1
|
Li J, Ye C, Li H, Li J. Targeting the IKZF1/BCL-2 axis as a novel therapeutic strategy for treating acute T-cell lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2457777. [PMID: 39862423 PMCID: PMC11776473 DOI: 10.1080/15384047.2025.2457777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL. METHODS CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter. IKZF1 overexpression and knockdown experiments were performed in T-ALL cell lines. The effects of CX-4945 and venetoclax, alone and in combination, were evaluated in vitro and in vivo T-ALL models. RESULTS CUT&Tag sequencing identified IKZF1 binding to the BCL-2 promoter, establishing it as a transcriptional repressor. Functional assays demonstrated that IKZF1 overexpression reduced BCL-2 mRNA levels and increased repressive histone marks at the BCL-2 promoter, while IKZF1 knockdown led to elevated BCL-2 expression. CX-4945, a CK2 inhibitor, could reduced BCL-2 levels in T-ALL cells. Notably, knockdown of IKZF1 partially rescued the CX-4945-induced repression of BCL-2. These results underscore the CK2-IKZF1 signaling axis as a key regulator of BCL-2 expression. In vitro, CX-4945 enhanced the cytotoxicity of venetoclax, with the combination showing significant synergistic effects and increased apoptosis in T-ALL cell lines. In vivo studies with cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models demonstrated that CX-4945 and venetoclax combined therapy provided superior therapeutic efficacy, reducing tumor burden and prolonging survival compared to single-agent treatments. CONCLUSIONS IKZF1 represses BCL-2 in T-ALL, and targeting the CK2-IKZF1 axis with CX-4945 and venetoclax offers a promising therapeutic strategy, showing enhanced efficacy and potential as a novel treatment approach for T-ALL.
Collapse
Affiliation(s)
- Juan Li
- Department of Hematology, Taixing People’s Hospital Affiliated to Yangzhou University, Taixing, China
- Institute of Hematology, Affiliated hospital of Yangzhou University, Taixing, China
| | - Chunmei Ye
- Department of Hematology, Taixing People’s Hospital Affiliated to Yangzhou University, Taixing, China
- Institute of Hematology, Affiliated hospital of Yangzhou University, Taixing, China
| | - Hui Li
- Department of Hematology, Taixing People’s Hospital Affiliated to Yangzhou University, Taixing, China
| | - Jun Li
- Department of Hematology, Taixing People’s Hospital Affiliated to Yangzhou University, Taixing, China
- Institute of Hematology, Affiliated hospital of Yangzhou University, Taixing, China
| |
Collapse
|
2
|
Alhammadi SHA, Baby B, Antony P, Jobe A, Humaid RSM, Alhammadi FJA, Vijayan R. Modeling the Binding of Anticancer Peptides and Mcl-1. Int J Mol Sci 2024; 25:6529. [PMID: 38928234 PMCID: PMC11203456 DOI: 10.3390/ijms25126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Mcl-1 (myeloid cell leukemia 1), a member of the Bcl-2 family, is upregulated in various types of cancer. Peptides representing the BH3 (Bcl-2 homology 3) region of pro-apoptotic proteins have been demonstrated to bind the hydrophobic groove of anti-apoptotic Mcl-1, and this interaction is responsible for regulating apoptosis. Structural studies have shown that, while there is high overall structural conservation among the anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins, differences in the surface groove of these proteins facilitates binding specificity. This binding specificity is crucial for the mechanism of action of the Bcl-2 family in regulating apoptosis. Bim-based peptides bind specifically to the hydrophobic groove of Mcl-1, emphasizing the importance of these interactions in the regulation of cell death. Molecular docking was performed with BH3-like peptides derived from Bim to identify high affinity peptides that bind to Mcl-1 and to understand the molecular mechanism of their interactions. The interactions of three identified peptides, E2gY, E2gI, and XXA1_F3dI, were further evaluated using 250 ns molecular dynamics simulations. Conserved hydrophobic residues of the peptides play an important role in their binding and the structural stability of the complexes. Understanding the molecular basis of interaction of these peptides will assist in the development of more effective Mcl-1 specific inhibitors.
Collapse
Affiliation(s)
- Shamsa Husain Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Raghad Salman Mohammed Humaid
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Fatema Jumaa Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Lucas SCC, Blackwell JH, Börjesson U, Hargreaves D, Milbradt AG, Ahmed S, Bostock MJ, Guerot C, Gohlke A, Kinzel O, Lamb ML, Selmi N, Stubbs CJ, Su N, Su Q, Luo H, Xiong T, Zuo X, Bazzaz S, Bienstock C, Centrella PA, Denton KE, Gikunju D, Guié MA, Guilinger JP, Hupp C, Keefe AD, Satoh T, Zhang Y, Rivers EL. Identification and Evaluation of Reversible Covalent Binders to Cys55 of Bfl-1 from a DNA-Encoded Chemical Library Screen. ACS Med Chem Lett 2024; 15:791-797. [PMID: 38894895 PMCID: PMC11181504 DOI: 10.1021/acsmedchemlett.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55.
Collapse
Affiliation(s)
- Simon C. C. Lucas
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - J. Henry Blackwell
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Ulf Börjesson
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - David Hargreaves
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Alexander G. Milbradt
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Samiyah Ahmed
- Discovery
Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Mark J. Bostock
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Carine Guerot
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Andrea Gohlke
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Olaf Kinzel
- Medicinal
Chemistry, Oncology, R&D, Acerta B.V.,
a member of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Michelle L. Lamb
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nidhal Selmi
- Compound
Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Christopher J. Stubbs
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Nancy Su
- Mechanistic
and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Qibin Su
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Haiou Luo
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Ting Xiong
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Xiaoqian Zuo
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Sana Bazzaz
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | | | | | - Kyle E. Denton
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Diana Gikunju
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | | | | | | | | | - Takashi Satoh
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Emma L. Rivers
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| |
Collapse
|
4
|
Makinwa Y, Luo Y, Musich PR, Zou Y. Canonical and Noncanonical Functions of the BH3 Domain Protein Bid in Apoptosis, Oncogenesis, Cancer Therapeutics, and Aging. Cancers (Basel) 2024; 16:2199. [PMID: 38927905 PMCID: PMC11202167 DOI: 10.3390/cancers16122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Effective cancer therapy with limited adverse effects is a major challenge in the medical field. This is especially complicated by the development of acquired chemoresistance. Understanding the mechanisms that underlie these processes remains a major effort in cancer research. In this review, we focus on the dual role that Bid protein plays in apoptotic cell death via the mitochondrial pathway, in oncogenesis and in cancer therapeutics. The BH3 domain in Bid and the anti-apoptotic mitochondrial proteins (Bcl-2, Bcl-XL, mitochondrial ATR) it associates with at the outer mitochondrial membrane provides us with a viable target in cancer therapy. We will discuss the roles of Bid, mitochondrial ATR, and other anti-apoptotic proteins in intrinsic apoptosis, exploring how their interaction sustains cellular viability despite the initiation of upstream death signals. The unexpected upregulation of this Bid protein in cancer cells can also be instrumental in explaining the mechanisms behind acquired chemoresistance. The stable protein associations at the mitochondria between tBid and anti-apoptotic mitochondrial ATR play a crucial role in maintaining the viability of cancer cells, suggesting a novel mechanism to induce cancer cell apoptosis by freeing tBid from the ATR associations at mitochondria.
Collapse
Affiliation(s)
- Yetunde Makinwa
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Yibo Luo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Phillip R. Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| |
Collapse
|
5
|
Dang KD, Ho CNQ, Van HD, Dinh ST, Nguyen QTT, Nguyen TTT, Kien XTN, Dao TV, Nong HV, Nguyen MT, Doan CC, Hoang SN, Nguyen TTP, Le LT. Hexavalent Chromium Inhibited Zebrafish Embryo Development by Altering Apoptosis- and Antioxidant-Related Genes. Curr Issues Mol Biol 2023; 45:6916-6926. [PMID: 37623255 PMCID: PMC10453199 DOI: 10.3390/cimb45080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
This study aimed to assess the effects of hexavalent chromium on zebrafish (Danio rerio) embryo development. The zebrafish embryos were treated with solutions containing chromium at different concentrations (0.1, 1, 3.125, 6.25, 12.5, 50, and 100 µg/mL). The development of zebrafish embryos was estimated by the determination of survival rate, heart rate, and the measurement of larvae body length. Real time RT-PCR and Western blot were performed to assess the expression of apoptosis- and antioxidant-related genes. The results showed that the reduced survival rate of zebrafish embryos and larvae was associated with an increase in chromium concentration. The exposure of higher concentrations resulted in a decrease in body length of zebrafish larvae. In addition, a marked increase in heart rate was observed in the zebrafish larvae under chromium treatment, especially at high concentrations. The real-time RT-PCR analysis showed that the transcript expressions for cell-cycle-related genes (cdk4 and cdk6) and antioxidant-related genes (sod1 and sod2) were downregulated in the zebrafish embryos treated with chromium. Western blot analysis revealed the upregulation of Caspase 3 and Bax, while a downregulation was observed in Bcl2. These results indicated that hexavalent chromium induced changes in zebrafish embryo development by altering apoptosis- and antioxidant-related genes.
Collapse
Affiliation(s)
- Khoa Dang Dang
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot City 750000, Vietnam;
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
| | - Chi Nguyen Quynh Ho
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Huy Duc Van
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh 700000, Vietnam;
| | - Son Thanh Dinh
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Quynh Thi Truc Nguyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Tram Thi Thuy Nguyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Ho Chi Minh City University of Physical Education and Sports, Ho Chi Minh 700000, Vietnam;
| | - Xuyen Thi Ngoc Kien
- Ho Chi Minh City University of Physical Education and Sports, Ho Chi Minh 700000, Vietnam;
| | - Tuyet Van Dao
- Environmental Industry Institute, Ministry of Industry and Trade, Hanoi 100000, Vietnam; (T.V.D.); (H.V.N.)
| | - Hung Viet Nong
- Environmental Industry Institute, Ministry of Industry and Trade, Hanoi 100000, Vietnam; (T.V.D.); (H.V.N.)
| | - Minh Thai Nguyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Chung Chinh Doan
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Son Nghia Hoang
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Thao Thi Phuong Nguyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| | - Long Thanh Le
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; (C.N.Q.H.); (Q.T.T.N.); (T.T.T.N.); (M.T.N.); (C.C.D.); (S.N.H.)
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh 700000, Vietnam;
| |
Collapse
|
6
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Lv J, Han M, Liu G, Zhuang W, Wang C, Xie L, Saimaier K, Han S, Shi C, Hua Q, Zhang R, Du C. Carboplatin ameliorates the pathogenesis of experimental autoimmune encephalomyelitis by inducing T cell apoptosis. Int Immunopharmacol 2023; 121:110458. [PMID: 37302366 DOI: 10.1016/j.intimp.2023.110458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Apoptosis is a natural physiological process that can maintain the homeostasis of the body and immune system. This process plays an important role in the system's resistance to autoimmune development. Because of the dysfunction of cell apoptosis mechanism, the number of autoreactive cells in the peripheral tissue increases along with their accumulation. This will lead to the development of autoimmune diseases, such as multiple sclerosis (MS). MS is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of the complexity of its pathogenesis, there is no drug to cure it completely. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Carboplatin (CA) is a second-generation platinum anti-tumor drug. In this study, we attempted to assess whether CA could be used to ameliorate EAE. CA reduced spinal cord inflammation, demyelination, and disease scores in mice with EAE. Moreover, the number and proportion of pathogenic T cells especially Th1 and Th17 in the spleen and draining lymph nodes were reduced in CA-treated EAE mice. Proteomic differential enrichment analysis showed that the proteins related to apoptosis signal changed significantly after CA treatment. CFSE experiment showed that CA significantly inhibited the T cell proliferation. Finally, CA also induced apoptosis in activated T cells and MOG-specific T cells in vitro. Overall, our findings indicated that CA plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.
Collapse
Affiliation(s)
- Jie Lv
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mengyao Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guangyu Liu
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhuang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun Wang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ling Xie
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kaidireya Saimaier
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Sanxing Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changjie Shi
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiuhong Hua
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ru Zhang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changsheng Du
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Huang KY, Liu S, Yu YW, Wu BS, Lin ZH, Zhu CX, Song DY, Xue YJ, Ji KT. 3,4-benzopyrene aggravates myocardial ischemia-reperfusion injury-induced pyroptosis through inhibition of autophagy-dependent NLRP3 degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114701. [PMID: 36871353 DOI: 10.1016/j.ecoenv.2023.114701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are produced during combustion of organic matter, such as during cigarette smoking, and they exist widely in the environment. Exposure to 3,4-benzo[a]pyrene (BaP), as the most widely studied PAHs, relates to many cardiovascular diseases. However, the underlying mechanism of its involvement remains largely unclear. In this study, we developed a myocardial ischemia-reperfusion (I/R) injury mouse model and an oxygen and glucose deprivation-reoxygenation H9C2 cell model to evaluate the effect of BaP in I/R injury. After BaP exposure, the expression of autophagy-related proteins, the abundance of NLRP3 inflammasomes, and the degree of pyroptosis were measured. Our results show that BaP aggravates myocardial pyroptosis in a autophagy-dependent manner. In addition, we found that BaP activates the p53-BNIP3 pathway via the aryl hydrocarbon receptor to decrease autophagosome clearance. Our findings present new insights into the mechanisms underlying cardiotoxicity and reveal that the p53-BNIP3 pathway, which is involved in autophagy regulation, is a potential therapeutic target for BaP-induced myocardial I/R injury. Because PAHs are omnipresent in daily life, the toxic effects of these harmful substances should not be underestimated.
Collapse
Affiliation(s)
- Kai-Yu Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuai Liu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Wei Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Bo-Sen Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhi-Hui Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chen-Xi Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dong-Yan Song
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
9
|
Van der Zwet JCG, Cordo' V, Buijs-Gladdines JGCAM, Hagelaar R, Smits WK, Vroegindeweij E, Graus LTM, Poort V, Nulle M, Pieters R, Meijerink JPP. STAT5 does not drive steroid resistance in T-cell acute lymphoblastic leukemia despite the activation of BCL2 and BCLXL following glucocorticoid treatment. Haematologica 2023; 108:732-746. [PMID: 35734930 PMCID: PMC9973477 DOI: 10.3324/haematol.2021.280405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/09/2022] Open
Abstract
Physiological and pathogenic interleukin-7-receptor (IL7R)-induced signaling provokes glucocorticoid resistance in a subset of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Activation of downstream STAT5 has been suggested to cause steroid resistance through upregulation of anti-apoptotic BCL2, one of its downstream target genes. Here we demonstrate that isolated STAT5 signaling in various T-ALL cell models is insufficient to raise cellular steroid resistance despite upregulation of BCL2 and BCL-XL. Upregulation of anti-apoptotic BCL2 and BCLXL in STAT5-activated T-ALL cells requires steroid-induced activation of NR3C1. For the BCLXL locus, this is facilitated by a concerted action of NR3C1 and activated STAT5 molecules at two STAT5 regulatory sites, whereas for the BCL2 locus this is facilitated by binding of NR3C1 at a STAT5 binding motif. In contrast, STAT5 occupancy at glucocorticoid response elements does not affect the expression of NR3C1 target genes. Strong upregulation of BIM, a NR3C1 pro-apoptotic target gene, upon prednisolone treatment can counterbalance NR3C1/STAT5-induced BCL2 and BCL-XL expression downstream of IL7- induced or pathogenic IL7R signaling. This explains why isolated STAT5 activation does not directly impair the steroid response. Our study suggests that STAT5 activation only contributes to steroid resistance in combination with cellular defects or alternative signaling routes that disable the pro-apoptotic and steroid-induced BIM response.
Collapse
Affiliation(s)
| | | | | | - Rico Hagelaar
- Princess Maxima Center for Pediatric Oncology, Utrecht
| | | | | | | | - Vera Poort
- Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Marloes Nulle
- Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, Utrecht
| | | |
Collapse
|
10
|
Zhong Y, Li C, Xiang Y, Zhou J, Zhang J. LncRNA RP11-521C20.3 Inhibits Cigarette Smoke Extract-Induced Apoptosis in A549 Cells by Targeting BMF Signaling. Int J Chron Obstruct Pulmon Dis 2023; 18:669-682. [PMID: 37114104 PMCID: PMC10128155 DOI: 10.2147/copd.s395568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 04/29/2023] Open
Abstract
Objective LncRNAs are closely correlated with chronic obstructive pulmonary disease (COPD). We investigated the molecular mechanism of lncRNA RP11-521C20.3, which targets the action of the Bcl-2 modifying factor (BMF) signaling pathway in the apoptosis of cigarette smoke extract (CSE)-treated A549 cells. Methods Lung tissues derived from cigarette smoke exposed rats (COPD group) and controls were examined using TUNEL assay for apoptotic cells and using immunohistochemistry for BMF expression levels. Overexpression and knockdown of BMF by lentiviral vector transfection were used to explore the role of BMF on the apoptosis of CSE-treated A549 cells. Overexpression and knockdown of RP11-521C20.3 were used to assess the effect of RP11-521C20.3 on the expression levels of BMF and apoptosis in CSE-treated A549 cells. Cell proliferation, mitochondrial morphology, and apoptosis were assessed in A549 cells. Real-time quantitative polymerase chain reactions and Western blotting detected the expression of apoptosis-related molecules. Results The number of apoptotic cells and the level of BMF protein were significantly increased in lung tissues of the COPD group compared to the control group. Overexpression of BMF or knockdown of RP11-521C20.3 in CSE-treated A549 cells increased apoptosis, inhibited cell proliferation, and exacerbated mitochondrial damage. There were also increased protein levels of p53, cleaved caspase-3, and cleaved caspase-7, and decreased protein levels of Bcl-2 and survivin. Knockdown of BMF or overexpression of RP11-521C20.3 in CSE-treated A549 cells attenuated apoptosis, promoted cell proliferation, and alleviated mitochondrial damage. Observed effects also included decreased protein levels of p53, cleaved caspase-3, and cleaved caspase-7, and increased protein levels of Bcl-2 and survivin. In CSE-treated A549 cells, overexpression of RP11-521C20.3 suppressed the expression of BMF mRNA and protein. Conclusion In CSE-treated A549 cells, BMF promoted apoptosis and RP11-521C20.3 might target the BMF signaling axis to protect CSE-treated A549 cells from apoptosis.
Collapse
Affiliation(s)
- Yong Zhong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Chuntao Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yaling Xiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jinbiao Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jianqing Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Correspondence: Jianqing Zhang, Department of Respiratory Critical Care Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People’s Republic of China, Tel +86 18988272502, Email
| |
Collapse
|
11
|
Last but not least: BFL-1 as an emerging target for anti-cancer therapies. Biochem Soc Trans 2022; 50:1119-1128. [PMID: 35900226 PMCID: PMC9444066 DOI: 10.1042/bst20220153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
BFL-1 is an understudied pro-survival BCL-2 protein. The expression of BFL-1 is reported in many cancers, but it is yet to be clarified whether high transcript expression also always correlates with a pro-survival function. However, recent applications of BH3-mimetics for the treatment of blood cancers identified BFL-1 as a potential resistance factor in this type of cancer. Hence, understanding the role of BFL-1 in human cancers and how its up-regulation leads to therapy resistance has become an area of great clinical relevance. In addition, deletion of the murine homologue of BFL-1, called A1, in mice showed only minimal impacts on the well-being of these animals, suggesting drugs targeting BFL-1 would exhibit limited on-target toxicities. BFL-1 therefore represents a good clinical cancer target. Currently, no effective BFL-1 inhibitors exist, which is likely due to the underappreciation of BFL-1 as a potential target in the clinic and lack of understanding of the BFL-1 protein. In this review, the roles of BFL-1 in the development of different types of cancers and drug resistant mechanisms are discussed and some recent advances in the generation of BFL-1 inhibitors highlighted.
Collapse
|
12
|
Li C, Yu X, Zhang L, Peng Y, Zhang T, Li Y, Luan Y, Yin C. The potential role and regulatory mechanism of IL-33/ST2 axis on T lymphocytes during lipopolysaccharide stimulation or perinatal Listeria infection. Int Immunopharmacol 2022; 108:108742. [DOI: 10.1016/j.intimp.2022.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
|
13
|
Exploring the Origin and Physiological Significance of DNA Double Strand Breaks in the Developing Neuroretina. Int J Mol Sci 2022; 23:ijms23126449. [PMID: 35742893 PMCID: PMC9224223 DOI: 10.3390/ijms23126449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic mosaicism is an intriguing physiological feature of the mammalian brain that generates altered genetic information and provides cellular, and prospectively functional, diversity in a manner similar to that of the immune system. However, both its origin and its physiological significance remain poorly characterized. Most, if not all, cases of somatic mosaicism require prior generation and repair of DNA double strand breaks (DSBs). The relationship between DSB generation, neurogenesis, and early neuronal cell death revealed by our studies in the developing retina provides new perspectives on the different mechanisms that contribute to DNA rearrangements in the developing brain. Here, we speculate on the physiological significance of these findings.
Collapse
|
14
|
Ludwig LM, Hawley KM, Banks DB, Thomas-Toth AT, Blazar BR, McNerney ME, Leverson JD, LaBelle JL. Venetoclax imparts distinct cell death sensitivity and adaptivity patterns in T cells. Cell Death Dis 2021; 12:1005. [PMID: 34707089 PMCID: PMC8551340 DOI: 10.1038/s41419-021-04285-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
BH3 mimetics are increasingly used as anti-cancer therapeutics either alone or in conjunction with other chemotherapies. However, mounting evidence has also demonstrated that BH3 mimetics modulate varied amounts of apoptotic signaling in healthy immune populations. In order to maximize their clinical potential, it will be essential to understand how BH3 mimetics affect discrete immune populations and to determine how BH3 mimetic pressure causes immune system adaptation. Here we focus on the BCL-2 specific inhibitor venetoclax (ABT-199) and its effects following short-term and long-term BCL-2 blockade on T cell subsets. Seven day "short-term" ex vivo and in vivo BCL-2 inhibition led to divergent cell death sensitivity patterns in CD8+ T cells, CD4+ T cells, and Tregs resulting in shifting of global T cell populations towards a more memory T cell state with increased expression of BCL-2, BCL-XL, and MCL-1. However, twenty-eight day "long-term" BCL-2 blockade following T cell-depleted bone marrow transplantation did not lead to changes in the global T cell landscape. Despite the lack of changes in T cell proportions, animals treated with venetoclax developed CD8+ and CD4+ T cells with high levels of BCL-2 and were more resistant to apoptotic stimuli following expansion post-transplant. Further, we demonstrate through RNA profiling that T cells adapt while under BCL-2 blockade post-transplant and develop a more activated genotype. Taken together, these data emphasize the importance of evaluating how BH3 mimetics affect the immune system in different treatment modalities and disease contexts and suggest that venetoclax should be further explored as an immunomodulatory compound.
Collapse
Affiliation(s)
- Lindsey M. Ludwig
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Katrina M. Hawley
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - David B. Banks
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Medical Scientist Training Program, University of Chicago, Chicago, IL USA
| | - Anika T. Thomas-Toth
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Bruce R. Blazar
- grid.17635.360000000419368657Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN USA
| | - Megan E. McNerney
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Department of Pathology, University of Chicago, Chicago, IL USA
| | - Joel D. Leverson
- grid.431072.30000 0004 0572 4227AbbVie Inc., North Chicago, IL USA
| | - James L. LaBelle
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| |
Collapse
|
15
|
Hu S, Wang Y, Xu Z, Zhou Y, Cao J, Zhang H, Zhou J. Identification of the Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and their function in the degeneration of tick salivary glands. Parasit Vectors 2021; 14:386. [PMID: 34348769 PMCID: PMC8336254 DOI: 10.1186/s13071-021-04879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background The salivary glands of female ticks degenerate rapidly by apoptosis and autophagy after feeding. Bcl-2 family proteins play an important role in the apoptosis pathways, but the functions of these proteins in ticks are unclear. We studied Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and determined their functions in the degeneration of the salivary glands. Methods Two molecules containing conserved BH (Bcl-2 family homology) domains were identified and named RhBcl-2 and RhBax. After protein purification and mouse immunization, specific polyclonal antibodies (PcAb) were created in response to the recombinant proteins. Reverse transcription quantitative PCR (RT-qPCR) and western blot were used to detect the presence of RhBcl-2 and RhBax in ticks. TUNEL assays were used to determine the level of apoptosis in the salivary glands of female ticks at different feeding times after gene silencing. Co-transfection and GST pull-down assays were used to identify interactions between RhBcl-2 and RhBax. Results The RT-qPCR assay revealed that RhBax gene transcription increased significantly during feeding at all tick developmental stages (engorged larvae, nymphs, and adult females). Transcriptional levels of RhBcl-2 and RhBax increased more significantly in the female salivary glands than in other tissues post engorgement. RhBcl-2 silencing significantly inhibited tick feeding. In contrast, RhBax interference had no effect on tick feeding. TUNEL staining showed that apoptosis levels were significantly reduced after interference with RhBcl-2 expression. Co-transfection and GST pull-down assays showed that RhBcl-2 and RhBax could interact but not combine in the absence of the BH3 domain. Conclusions This study identified the roles of RhBcl-2 and RhBax in tick salivary gland degeneration and finds that the BH3 domain is a key factor in their interactions. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04879-z.
Collapse
Affiliation(s)
- Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
16
|
Chappaz S, McArthur K, Kealy L, Law CW, Tailler M, Lane RM, Lieschke A, Ritchie ME, Good-Jacobson KL, Strasser A, Kile BT. Homeostatic apoptosis prevents competition-induced atrophy in follicular B cells. Cell Rep 2021; 36:109430. [PMID: 34289356 DOI: 10.1016/j.celrep.2021.109430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-κB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.
Collapse
Affiliation(s)
- Stéphane Chappaz
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia.
| | - Kate McArthur
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Liam Kealy
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Maximilien Tailler
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Rachael M Lane
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | | | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Kim L Good-Jacobson
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Andreas Strasser
- Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005 SA, Australia.
| |
Collapse
|
17
|
Hernández-Torres M, Silva do Nascimento R, Rebouças MC, Cassado A, Matteucci KC, D'Império-Lima MR, Vasconcelos JRC, Bortoluci KR, Alvarez JM, Amarante-Mendes GP. Absence of Bim sensitizes mice to experimental Trypanosoma cruzi infection. Cell Death Dis 2021; 12:692. [PMID: 34247195 PMCID: PMC8272718 DOI: 10.1038/s41419-021-03964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/-, Bim-/- mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim-/- mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/- mice. At the peak of parasitemia, peritoneal macrophages of Bim-/- mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim-/- splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim-/- mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim-/- mice and place Bim as an important protein in the control of T. cruzi infections.
Collapse
Affiliation(s)
- Marcela Hernández-Torres
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo, Brazil
| | | | - Monica Cardozo Rebouças
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo, Brazil
| | - Alexandra Cassado
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kely Catarine Matteucci
- Centro de Terapia Celular e Molecular - CTCMol - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - José Ronnie C Vasconcelos
- Centro de Terapia Celular e Molecular - CTCMol - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Karina R Bortoluci
- Centro de Terapia Celular e Molecular - CTCMol - Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Maria Alvarez
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo P Amarante-Mendes
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), São Paulo, Brazil.
| |
Collapse
|
18
|
N- trans-Feruloyloctopamine Wakes Up BBC3, DDIT3, CDKN1A, and NOXA Signals to Accelerate HCC Cell Apoptosis. ACTA ACUST UNITED AC 2021; 2021:1560307. [PMID: 34123711 PMCID: PMC8166497 DOI: 10.1155/2021/1560307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
N-trans-Feruloyloctopamine (FO), a natural compound, was reported in our previous study to inhibit a tumor cell malignant phenotype by AKT- and EMT-related signals and might be used as a promising drug for HCC treatment. However, the specific targets and detailed mechanisms still need to be clarified. Screening with RNA-Seq in Huh7 cells treated with FO revealed that 317 genes were modulated, of which 188 genes were upregulated and 129 genes were downregulated. Real-time cell analyzer and flow cytometry data reveal that tumor cell proliferation and apoptosis were impacted by FO. DAVID bioinformatic data showed that most of the biological process GO terms are related to proliferation and apoptosis. KEGG enrichment analysis showed that FO mainly regulates PI3K-AKT- and apoptosis-related signals, in which BBC3, DDIT3, NOXA, and CDKN1A on the surface serve as the novel targets of FO inducing HCC cell apoptosis. The result implied that FO might exacerbate HCC cell apoptosis by regulating BBC3, DDIT3, CDKN1A, and NOXA signals. The obstacle effect of FO can provide new targets and new credibility for the treatment of liver cancer.
Collapse
|
19
|
Intrinsically Connected: Therapeutically Targeting the Cathepsin Proteases and the Bcl-2 Family of Protein Substrates as Co-regulators of Apoptosis. Int J Mol Sci 2021; 22:ijms22094669. [PMID: 33925117 PMCID: PMC8124540 DOI: 10.3390/ijms22094669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Taken with the growing importance of cathepsin-mediated substrate proteolysis in tumor biology and progression, the focus and emphasis placed on therapeutic design and development is coming into fruition. Underpinning this approach is the invariable progression from the direction of fully characterizing cathepsin protease members and their substrate targets, towards targeting such an interaction with tangible therapeutics. The two groups of such substrates that have gained much attention over the years are the pro- and anti- apoptotic protein intermediates from the extrinsic and intrinsic signaling arms of the apoptosis pathway. As proteins that are central to determining cellular fate, some of them present themselves as very favorable candidates for therapeutic targeting. However, considering that both anti- and pro- apoptotic signaling intermediates have been reported to be downstream substrates for certain activated cathepsin proteases, therapeutic targeting approaches based on greater selectivity do need to be given greater consideration. Herein, we review the relationships shared by the cathepsin proteases and the Bcl-2 homology domain proteins, in the context of how the topical approach of adopting 'BH3-mimetics' can be explored further in modulating the relationship between the anti- and pro- apoptotic signaling intermediates from the intrinsic apoptosis pathway and their upstream cathepsin protease regulators. Based on this, we highlight important future considerations for improved therapeutic design.
Collapse
|
20
|
Pathophysiology of Mitochondrial Dysfunction in Human Spermatozoa: Focus on Energetic Metabolism, Oxidative Stress and Apoptosis. Antioxidants (Basel) 2021; 10:antiox10050695. [PMID: 33924936 PMCID: PMC8145012 DOI: 10.3390/antiox10050695] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
The dogma of mitochondria as the major source of energy in supporting sperm motility should be critically reconsidered in the light of several experimental data pointing to a major role of glycolysis in mammalian spermatozoa. In this light, the reported positive correlation between the mitochondrial membrane potential (ΔΨm) and motility of ejaculated spermatozoa cannot be explained convincingly by an impaired mitochondrial ATP generation only. Evidence has been produced suggesting that, in human sperm, dysfunctional mitochondria represent the main site of generation of reactive oxygen species (ROS). Furthermore, in these organelles, a complex bidirectional relationship could exist between ROS generation and apoptosis-like events that synergize with oxidative stress in impairing sperm biological integrity and functions. Despite the activity of enzymatic and non-enzymatic antioxidant factors, human spermatozoa are particularly vulnerable to oxidative stress, which plays a major role in male factor infertility. The purpose of this article is to provide an overview of metabolic, oxidative and apoptosis-like inter-linkages of mitochondrial dysfunction and their reflections on human sperm biology.
Collapse
|
21
|
Kim K, Kwak MK, Bae GD, Park EY, Baek DJ, Kim CY, Jang SE, Jun HS, Oh YS. Allomyrina dichotoma larva extract attenuates free fatty acid-induced lipotoxicity in pancreatic beta cells. Nutr Res Pract 2021; 15:294-308. [PMID: 34093971 PMCID: PMC8155218 DOI: 10.4162/nrp.2021.15.3.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUD/OBJECTIVES Allomyrina dichotoma larva (ADL), one of the many edible insects recognized as future food resources, has a range of pharmacological activities. In a previous study, an ADL extract (ADLE) reduced the hepatic insulin resistance of high-fat diet (HFD)-induced diabetic mice. On the other hand, the associated molecular mechanisms underlying pancreatic beta-cell dysfunction remain unclear. This study examined the effects of ADLE on palmitate-induced lipotoxicity in a beta cell line of a rat origin, INS-1 cells. MATERIALS/METHODS ADLE was administered to high-fat diet treated mice. The expression of apoptosis-related molecules was measured by Western blotting, and reactive oxidative stress generation and nitric oxide production were measured by DCH-DA fluorescence and a Griess assay, respectively. RESULTS The administration of ADLE to HFD-induced diabetic mice reduced the hyperplasia, 4-hydroxynonenal levels, and the number of apoptotic cells while improving the insulin levels compared to the HFD group. Treatment of INS-1 cells with palmitate reduced insulin secretion, which was attenuated by the ADLE treatment. Furthermore, the ADLE treatment prevented palmitate-induced cell death in INS-1 cells and isolated islets by reducing the apoptotic signaling molecules, including cleaved caspase-3 and PARP, and the Bax/Bcl2 ratio. ADLE also reduced the levels of reactive oxygen species generation, lipid accumulation, and nitrite production in palmitate-treated INS-1 cells while increasing the ATP levels. This effect corresponded to the decreased expression of inducible nitric oxide synthase (iNOS) mRNA and protein. CONCLUSIONS ADLE helps prevent lipotoxic beta-cell death in INS-1 cells and HFD-diabetic mice, suggesting that ADLE can be used to prevent or treat beta-cell damage in glucose intolerance during the development of diabetes.
Collapse
Affiliation(s)
- Kyong Kim
- Department of Food Nutrition, College of Bio Convergence, Eulji University, Seongnam 13135, Korea
| | - Min-Kyu Kwak
- Department of Food Nutrition, College of Bio Convergence, Eulji University, Seongnam 13135, Korea
| | - Gong-Deuk Bae
- Institute of Lee Gil Ya Cancer and Diabetes, Department of Molecular Medicine, Gachon University, Incheon 21999, Korea
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Dong-Jae Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Chul-Young Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Korea
| | - Se-Eun Jang
- Department of Food Nutrition, College of Bio Convergence, Eulji University, Seongnam 13135, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea
| | - Yoon Sin Oh
- Department of Food Nutrition, College of Bio Convergence, Eulji University, Seongnam 13135, Korea
| |
Collapse
|
22
|
Loss of BIM in T cells results in BCL-2 family BH3-member compensation but incomplete cell death sensitivity normalization. Apoptosis 2021; 25:247-260. [PMID: 31993851 DOI: 10.1007/s10495-020-01593-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BIM is the master BH3-only BCL-2 family regulator of lymphocyte survival. To understand how long-term loss of BIM affects apoptotic resistance in T cells we studied animals with T cell-specific deletion of Bim. Unlike CD19CREBimfl/fl animals, LCKCREBimfl/fl mice have pronounced early lymphocytosis followed by normalization of lymphocyte counts over time. This normalization occurred in mature T cells, as thymocyte development and apoptotic sensitivity remained abnormal in LCKCREBimfl/fl mice. T cells from aged mice experienced normalization of their absolute cell numbers and responses against various apoptotic stimuli. mRNA expression levels of BCL-2 family proteins in CD4+ and CD8+ T cells from young and old mice revealed upregulation of several BH3-only proteins, including Puma, Noxa, and Bmf. Despite upregulation of various BH3 proteins, there were no differences in anti-apoptotic BCL-2 protein dependency in these cells. However, T cells had continued resistance to direct BIM BH3-induced mitochondrial depolarization. This study further highlights the importance of BIM in cell death maintenance in T cells and provides new insight into the dynamism underlying BH3-only regulation of T cell homeostasis versus induced cell death and suggests that CD4+ and CD8+ T cells compensate differently in response to loss of Bim.
Collapse
|
23
|
Suraweera CD, Hinds MG, Kvansakul M. Poxviral Strategies to Overcome Host Cell Apoptosis. Pathogens 2020; 10:pathogens10010006. [PMID: 33374867 PMCID: PMC7823800 DOI: 10.3390/pathogens10010006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
24
|
Luo S, Long H, Lu Q. Recent advances in understanding pathogenesis and therapeutic strategies of Systemic Lupus Erythematosus. Int Immunopharmacol 2020; 89:107028. [PMID: 33039962 DOI: 10.1016/j.intimp.2020.107028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/30/2020] [Accepted: 09/17/2020] [Indexed: 01/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multi-system-involving autoimmune disorder mainly affecting young and middle-aged women. Autoantibodies formation and immune complex deposition as well as other immune mechanisms contribute to heterogeneous clinical presentation, which leads to challenges for diagnosis and management. Although the exact pathogenesis of SLE is highly complicated, the pathophysiological understanding of SLE is constantly evolving and relevant studies were continually published, providing a better understanding of the molecular mechanisms. Moreover, new therapeutic strategies and management plans targeting pivotal factors involved in the pathogenesis of SLE got well established recently. In this article, we reviewed recent studies to provide an update in understanding pathogenesis and therapeutic strategies of SLE.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hai Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
25
|
Ai P, Xu X, Xu S, Wei Z, Tan S, Li J. Overexpression of Wnt7a enhances radiosensitivity of non-small-cell lung cancer via the Wnt/JNK pathway. Biol Open 2020; 9:bio050575. [PMID: 32554486 PMCID: PMC7338269 DOI: 10.1242/bio.050575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The Wingless-type protein 7a (Wnt7a) plays an antiproliferative role in non-small-cell lung cancer (NSCLC). Previous studies have indicated that Wnt7a expression was downregulated in radiation-resistant NSCLC cells. However, little is known about its biological functions and molecular mechanisms in radiosensitivity of NSCLC. Thus, NSCLC cell proliferation and apoptosis in response to Wnt7a overexpression and/or radiation were determined by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl-tertazolium bromide (MTT) assay and flow cytometry, respectively. The activation of the Wnt/cJun N-terminal kinase (JNK) and Wnt/β-catenin signaling pathways were further examined by western blot in NSCLC cell lines H1650 and A549. Wnt7a overexpression combined with radiation-inhibited cell proliferation and induced apoptosis in NSCLC cell lines compared to Wnt7a overexpression or radiotherapy alone. In addition, the phosphorylation of JNK, but not β-catenin, was congruent with the changes in Wnt7a overexpression and/or radiation. Moreover, the Wnt/JNK pathway could induce the apoptosis of NSCLC cells through the mitochondrial pathway. Inhibition of the Wnt/JNK signaling pathway by SP600125, a JNK inhibitor, contributed to proliferation induction in NSCLC cells. Taken together, these results showed that Wnt7a overexpression sensitized NSCLC cell lines to radiotherapy through the Wnt/JNK signaling pathway.
Collapse
Affiliation(s)
- Pingping Ai
- Department of Pathology, Central South University Xiangya School of Medicine, Affiliated Haikou Hospital, Haikou 570208, Hainan, China
| | - Xianhua Xu
- Department of Pathology, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou 570311, Hainan, China
- Medical Research Center, Hainan Cancer Hospital, Haikou 570311, Hainan, China
| | - Shijie Xu
- Medical Research Center, Hainan Cancer Hospital, Haikou 570311, Hainan, China
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Zhixia Wei
- Department of Oncology, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Shun Tan
- Department of Pathology, Central South University Xiangya School of Medicine, Affiliated Haikou Hospital, Haikou 570208, Hainan, China
| | - Junzhe Li
- Department of Thoracic Surgery, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| |
Collapse
|
26
|
Dynamics and Regulations of BimEL Ser65 and Thr112 Phosphorylation in Porcine Granulosa Cells during Follicular Atresia. Cells 2020; 9:cells9020402. [PMID: 32050589 PMCID: PMC7072439 DOI: 10.3390/cells9020402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 01/07/2023] Open
Abstract
BimEL protein is involved in follicular atresia by regulating granulosa cell apoptosis, but the dynamic changes of BimEL phosphorylation during follicular atresia are poorly understood. The aim of this study was to explore the changes of key BimEL phosphorylation sites and their upstream regulatory pathways. First, the levels of BimEL-Ser65 and BimEL-Thr112 phosphorylation (p-BimEL-S65, p-BimEL-T112) in granulosa cells (GC) from healthy (H), slightly-atretic (SA), and atretic (A) follicles and in cultured GC after different treatments were detected by Western blotting. Next, the effects of the corresponding site mutations of BIM on apoptosis of GC were investigated. Finally, the pathways of two phosphorylation sites were investigated by kinase inhibitors. The results revealed that p-BimEL-S65 levels were higher in GC from H than SA and A, whereas p-BimEL-T112 was reversed. The prosurvival factors like FSH and IGF-1 upregulated the level of p-BimEL-S65, while the proapoptotic factor, heat stress, increased the level of p-BimEL-T112 in cultured GC. Compared with the overexpression of wild BimEL, the apoptotic rate of the GC overexpressed BimEL-S65A (replace Ser65 with Ala) mutant was significantly higher, but the apoptotic rate of the cells overexpressing BimEL-T112A did not differ. In addition, inhibition of the ERK1/2 or JNK pathway by specific inhibitors reduced the levels of p-BimEL-S65 and p-BimEL-T112. In conclusion, the levels of p-BimEL-S65 and p-BimEL-T112 were reversed during follicular atresia. Prosurvival factors promote p-BimEL-S65 levels via ERK1/2 to inhibit GC apoptosis, whereas proapoptotic factor upregulates the level of p-BimEL-T112 via JNK to induce GC apoptosis.
Collapse
|
27
|
Abstract
The role of hormones in triggering cell death has been controversial. In this issue of Molecular Cell, Li et al. (2019) have defined a molecular pathway where an unexpected estrogen receptor, phosphodiesterase 3A, allows its partner Schlafen-12 to inhibit survival pathways, ultimately leading to apoptosis.
Collapse
Affiliation(s)
- Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Agulló-Ortuño MT, Gómez-Martín Ó, Ponce S, Iglesias L, Ojeda L, Ferrer I, García-Ruiz I, Paz-Ares L, Pardo-Marqués V. Blood Predictive Biomarkers for Patients With Non–small-cell Lung Cancer Associated With Clinical Response to Nivolumab. Clin Lung Cancer 2020; 21:75-85. [DOI: 10.1016/j.cllc.2019.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/15/2019] [Accepted: 08/24/2019] [Indexed: 12/25/2022]
|
29
|
Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019; 8:cells8111373. [PMID: 31683815 PMCID: PMC6912296 DOI: 10.3390/cells8111373] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
The Nr4a family of nuclear hormone receptors is composed of three members-Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.
Collapse
|
30
|
Activating the Intrinsic Pathway of Apoptosis Using BIM BH3 Peptides Delivered by Peptide Amphiphiles with Endosomal Release. MATERIALS 2019; 12:ma12162567. [PMID: 31408950 PMCID: PMC6719084 DOI: 10.3390/ma12162567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic manipulation of the BCL-2 family using BH3 mimetics is an emerging paradigm in cancer treatment and immune modulation. For example, peptides mimicking the BIM BH3 helix can directly target the full complement of anti- and pro-apoptotic BCL-2 proteins to trigger apoptosis. This study has incorporated the potent BH3 α-helical death domain of BIM into peptide amphiphile (PA) nanostructures designed to facilitate cellular uptake and induce cell death. This study shows that these PA nanostructures are quickly incorporated into cells, are able to specifically bind BCL-2 proteins, are stable at physiologic temperatures and pH, and induce dose-dependent apoptosis in cells. The incorporation of a cathepsin B cleavable linker between the BIM BH3 peptide and the hydrophobic tail resulted in increased intracellular accumulation and mitochondrial co-localization of the BIM BH3 peptide while also improving BCL-2 family member binding and apoptotic reactivation. This PA platform represents a promising new strategy for intracellular therapeutic peptide delivery for the disruption of intracellular protein:protein interactions.
Collapse
|
31
|
Saadi W, Kermezli Y, Dao LTM, Mathieu E, Santiago-Algarra D, Manosalva I, Torres M, Belhocine M, Pradel L, Loriod B, Aribi M, Puthier D, Spicuglia S. A critical regulator of Bcl2 revealed by systematic transcript discovery of lncRNAs associated with T-cell differentiation. Sci Rep 2019; 9:4707. [PMID: 30886319 PMCID: PMC6423290 DOI: 10.1038/s41598-019-41247-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/01/2019] [Indexed: 12/30/2022] Open
Abstract
Normal T-cell differentiation requires a complex regulatory network which supports a series of maturation steps, including lineage commitment, T-cell receptor (TCR) gene rearrangement, and thymic positive and negative selection. However, the underlying molecular mechanisms are difficult to assess due to limited T-cell models. Here we explore the use of the pro-T-cell line P5424 to study early T-cell differentiation. Stimulation of P5424 cells by the calcium ionophore ionomycin together with PMA resulted in gene regulation of T-cell differentiation and activation markers, partially mimicking the CD4-CD8- double negative (DN) to double positive (DP) transition and some aspects of subsequent T-cell maturation and activation. Global analysis of gene expression, along with kinetic experiments, revealed a significant association between the dynamic expression of coding genes and neighbor lncRNAs including many newly-discovered transcripts, thus suggesting potential co-regulation. CRISPR/Cas9-mediated genetic deletion of Robnr, an inducible lncRNA located downstream of the anti-apoptotic gene Bcl2, demonstrated a critical role of the Robnr locus in the induction of Bcl2. Thus, the pro-T-cell line P5424 is a powerful model system to characterize regulatory networks involved in early T-cell differentiation and maturation.
Collapse
Affiliation(s)
- Wiam Saadi
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.,Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Yasmina Kermezli
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.,Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Lan T M Dao
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.,Vinmec Research Institute of Stem cell and Gene technology (VRISG), Hanoi, Vietnam
| | - Evelyne Mathieu
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - David Santiago-Algarra
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Iris Manosalva
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Magali Torres
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Mohamed Belhocine
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.,Molecular Biology and Genetics Laboratory, Dubai, United Arab Emirates
| | - Lydie Pradel
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Beatrice Loriod
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Denis Puthier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France. .,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France. .,Equipe Labélisée Ligue Contre le Cancer, Marseille, France.
| |
Collapse
|
32
|
Xu N, Hua Z, Ba G, Zhang S, Liu Z, Thiele CJ, Li Z. The anti-tumor growth effect of a novel agent DMAMCL in rhabdomyosarcoma in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:118. [PMID: 30850026 PMCID: PMC6408795 DOI: 10.1186/s13046-019-1107-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children with poor survival. New treatment approaches are urgently needed to improve treatment efficacy in RMS patients. DMAMCL is a novel agent from Asteraceae family that has been tested in phase I clinical trials in adult glioma in Australia. METHODS Five RMS cell lines (RD, RH18, RH28, RH30 and RH41) were used. The in vitro anti-tumor effect of DMAMCL, alone or in combination with VCR or Epirubicin, was studied using MTS assay or IncuCyte-Zoom cell confluency assay, and further validated by xenograft-mouse model in vivo. Changes in caspase-3/7 activity, cell-cycle progression and generation of ROS after DMAMCL treatment were investigated. Bim mRNA expression was measured by RT-qPCR, and protein expressions of Bim and phosphorylated-NF-κB(p65) by Western blotting. Small interfering RNAs (siRNA) of Bim were used to study the role of Bim in DMAMCL-induced cell death. RESULTS In vitro, DMAMCL treatment induced a dose-dependent increase in cell death that could be blocked by pan-caspase-inhibitor-Z-VAD-fmk in five RMS cell lines. The percent of cells in SubG1 phase and activities of caspase-3/7 increased after DMAMCL treatment; The combination of DMAMCL with VCR or Epirubicin significantly increased cell death compared to each reagent alone. In vivo, DMAMCL(75 mg/kg or 100 mg/kg) inhibited tumor growth and prolonged survival of mice bearing xenograft RMS tumors (RD, RH18, RH30, RH41). Compared to treatment with DMAMCL or VCR, a combination of two reagents caused significant inhibition of tumor growth (RD, RH41), even after treatment termination. The expression of Bim increased at protein level after DMAMCL treatment both in vitro and in vivo. The expression of p-NF-κB(p65) had a transient increase and the generation of ROS increased after DMAMCL treatment in vitro. Transfection of Bim siRNA into RMS cells blocked the DMAMCL-induced increase of Bim and partially attenuated the DMAMCL-induced cell death. CONCLUSION DMAMCL had an anti-tumor growth effect in vitro and in vivo that potentially mediated by Bim, NF-κB pathway and ROS. A combination of DMAMCL with chemotherapeutic drugs significantly increased the treatment efficacy. Our study supports further clinical evaluation of DMAMCL in combination with conventional chemotherapy.
Collapse
Affiliation(s)
- Ning Xu
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhongyan Hua
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Gen Ba
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Simeng Zhang
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhihui Liu
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carol J Thiele
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhijie Li
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
33
|
Niu C, Chen Z, Kim KT, Sun J, Xue M, Chen G, Li S, Shen Y, Zhu Z, Wang X, Liang J, Jiang C, Cong W, Jin L, Li X. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy 2019; 15:843-870. [PMID: 30653446 PMCID: PMC6526809 DOI: 10.1080/15548627.2019.1569913] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7flox/flox mice = mice bearing an Atg7flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A1; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.
Collapse
Affiliation(s)
- Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, P.R. China,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhiwei Chen
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, P.R. China,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Kyoung Tae Kim
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Mei Xue
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jiaojiao Liang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China,CONTACT Litai Jin ; Weitao Cong ; Chao Jiang School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China,CONTACT Litai Jin ; Weitao Cong ; Chao Jiang School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China,CONTACT Litai Jin ; Weitao Cong ; Chao Jiang School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
34
|
Bcl-2 Family Overexpression and Chemoresistance in Acute Myeloid Leukemia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.2478/sjecr-2018-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The family of Bcl-2 proteins is one of the most responsible for apoptosis pathway, that is a critical process to the maintenance of tissue homeostasis. Bcl-2 is an essential apoptotic regulator belonging to a family of functionally and structurally related proteins known as the Bcl-2 family. Some members of this family act as anti-apoptotic regulators, whereas others act in pro-apoptotic function. The relationship between the pro and anti-apoptotic proteins can regulate whether cells begin the apoptosis or remain its life cycle. Increasing of Bcl-2 expression has been found in some hematologic diseases, such as Acute Myeloid Leukemia (AML) and their effects on responsiveness to anticancer therapy have been recently described. Thus, this review aims to discuss apoptosis and the role of the Bcl-2 family of proteins in chemoresistance when overexpressed in patients committed with Acute Myeloid Leukemia submitted to chemotherapy treatment.
Collapse
|
35
|
Wang Y, Zeng S. Melatonin Promotes Ubiquitination of Phosphorylated Pro-Apoptotic Protein Bcl-2-Interacting Mediator of Cell Death-Extra Long (Bim EL) in Porcine Granulosa Cells. Int J Mol Sci 2018; 19:ijms19113431. [PMID: 30388852 PMCID: PMC6274928 DOI: 10.3390/ijms19113431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 12/31/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is found in ovarian follicular fluid, and its concentration is closely related to follicular health status. Nevertheless, the molecular mechanisms underlying melatonin function in follicles are uncertain. In this study, melatonin concentration was measured in porcine follicular fluid at different stages of health. The melatonin concentration decreased as the follicles underwent atresia, suggesting that melatonin may participate in the maintenance of follicular health. The molecular pathway through which melatonin may regulate follicular development was further investigated. The pro-apoptotic protein BimEL (Bcl-2-interacting mediator of cell death-Extra Long), a key protein controlling granulosa cell apoptosis during follicular atresia, was selected as the target molecule. BimEL was downregulated when porcine granulosa cells were cultured in medium containing 10−9 M melatonin and isolated cumulus oocyte complexes (COCs) or follicle stimulating hormone (FSH). Interestingly, ERK-mediated phosphorylation was a prerequisite for the melatonin-induced decline in BimEL, and melatonin only promoted the ubiquitination of phosphorylated BimEL, and did not affect the activities of the lysosome or the proteasome. Moreover, the melatonin-induced downregulation of BimEL was independent of its receptor and its antioxidant properties. In conclusion, melatonin may maintain follicular health by inducing BimEL ubiquitination to inhibit the apoptosis of granulosa cells.
Collapse
Affiliation(s)
- Yingzheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenming Zeng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
36
|
Lin LL, Huang CC, Wu MT, Hsu WM, Chuang JH. Innate immune sensor laboratory of genetics and physiology 2 suppresses tumor cell growth and functions as a prognostic marker in neuroblastoma. Cancer Sci 2018; 109:3494-3502. [PMID: 30179292 PMCID: PMC6215871 DOI: 10.1111/cas.13790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
The innate immune receptors, such as toll-like receptor 3 (TLR3), melanoma differentiation-associated 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I), have been shown to be differentially expressed in neuroblastoma (NB) and promote dsRNA poly (I:C)-induced NB suppression in vitro and in vivo. However, the role of another important innate immune cytosolic sensor, laboratory of genetics and physiology 2 (LGP2), in the cancer behavior of NB remains unclear. Here, we demonstrated that the expression levels of LGP2 were either low or undetectable in all NB cell lines tested with or without MYCN amplification. LGP2 expression levels were significantly increased only in NB cells without MYCN amplification, including SK-N-AS and SK-N-FI after poly (I:C) treatment in vitro and in mouse xenograft models. Ectopic expression of LGP2 in NB cells significantly enhanced poly (I:C)-induced NB cell death associated with downregulation of MDA5, RIG-I, MAVS and Bcl-2, as well as upregulation of Noxa and tBid. By immunofluorescence analyses, LGP2 localized mainly in the cytoplasm of NB cells after poly (I:C) treatment. In human NB tissue samples, cytoplasmic LGP2 expression was positively correlated with histological differentiation and inversely correlated with MYCN amplification. Positive cytoplasmic LGP2 expression in tumor tissues could predict a favorable outcome in NB patients independent of other prognostic factors. In short, LGP2 was effective in promoting poly (I:C)-induced NB suppression and cytoplasmic LGP2 can serve as an independent favorable prognostic factor in NB patients.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Biobank and Tissue Bank and Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Min-Tsui Wu
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jiin-Haur Chuang
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Infection with flaviviruses requires BCLXL for cell survival. PLoS Pathog 2018; 14:e1007299. [PMID: 30261081 PMCID: PMC6177207 DOI: 10.1371/journal.ppat.1007299] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/09/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
BCL2 family proteins including pro-survival proteins, BH3-only proteins and BAX/BAK proteins control mitochondria-mediated apoptosis to maintain cell homeostasis via the removal of damaged cells and pathogen-infected cells. In this study, we examined the roles of BCL2 proteins in the induction of apoptosis in cells upon infection with flaviviruses, such as Japanese encephalitis virus, Dengue virus and Zika virus. We showed that survival of the infected cells depends on BCLXL, a pro-survival BCL2 protein due to suppression of the expression of another pro-survival protein, MCL1. Treatment with BCLXL inhibitors, as well as deficient BCLXL gene expression, induced BAX/BAK-dependent apoptosis upon infection with flaviviruses. Flavivirus infection attenuates cellular protein synthesis, which confers reduction of short-half-life proteins like MCL1. Inhibition of BCLXL increased phagocytosis of virus-infected cells by macrophages, thereby suppressing viral dissemination and chemokine production. Furthermore, we examined the roles of BCLXL in the death of JEV-infected cells during in vivo infection. Haploinsufficiency of the BCLXL gene, as well as administration of BH3 mimetic compounds, increased survival rate after challenge of JEV infection and suppressed inflammation. These results suggest that BCLXL plays a crucial role in the survival of cells infected with flaviviruses, and that BCLXL may provide a novel antiviral target to suppress propagation of the family of Flaviviridae viruses. The genus Flavivirus including Japanese encephalitis virus, Dengue virus, and Zika virus all of which are mosquito-borne human pathogen and cause serious diseases in humans. Therefore, the development of effective vaccines and antivirals against several flaviviruses is still needed. BCL2 family proteins control mitochondria-mediated apoptosis to maintain cell homeostasis via the removal of damaged cells and pathogen-infected cells, deregulation of which leads to severe diseases including cancer and autoimmune diseases. Here, we showed that BCLXL is a critical cell survival factor during infection with flaviviruses, and that inhibition of BCLXL by treatment with BH3 mimetics restricts the production of infectious particles and the expression of chemokines in vitro and in vivo. Inhibition of BCLXL induces apoptosis in cells infected with flaviviruses and these cells are quickly removed by engulfment of phagocytes, which leads to inhibition of virus dissemination without any inflammatory reaction. Based on these data, BCLXL would appear to be a suitable target for the development of novel antivirals against a broad range of flavivirus infections.
Collapse
|
38
|
Zhu H, Cao W, Zhao P, Wang J, Qian Y, Li Y. Hyperosmotic stress stimulates autophagy via the NFAT5/mTOR pathway in cardiomyocytes. Int J Mol Med 2018; 42:3459-3466. [PMID: 30221680 DOI: 10.3892/ijmm.2018.3873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/04/2018] [Indexed: 12/09/2022] Open
Abstract
Hyperosmotic stress may be initiated during a diverse range pathological circumstances, which in turn results in tissue damage. In this process, the activation of survival signaling, which has the capacity to restore cell homeostasis, determines cell fate. Autophagy is responsible for cell survival and is activated by various pathological stimuli. However, its interplay with hyperosmotic stress and its effect on terminally differentiated cardiac myocytes is unknown. Nuclear factor of activated T‑cells 5 (NFAT5), an osmo‑sensitive transcription factor, mediates the expression of cell survival associated‑genes under hyperosmotic conditions. The present study investigated whether NFAT5 signaling is required in hyperosmotic stress‑induced autophagy. It was demonstrated that the presence of a hyperosmotic stress induced an increase in NFAT5 expression, which in turn triggered autophagy through autophagy‑related protein 5 (Atg5) activation. By contrast, NFAT5 silencing inhibited DNA damage response 1 protein expression, which then initiated the activation of mammalian target of rapamycin signaling. Therefore, the balance between NFAT5‑induced apoptosis and autophagy may serve a critical role in the determination of the fate of cardiomyocytes under hyperosmotic stress. These data suggest that autophagy activation is a beneficial adaptive response to attenuate hyperosmotic stress‑induced cell death. Therefore, increasing autophagy through activation of NFAT5 may provide a novel cardioprotective strategy against hyperosmotic stress‑induced damage.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Wei Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Peng Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jieyu Wang
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yuying Qian
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
39
|
Cai Y, Wang W, Guo H, Li H, Xiao Y, Zhang Y. miR-9-5p, miR-124-3p, and miR-132-3p regulate BCL2L11 in tuberous sclerosis complex angiomyolipoma. J Transl Med 2018; 98:856-870. [PMID: 29540858 DOI: 10.1038/s41374-018-0051-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder characterized by tumor formation in multiple organs, with over 80% of TSC patients developing angiomyolipomas (TSC-AMLs). However, the molecular events that contribute to TSC-AMLs are not well understood. Recent reports have demonstrated that microRNAs (miRNAs) are critical in TSC cortical tubers. However, little is known about the role of miRNAs in TSC-AMLs. In the current study, we analyzed changes in the miRNA and mRNA profiles in TSC-AMLs and matched normal adjacent tissues. A total of 15 differentially expressed miRNAs and 2664 mRNAs were identified. Using quantitative real-time PCR, we confirmed the results of the miRNA and mRNA profile experiments. Through bioinformatic analysis and luciferase reporter assays, we found that BCL2L11, an apoptotic activator, was the direct target of miR-9-5p, miR-124-3p, and miR-132-3p. Engineered expression of miR-9-5p, miR-124-3p, or miR-132-3p significantly regulated proliferation and apoptosis in Tsc2-/- cells. Manipulated expression of BCL2L11 also led to proliferation and apoptosis alterations in Tsc2-/- cells, in agreement with the effects of the above three miRNAs. In addition, BCL2L11 rescued the proliferation and apoptotic inhibition induced by miR-9-5p, miR-124-3p, and miR-132-3p in Tsc2-/- cells. This study provides supportive evidence that miR-9-5p, miR-124-3p, and miR-132-3p play a role in TSC-AMLs through the regulation of BCL2L11.
Collapse
Affiliation(s)
- Yi Cai
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.,Department of Urology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Hao Guo
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
40
|
Audiger C, Lesage S. BIM determines the number of merocytic dendritic cells, a cell type that breaks immune tolerance. Immunol Cell Biol 2018; 96:1008-1017. [DOI: 10.1111/imcb.12165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/16/2017] [Accepted: 05/06/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology; Maisonneuve-Rosemont Hospital; Montreal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie; Université de Montréal; Montreal QC H3C 3J7 Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology; Maisonneuve-Rosemont Hospital; Montreal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie; Université de Montréal; Montreal QC H3C 3J7 Canada
| |
Collapse
|
41
|
Pearce MC, Gamble JT, Kopparapu PR, O'Donnell EF, Mueller MJ, Jang HS, Greenwood JA, Satterthwait AC, Tanguay RL, Zhang XK, Kolluri SK. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget 2018; 9:26072-26085. [PMID: 29899843 PMCID: PMC5995251 DOI: 10.18632/oncotarget.25437] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/24/2018] [Indexed: 01/12/2023] Open
Abstract
Resistance to chemotherapy is a major cause of treatment failure and poor overall survival in patients with lung cancer. Identification of molecular targets present in resistant cancer cells is essential for addressing therapeutic resistance and prolonging lung cancer patient survival. Members of the B-cell lymphoma 2 (Bcl-2) family of proteins are associated with chemotherapeutic resistance. In this study, we found that pro-survival protein Bcl-2 is upregulated in paclitaxel resistant cells, potentially contributing to chemotherapy resistance. To exploit the increase in Bcl-2 expression for targeting therapy resistance, we investigated the effects of a peptide derived from the nuclear receptor Nur77 that converts Bcl-2 from an anti-apoptotic protein to a pro-apoptotic protein. The Nur77 derived peptide preferentially induced apoptosis in paclitaxel-resistant cancer cells with high expression of Bcl-2. This peptide also induced apoptosis of multidrug resistant H69AR lung cancer cells that express Bcl-2 and inhibited their growth in 3D spheroids. The Nur77 peptide strongly suppressed the growth of paclitaxel-resistant lung cancer cells in a zebrafish xenograft tumor model. Taken together, our data supports a new strategy for treating lung cancers that acquire resistance to chemotherapy through overexpression of Bcl-2.
Collapse
Affiliation(s)
- Martin C. Pearce
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - John T. Gamble
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Prasad R. Kopparapu
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Edmond F. O'Donnell
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Monica J. Mueller
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Julie A. Greenwood
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| | - Xiao-Kun Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92031, USA
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
42
|
Chung C. Restoring the switch for cancer cell death: Targeting the apoptosis signaling pathway. Am J Health Syst Pharm 2018; 75:945-952. [PMID: 29759975 DOI: 10.2146/ajhp170607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The relevance of apoptosis to cancer development and pharmacologic agents that target this pathway in selected malignancies are described. SUMMARY Apoptosis is a tightly regulated biological process mediated by both proapoptotic (i.e., prodeath) and antiapoptotic (i.e., prosurvival) proteins. While apoptosis represents a well-established effector mechanism induced by conventional chemotherapy in many malignancies, the development of apoptosis-based targeted therapy is relatively new. The pharmacologic restoration of apoptotic functions, either by blocking the action of antiapoptotic proteins/regulators (e.g., through investigational therapies such as inhibitors of apoptosis proteins, SMAC [second mitochondria-derived activator of caspases] mimetics, MDM2 [murine double minute 2] antagonists) or by inducing apoptosis (e.g., through investigational agonistic monoclonal antibodies or fusion proteins), holds robust potential for cancer pharmacotherapy. Notably, BH domain 3 (BH3) mimetics, a new class of small molecules that block the action antiapoptotic proteins, are touted a success for apoptosis-based targeted therapy. Venetoclax, a synthetic peptide that belongs to this class of BH3 mimetics, is currently approved by the Food and Drug Administration for the treatment of relapsed/refractory chronic lymphocytic leukemia in patients with 17p deletion as a single agent. This agent has been increasingly used either alone or as part of combination therapy for diverse hematologic malignancies in clinical trials. CONCLUSION Advances in the understanding of molecular mechanisms of apoptosis have given rise to more-refined targeted therapies for diverse malignancies, with the goal to improve survival outcome while sparing treatment-related toxicities.
Collapse
|
43
|
Zhang H, Jenkins SM, Lee CT, Harrington SM, Liu Z, Dong H, Zhang L. Bim is an independent prognostic marker in intrahepatic cholangiocarcinoma. Hum Pathol 2018; 78:97-105. [PMID: 29698699 DOI: 10.1016/j.humpath.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver malignant tumor and has a poor prognosis. The prognostic factors associated with outcome remain poorly defined. In this study, we investigated the role of an important cell apoptosis initiator, Bcl-2 interacting mediator of cell death (Bim), by evaluating its expression and association with other clinicopathological features in ICCs. We analyzed 56 cases of ICC with clinical follow-up. The expression of Bim in ICC cells and other cellular components was evaluated by immunohistochemistry. Bim expression was considered up-regulated if Bim was detected in 10% or more of tumor cells. Of the 56 ICC samples, 19 (34%) had high Bim expression level, 15 (27%) were completely negative, and 22 (39%) were classified as low Bim expression (<10% positivity). Patients who had tumors with high Bim level had significantly longer overall survival than did those with low or no staining (median survival, 7.6 versus 2.6 years; hazard ratio, 0.40; P = .006). High Bim expression was also correlated with low Ki-67 index, and more importantly, none of the tumors with high Bim expression had lymph node metastases at the time of surgery. Our study demonstrates that Bim is an important and independent prognostic factor in ICC. Tumors with high Bim expression are associated with better prognosis through inhibiting tumor cell proliferation and metastatic ability. The development of new agents directly or indirectly targeting Bim may provide promising anticancer treatments.
Collapse
Affiliation(s)
- Henan Zhang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110000, China; Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sarah M Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chuang-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, 704, Republic of China
| | | | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110000, China.
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
44
|
Chen S, Li X, Zhang W, Zi M, Xu Y. Inflammatory compound lipopolysaccharide promotes the survival of GM-CSF cultured dendritic cell via PI3 kinase-dependent upregulation of Bcl-x. Immunol Cell Biol 2018; 96:912-921. [PMID: 29624724 DOI: 10.1111/imcb.12051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/28/2022]
Abstract
As professional antigen-presenting cells, dendritic cells (DCs) initiate and regulate immune responses against inflammation. The invasion of pathogens into the body, however, can in turn cause the change of DCs in both activity and viability, which ultimately affect immune homeostasis. The exact mechanisms that the bacteria utilize to alter the lifespan of DCs, however, are far from clear. In this study, we found that the bacterial wall compound lipopolysaccharide (LPS) can promote the survival of GM-CSF-differentiated DCs (GM-DCs). At molecular levels, we demonstrated that GM-DCs had distinct pattern of mRNA expression for anti-apoptotic BCL-2 family members, of which, Bcl-x increased significantly following LPS stimulation. Interestingly, specific inhibition of BCL-XL protein alone was sufficient to remove the anti-apoptotic effects of LPS on BM-DCs. Further study of the signaling mechanisms revealed that although LPS can activate both Erk MAP kinase and PI3 kinase pathways, only blocking of PI3K abolished both Bcl-x upregulation and the enhanced survival phenotype, suggesting that the PI3K signaling mediated the upregulation of Bcl-x for the LPS-induced pro-survival in GM-DCs. Collectively, this study unveils a molecular mechanism that DCs adapt to maintain innate immunity against the invasion of pathogens.
Collapse
Affiliation(s)
- Shun Chen
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Xinchen Li
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Mengting Zi
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
45
|
Fahl SP, Daamen AR, Crittenden RB, Bender TP. c-Myb Coordinates Survival and the Expression of Genes That Are Critical for the Pre-BCR Checkpoint. THE JOURNAL OF IMMUNOLOGY 2018; 200:3450-3463. [PMID: 29654210 DOI: 10.4049/jimmunol.1302303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
The c-Myb transcription factor is required for adult hematopoiesis, yet little is known about c-Myb function during lineage-specific differentiation due to the embryonic lethality of Myb-null mutations. We previously used tissue-specific inactivation of the murine Myb locus to demonstrate that c-Myb is required for differentiation to the pro-B cell stage, survival during the pro-B cell stage, and the pro-B to pre-B cell transition during B lymphopoiesis. However, few downstream mediators of c-Myb-regulated function have been identified. We demonstrate that c-Myb regulates the intrinsic survival of CD19+ pro-B cells in the absence of IL-7 by repressing expression of the proapoptotic proteins Bmf and Bim and that levels of Bmf and Bim mRNA are further repressed by IL-7 signaling in pro-B cells. c-Myb regulates two crucial components of the IL-7 signaling pathway: the IL-7Rα-chain and the negative regulator SOCS3 in CD19+ pro-B cells. Bypassing IL-7R signaling through constitutive activation of Stat5b largely rescues survival of c-Myb-deficient pro-B cells, whereas constitutively active Akt is much less effective. However, rescue of pro-B cell survival is not sufficient to rescue proliferation of pro-B cells or the pro-B to small pre-B cell transition, and we further demonstrate that c-Myb-deficient large pre-B cells are hypoproliferative. Analysis of genes crucial for the pre-BCR checkpoint demonstrates that, in addition to IL-7Rα, the genes encoding λ5, cyclin D3, and CXCR4 are downregulated in the absence of c-Myb, and λ5 is a direct c-Myb target. Thus, c-Myb coordinates survival with the expression of genes that are required during the pre-BCR checkpoint.
Collapse
Affiliation(s)
- Shawn P Fahl
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908; and
| | - Andrea R Daamen
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908; and
| | - Rowena B Crittenden
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908; and
| | - Timothy P Bender
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908; and .,Beirne B. Carter Center for Immunology Research, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
46
|
Liu R, King A, Bouillet P, Tarlinton DM, Strasser A, Heierhorst J. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner. Front Immunol 2018; 9:592. [PMID: 29623080 PMCID: PMC5874283 DOI: 10.3389/fimmu.2018.00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/09/2018] [Indexed: 01/30/2023] Open
Abstract
The proapoptotic BH3-only protein BIM (Bcl2l11) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim-deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro, conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc-driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions.
Collapse
Affiliation(s)
- Rui Liu
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Ashleigh King
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St.Vincent's Health, The University of Melbourne, Fitzroy, VIC, Australia
| | - Philippe Bouillet
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Andreas Strasser
- Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St.Vincent's Health, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
47
|
The Cooperative Functions of the EBNA3 Proteins Are Central to EBV Persistence and Latency. Pathogens 2018; 7:pathogens7010031. [PMID: 29562595 PMCID: PMC5874757 DOI: 10.3390/pathogens7010031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 02/04/2023] Open
Abstract
The Epstein–Barr nuclear antigen 3 (EBNA3) family of proteins, comprising EBNA3A, EBNA3B, and EBNA3C, play pivotal roles in the asymptomatic persistence and life-long latency of Epstein–Barr virus (EBV) in the worldwide human population. EBNA3-mediated transcriptional reprogramming of numerous host cell genes promotes in vitro B cell transformation and EBV persistence in vivo. Despite structural and sequence similarities, and evidence of substantial cooperative activity between the EBNA3 proteins, they perform quite different, often opposing functions. Both EBNA3A and EBNA3C are involved in the repression of important tumour suppressive pathways and are considered oncogenic. In contrast, EBNA3B exhibits tumour suppressive functions. This review focuses on how the EBNA3 proteins achieve the delicate balance required to support EBV persistence and latency, with emphasis on the contribution of the Allday laboratory to the field of EBNA3 biology.
Collapse
|
48
|
Zhou Z, Zhu C, Cai Z, Zhao F, He L, Lou X, Qi X. Betulin induces cytochrome c release and apoptosis in colon cancer cells via NOXA. Oncol Lett 2018; 15:7319-7327. [PMID: 29725447 DOI: 10.3892/ol.2018.8183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/29/2017] [Indexed: 01/04/2023] Open
Abstract
Betulin is a common triterpene that can be readily obtained from various plants, particularly birch trees, in their natural environment. Specific tumor cells are sensitive to betulin, whereas healthy cells are not. Betulin was observed to stimulate programmed cell death of various cancer cell lines; however, the precise molecular mechanism of action of betulin remains unknown. The present study used colon cancer cells, in which mass apoptosis triggered by betulin was identified, and the apoptotic process was demonstrated to occur via the activation of caspase-3 and -9 pathways. In addition, release of cytochrome c was detected. Furthermore, the pro-apoptotic member of the Bcl-2 protein family, NOXA, was induced following treatment with betulin, and the downregulation of NOXA markedly suppressed the release of cytochrome c and apoptosis in colon cancer cells. Conversely, the overexpression of NOXA further enhanced betulin-induced apoptosis. The present study therefore offers novel insights into the mechanism of action of the natural compound betulin against tumors.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chenfang Zhu
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhongfang Cai
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Feng Zhao
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Liu He
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaolou Lou
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoliang Qi
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
49
|
Kim G, Gu MJ, Kim SJ, Ko KH, Kye YC, Kim CG, Cho JH, Lee WK, Song KD, Chu H, Park YM, Han SH, Yun CH. Transcription Factor KLF10 Constrains IL-17-Committed Vγ4 + γδ T Cells. Front Immunol 2018. [PMID: 29541070 PMCID: PMC5835516 DOI: 10.3389/fimmu.2018.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
γδ T cells, known to be an important source of innate IL-17 in mice, provide critical contributions to host immune responses. Development and function of γδ T cells are directed by networks of diverse transcription factors (TFs). Here, we examine the role of the zinc finger TFs, Kruppel-like factor 10 (KLF10), in the regulation of IL-17-committed CD27- γδ T (γδ27--17) cells. We found selective augmentation of Vγ4+ γδ27- cells with higher IL-17 production in KLF10-deficient mice. Surprisingly, KLF10-deficient CD127hi Vγ4+ γδ27--17 cells expressed higher levels of CD5 than their wild-type counterparts, with hyper-responsiveness to cytokine, but not T-cell receptor, stimuli. Thymic maturation of Vγ4+ γδ27- cells was enhanced in newborn mice deficient in KLF10. Finally, a mixed bone marrow chimera study indicates that intrinsic KLF10 signaling is requisite to limit Vγ4+ γδ27--17 cells. Collectively, these findings demonstrate that KLF10 regulates thymic development of Vγ4+ γδ27- cells and their peripheral homeostasis at steady state.
Collapse
Affiliation(s)
- Girak Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Soo Ji Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwang Hyun Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea
| | - Woon-Kyu Lee
- College of Medicine, Inha University, Incheon, South Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Hyuk Chu
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, South Korea
| | - Yeong-Min Park
- Department of Immunology, Laboratory of Dendritic Cell Differentiation and Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food Bioconvergence, Seoul National University, Seoul, South Korea.,Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
50
|
Müller L, Hainberger D, Stolz V, Hamminger P, Hassan H, Preglej T, Boucheron N, Sakaguchi S, Wiegers GJ, Villunger A, Auwerx J, Ellmeier W. The corepressor NCOR1 regulates the survival of single-positive thymocytes. Sci Rep 2017; 7:15928. [PMID: 29162920 PMCID: PMC5698297 DOI: 10.1038/s41598-017-15918-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional regulator bridging repressive chromatin modifying enzymes with transcription factors. NCOR1 regulates many biological processes, however its role in T cells is not known. Here we show that Cd4-Cre-mediated deletion of NCOR1 (NCOR1 cKOCd4) resulted in a reduction of peripheral T cell numbers due to a decrease in single-positive (SP) thymocytes. In contrast, double-positive (DP) thymocyte numbers were not affected in the absence of NCOR1. The reduction in SP cells was due to diminished survival of NCOR1-null postselection TCRβhiCD69+ and mature TCRβhiCD69- thymocytes. NCOR1-null thymocytes expressed elevated levels of the pro-apoptotic factor BIM and showed a higher fraction of cleaved caspase 3-positive cells upon TCR stimulation ex vivo. However, staphylococcal enterotoxin B (SEB)-mediated deletion of Vβ8+ CD4SP thymocytes was normal, suggesting that negative selection is not altered in the absence of NCOR1. Finally, transgenic expression of the pro-survival protein BCL2 restored the population of CD69+ thymocytes in NCOR1 cKOCd4 mice to a similar percentage as observed in WT mice. Together, these data identify NCOR1 as a crucial regulator of the survival of SP thymocytes and revealed that NCOR1 is essential for the proper generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hammad Hassan
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
- Department of Biochemistry (Shankar Campus), Abdul Wali Khan University (AWKUM) Mardan, KPK, Pakistan
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - G Jan Wiegers
- Innsbruck Medical University, Biocenter, Division of Developmental Immunology, Innsbruck, Austria
| | - Andreas Villunger
- Innsbruck Medical University, Biocenter, Division of Developmental Immunology, Innsbruck, Austria
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Integrative and Systems Physiology, Lausanne, Switzerland
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|