: 10.1136/gutjnl-2024-332043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Epigenetic mechanisms, including DNA methylation (DNAm), have been proposed to play a key role in Crohn's disease (CD) pathogenesis. However, the specific cell types and pathways affected as well as their potential impact on disease phenotype and outcome remain unknown. We set out to investigate the role of intestinal epithelial DNAm in CD pathogenesis. DESIGN We generated 312 intestinal epithelial organoids (IEOs) from mucosal biopsies of 168 patients with CD (n=72), UC (n=23) and healthy controls (n=73). We performed genome-wide molecular profiling including DNAm, bulk as well as single-cell RNA sequencing. Organoids were subjected to gene editing and the functional consequences of DNAm changes evaluated using an organoid-lymphocyte coculture and a nucleotide-binding oligomerisation domain, leucine-rich repeat and CARD domain containing 5 (NLRC5) dextran sulphate sodium (DSS) colitis knock-out mouse model. RESULTS We identified highly stable, CD-associated loss of DNAm at major histocompatibility complex (MHC) class 1 loci including NLRC5 and cognate gene upregulation. Single-cell RNA sequencing of primary mucosal tissue and IEOs confirmed the role of NLRC5 as transcriptional transactivator in the intestinal epithelium. Increased mucosal MHC-I and NLRC5 expression in adult and paediatric patients with CD was validated in additional cohorts and the functional role of MHC-I highlighted by demonstrating a relative protection from DSS-mediated mucosal inflammation in NLRC5-deficient mice. MHC-I DNAm in IEOs showed a significant correlation with CD disease phenotype and outcomes. Application of machine learning approaches enabled the development of a disease prognostic epigenetic molecular signature. CONCLUSIONS Our study has identified epigenetically regulated intestinal epithelial MHC-I as a novel mechanism in CD pathogenesis.
Collapse
Affiliation(s)
- Thomas W Dennison
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Rachel D Edgar
- European Bioinformatics Institute, Cambridge, Cambridgeshire, UK
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Felicity Payne
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Komal M Nayak
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Alexander D B Ross
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- University Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Aurelie Cenier
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Technische Universität München, ZIEL - Institute for Food & Health, Freising, Germany
| | - Claire Glemas
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| | - Federica Giachero
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| | - April R Foster
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Rebecca Harris
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Judith Kraiczy
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Camilla Salvestrini
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| | - Georgia Stavrou
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Franco Torrente
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| | - Kimberley Brook
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| | - Claire Trayers
- Department of Paediatric and Perinatal Pathology, Cambridge University Hospitals (CUH), Addenbrooke's Hospital, Cambridge, UK
| | | | - Gehad Youssef
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Bálint Tél
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
| | - Douglas James Winton
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Nefeli Skoufou-Papoutsaki
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Sam Adler
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aline Azabdaftari
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Jenke
- Department of Neonatology and General Pediatrics, Children's Hospital Kassel, Kassel, Germany
- Clinical Molecular Genetics and Epigenetics, Centre for Biomedical Education and Research (ZBAF), HELIOS University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Natasha G
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| | - Natasha Thomas
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Erasmo Miele
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | | | - Greta Guarda
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Tomas Castro-Dopico
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Caterina Strisciuglio
- Department of Woman, Child ad General and Specialistic Surgery, University of Campania " Vanvitelli", Naples, Italy
| | - Marco Gasparetto
- Norfolk and Norwich University Hospital, Jenny Lind Children's Hospital, Norwich, UK
| | - Seokjun Lee
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Xingze Xu
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Erica Bello
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Namshik Han
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Daniel R Zerbino
- European Bioinformatics Institute, Cambridge, Cambridgeshire, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
- Dept Physics/Cavendish Laboratory, Theory of Condensed Matter, JJ Thomson Ave, Cambridge, UK
| | - Josquin Nys
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Robert Heuschkel
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| | - Francesca Perrone
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Matthias Zilbauer
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke's, Cambridge, UK
| |
Collapse
|
8
|
Donowitz M, Tse CM, Sarker R, Lin R, Dokladny K, Rawat M, Horwitz I, Ye C, McNamara G, In J, Kell A, Guo C, JuiTsai S, Vong T, Karaba A, Singh V, Sachithanandham J, Pekosz A, Cox A, Bradfute S, Zachos NC, Gould S, Kovbasnjuk O. COVID-19 Diarrhea Is Inflammatory, Caused by Direct Viral Effects Plus Major Role of Virus-induced Cytokines. Cell Mol Gastroenterol Hepatol 2024; 18:101383. [PMID: 39089626 PMCID: PMC11404158 DOI: 10.1016/j.jcmgh.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS Diarrhea occurs in up to 50% of cases of COVID-19. Nonetheless, the pathophysiologic mechanism(s) have not been determined. METHODS This was examined using normal human enteroid monolayers exposed apically to live SARS-CoV-2 or non-replicating virus-like particles (VLPs) bearing the 4 SARS-CoV-2 structural proteins or irradiated virus, all of which bound and entered enterocytes. RESULTS Live virus and VLPs incrieased secretion of multiple cytokines and reduced mRNAs of ACE2, NHE3, and DRA. Interleukin (IL)-6 plus IL-8 alone reduced NHE3 mRNA and protein and DRA mRNA and protein. Neither VLPs nor IL-6 plus IL-8 alone altered Cl- secretion, but together they caused Cl- secretion, which was Ca2+-dependent, CFTR-independent, blocked partially by a specific TMEM16A inhibitor, and entirely by a general TMEM16 family inhibitor. VLPs and irradiated virus, but not IL-6 plus IL-8, produced Ca2+ waves that began within minutes of VLP exposure, lasted for at least 60 minutes, and were prevented by pretreatment with apyrase, a P2Y1 receptor antagonist, and general TMEM16 family inhibitor but not by the specific TMEM16A inhibitor. CONCLUSIONS The pathophysiology of COVID-19 diarrhea appears to be a unique example of a calcium-dependent inflammatory diarrhea that is caused by direct viral effects plus the virus-induced intestinal epithelial cytokine secretion.
Collapse
Affiliation(s)
- Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Chung-Ming Tse
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafiq Sarker
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruxian Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ivy Horwitz
- University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - ChunYan Ye
- University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - George McNamara
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie In
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Alison Kell
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Chenxu Guo
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shang JuiTsai
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tyrus Vong
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Karaba
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Varsha Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaiprasath Sachithanandham
- Department of Microbiology and Immunology, Bloomberg School of Public Health of the Johns Hopkins University, Baltimore, Maryland
| | - Andrew Pekosz
- Department of Microbiology and Immunology, Bloomberg School of Public Health of the Johns Hopkins University, Baltimore, Maryland
| | - Andrea Cox
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico; University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Gould
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olga Kovbasnjuk
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
9
|
Chen W, Wu P, Jin C, Chen Y, Li C, Qian H. Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells. J Nanobiotechnology 2024; 22:215. [PMID: 38693585 PMCID: PMC11064407 DOI: 10.1186/s12951-024-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.
Collapse
Affiliation(s)
- Wenya Chen
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Can Jin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yinjie Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Chong Li
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Hui Qian
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
10
|
Roodsant TJ, van der Ark KC, Schultsz C. Translocation across a human enteroid monolayer by zoonotic Streptococcus suis correlates with the presence of Gb3-positive cells. iScience 2024; 27:109178. [PMID: 38439959 PMCID: PMC10909756 DOI: 10.1016/j.isci.2024.109178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Streptococcus suis is a zoonotic pathogen that can cause meningitis and septicaemia. The consumption of undercooked pig products is an important risk factor for zoonotic infections, suggesting an oral route of infection. In a human enteroid model, we show that the zoonotic CC1 genotype has a 40% higher translocation frequency than the non-zoonotic CC16 genotype. Translocation occurred without increasing the permeability or disrupting the adherens junctions and tight junctions of the epithelial monolayer. The translocation of zoonotic S. suis was correlated with the presence of Gb3-positive cells, a human glycolipid receptor found on Paneth cells and targeted by multiple enteric pathogens. The virulence factors Streptococcal adhesin Protein and suilysin, known to interact with Gb3, were not essential for translocation in our epithelial model. Thus, the ability to translocate across an enteroid monolayer correlates with S. suis core genome composition and the presence of Gb3-positive cells in the intestinal epithelium.
Collapse
Affiliation(s)
- Thomas J. Roodsant
- Amsterdam UMC, Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
| | - Kees C.H. van der Ark
- Amsterdam UMC, Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
| | - Constance Schultsz
- Amsterdam UMC, Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Berlin C, Mauerer B, Cauchy P, Luenstedt J, Sankowski R, Marx L, Feuerstein R, Schaefer L, Greten FR, Pesic M, Groß O, Prinz M, Ruehl N, Miketiuk L, Jauch D, Laessle C, Jud A, Biesel EA, Neeff H, Fichtner-Feigl S, Holzner PA, Kesselring R. Single-cell deconvolution reveals high lineage- and location-dependent heterogeneity in mesenchymal multivisceral stage 4 colorectal cancer. J Clin Invest 2023; 134:e169576. [PMID: 38153787 PMCID: PMC10904044 DOI: 10.1172/jci169576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Metastasized colorectal cancer (CRC) is associated with a poor prognosis and rapid disease progression. Besides hepatic metastasis, peritoneal carcinomatosis is the major cause of death in Union for International Cancer Control (UICC) stage IV CRC patients. Insights into differential site-specific reconstitution of tumor cells and the corresponding tumor microenvironment are still missing. Here, we analyzed the transcriptome of single cells derived from murine multivisceral CRC and delineated the intermetastatic cellular heterogeneity regarding tumor epithelium, stroma, and immune cells. Interestingly, we found an intercellular site-specific network of cancer-associated fibroblasts and tumor epithelium during peritoneal metastasis as well as an autologous feed-forward loop in cancer stem cells. We furthermore deciphered a metastatic dysfunctional adaptive immunity by a loss of B cell-dependent antigen presentation and consecutive effector T cell exhaustion. Furthermore, we demonstrated major similarities of this murine metastatic CRC model with human disease and - based on the results of our analysis - provided an auspicious site-specific immunomodulatory treatment approach for stage IV CRC by intraperitoneal checkpoint inhibition.
Collapse
Affiliation(s)
- Christopher Berlin
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- IMM-PACT Clinician Scientist Program
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierre Cauchy
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jost Luenstedt
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- IMM-PACT Clinician Scientist Program
| | - Roman Sankowski
- Institute of Neuropathology
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Marx
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhild Feuerstein
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Schaefer
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian R. Greten
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Marina Pesic
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Olaf Groß
- Institute of Neuropathology
- Signalling Research Centres BIOSS and CIBSS
| | - Marco Prinz
- Institute of Neuropathology
- Signalling Research Centres BIOSS and CIBSS
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, and
| | - Naomi Ruehl
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Miketiuk
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Jauch
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Laessle
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- EXCEL Excellent Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Jud
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Esther A. Biesel
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannes Neeff
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp A. Holzner
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Smith EM, Papadimas A, Gabor C, Cooney C, Wu T, Rasko D, Barry EM. The role of the minor colonization factor CS14 in adherence to intestinal cell models by geographically diverse ETEC isolates. mSphere 2023; 8:e0030223. [PMID: 37787523 PMCID: PMC10597352 DOI: 10.1128/msphere.00302-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and young children in low- to middle-income countries. ETEC adheres to small intestinal epithelia via colonization factors (CFs) and secretes heat-stable toxin and/or heat-labile toxin, causing dysregulated ion transport and water secretion. There are over 30 CFs identified, including major CFs associated with moderate-to-severe diarrhea (MSD) and minor CFs for which a role in pathogenesis is less clear. The Global Enteric Multicenter Study identified CS14, a class 5a fimbriae, as the only minor CF significantly associated with MSD and was recommended for inclusion in ETEC vaccines. Despite detection of CS14 in ETEC isolates, the sequence conservation of the CS14 operon, its role in adherence, and functional cross-reactivity to other class 5a fimbriae like CFA/I and CS4 are not understood. Sequence analysis determined that the CS14 operon is >99.9% identical among seven geographically diverse isolates with expanded sequence analysis demonstrating SNPs exclusively in the gene encoding the tip adhesin CsuD. Western blots and electron microscopy demonstrated that CS14 expression required the growth of isolates on CFA agar with the iron chelator deferoxamine mesylate. CS14 expression resulted in significantly increased adherence to cultured intestinal cells and human enteroids. Anti-CS14 antibodies and anti-CS4 antibodies, but not anti-CFA/I antibodies, inhibited the adherence of a subset of ETEC isolates, demonstrating CS14-specific inhibition with partial cross-reactivity within the class 5a fimbrial family. These data provide support for CS14 as an important fimbrial CF and its consideration as a vaccine antigen in future strategies. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) infection causes profuse watery diarrhea in adults and children in low- to middle-income countries and is a leading cause of traveler's diarrhea. Despite increased use of rehydration therapies, young children especially can suffer long-term effects including gastrointestinal dysfunction as well as stunting and malnutrition. As there is no licensed vaccine for ETEC, there remains a need to identify and understand specific antigens for inclusion in vaccine strategies. This study investigated one adhesin named CS14. This adhesin is expressed on the bacterial surface of ETEC isolates and was recently recognized for its significant association with diarrheal disease. We demonstrated that CS14 plays a role in bacterial adhesion to human target cells, a critical first step in the disease process, and that adherence could be blocked by CS14-specific antibodies. This work will significantly impact the ETEC field by supporting inclusion of CS14 as an antigen for ETEC vaccines.
Collapse
Affiliation(s)
- Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Antonia Papadimas
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Caitlin Gabor
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ceanna Cooney
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tao Wu
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Lin SC, Zhao FR, Janova H, Gervais A, Rucknagel S, Murray KO, Casanova JL, Diamond MS. Blockade of interferon signaling decreases gut barrier integrity and promotes severe West Nile virus disease. Nat Commun 2023; 14:5973. [PMID: 37749080 PMCID: PMC10520062 DOI: 10.1038/s41467-023-41600-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
The determinants of severe disease caused by West Nile virus (WNV) and why only ~1% of individuals progress to encephalitis remain poorly understood. Here, we use human and mouse enteroids, and a mouse model of pathogenesis, to explore the capacity of WNV to directly infect gastrointestinal (GI) tract cells and contribute to disease severity. At baseline, WNV poorly infects human and mouse enteroid cultures and enterocytes in mice. However, when STAT1 or type I interferon (IFN) responses are absent, GI tract cells become infected, and this is associated with augmented GI tract and blood-brain barrier (BBB) permeability, accumulation of gut-derived molecules in the brain, and more severe WNV disease. The increased gut permeability requires TNF-α signaling, and is absent in WNV-infected IFN-deficient germ-free mice. To link these findings to human disease, we measured auto-antibodies against type I IFNs in serum from WNV-infected human cohorts. A greater frequency of auto- and neutralizing antibodies against IFN-α2 or IFN-ω is present in patients with severe WNV infection, whereas virtually no asymptomatic WNV-infected subjects have such antibodies (odds ratio 24 [95% confidence interval: 3.0 - 192.5; P = 0.003]). Overall, our experiments establish that blockade of type I IFN signaling extends WNV tropism to enterocytes, which correlates with increased gut and BBB permeability, and more severe disease.
Collapse
Affiliation(s)
- Shih-Ching Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hana Janova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, EU, 75015, France
- Paris Cité University, Imagine Institute, Paris, EU, 75015, France
| | - Summer Rucknagel
- Gnotobiotic Research, Education, and Transgenic Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristy O Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, EU, 75015, France
- Paris Cité University, Imagine Institute, Paris, EU, 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
- Department of Paediatrics, Necker Hospital for Sick Children, Paris, EU, 75015, France
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
14
|
de Oliveira LF, Filho DM, Marques BL, Maciel GF, Parreira RC, do Carmo Neto JR, Da Silva PEF, Guerra RO, da Silva MV, Santiago HDC, Birbrair A, Kihara AH, Dias da Silva VJ, Glaser T, Resende RR, Ulrich H. Organoids as a novel tool in modelling infectious diseases. Semin Cell Dev Biol 2023; 144:87-96. [PMID: 36182613 DOI: 10.1016/j.semcdb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.
Collapse
Affiliation(s)
- Lucas Felipe de Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Daniel Mendes Filho
- Departamento de Fisiologia, Escola Médica de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno Lemes Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal deGoiás, Goiânia, GO, Brazil
| | | | | | - José Rodrigues do Carmo Neto
- Departamento de Biociência e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Rhanoica Oliveira Guerra
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, Columbia University Medical Center, New York, NY, USA; Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Valdo José Dias da Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil; Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Krsek D, Yara DA, Hrbáčková H, Daniel O, Mančíková A, Schüller S, Bielaszewska M. Translocation of outer membrane vesicles from enterohemorrhagic Escherichia coli O157 across the intestinal epithelial barrier. Front Microbiol 2023; 14:1198945. [PMID: 37303786 PMCID: PMC10248468 DOI: 10.3389/fmicb.2023.1198945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Outer membrane vesicles (OMVs) carrying virulence factors of enterohemorrhagic Escherichia coli (EHEC) are assumed to play a role in the pathogenesis of life-threatening hemolytic uremic syndrome (HUS). However, it is unknown if and how OMVs, which are produced in the intestinal lumen, cross the intestinal epithelial barrier (IEB) to reach the renal glomerular endothelium, the major target in HUS. We investigated the ability of EHEC O157 OMVs to translocate across the IEB using a model of polarized Caco-2 cells grown on Transwell inserts and characterized important aspects of this process. Using unlabeled or fluorescently labeled OMVs, tests of the intestinal barrier integrity, inhibitors of endocytosis, cell viability assay, and microscopic techniques, we demonstrated that EHEC O157 OMVs translocated across the IEB. OMV translocation involved both paracellular and transcellular pathways and was significantly increased under simulated inflammatory conditions. In addition, translocation was not dependent on OMV-associated virulence factors and did not affect viability of intestinal epithelial cells. Importantly, translocation of EHEC O157 OMVs was confirmed in human colonoids thereby supporting physiological relevance of OMVs in the pathogenesis of HUS.
Collapse
Affiliation(s)
- Daniel Krsek
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| | | | - Hana Hrbáčková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| | - Ondřej Daniel
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| | - Andrea Mančíková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Martina Bielaszewska
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czechia
| |
Collapse
|
16
|
Liebe H, Schlegel C, Cai X, Golubkova A, Loerke C, Leiva T, Hunter CJ. Apical-Out Enteroids as an Innovative Model for Necrotizing Enterocolitis. J Surg Res 2023; 283:1106-1116. [PMID: 36915002 PMCID: PMC10014931 DOI: 10.1016/j.jss.2022.11.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Necrotizing enterocolitis (NEC) is a gastrointestinal disease of premature neonates. We previously validated a NEC enteroid model derived from human infant intestinal tissue. Typical enteroid configuration is basolateral-out (BO) without direct access to the luminal (apical) surface. Apical access is necessary to allow physiologic comparison of pathogen interaction with the intestinal epithelial barrier. We hypothesize that apical-out (AO) enteroids will provide a relevant NEC model to study this relationship. METHODS Following the institutional review board approval (#11610-11611), neonatal intestinal tissue was collected from surgical specimens. Stem cells were collected; enteroids were generated and grown to maturity in BO conformation then everted to AO. Enteroids were untreated or treated for 24 h with 100 μg/mL lipopolysaccharide and hypoxia. Protein and gene expression were analyzed for inflammatory markers, tight junction (TJ) proteins and permeability characteristic of NEC. RESULTS Apical TJ protein zonula occludens-1 and basolateral protein β-catenin immunofluorescence confirmed AO configuration. Treated AO enteroids had significantly increased messenger RNA (P = 0.001) and protein levels (P < 0.0001) of tumor necrosis factor-α compared to controls. Corrected total cell fluorescence of toll-like receptor 4 was significantly increased in treated AO enteroids compared to control (P = 0.002). Occludin was found to have significantly decreased messenger RNA in treated AO enteroids (P = 0.003). Expression of other TJ proteins claudins-1, -4 and zonula occludens-1 was significantly decreased in treated AO enteroids (P < 0.05). CONCLUSIONS AO enteroids present an innovative model for NEC with increased inflammation and gut barrier restructuring. This model allows for a biologically relevant investigation of the interaction between the pathogen and the intestinal epithelial barrier in NEC.
Collapse
Affiliation(s)
- Heather Liebe
- Division of Pediatric Surgery, Oklahoma Children's Hospital, Oklahoma City, Oklahoma.
| | - Camille Schlegel
- The University of Oklahoma Health Sciences Center, Department of Surgery, Oklahoma City, Oklahoma
| | - Xue Cai
- The University of Oklahoma Health Sciences Center, Department of Surgery, Oklahoma City, Oklahoma
| | - Alena Golubkova
- Division of Pediatric Surgery, Oklahoma Children's Hospital, Oklahoma City, Oklahoma
| | | | - Tyler Leiva
- Division of Pediatric Surgery, Oklahoma Children's Hospital, Oklahoma City, Oklahoma
| | - Catherine J Hunter
- Division of Pediatric Surgery, Oklahoma Children's Hospital, Oklahoma City, Oklahoma
| |
Collapse
|
17
|
Nabeh OA. Gut microbiota and cardiac arrhythmia: a pharmacokinetic scope. Egypt Heart J 2022; 74:87. [PMID: 36583819 PMCID: PMC9803803 DOI: 10.1186/s43044-022-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dealing with cardiac arrhythmia is a difficult challenge. Choosing between different anti-arrhythmic drugs (AADs) while being cautious about the pro-arrhythmic characteristics of some of these drugs and their diverse interaction with other drugs is a real obstacle. MAIN BODY Gut microbiota (GM), in our bodies, are now being considered as a hidden organ which can regulate our immune system, digest complex food, and secrete bioactive compounds. Yet, GM are encountered in the pathophysiology of arrhythmia and can affect the pharmacokinetics of AADs, as well as some anti-thrombotics, resulting in altering their bioavailability, therapeutic function and may predispose to some of their unpleasant adverse effects. CONCLUSIONS Knowledge of the exact role of GM in the pharmacokinetics of these drugs is now essential for better understanding of the art of arrhythmia management. Also, it will help deciding when to consider probiotics as an adjunctive therapy while treating arrhythmia. This should be discovered in the near future.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- grid.7776.10000 0004 0639 9286Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Regulation of nutrient and electrolyte absorption in human organoid-derived intestinal epithelial cell monolayers. Transl Res 2022; 248:22-35. [PMID: 35513245 DOI: 10.1016/j.trsl.2022.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
Recently developed human intestinal epithelial 3D organoid cultures are a useful cell culture model to study intestinal transport physiology. From these, 2D monolayer cultures can be generated in which apical transporters are exposed to the medium, thereby better facilitating in vitro investigation of intestinal absorption processes. However, whether nutrient and electrolyte absorption can be physiologically regulated in human organoid-derived monolayers has not been determined. Constitutive nitric oxide (cNO) is known to regulate multiple gastrointestinal physiological functions. Previous studies using in vivo and in vitro mammalian animal models indicate that enhanced intracellular cNO differentially regulates the two primary apical Na transporters in small intestinal epithelial cells. Here, we generated human jejunal organoid-derived monolayers to determine whether apical nutrient and electrolyte transporter function is regulated by cNO in human enterocytes. Western blot analysis and immunocytochemical staining showed that organoid-derived 2D cultures express markers of enterocyte differentiation and form intact monolayers of apical-basal polarized epithelial cells. Uptake studies demonstrated that jejunal monolayers exhibit functional activity of Na-glucose cotransporter 1 (SGLT1; SLC5A1) and Na-H exchanger 3 (NHE3; SLC9A3). In response to physiological increases in cNO, the two primary apical Na transporters were differentially regulated in human intestinal organoid-derived monolayers, across multiple human specimens. An increase in cNO stimulated SGLT1, while NHE3 was inhibited. These results are similar to what is seen in vivo and in vitro in different animal intestinal models. Thus, human jejunal organoid-derived monolayers are an ideal in vitro model to better understand how intestinal nutrient absorption is regulated.
Collapse
|
19
|
Bacillus subtilis programs the differentiation of intestinal secretory lineages to inhibit Salmonella infection. Cell Rep 2022; 40:111416. [PMID: 36170821 DOI: 10.1016/j.celrep.2022.111416] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The role of intestinal microbiota on fate determination of intestinal epithelial cells has not been extensively examined. In this study, we explore the effect of Bacillus subtilis on programmed intestinal epithelial differentiation. We find that B. subtilis stimulates the differentiation of intestinal secretory cells. Moreover, B. subtilis inhibits the Notch pathway to reduce the expression of hairy and enhancer of split 1, thereby shifting intestinal stem cell differentiation toward a secretory cell fate. Moreover, we demonstrate that the programming effect of B. subtilis on intestinal differentiation is Toll-like receptor 2 pathway dependent. B. subtilis is associated with increased numbers of Paneth and goblet cells in the intestine. This results in the production of antimicrobial peptides to protect the intestinal mucosal barrier against Salmonella typhimurium. This study demonstrates that B. subtilis contributes to the differentiation of secretory cells by affecting Notch pathway signaling to maintain the intestinal barrier.
Collapse
|
20
|
Mussard E, Lencina C, Gallo L, Barilly C, Poli M, Feve K, Albin M, Cauquil L, Knudsen C, Achard C, Devailly G, Soler L, Combes S, Beaumont M. The phenotype of the gut region is more stably retained than developmental stage in piglet intestinal organoids. Front Cell Dev Biol 2022; 10:983031. [PMID: 36105361 PMCID: PMC9465596 DOI: 10.3389/fcell.2022.983031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal organoids are innovative in vitro tools to study the digestive epithelium. The objective of this study was to generate jejunum and colon organoids from suckling and weaned piglets in order to determine the extent to which organoids retain a location-specific and a developmental stage-specific phenotype. Organoids were studied at three time points by gene expression profiling for comparison with the transcriptomic patterns observed in crypts in vivo. In addition, the gut microbiota and the metabolome were analyzed to characterize the luminal environment of epithelial cells at the origin of organoids. The location-specific expression of 60 genes differentially expressed between jejunum and colon crypts from suckling piglets was partially retained (48%) in the derived organoids at all time point. The regional expression of these genes was independent of luminal signals since the major differences in microbiota and metabolome observed in vivo between the jejunum and the colon were not reproduced in vitro. In contrast, the regional expression of other genes was erased in organoids. Moreover, the developmental stage-specific expression of 30 genes differentially expressed between the jejunum crypts of suckling and weaned piglets was not stably retained in the derived organoids. Differentiation of organoids was necessary to observe the regional expression of certain genes while it was not sufficient to reproduce developmental stage-specific expression patterns. In conclusion, piglet intestinal organoids retained a location-specific phenotype while the characteristics of developmental stage were erased in vitro. Reproducing more closely the luminal environment might help to increase the physiological relevance of intestinal organoids.
Collapse
Affiliation(s)
- Eloïse Mussard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Lise Gallo
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Maryse Poli
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Katia Feve
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Mikael Albin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | | | | | - Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- *Correspondence: Martin Beaumont,
| |
Collapse
|
21
|
Smith EM, Grassel CL, Papadimas A, Foulke-Abel J, Barry EM. The role of CFA/I in adherence and toxin delivery by ETEC expressing multiple colonization factors in the human enteroid model. PLoS Negl Trop Dis 2022; 16:e0010638. [PMID: 35881640 PMCID: PMC9355178 DOI: 10.1371/journal.pntd.0010638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/05/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and young children in low-to-middle-income countries (LMICs). ETEC adhere to intestinal epithelia via colonization factors (CFs) and secrete heat-stable toxin (ST) and/or heat-labile toxin (LT), causing dysregulated cellular ion transport and water secretion. ETEC isolates often harbor genes encoding more than one CF that are targets as vaccine antigens. CFA/I is a major CF that is associated with ETEC that causes moderate-to-severe diarrhea and plays an important role in pathogenesis. The Global Enteric Multicenter Study finding that 78% of CFA/I-expressing ETEC also encode the minor CF CS21 prompted investigation of the combined role of these two CFs. Western blots and electron microscopy demonstrated growth media-dependent and strain-dependent differences in CFA/I and CS21 expression. The critical role of CFA/I in adherence by ETEC strains expressing CFA/I and CS21 was demonstrated using the human enteroid model and a series of CFA/I- and CS21-specific mutants. Furthermore, only anti-CFA/I antibodies inhibited adherence by global ETEC isolates expressing CFA/I and CS21. Delivery of ST and resulting cGMP secretion was measured in supernatants from infected enteroid monolayers, and strain-specific ST delivery and time-dependent cGMP production was observed. Interestingly, cGMP levels were similar across wildtype and CF-deficient strains, reflecting a limitation of this static aerobic infection model. Despite adherence by ETEC and delivery of ST, the enteroid monolayer integrity was not disrupted, as shown by the lack of decrease in transepithelial electrical resistance and the lack of IL-8 cytokines produced during infection. Taken together, these data demonstrate that targeting CFA/I in global clinical CFA/I-CS21 strains is sufficient for adherence inhibition, supporting a vaccine strategy that focuses on blocking major CFs. In addition, the human enteroid model has significant utility for the study of ETEC pathogenesis and evaluation of vaccine-induced functional antibody responses.
Collapse
Affiliation(s)
- Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christen L. Grassel
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Antonia Papadimas
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Donowitz M, Sarker R, Lin R, McNamara G, Tse CM, Singh V. Identification of Intestinal NaCl Absorptive-Anion Secretory Cells: Potential Functional Significance. Front Physiol 2022; 13:892112. [PMID: 35928564 PMCID: PMC9343792 DOI: 10.3389/fphys.2022.892112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Use of human enteroids studied in the undifferentiated and differentiated state that mimic the intestinal crypt and villus, respectively, has allowed studies of multiple enterocyte populations, including a large population of enterocytes that are transitioning from the crypt to the villus. This population expresses NHE3, DRA, and CFTR, representing a combination of Na absorptive and anion secretory functions. In this cell population, these three transporters physically interact, which affects their baseline and regulated activities. A study of this cell population and differentiated Caco-2 cells transduced with NHE3 and endogenously expressing DRA and CFTR has allowed an understanding of previous studies in which cAMP seemed to stimulate and inhibit DRA at the same time. Understanding the contributions of these cells to overall intestinal transport function as part of the fasting and post-prandial state and their contribution to the pathophysiology of diarrheal diseases and some conditions with constipation will allow new approaches to drug development.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Mark Donowitz,
| | - Rafiquel Sarker
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ruxian Lin
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George McNamara
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chung Ming Tse
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Varsha Singh
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Singh VK, Seed TM. Acute radiation syndrome drug discovery using organ-on-chip platforms. Expert Opin Drug Discov 2022; 17:865-878. [PMID: 35838021 DOI: 10.1080/17460441.2022.2099833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION : The high attrition rate during drug development remains a challenge that costs a significant amount of time and money. Improving the probabilities of success during the early stages of radiation medical countermeasure (MCM) development for approval by the United States Food and Drug Administration (US FDA) following the Animal Rule will reduce this burden. For optimal development of MCMs, we need suitable and efficient radiation injury models with high biological relevance for evaluating drug efficacy as well as biomarker discovery and validation. AREA COVERED This article focuses on new technologies involving various organs-on-chip platforms. Of late, there have been rapid development of these technologies, especially in terms of mimicking both normal and abnormal physiological conditions. Here, we suggest possible applications of these novel systems for the discovery and development of radiation MCMs for the acute radiation syndrome (ARS). We offer preliminary information on the utility of one such system for MCM research and discovery for the ARS condition. EXPERT OPINION : Each organ-on-a-chip system has its own strengths and shortcomings. As such, the system selected for MCM discovery, development, and regulatory approval should be carefully considered and optimized to the fullest extent in order to augment successful drug testing and the minimization of attrition rates of candidate agents. The recent encouraging progress with organ-on-a-chip technology will likely lead to additional radiation MCMs for ARS approved by the US FDA. The acceptance of organ-on-a-chip technology may be a promising step toward improving the success rate of pharmaceuticals in MCM development.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
24
|
Lin SC, Haga K, Zeng XL, Estes MK. Generation of CRISPR-Cas9-mediated genetic knockout human intestinal tissue-derived enteroid lines by lentivirus transduction and single-cell cloning. Nat Protoc 2022; 17:1004-1027. [PMID: 35197604 PMCID: PMC9059808 DOI: 10.1038/s41596-021-00669-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Human intestinal tissue-derived enteroids (HIEs; also called organoids) are a powerful ex vivo model for gastrointestinal research. Genetic modification of these nontransformed cultures allows new insights into gene function and biological processes involved in intestinal diseases as well as gastrointestinal and donor segment-specific function. Here we provide a detailed technical pipeline and protocol for using the CRISPR-Cas9 genome editing system to knock out a gene of interest specifically in HIEs by lentiviral transduction and single-cell cloning. This protocol differs from a previously published alternative using electroporation of human colonoids to deliver piggyback transposons or CRISPR-Cas9 constructs, as this protocol uses a modified, fused LentiCRISPRv2-small-guiding RNA to express Cas9 and small-guiding RNA in a lentivirus. The protocol also includes the steps of gene delivery and subsequent single-cell cloning of the knockout cells as well as verification of clones and sequence identification of the mutation sites to establish knockout clones. An overview flowchart, step-by-step guidelines and troubleshooting suggestions are provided to aid the researcher in obtaining the genetic knockout HIE line within 2-3 months. In this protocol, we further describe how to use HIEs as an ex vivo model to assess host restriction factors for viral replication (using human norovirus replication as an example) by knocking out host attachment factors or innate immunity genes. Other applications are discussed to broaden the utility of this system, for example, to generate knockin or conditional knockout HIE lines to investigate the function of essential genes in many biological processes including other types of organoids.
Collapse
Affiliation(s)
- Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kei Haga
- Department of Infection Control and Immunology, Kitasato University, Tokyo, Japan
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
25
|
Jiang Z, Li Z, Wang F, Zhou Z. The Protective Effects of Sour Orange ( Citrus aurantium L.) Polymethoxyflavones on Mice Irradiation-Induced Intestinal Injury. Molecules 2022; 27:1934. [PMID: 35335298 PMCID: PMC8948989 DOI: 10.3390/molecules27061934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Sour orange (Citrus aurantium L.) is one of the biological sources of polymethoxyflavones (PMFs), which are often used to deal with gastrointestinal diseases. The intestine is highly sensitive to irradiation damage. However, limited certain cures have been released for irradiation-induced gastrointestinal injury, and the potentials of sour orange PMFs as radio-resistance agents have not been fully discussed yet. The present study aims to (1) investigate the PMF components in 12 sour orange cultivars, (2) determine the protective effects of PMFs on irradiation-induced intestinal injury by treating mice that received 12 Gy abdominal irradiation with different doses of PMFs and observing the changes in organ indexes and pathological sections and (3) test cytotoxicity of PMFs by CCK-8 method. The results showed that sour orange PMFs appeared to have high intraspecies similarity. Besides, PMFs protected mice from irradiation-induced injury by alleviating body weight loss, reliving organ index changing and maintaining the intestinal structure. Finally, IC50 concentrations to cell line CCD 841 CoN of PMFs and nobiletin were calculated as 42.23 μg/mL and 51.58 μg/mL, respectively. Our study uncovered PMF contents in 12 sour orange materials and determined the protective effects on irradiation-induced intestinal injuries, providing guidance for the utilization of sour orange resources.
Collapse
Affiliation(s)
- Zixiao Jiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.J.); (Z.L.)
| | - Zhenqing Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.J.); (Z.L.)
| | - Fengchao Wang
- State Key Laboratory of Trauma, Institute of Combined Injury of PLA, Burns and Combined Injury, Army Medical University, Shapingba, Chongqing 400038, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.J.); (Z.L.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
26
|
Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Soleilhac M, Djemat A, Wu H, Romagnolo B, Lafont F, Mège RM, Chen Y, Delacour D. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials 2022; 282:121380. [DOI: 10.1016/j.biomaterials.2022.121380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
|
27
|
Arian CM, Imaoka T, Yang J, Kelly EJ, Thummel KE. Gutsy science: In vitro systems of the human intestine to model oral drug disposition. Pharmacol Ther 2022; 230:107962. [PMID: 34478775 PMCID: PMC8821120 DOI: 10.1016/j.pharmthera.2021.107962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/03/2023]
Abstract
The intestine has important gate-keeping functions that can profoundly affect the systemic blood exposure of orally administered drugs. Thus, characterizing a new molecular entity's (NME) disposition within the intestine is of utmost importance in drug development. While currently used in vitro systems, such as Ussing chamber, precision-cut intestinal slices, immortalized cell lines, and primary enterocytes provide substantial knowledge about drug absorption and the intestinal first-pass effect, they remain sub-optimal for quantitatively predicting this process and the oral bioavailability of many drugs. Use of novel in vitro systems such as intestinal organoids and intestinal microphysiological systems have provided substantial advances over the past decade, expanding our understanding of intestinal physiology, pathology, and development. However, application of these emerging in vitro systems in the pharmaceutical science is in its infancy. Preliminary work has demonstrated that these systems more accurately recapitulate the physiology and biochemistry of the intact intestine, as it relates to oral drug disposition, and thus they hold considerable promise as preclinical testing platforms of the future. Here we review currently used and emerging in vitro models of the human intestine employed in pharmaceutical science research. We also highlight aspects of these emerging tools that require further study.
Collapse
Affiliation(s)
- Christopher M Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Tomoki Imaoka
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Jade Yang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Challenges to, and prospects for, reverse engineering the gastrointestinal tract using organoids. Trends Biotechnol 2022; 40:932-944. [DOI: 10.1016/j.tibtech.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
|
29
|
Jaiswal S, Joshi B, Chen J, Wang F, Dame MK, Spence JR, Newsome GM, Katz EL, Shah YM, Ramakrishnan SK, Li G, Lee M, Appelman HD, Kuick R, Wang TD. Membrane Bound Peroxiredoxin-1 Serves as a Biomarker for In Vivo Detection of Sessile Serrated Adenomas. Antioxid Redox Signal 2022; 36:39-56. [PMID: 34409853 PMCID: PMC8792500 DOI: 10.1089/ars.2020.8244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aim: Sessile serrated adenomas (SSAs) are premalignant lesions driven by the BRAFV600E mutation to give rise to colorectal cancers (CRCs). They are often missed during white light colonoscopy because of their subtle appearance. Previously, a fluorescently labeled 7mer peptide KCCFPAQ was shown to detect SSAs in vivo. We aim to identify the target of this peptide. Results: Peroxiredoxin-1 (Prdx1) was identified as the binding partner of the peptide ligand. In vitro binding assays and immunofluorescence staining of human colon specimens ex vivo supported this result. Prdx1 was overexpressed on the membrane of cells with the BRAFV600E mutation, and this effect was dependent on oxidative stress. RKO cells harboring the BRAFV600E mutation and human SSA specimens showed higher oxidative stress as well as elevated levels of Prdx1 on the cell membrane. Innovation and Conclusion: These results suggest that Prdx1 is overexpressed on the cell surface in the presence of oxidative stress and can serve as an imaging biomarker for in vivo detection of SSAs. Antioxid. Redox Signal. 36, 39-56.
Collapse
Affiliation(s)
- Sangeeta Jaiswal
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bishnu Joshi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jing Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fa Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael K Dame
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gina M Newsome
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Erica L Katz
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sadeesh K Ramakrishnan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gaoming Li
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Miki Lee
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry D Appelman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rork Kuick
- Department of Biostatistics, and University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas D Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Mboko WP, Chhabra P, Valcarce MD, Costantini V, Vinjé J. Advances in understanding of the innate immune response to human norovirus infection using organoid models. J Gen Virol 2022; 103:10.1099/jgv.0.001720. [PMID: 35077345 PMCID: PMC8984994 DOI: 10.1099/jgv.0.001720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Norovirus is the leading cause of epidemic and endemic acute gastroenteritis worldwide and the most frequent cause of foodborne illness in the United States. There is no specific treatment for norovirus infections and therapeutic interventions are based on alleviating symptoms and limiting viral transmission. The immune response to norovirus is not completely understood and mechanistic studies have been hindered by lack of a robust cell culture system. In recent years, the human intestinal enteroid/human intestinal organoid system (HIE/HIO) has enabled successful human norovirus replication. Cells derived from HIE have also successfully been subjected to genetic manipulation using viral vectors as well as CRISPR/Cas9 technology, thereby allowing studies to identify antiviral signaling pathways important in controlling norovirus infection. RNA sequencing using HIE cells has been used to investigate the transcriptional landscape during norovirus infection and to identify antiviral genes important in infection. Other cell culture platforms such as the microfluidics-based gut-on-chip technology in combination with the HIE/HIO system also have the potential to address fundamental questions on innate immunity to human norovirus. In this review, we highlight the recent advances in understanding the innate immune response to human norovirus infections in the HIE system, including the application of advanced molecular technologies that have become available in recent years such as the CRISPR/Cas9 and RNA sequencing, as well as the potential application of single cell transcriptomics, viral proteomics, and gut-on-a-chip technology to further elucidate innate immunity to norovirus.
Collapse
Affiliation(s)
- Wadzanai P. Mboko
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Preeti Chhabra
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Marta Diez Valcarce
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Veronica Costantini
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jan Vinjé
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
31
|
Intestinal Organoids: New Tools to Comprehend the Virulence of Bacterial Foodborne Pathogens. Foods 2022; 11:foods11010108. [PMID: 35010234 PMCID: PMC8750402 DOI: 10.3390/foods11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Foodborne diseases cause high morbidity and mortality worldwide. Understanding the relationships between bacteria and epithelial cells throughout the infection process is essential to setting up preventive and therapeutic solutions. The extensive study of their pathophysiology has mostly been performed on transformed cell cultures that do not fully mirror the complex cell populations, the in vivo architectures, and the genetic profiles of native tissues. Following advances in primary cell culture techniques, organoids have been developed. Such technological breakthroughs have opened a new path in the study of microbial infectious diseases, and thus opened onto new strategies to control foodborne hazards. This review sheds new light on cellular messages from the host–foodborne pathogen crosstalk during in vitro organoid infection by the foodborne pathogenic bacteria with the highest health burden. Finally, future perspectives and current challenges are discussed to provide a better understanding of the potential applications of organoids in the investigation of foodborne infectious diseases.
Collapse
|
32
|
Rahman S, Ghiboub M, Donkers JM, van de Steeg E, van Tol EAF, Hakvoort TBM, de Jonge WJ. The Progress of Intestinal Epithelial Models from Cell Lines to Gut-On-Chip. Int J Mol Sci 2021; 22:ijms222413472. [PMID: 34948271 PMCID: PMC8709104 DOI: 10.3390/ijms222413472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past years, several preclinical in vitro and ex vivo models have been developed that helped to understand some of the critical aspects of intestinal functions in health and disease such as inflammatory bowel disease (IBD). However, the translation to the human in vivo situation remains problematic. The main reason for this is that these approaches fail to fully reflect the multifactorial and complex in vivo environment (e.g., including microbiota, nutrition, and immune response) in the gut system. Although conventional models such as cell lines, Ussing chamber, and the everted sac are still used, increasingly more sophisticated intestinal models have been developed over the past years including organoids, InTESTine™ and microfluidic gut-on-chip. In this review, we gathered the most recent insights on the setup, advantages, limitations, and future perspectives of most frequently used in vitro and ex vivo models to study intestinal physiology and functions in health and disease.
Collapse
Affiliation(s)
- Shafaque Rahman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands
| | - Joanne M. Donkers
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Evita van de Steeg
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Eric A. F. van Tol
- The Netherlands Organization for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands; (J.M.D.); (E.v.d.S.); (E.A.F.v.T.)
| | - Theodorus B. M. Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (S.R.); (M.G.); (T.B.M.H.)
- Department of Surgery, University of Bonn, 53113 Bonn, Germany
- Correspondence:
| |
Collapse
|
33
|
Dokladny K, Crane JK, Kassicieh AJ, Kaper JB, Kovbasnjuk O. Cross-Talk between Probiotic Nissle 1917 and Human Colonic Epithelium Affects the Metabolite Composition and Demonstrates Host Antibacterial Effect. Metabolites 2021; 11:841. [PMID: 34940599 PMCID: PMC8706777 DOI: 10.3390/metabo11120841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022] Open
Abstract
Colonic epithelium-commensal interactions play a very important role in human health and disease development. Colonic mucus serves as an ecologic niche for a myriad of commensals and provides a physical barrier between the epithelium and luminal content, suggesting that communication between the host and microbes occurs mainly by soluble factors. However, the composition of epithelia-derived metabolites and how the commensal flora influences them is less characterized. Here, we used mucus-producing human adult stem cell-derived colonoid monolayers exposed apically to probiotic E. coli strain Nissle 1917 to characterize the host-microbial communication via small molecules. We measured the metabolites in the media from host and bacterial monocultures and from bacteria-colonoid co-cultures. We found that colonoids secrete amino acids, organic acids, nucleosides, and polyamines, apically and basolaterally. The metabolites from host-bacteria co-cultures markedly differ from those of host cells grown alone or bacteria grown alone. Nissle 1917 affects the composition of apical and basolateral metabolites. Importantly, spermine, secreted apically by colonoids, shows antibacterial properties, and inhibits the growth of several bacterial strains. Our data demonstrate the existence of a cross-talk between luminal bacteria and human intestinal epithelium via metabolites, which might affect the numbers of physiologic processes including the composition of commensal flora via bactericidal effects.
Collapse
Affiliation(s)
- Karol Dokladny
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA;
| | - John K. Crane
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY 14206, USA;
| | - Alex J. Kassicieh
- University of New Mexico School of Medicine, Albuquerque, NM 87106, USA;
| | - James B. Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Olga Kovbasnjuk
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Vermeire B, Gonzalez LM, Jansens RJJ, Cox E, Devriendt B. Porcine small intestinal organoids as a model to explore ETEC-host interactions in the gut. Vet Res 2021; 52:94. [PMID: 34174960 PMCID: PMC8235647 DOI: 10.1186/s13567-021-00961-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Small intestinal organoids, or enteroids, represent a valuable model to study host–pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host–pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.
Collapse
Affiliation(s)
- Bjarne Vermeire
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Laboratory of Immunology, Ghent University, 9820, Merelbeke, Belgium
| | - Liara M Gonzalez
- Laboratory of Intestinal Regenerative Medicine, College of Veterinary Medicine, NCSU, Raleigh, NC, USA
| | - Robert J J Jansens
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Laboratory of Immunology, Ghent University, 9820, Merelbeke, Belgium
| | - Eric Cox
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Laboratory of Immunology, Ghent University, 9820, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Laboratory of Immunology, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
35
|
Li B, Lee C, Chuslip S, Lee D, Biouss G, Wu R, Koike Y, Miyake H, Ip W, Gonska T, Pierro A. Intestinal epithelial tight junctions and permeability can be rescued through the regulation of endoplasmic reticulum stress by amniotic fluid stem cells during necrotizing enterocolitis. FASEB J 2021; 35:e21265. [PMID: 33373067 DOI: 10.1096/fj.202001426r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Necrotizing enterocolitis (NEC) is one of the most severe gastrointestinal diseases affecting premature infants. It has been shown that NEC is associated with disrupted intestinal barrier and dysregulated endoplasmic reticulum (ER)-stress response. It has also been shown that stem cells derived from amniotic fluid (AFSC) rescued intestinal injury in experimental NEC. Herein, we hypothesized that the beneficial effects of AFSC in the injured intestine are due to the restoration of intestinal barrier function. We evaluated intestinal barrier function using an ex vivo intestinal organoid model of NEC. We found that AFSC restored the expression and localization of tight junction proteins in intestinal organoids, and subsequently decreased epithelial permeability. AFSC rescued tight junction expression by inducing a protective ER stress response that prevents epithelial cell apoptosis in injured intestinal organoids. Finally, we validated these results in our experimental mouse model of NEC and confirmed that AFSC induced sustained ER stress and prevented intestinal apoptosis. This response led to the restoration of tight junction expression and localization, which subsequently reduced intestinal permeability in NEC pups. These findings confirm that intestinal barrier function is disrupted during NEC intestinal injury, and further demonstrate the disruption can be reversed by the administration of AFSC through the activation of the ER stress pathway. This study provides insight into the pathogenesis of NEC and highlights potential therapeutic targets for the treatment of NEC.
Collapse
Affiliation(s)
- Bo Li
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sinobol Chuslip
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy Lee
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - George Biouss
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Richard Wu
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yuhki Koike
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hiromu Miyake
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wan Ip
- Division of Gastroenterology, Hepatology and Nutrition, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tanja Gonska
- Division of Gastroenterology, Hepatology and Nutrition, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
36
|
Zubareva EV, Nadezhdin SV, Nadezhdina NA, Belyaeva VS, Burda YE, Avtina TV, Gudyrev OS, Kolesnik IM, Kulikova SY, Mishenin MO. 3D organotypic cell structures for drug development and Microorganism-Host interaction research. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.62118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The article describes a new method of tissue engineering, which is based on the use of three-dimensional multicellular constructs consisting of stem cells that mimic the native tissue in vivo – organoids.
3D cell cultures: The currently existing model systems of three-dimensional cultures are described.
Characteristics of organoids and strategies for their culturing: The main approaches to the fabrication of 3D cell constructs using pluripotent (embryonic and induced) stem cells or adult stem cells are described.
Brain organoids (Cerebral organoids): Organoids of the brain, which are used to study the development of the human brain, are characterized, with the description of biology of generating region-specific cerebral organoids.
Lung organoids: Approaches to the generation of lung organoids are described, by means of pluripotent stem cells and lung tissue cell lines.
Liver organoids: The features of differentiation of stem cells into hepatocyte-like cells and the creation of 3D hepatic organoids are characterized.
Intestinal organoids: The formation of small intestine organoids from stem cells is described.
Osteochondral organoids: Fabrication of osteochondral organoids is characterised.
Use of organoids as test systems for drugs screening: The information on drug screening using organoids is provided.
Using organoids to model infectious diseases and study adaptive responses of microorganisms when interacting with the host: The use of organoids for modeling infectious diseases and studying the adaptive responses of microorganisms when interacting with the host organism is described.
Conclusion: The creation of three-dimensional cell structures that reproduce the structural and functional characteristics of tissue in vivo, makes it possible to study the biology of the body’s development, the features of intercellular interactions, screening drugs and co-cultivating with viruses, bacteria and parasites.
Collapse
|
37
|
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gundert‐Remy U, Kuhnle GG, Lambré C, Leblanc J, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens‐Berendsen I, Woutersen RA, Wright M, Di Domenico A, Fairweather‐Tait S, McArdle HJ, Smeraldi C, Gott D. Guidance on safety evaluation of sources of nutrients and bioavailability of nutrient from the sources (Revision 1). EFSA J 2021; 19:e06552. [PMID: 33815621 PMCID: PMC8002907 DOI: 10.2903/j.efsa.2021.6552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
[Table: see text] This guidance describes the scientific data required to allow an evaluation of the safety of new substances that are proposed for use as sources of nutrients in food supplements, foods for the general population or foods for specific groups and an assessment of the bioavailability of the nutrient from the proposed source. This guidance describes the scientific data required to allow an evaluation of the safety of the source within the established framework for risk assessment of food additives and novel food ingredients and the bioavailability of the nutrient from this source. This document is arranged in five main sections: one on technical data aimed at characterising the proposed source and at identifying potential hazards resulting from its manufacture and stability in food; one on existing authorisations and evaluation, providing an overview of previous assessments on the proposed source and their conclusions; one on proposed uses and exposure assessment section, allowing an estimate of the dietary exposure to the source and the nutrient based on the proposed uses and use levels; one on toxicological data, describing approaches which can be used to identify (in conjunction with data on manufacture and composition) and to characterise hazards of the source and any relevant breakdown products; the final section on bioavailability focuses on determining the extent to which the nutrient from the proposed source is available for use by the body in comparison with one or more forms of the same nutrient that are already permitted for use on the positive lists. This guidance was adopted by the Panel on Food Additives and Nutrient Sources added to Food (ANS Panel) on 16 May 2018. Upon request from EFSA, the present guidance has been revised to inform applicants of new provisions set out in Regulation (EC) No 178/2002, as amended by Regulation (EU) 2019/1381 on the transparency and sustainability of the EU risk assessment in the food chain.
Collapse
|
38
|
Hariss F, Meresse B. Comment on "ILC1 drive intestinal epithelial and matrix remodeling". Mucosal Immunol 2021; 14:279-281. [PMID: 33542491 PMCID: PMC7946633 DOI: 10.1038/s41385-020-00360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/04/2023]
Abstract
Type 1 Innate lymphoid cells (ILC1) accumulate in the inflamed mucosa of patients with Crohn’s disease (CD) but their role in CD pathogenesis remains poorly known. In a recent issue of Nature materials, Jowett et al. (Nat. Mat. 2020) used a coculture model with intestinal organoids to show that ILC1 could promote intestinal epithelial growth and tissue remodeling through an unexpected mechanism that involves the transforming growth factor 1 (TGF-β1) and the metalloproteinase MMP9.
Collapse
Affiliation(s)
- Fatima Hariss
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France
| | - Bertrand Meresse
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000, Lille, France.
| |
Collapse
|
39
|
Beaumont M, Blanc F, Cherbuy C, Egidy G, Giuffra E, Lacroix-Lamandé S, Wiedemann A. Intestinal organoids in farm animals. Vet Res 2021; 52:33. [PMID: 33632315 PMCID: PMC7905770 DOI: 10.1186/s13567-021-00909-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
In livestock species, the monolayer of epithelial cells covering the digestive mucosa plays an essential role for nutrition and gut barrier function. However, research on farm animal intestinal epithelium has been hampered by the lack of appropriate in vitro models. Over the past decade, methods to culture livestock intestinal organoids have been developed in pig, bovine, rabbit, horse, sheep and chicken. Gut organoids from farm animals are obtained by seeding tissue-derived intestinal epithelial stem cells in a 3-dimensional culture environment reproducing in vitro the stem cell niche. These organoids can be generated rapidly within days and are formed by a monolayer of polarized epithelial cells containing the diverse differentiated epithelial progeny, recapitulating the original structure and function of the native epithelium. The phenotype of intestinal organoids is stable in long-term culture and reflects characteristics of the digestive segment of origin. Farm animal intestinal organoids can be amplified in vitro, cryopreserved and used for multiple experiments, allowing an efficient reduction of the use of live animals for experimentation. Most of the studies using livestock intestinal organoids were used to investigate host-microbe interactions at the epithelial surface, mainly focused on enteric infections with viruses, bacteria or parasites. Numerous other applications of farm animal intestinal organoids include studies on nutrient absorption, genome editing and bioactive compounds screening relevant for agricultural, veterinary and biomedical sciences. Further improvements of the methods used to culture intestinal organoids from farm animals are required to replicate more closely the intestinal tissue complexity, including the presence of non-epithelial cell types and of the gut microbiota. Harmonization of the methods used to culture livestock intestinal organoids will also be required to increase the reproducibility of the results obtained in these models. In this review, we summarize the methods used to generate and cryopreserve intestinal organoids in farm animals, present their phenotypes and discuss current and future applications of this innovative culture system of the digestive epithelium.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, 31326, France.
| | - Fany Blanc
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Claire Cherbuy
- Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Giorgia Egidy
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Elisabetta Giuffra
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | | | - Agnès Wiedemann
- ISP, INRAE, Université de Tours, Nouzilly, 37380, France.,IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
40
|
Green SI, Gu Liu C, Yu X, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X, Ramig RF, Trautner BW, Kaplan HB, Maresso AW. Targeting of Mammalian Glycans Enhances Phage Predation in the Gastrointestinal Tract. mBio 2021; 12:e03474-20. [PMID: 33563833 PMCID: PMC7885116 DOI: 10.1128/mbio.03474-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.
Collapse
Affiliation(s)
- Sabrina I Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xue Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shelley Gibson
- Department of Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wilhem Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah E Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W Trautner
- Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
41
|
Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans 2021; 49:187-201. [PMID: 33544117 PMCID: PMC7924999 DOI: 10.1042/bst20200338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut–brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome–gut–brain axis cross-talk, relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. The discovery of stem cells has offered a new source of cells, while their use in generating gastrointestinal and brain organoids, among other tissues, has enabled the development of novel 3D tissues that better mimic the native tissue structure and function, compared with traditional assays. In parallel, organs-on-chips technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. Here, we discuss how recent advances and trends in this area can be applied in host–microbe and host–pathogen interaction studies. In addition, we highlight paradigm shifts in engineering more robust human microbiome-gut-brain axis models and their potential to expand our understanding of this complex system and hence explore novel, microbiome-based therapeutic approaches.
Collapse
|
42
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Dokladny K, In JG, Kaper J, Kovbasnjuk O. Human Epithelial Stem Cell-Derived Colonoid Monolayers as a Model to Study Shiga Toxin-Producing Escherichia coli-Host Interactions. Methods Mol Biol 2021; 2291:285-296. [PMID: 33704759 DOI: 10.1007/978-1-0716-1339-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human intestinal organoid cultures established from crypt-derived stem cells truly revolutionized our approach to study intestinal epithelial physiology and pathologies as they can be propagated indefinitely and preserve the genetic signature of the donor and the gut segment specificity in culture. Here we describe human stem cell-derived colonoid monolayers as a reliable and reproducible model to study Shiga toxin-producing Escherichia coli (STEC) infection and STEC-caused pathologies of the whole colonic epithelium comprising a mixture of colonocytes, goblet, enteroendocrine, and other rare cells present in human colonic epithelial tissue.
Collapse
Affiliation(s)
- Karol Dokladny
- Division of Gastroenterology, Department of Internal Medicine, University of New Mexico Health Sciences Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Julie G In
- Division of Gastroenterology, Department of Internal Medicine, University of New Mexico Health Sciences Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - James Kaper
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Olga Kovbasnjuk
- Division of Gastroenterology, Department of Internal Medicine, University of New Mexico Health Sciences Center, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
44
|
Yin Y, Liu PY, Shi Y, Li P. Single-Cell Sequencing and Organoids: A Powerful Combination for Modelling Organ Development and Diseases. Rev Physiol Biochem Pharmacol 2021; 179:189-210. [PMID: 33619630 DOI: 10.1007/112_2020_47] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development and function of a particular organ and the pathogenesis of various diseases remain intimately linked to the features of each cell type in the organ. Conventional messenger RNA- or protein-based methodologies often fail to elucidate the contribution of rare cell types, including some subpopulations of stem cells, short-lived progenitors and circulating tumour cells, thus hampering their applications in studies regarding organ development and diseases. The scRNA-seq technique represents a new approach for determining gene expression variability at the single-cell level. Organoids are new preclinical models that recapitulate complete or partial features of their original organ and are thought to be superior to cell models in mimicking the sophisticated spatiotemporal processes of the development and regeneration and diseases. In this review, we highlight recent advances in the field of scRNA-seq, organoids and their current applications and summarize the advantages of using a combination of scRNA-seq and organoid technology to model diseases and organ development.
Collapse
Affiliation(s)
- Yuebang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Peng-Yu Liu
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Ping Li
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou, China.
| |
Collapse
|
45
|
Abstract
In recent years, it has been revealed that Parkinson's disease pathology may begin to manifest in the gastrointestinal track at a much earlier time point than in the brain. This paradigm shift has been suggested following evidence in humans that has been reproduced in animal models. Since rodent models cannot recapitulate many of the human disease features, human induced pluripotent stem cells derived from Parkinson's patients have been used to generate brain organoids, greatly contributing to our understanding of the disease pathophysiology. To understand the multifaced aspects of Parkinson's disease, it may be desirable to expand the complexity of these models, to include different brain regions, vasculature, immune cells as well as additional diverse organ-specific organoids such as gut and intestine. Furthermore, the contribution of gut microbiota to disease progression cannot be underestimated. Recent biotechnological advances propose that such combinations may be feasible. Here we discuss how this need can be met and propose that additional brain diseases can benefit from this approach.
Collapse
|
46
|
Weindl G. Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handb Exp Pharmacol 2020; 265:219-233. [PMID: 33349897 DOI: 10.1007/164_2020_429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The intestinal epithelial barrier, together with the microbiome and local immune system, is a critical component that maintains intestinal homeostasis. Dysfunction may lead to chronic inflammation, as observed in inflammatory bowel diseases. Animal models have historically been used in preclinical research to identify and validate new drug targets in intestinal inflammatory diseases. Yet, limitations about their biological relevance to humans and advances in tissue engineering have forced the development of more complex three-dimensional reconstructed intestinal epithelium. By introducing immune and commensal microbial cells, these models more accurately mimic the gut's physiology and the pathophysiological changes occurring in vivo in the inflamed intestine. Specific advantages and limitations of two-dimensional (2D) and three-dimensional (3D) intestinal models such as coculture systems, organoids, and microfluidic devices to study inflammatory and immune-related responses are highlighted. While current cell culture models lack the cellular and molecular complexity observed in vivo, the emphasis is put on how these models can be used to improve preclinical drug development for inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Günther Weindl
- Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
47
|
|
48
|
Jørandli JW, Thorsvik S, Skovdahl HK, Kornfeld B, Sæterstad S, Gustafsson BI, Sandvik AK, van Beelen Granlund A. The serotonin reuptake transporter is reduced in the epithelium of active Crohn's disease and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2020; 319:G761-G768. [PMID: 32967429 DOI: 10.1152/ajpgi.00244.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serotonin is a highly conserved and ubiquitous signaling molecule involved in a vast variety of biological processes. A majority of serotonin is produced in the gastrointestinal epithelium, where it is suggested to act as a prominent regulatory molecule in the inflammatory bowel diseases (IBDs) Crohn's disease (CD) and ulcerative colitis (UC). Extracellular and circulating serotonin levels are thought to be elevated during intestinal inflammation, but the underlying mechanisms have been poorly understood. The data on human material are limited, contradictory, and in need of further investigation and substantiating. In this study, we show a potent and significant downregulation of the dominant serotonin reuptake transporter (SERT) mRNA (SLC6A4) in the epithelium from active CD ileitis, CD colitis, and UC colitis, compared with healthy controls. The mRNA of tryptophan hydroxylase 1, the rate-limiting enzyme in serotonin synthesis, was unregulated. Immunohistochemistry showed expression of the SERT protein in both the epithelium and the lamina propria and localized the downregulation to the epithelial monolayer. Laser capture microdissection followed by RNA sequencing confirmed downregulation of SLC6A4 in the epithelial monolayer during intestinal inflammation. Patient-derived colon epithelial cell lines (colonoids) incubated with the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) reduced SERT expression. In summary, these results show that intestinal inflammation potently reduces the expression of SERT in both CD and UC and that TNF-α alone is sufficient to induce a similar reduction in colonoids. The reduced serotonin reuptake capacity may contribute to the increased interstitial serotonin level associated with intestinal inflammation.NEW & NOTEWORTHY The serotonin reuptake transporter is potently reduced in inflamed areas of Crohn's ileitis, Crohn's colitis, and ulcerative colitis. The changes are localized to the intestinal epithelium and can be induced by TNF-α. The serotonin synthesis through tryptophan hydroxylase 1 is unchanged. This regulation is suggested as a mechanism underlying the increased extracellular serotonin levels associated with intestinal inflammation.
Collapse
Affiliation(s)
- Jonas Woll Jørandli
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Silje Thorsvik
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helene Kolstad Skovdahl
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Benedikt Kornfeld
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Sæterstad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Björn Inge Gustafsson
- Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
de Jonge HR, Ardelean MC, Bijvelds MJC, Vergani P. Strategies for cystic fibrosis transmembrane conductance regulator inhibition: from molecular mechanisms to treatment for secretory diarrhoeas. FEBS Lett 2020; 594:4085-4108. [PMID: 33113586 PMCID: PMC7756540 DOI: 10.1002/1873-3468.13971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter. It acts as an anion‐selective channel that drives osmotic fluid transport across many epithelia. In the gut, CFTR is crucial for maintaining fluid and acid‐base homeostasis, and its activity is tightly controlled by multiple neuro‐endocrine factors. However, microbial toxins can disrupt this intricate control mechanism and trigger protracted activation of CFTR. This results in the massive faecal water loss, metabolic acidosis and dehydration that characterize secretory diarrhoeas, a major cause of malnutrition and death of children under 5 years of age. Compounds that inhibit CFTR could improve emergency treatment of diarrhoeal disease. Drawing on recent structural and functional insight, we discuss how existing CFTR inhibitors function at the molecular and cellular level. We compare their mechanisms of action to those of inhibitors of related ABC transporters, revealing some unexpected features of drug action on CFTR. Although challenges remain, especially relating to the practical effectiveness of currently available CFTR inhibitors, we discuss how recent technological advances might help develop therapies to better address this important global health need.
Collapse
Affiliation(s)
- Hugo R. de Jonge
- Department of Gastroenterology & HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Maria C. Ardelean
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonUK
- Department of Natural SciencesUniversity College LondonUK
| | - Marcel J. C. Bijvelds
- Department of Gastroenterology & HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Paola Vergani
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonUK
| |
Collapse
|
50
|
Ranganathan S, Smith EM, Foulke-Abel JD, Barry EM. Research in a time of enteroids and organoids: how the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes 2020; 12:1795492. [PMID: 32795243 PMCID: PMC7524385 DOI: 10.1080/19490976.2020.1795389] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/03/2023] Open
Abstract
Enteric bacterial pathogens cause significant morbidity and mortality globally. Studies in tissue culture and animal models shaped our initial understanding of these host-pathogen interactions. However, intrinsic shortcomings in these models limit their application, especially in translational applications like drug screening and vaccine development. Human intestinal enteroid and organoid models overcome some limitations of existing models and advance the study of enteric pathogens. In this review, we detail the use of human enteroids and organoids to investigate the pathogenesis of invasive bacteria Shigella, Listeria, and Salmonella, and noninvasive bacteria pathogenic Escherichia coli, Clostridium difficile, and Vibrio cholerae. We highlight how these studies confirm previously identified mechanisms and, importantly, reveal novel ones. We also discuss the challenges for model advancement, including platform engineering to integrate environmental conditions, innate immune cells and the resident microbiome, and the potential for pre-clinical testing of recently developed antimicrobial drugs and vaccines.
Collapse
Affiliation(s)
- Sridevi Ranganathan
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer D. Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|