1
|
Hong Z, Zhao Y, Pahlavan S, Wang X, Han S, Wang X, Wang K. iPSC modification strategies to induce immune tolerance. LIFE MEDICINE 2025; 4:lnaf016. [PMID: 40376110 PMCID: PMC12076409 DOI: 10.1093/lifemedi/lnaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/27/2025] [Indexed: 05/18/2025]
Abstract
Human pluripotent stem cells (hPSCs) hold great promise in regenerative medicine. However, immune rejections remain one of the major obstacles to stem cell therapy. Though conventional immunosuppressants are available in clinics, the side effects prevent the wide application of hPSCs derivatives, compromising both survival rate and quality of life. In recent years, a myriad of strategies aimed at inducing immune tolerance specifically by engineering stem cells has been introduced to society. One strategy involves human leukocyte antigen (HLA) deletion through gene editing, affording allografts the capability to evade the host immune system. Another strategy involves immune cloak, which is the focus of this review, with emphasis on the overexpression of immune checkpoints and the blocking of immune cytotoxic pathways. Nevertheless, co-transplantation with mesenchymal stem cells (MSCs) and enhanced MSCs confers immune privilege to engraftments. This review summarizes recent studies on the intricacies of immune tolerance induction by engineering stem cells. In addition, we endeavor to deliberate upon the safety and limitations associated with this promising and potential therapeutic modality.
Collapse
Affiliation(s)
- Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Xue Wang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sen Han
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Blümke J, Schameitat M, Verma A, Limbecker C, Arlt E, Kessler SM, Kielstein H, Krug S, Bazwinsky-Wutschke I, Haemmerle M. Innate Immunity and Platelets: Unveiling Their Role in Chronic Pancreatitis and Pancreatic Cancer. Cancers (Basel) 2025; 17:1689. [PMID: 40427186 PMCID: PMC12110028 DOI: 10.3390/cancers17101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic instability, acinar-ductal metaplasia, and pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular matrix, including immune cells, can modulate this progression phase. This includes cells of the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells, mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory responses that support tumor progression by releasing cytokines and growth factors, fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can also activate immune surveillance mechanisms, which can limit tumor development. For example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells, and active dendritic cells are crucial for a functioning anti-tumor immune response. In contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment that is additionally sustained by platelets. Once thought to play a role in hemostasis only, platelets are now recognized as key players in inflammation and cancer progression. By releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation, progression, metastasis, and immune evasion. Neutrophils and macrophages exist in different functional subtypes that can both act pro- and anti-tumorigenic. Understanding the complex interactions between innate immune cells, platelets, and early precursor lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that can harness the immune and potentially also the coagulation system to target and eliminate tumors, offering hope for improved patient outcomes.
Collapse
Affiliation(s)
- Juliane Blümke
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| | - Moritz Schameitat
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Atul Verma
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
| | - Celina Limbecker
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Elise Arlt
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sonja M. Kessler
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Faculty of Natural Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sebastian Krug
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Monika Haemmerle
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| |
Collapse
|
3
|
Alari-Pahissa E, Federico-Vega J, Ataya M, Buxeda A, Bello-Rico V, Gimeno J, Yélamos J, Altadill M, Sanz-Ureña S, Riera M, Burballa C, Chamoun B, Pérez-Sáez MJ, Redondo-Pachón D, Vilches C, Crespo M, López-Botet M. Alloreactive adaptive natural killer cells in renal transplantation: potential contribution to allograft microvascular inflammation. Am J Transplant 2025:S1600-6135(25)00229-1. [PMID: 40340029 DOI: 10.1016/j.ajt.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/11/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are randomly expressed by natural killer (NK) cell subsets and recognize motifs shared by HLA class-I (HLA-I) allotypes. Such interactions prevent NK cell autoreactivity while enhancing their response against cells lacking those HLA-I molecules (missing self), a situation defined in transplantation as iKIR-HLA-I mismatch (iKIR-MM), whose genotypic prediction has been associated with microvascular inflammation (MVI). Herein, we compared iKIR-MM in kidney transplant recipients with MVI ≥2 (n = 19) and controls with MVI ≤1 (n = 36). In parallel to genetic analysis of iKIR-MM, which was more frequent in MVI ≥2 patients, putative alloreactive iKIR-MM NK cells were defined by flow cytometry as NKG2A(-) cells bearing self-specific but lacking donor-specific iKIR. Although iKIR-MM NK cells were detected in both groups, their pretransplant numbers were higher in MVI ≥2 patients (median = 11.02, interquartile range = 0-58.31 vs median = 0, interquartile range = 0-9.46), especially in the presence of donor-specific antibodies or C4d, and correlated with MVI grade. Pretransplant, a subset of MVI ≥2 patients showed high proportions and numbers of oligoclonal iKIR-MM NK cells, which displayed an NKG2C(+) adaptive phenotype associated with cytomegalovirus infection. This pilot study provides a novel perspective on the contribution of iKIR-MM NK cells to MVI, with potential practical implications.
Collapse
Affiliation(s)
- Elisenda Alari-Pahissa
- Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain.
| | - Judith Federico-Vega
- Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain
| | - Michelle Ataya
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Anna Buxeda
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - Víctor Bello-Rico
- Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Spain
| | - Javier Gimeno
- Pathology Service, Hospital del Mar, Barcelona, Spain
| | - José Yélamos
- Pathology Service, Hospital del Mar, Barcelona, Spain
| | - Mireia Altadill
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Sara Sanz-Ureña
- Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain
| | - Marta Riera
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain
| | - Carla Burballa
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - Betty Chamoun
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - María José Pérez-Sáez
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - Dolores Redondo-Pachón
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - Carlos Vilches
- Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Spain; Organización Nacional de Trasplantes, Ministerio de Sanidad, Madrid, Spain
| | - Marta Crespo
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain.
| | - Miguel López-Botet
- Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Pathology Service, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
4
|
Coholan LJ, Karaca C, Musenge FM, White ML, Camblin AJ, Leboeuf D, Maldini CR. Combined CLEC2d Expression and CD58 Loss Mitigate Rejection of Allogeneic T Cells. J Immunother 2025; 48:127-137. [PMID: 40171839 DOI: 10.1097/cji.0000000000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025]
Abstract
Immunogenicity of allogeneic chimeric antigen receptor (CAR) T cell therapies may preclude durable therapeutic responses and broad clinical implementation. Although genetic knockout (KO) of beta-2-microglobulin (B2M) is commonly employed to abrogate HLA class I expression thereby preventing allorecognition by recipient T cells, this deficiency induces missing-self responses by natural killer (NK) cells. Here, we demonstrated that forced expression of a chimeric membrane-bound CLEC2d, an inhibitory ligand of CD161, and concurrent loss of CD58 (LFA-3), an adhesion ligand of CD2, substantially mitigated NK cell responses against allogeneic B2MKO T cells. This combination reduced in vitro NK cell-dependent lysis to a greater extent than either strategy alone and increased the in vivo persistence of these cells after infusion into NK cell-replete humanized mice. Collectively, these findings demonstrate that the convergence of orthogonal genome engineering approaches effectively averts NK cell-driven rejection of allogeneic T cells for immunotherapy.
Collapse
|
5
|
Altadill M, Álvarez I, Ataya M, Heredia G, Alari‐Pahissa E, Muntasell A, Llano M, Fuchs J, Vilches C, Hengel H, Halenius A, López‐Botet M. Human Cytomegalovirus Antigen Presentation by HLA-G in Infected Cells. HLA 2025; 105:e70089. [PMID: 40347012 PMCID: PMC12065092 DOI: 10.1111/tan.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 05/12/2025]
Abstract
HLA-E and -G class Ib molecules were considered unrelated to viral antigen presentation. HLA-E binds nonamers from the leader sequences of other HLA-I molecules and the human cytomegalovirus (HCMV) UL40 protein, interacting with CD94/NKG2 NK cell receptors. Yet, evidence that HLA-E may present some pathogen-derived peptides to CD8+ T lymphocytes has been reported. By contrast, HLA-G binds a broad spectrum of endogenous sequences but its role in antigen presentation is unknown. An experimental approach was set up to search for HCMV antigens displayed by HLA-G in infected cells. Among the analysed peptidome, 22 sequences corresponding to 16 HCMV molecules were identified; 17 peptides were confirmed to interact in vitro with HLA-G of which 10 displayed characteristic anchor residues. As compared to the response in short-term (6 h) assays to immunodominant IE-1 and pp65 antigens, none of the HLA-G-binding peptides stimulated cytokine production by CD8+ T cells from HCMV-seropositive blood donors (n = 15). Following a 14-day peptide stimulation of PBMC and expansion with IL-2, CD8+ T cells specifically responding to a subset of these viral antigens were detected in some individuals, yet were not restricted by HLA-G in functional assays. A subset of viral peptides did bind to both HLA-G and -E but were not recognised by CD94/NKG2 NK cell receptors. Our results provide the first evidence that HLA-G may display potentially immunogenic viral peptides in HCMV-infected cells, yet do not support their ability to promote HLA-G-restricted CD8+ T cell responses nor to modulate NK cell functions.
Collapse
Affiliation(s)
- Mireia Altadill
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Iñaki Álvarez
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
| | - Michelle Ataya
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Gemma Heredia
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | | | - Aura Muntasell
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Manuel Llano
- Biological Sciences DepartmentThe University of Texas at El PasoEl PasoUSA
| | - Jonas Fuchs
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Carlos Vilches
- Immunogenetics and Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
- Organización Nacional de Trasplantes, Ministerio de SanidadMadridSpain
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Anne Halenius
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Miguel López‐Botet
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| |
Collapse
|
6
|
Sim MJW, Li B, Long EO. Peptide-specific natural killer cell receptors. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf003. [PMID: 40297637 PMCID: PMC12036969 DOI: 10.1093/oxfimm/iqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Class I and II human leukocyte antigens (HLA-I and HLA-II) present peptide antigens for immunosurveillance by T cells. HLA molecules also form ligands for a plethora of innate, germline-encoded receptors. Many of these receptors engage HLA molecules in a peptide sequence independent manner, with binding sites outside the peptide binding groove. However, some receptors, typically expressed on natural killer (NK) cells, engage the HLA presented peptide directly. Remarkably, some of these receptors display exquisite specificity for peptide sequences, with the capacity to detect sequences conserved in pathogens. Here, we review evidence for peptide-specific NK cell receptors (PSNKRs) and discuss their potential roles in immunity.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Beining Li
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, United States of America
| |
Collapse
|
7
|
Essat A, Chapel A, Amokrane K, Monceaux V, Didier C, Melard A, Gardiennet E, Avettand-Fenoel V, Orr S, Boufassa F, Lambotte O, Müller-Trutwin M, Lécuroux C, Chéret A, Goujard C, Rouzioux C, Caillat-Zucman S, Hocqueloux L, Scott-Algara D, Meyer L, Sáez-Cirión A. A genetic fingerprint associated with durable HIV remission after interruption of antiretroviral treatment: ANRS VISCONTI/PRIMO. MED 2025:100670. [PMID: 40300610 DOI: 10.1016/j.medj.2025.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/27/2024] [Accepted: 03/19/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND There is currently no curative treatment for HIV-1 infection. However, some individuals (defined as posttreatment controllers) durably control viremia after the discontinuation of antiretroviral therapy (ART). Although the ability to achieve this HIV-1 remission status is enhanced by early treatment initiation, the mechanisms leading to posttreatment HIV-1 control remain unclear. METHODS We retrospectively explored the immunogenetic characteristics of long-term posttreatment controllers from the ANRS VISCONTI study and persons monitored since primary HIV-1 infection in the ANRS PRIMO cohort and evaluated their influence on clinical parameters and outcome after ART discontinuation. FINDINGS We identified a major histocompatibility complex (MHC)-related fingerprint favoring sustained HIV-1 remission. HLA-B∗35 alleles, which are associated with rapid progression to AIDS during natural HIV-1 infection, were paradoxically overrepresented among posttreatment controllers and had a positive impact on outcome after treatment discontinuation in people who began therapy during primary infection. Specifically, the influence of HLA-B∗35 alleles was observed when they were carried in combination with other HLA class I alleles expressing Bw4 and C2 ligands of killer immunoglobulin-like receptors (KIRs) in a genetic context that favors KIR education of natural killer (NK) cells (Bw4TTC2 genotype). Accordingly, posttreatment controllers with HLA-B∗35 alleles carry distinct KIR genotypes and NK cells. CONCLUSIONS The combination of HLA-B∗35 with Bw4TTC2 genotype, associated with KIR education of NK cells, was abundant among posttreatment HIV-1 controllers and promoted viral control after interruption of early-initiated antiretroviral treatment. These results support a role of NK cells in sustained HIV-1 remission. FUNDING The VISCONTI study and the PRIMO cohort are funded by the ANRS-MIE.
Collapse
Affiliation(s)
- Asma Essat
- Université Paris-Saclay, Inserm CESP U1018, AP-HP, Department of Public Health, Bicêtre Hospital, 94270 Paris-Saclay, France
| | - Anaïs Chapel
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, 75015 Paris, France
| | - Kahina Amokrane
- AP-HP, Hôpital Saint-Louis, Université Paris Cité, Laboratoire d'Immunologie et Histocompatibilité, 75010 Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, 75015 Paris, France
| | - Céline Didier
- Institut Pasteur, Unité Régulation des Infections Rétrovirales, 75015 Paris, France
| | - Adeline Melard
- Université Paris Cité, Faculté de Médecine, 75015 Paris, France; INSERM U1016, CNRS UMR8104, Institut Cochin, 75014 Paris, France
| | - Elise Gardiennet
- Université Paris Cité, Faculté de Médecine, 75015 Paris, France; INSERM U1016, CNRS UMR8104, Institut Cochin, 75014 Paris, France
| | - Véronique Avettand-Fenoel
- Université Paris Cité, Faculté de Médecine, 75015 Paris, France; INSERM U1016, CNRS UMR8104, Institut Cochin, 75014 Paris, France; Université d'Orléans, LI(2)RSO, CHU Orléans, Virologie, 45100 Orléans, France
| | - Sylvie Orr
- Université Paris-Saclay, Inserm CESP U1018, AP-HP, Department of Public Health, Bicêtre Hospital, 94270 Paris-Saclay, France
| | - Faroudy Boufassa
- Université Paris-Saclay, Inserm CESP U1018, AP-HP, Department of Public Health, Bicêtre Hospital, 94270 Paris-Saclay, France
| | - Olivier Lambotte
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological, Bacterial Diseases (IMVA-HB/IDMIT/UMRS1184), 94270 Le Kremlin Bicêtre, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, 75015 Paris, France
| | - Camille Lécuroux
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological, Bacterial Diseases (IMVA-HB/IDMIT/UMRS1184), 94270 Le Kremlin Bicêtre, France
| | - Antoine Chéret
- INSERM U1016, CNRS UMR8104, Institut Cochin, 75014 Paris, France; Université Paris-Saclay, AP-HP, Hôpital Bicêtre, DMU 7, Inserm U1018, CESP, 94270 Le Kremlin Bicêtre, France
| | - Cécile Goujard
- Université Paris-Saclay, AP-HP, Hôpital Bicêtre, DMU 7, Inserm U1018, CESP, 94270 Le Kremlin Bicêtre, France
| | | | - Sophie Caillat-Zucman
- AP-HP, Hôpital Saint-Louis, Université Paris Cité, Laboratoire d'Immunologie et Histocompatibilité, 75010 Paris, France
| | - Laurent Hocqueloux
- Centre Hospitalier Universitaire, Service des Maladies Infectieuses, 45100 Orléans, France
| | - Daniel Scott-Algara
- Institut Pasteur, Université Paris Cité, Lymphocyte Cell Biology Unit, 75015 Paris, France
| | - Laurence Meyer
- Université Paris-Saclay, Inserm CESP U1018, AP-HP, Department of Public Health, Bicêtre Hospital, 94270 Paris-Saclay, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, 75015 Paris, France.
| |
Collapse
|
8
|
Ribeiro LSS, Xavier DR, Rosa TDS, Macêdo AA, Ribeiro DLS, Paz FS, Silva EMC, Ribeiro AIL, Torres-Júnior JRS, Viana RB, Tchaicka L, Carvalho-Neta AV. Characterization and transcription of non-classical class I major histocompatibility complex (MHC) genes in buffaloes. BRAZ J BIOL 2025; 85:e281304. [PMID: 40172450 DOI: 10.1590/1519-6984.281304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2025] [Indexed: 04/04/2025] Open
Abstract
The objective of the present study was to characterize non-classical class I major histocompatibility complex (MHC) genes in buffaloes and evaluate the expression of these genes in different tissue components of the placenta of buffaloes during pregnancy and in trophoblastic cells after stimulation using lipopolysaccharide (LPS). To do this, DNA was extracted from the blood of buffaloes and was subjected to PCR testing and sequencing of the genes NC3 and MICB. The RNA extracted from the placentome and intercotyledonary region of buffaloes in their first (n = 6), second (n = 6) and third (n = 6) trimesters of gestation was subjected to real-time PCR. Explants were created using the chorioallantoic membrane and two experimental groups were established: control and stimulated with LPS for four hours to evaluate the gene expression profile. Analysis on the sequences obtained showed that the genes NC3 and MICB of buffaloes were homologous with those of cattle, with high similarity in the analysis on the sequence variation pattern. The gene expression analysis showed that the genes assessed were transcribed at stages and in placental tissue that differed from what was seen in cattle. The transcription of these genes varied in the tissues studied, with greater transcription of MICB in the intercotyledonary region over the first third of gestation, while the genes studied in the placentome presented low rates of transcription. The trophoblastic cells of the chorioallantoic membrane stimulated with LPS for six hours did not present non-classic MFC-I transcription alterations. The present study therefore provides additional knowledge regarding the immune regulation of placental tissues of buffaloes.
Collapse
Affiliation(s)
- L S S Ribeiro
- Universidade Estadual do Maranhão, Rede de Biodiversidade e Biotecnologia da Amazônia Legal, São Luís, MA, Brasil
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| | - D R Xavier
- Universidade de São Paulo, Faculdade de Saúde Pública, São Paulo, SP, Brasil
| | - T D S Rosa
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| | - A A Macêdo
- Faculdade Vale do Aço - FAVALE, Curso de Medicina Veterinária, Imperatriz, MA, Brasil
| | - D L S Ribeiro
- Universidade Estadual do Maranhão, Departamento das Clínicas Veterinárias, São Luís, MA, Brasil
| | - F S Paz
- Universidade Estadual do Maranhão, Departamento de Química e Biologia, São Luís MA, Brasil
| | - E M C Silva
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| | - A I L Ribeiro
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| | - J R S Torres-Júnior
- Universidade Federal do Maranhão - UFMA, Departamento de Oceanografia e Limnologia, São Luís, MA, Brasil
| | - R B Viana
- Universidade Federal Rural da Amazônia, Instituto de Saúde e Produção Animal, Belém PA, Brasil
| | - L Tchaicka
- Universidade Estadual do Maranhão, Departamento de Química e Biologia, São Luís MA, Brasil
| | - A V Carvalho-Neta
- Universidade Estadual do Maranhão, Rede de Biodiversidade e Biotecnologia da Amazônia Legal, São Luís, MA, Brasil
- Universidade Estadual do Maranhão, Programa de Pós-graduação em Ciência Animal, São Luís, MA, Brasil
| |
Collapse
|
9
|
Manger I, Schmitt C, Berking C, French LE, Vera-Gonzalez J, Heinzerling L. Association of HLA-A*02:01 type with efficacy and toxicity of immune checkpoint inhibitor therapy in melanoma patients: a retrospective cohort study. BMC Cancer 2025; 25:565. [PMID: 40155873 PMCID: PMC11954185 DOI: 10.1186/s12885-025-13857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) are highly effective but may induce severe or even fatal and unpredictable immune-related adverse events (irAEs). It is unclear whether human leukocyte antigen (HLA) genes contribute to the susceptibility of developing irAEs during ICI therapy. METHODS This multicentre retrospective study investigated the association of irAE and outcome with HLA-A*02:01 status in a cohort of 97 patients with metastatic melanoma undergoing ICI therapy. Organ-specific irAEs and therapy outcome as assessed by response rate, progression-free survival (PFS) and overall survival (OS) were analysed depending on HLA type HLA-A*02:01. For the outcome only patients with cutaneous melanoma were analysed. Chi square test, exact fisher test, Kruskal Wallis test and log rank test were employed for statistical analysis (p ≤ 0.05). RESULTS The cohort included 38 HLA-A*02:01 positive (39.2%) and 59 HLA-A*02:01 negative (60.8%) patients. Data showed no evidence of an association of HLA-A*02:01 with organ-specific irAEs except for a numerical difference in immune-related colitis. Furthermore, response rates of the subgroup of patients with metastatic cutaneous melanoma did not differ between the two cohorts. The median PFS was 5 months and 8 months in HLA-A*02:01 positive and negative patients with cutaneous melanoma, respectively. CONCLUSION HLA-A*02:01 was not associated with specific checkpoint inhibitor-induced organ toxicity in this cohort of HLA-A-typed melanoma patients. Interestingly, in the relatively small subgroup of patients with cutaneous melanoma an earlier progression in HLA-A*02:01 positive patients was observed, however not in the long term. These findings are exploratory due to the limited sample size and require validation in larger, prospective cohorts.
Collapse
Affiliation(s)
- Isabel Manger
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Christina Schmitt
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Carola Berking
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
- Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julio Vera-Gonzalez
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Uniklinikum Erlangen, CCC Erlangen-EMN, CCC WERA, Erlangen, Germany
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany.
- Bavarian Centre for Cancer Research (BZKF), Uniklinikum Erlangen and LMU Munich, Munich, Germany.
- Department of Dermatology, LMU University Hospital Munich, Frauenlobstr. 9-11, Munich, D-80337, Germany.
| |
Collapse
|
10
|
Henden C, Fjerdingstad HB, Bjørnsen EG, Thiruchelvam-Kyle L, Daws MR, Inngjerdingen M, Glover JC, Dissen E. NK-cell cytotoxicity toward pluripotent stem cells and their neural progeny: impacts of activating and inhibitory receptors and KIR/HLA mismatch. Stem Cells 2025; 43:sxae083. [PMID: 39708357 PMCID: PMC11929945 DOI: 10.1093/stmcls/sxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK-cell receptors and their ligands. Reporter cells expressing the activating receptor NKG2D responded strongly to embryonic stem (ES) cell lines and induced pluripotent stem (iPS) cell lines, whereas reporter cells expressing the activating receptors NKp30, NKp46, KIR2DS1, KIR2DS2, and KIR2DS4 did not respond. Human ES and iPS cells invariably expressed several ligands for NKG2D. Expression of HLA-C and HLA-E was lacking or low, insufficient to trigger reporter cells expressing the inhibitory receptors KIR2DL1, -2DL2, or -2DL3. Similar results were obtained for the pluripotent embryonic carcinoma cell lines NTERA-2 and 2102Ep, and also iPS-cell-derived neural progenitor cells. Importantly, neural progenitor cells and iPS-cell-derived motoneurons also expressed B7H6, the ligand for the activating receptor NKp30. In line with these observations, IL-2-stimulated NK cells showed robust cytotoxic responses to ES and iPS cells as well as to iPS-cell-derived motoneurons. No significant differences in cytotoxicity levels were observed between KIR/HLA matched and mismatched combinations of NK cells and pluripotent targets. Together, these data indicate that pluripotent stem cells and their neural progeny are targets for NK-cell killing both by failing to sufficiently express ligands for inhibitory receptors and by expression of ligands for activating receptors.
Collapse
Affiliation(s)
- Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Hege B Fjerdingstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0317 Oslo, Norway
| | - Joel C Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
11
|
Hooda V, Sharma A. Interactions of NK Cells and Macrophages: From Infections to Cancer Therapeutics. Immunology 2025; 174:287-295. [PMID: 39739619 DOI: 10.1111/imm.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
The interaction between immune cells brings a consequence either on their role and functioning or the functioning of the other immune cells, modulating the whole mechanistic pathway. The interaction between natural killer (NK) cells and macrophages is one such interaction which is relatively less explored amongst diseased conditions. Their significance comes from their innate nature and secretion of large proportions of cytokines and chemokines which results in influencing adaptive immune responses. Their interplay can lead to several functional outcomes such as NK cell activation/inhibition, increased cytotoxicity and IFNγ release by NK cells, inhibition of macrophage function, etc. This paper delves into the interaction amongst NK cells and macrophages via different receptor-ligands and cytokines, particularly emphasising microbial infections and tumours. The review has the potential to uncover new insights and approaches that could lead to the development of innovative therapeutic tools and targets.
Collapse
Affiliation(s)
- Vishakha Hooda
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
12
|
Cai R, Yang Q, Liao Y, Qin L, Han J, Gao R. Immune Treatment Strategies in Unexplained Recurrent Pregnancy Loss. Am J Reprod Immunol 2025; 93:e70060. [PMID: 39967400 DOI: 10.1111/aji.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Recurrent pregnancy loss (RPL) is characterized by the occurrence of two or more consecutive pregnancy losses. Approximately half of these cases lack a clear etiology and are termed unexplained recurrent pregnancy loss (URPL). Maternal-fetal immune dysfunction is thought to be involved in causing URPL. Increased human leukocyte antigen compatibility, susceptibility genes, lack of blocking antibodies, and dysfunction of immune cells can all disrupt the immune tolerance environment of the maternal-fetal interface. To correct the maternal-fetal immune imbalances, some immunotherapies were recently tried to be used for patients with URPL. This review summarizes the characteristics and mechanisms of the immune microenvironment at the maternal-fetal interface of URPL patients, and the present immunotherapies for URPL patients, to serve as a reference for future research.
Collapse
Affiliation(s)
- Rui Cai
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qiaoran Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yingjun Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Outpatient, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lang Qin
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jinbiao Han
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
13
|
Sabino-Pinto J, Maan ME. The Amphibian Major Histocompatibility Complex-A Review and Future Outlook. J Mol Evol 2025; 93:38-61. [PMID: 39774934 PMCID: PMC11850509 DOI: 10.1007/s00239-024-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle. Hence, they tend to be exposed to both aquatic and terrestrial pathogen communities, providing opportunities to gain fundamental insights into how the immune system responds to different environmental challenges. Moreover, amphibians are globally threatened by invasive pathogens and the MHC may play a role in combating population decline. In this review, we summarize the current state of knowledge regarding the amphibian MHC and identify the major differences with other vertebrates. We also review how the number of MHC gene copies varies across amphibian groups and how MHC-based variation relates to amphibian ontogeny, behaviour, disease, and phylogeography. We conclude by identifying knowledge gaps and proposing priorities for future research.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Giordano C, Carlomagno S, Falco M, Cantoni C, Vitale M, Caruana I, Dirks J, Serio A, Muccio L, Bartalucci G, Bo A, Locatelli F, Bottino C, Sivori S, Della Chiesa M. CD94-driven in vitro expansion of highly functional adaptive NKG2C + NKG2A - CD57 + NK cells from CMV + healthy donors. Front Immunol 2025; 16:1481745. [PMID: 39958331 PMCID: PMC11825780 DOI: 10.3389/fimmu.2025.1481745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
Background Adaptive human natural killer (NK) cells are an NK cell subpopulation arising upon cytomegalovirus (CMV) infection. They are characterized by CD94/NKG2C expression, a mature CD57+KIR+NKG2A- phenotype, a prolonged lifespan, and remarkable antitumor functions. In light of these features, adaptive NK cells represent suitable candidate to design next-generation therapies, based on their enhanced effector function which could be further boosted by Chimeric Antigen Receptors-engineering, or the combination with cell engagers. For therapeutic approaches, however, it is key to generate large numbers of functional cells. Purpose We developed a method to efficiently expand adaptive NK cells from NK-enriched cell preparations derived from the peripheral blood of selected CMV-seropositive healthy donors. The method is based on the use of an anti-CD94 monoclonal antibody (mAb) combined with IL-2 or IL-15. Results By setting this method we were able to expand high numbers of NK cells showing the typical adaptive phenotype, CD94/NKG2C+ CD94/NKG2A- CD57+, and expressing a single self-inhibitory KIR. Expanded cells maintained the CMV-induced molecular signature, exhibited high ADCC capabilities and degranulation against a HLA-E+ target. Importantly, mAb-expanded adaptive NK cells did not upregulate PD-1 or other regulatory immune checkpoints that could dampen their function. Conclusions By this study we provide hints to improve previous expansion methods, by eliminating the use of genetically modified cells as stimulators, and obtaining effectors not expressing unwanted inhibitory receptors. This new protocol for expanding functional adaptive NK cells is safe, cost-effective and easily implementable in a GMP context, suitable for innovative immunotherapeutic purposes.
Collapse
Affiliation(s)
- Chiara Giordano
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Michela Falco
- Department of Services, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Department of Services, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Vitale
- U.O. Patologia e Immunologia sperimentale, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ignazio Caruana
- Hematology, Oncology and Stem Cell Transplantation Unit, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Dirks
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Alberto Serio
- Hematology and Cell Therapy, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Giulia Bartalucci
- Hematology and Cell Therapy, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandra Bo
- Hematology and Cell Therapy, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Locatelli
- Unit of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Cristina Bottino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Department of Services, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Direzione Scientifica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Direzione Scientifica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
15
|
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Ferri B, Campillo JA, Martínez-Sánchez MV, Minguela A. Differential Role of NKG2A/HLA-E Interaction in the Outcomes of Bladder Cancer Patients Treated with M. bovis BCG or Other Therapies. Biomedicines 2025; 13:156. [PMID: 39857739 PMCID: PMC11760850 DOI: 10.3390/biomedicines13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Immunotherapy is gaining great relevance in both non-muscle-invasive bladder cancer (NMIBC), with the use of bacille Calmette-Guerin (BCG), and in muscle-invasive BC (MIBC) with anti-checkpoint therapies blocking PD-1/PD-L1, CTLA-4/CD80-CD86, and, more recently, NKG2A/HLA-E interactions. Biomarkers are necessary to optimize the use of these therapies. Methods: We evaluated killer-cell immunoglobulin-like receptors (KIRs) and HLA-I genotyping and the expression of NK cell receptors in circulating T and NK lymphocytes at diagnosis in 325 consecutive BC patients (151 treated with BCG and 174 treated with other therapies), as well as in 648 patients with other cancers and 973 healthy donors as controls. The proliferation and production of cytokines and cytotoxicity were evaluated in peripheral blood mononuclear cells, stimulated in vitro with anti-CD3/CD28 or BCG, from selected patients based on HLA-B -21M/T dimorphism (NKG2A ligands). Results: The HLA-B -21M/T genotype showed opposing results in BC patients treated with BCG or other therapies. The MM genotype, compared to MT and TT, was associated with a longer 75th-percentile overall survival (not reached vs. 68.0 ± 13.7 and 52.0 ± 8.3 months, p = 0.034) in BCG, but a shorter (8.0 ± 2.4 vs. 21.0 ± 3.4 and 19.0 ± 4.9 months, p = 0.131) survival in other treatments. The HLA-B -21M/T genotype was an independent predictive parameter of the progression-free survival (HR = 2.08, p = 0.01) and the OS (HR = 2.059, p = 0.039) of BC patients treated with BCG, together with age and tumor histopathologic characteristics. The MM genotype was associated with higher counts of circulating CD56bright, fewer KIR2DL1/L2+ NK cells, and lower NKG2A expression, but not with differential in vitro NK cell functionality. Conclusions: The HLA-B -21M/T is independently associated with BC patient outcomes and can help to optimize the use of new immunotherapies in these patients.
Collapse
Affiliation(s)
- Inmaculada Ruiz-Lorente
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - Lourdes Gimeno
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain
| | - Alicia López-Abad
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | - Pedro López Cubillana
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | | | | | | | | | | | - Gerardo Server
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | - Belén Ferri
- Pathology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - José Antonio Campillo
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - María Victoria Martínez-Sánchez
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - Alfredo Minguela
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| |
Collapse
|
16
|
Al-Tamimi J, Alomar S, Aljuaimlani A, Mansour L. Association of killer immunoglobulin-like receptor genotypes and haplotypes with acute lymphoblastic leukemia risk. Innate Immun 2025; 31:17534259251314774. [PMID: 39828905 PMCID: PMC11774482 DOI: 10.1177/17534259251314774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Killer immunoglobulin-like receptors (KIRs) are key molecules used by natural killer (NK) cells to interact with target cells. These receptors exhibit extensive genotypic polymorphism which has been associated with varying outcomes in immune responses against diseases. This study aimed to investigate the relationships between KIR genotypes and haplotypes with acute lymphoblastic leukemia (ALL) in Saudi patients. METHODS A total of 259 Saudi subjects including 145 cases of acute lymphoblastic leukemia (ALL) and 114 healthy controls living in Riyadh were genotyped for 16 KIR genes and the two HLA-C1 and -C2 allotypes using PCR-SSP genotyping method. RESULTS A significant high frequency of the two inhibitory KIR genes; 2DL1 (OR = 2.4; p < 0.0001) and 3DL1(OR = 10.87; p = 0.0068) in ALL compared to healthy group was observed. In contrast, the activating 2DS4 gene was significantly higher in healthy controls (OR = 0.15, p < 0.0001) compared to ALL patients. Haplotype analysis shows that BX haplogroup was strongly associated with the occurrence of ALL (OR = 4.39; p < 0.0001). Further combinatory analysis of KIR genes with their HLA-C1 and -C2 ligands demonstrated strong statistically protective effect of the 2DS1-C2 combination from ALL (OR = 0.06; p = 0.0003). CONCLUSION This study presents strong evidence supporting the connection between certain KIR genotypes, haplotypes, and KIR-HLA combinations with acute ALL in the Saudi population. The heightened occurrence of inhibitory KIR genes (2DL1 and 3DL1) and the BX haplotype in ALL patients indicates a possible involvement of these genetic variability with the dysfunctional of NK cells in the context of ALL disease.
Collapse
Affiliation(s)
- Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aljuaimlani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Zhou Q, Ghezelji M, Hari A, Ford MKB, Holley C, Sahinalp SC, Numanagić I. Geny: a genotyping tool for allelic decomposition of killer cell immunoglobulin-like receptor genes. Front Immunol 2024; 15:1494995. [PMID: 39763645 PMCID: PMC11701374 DOI: 10.3389/fimmu.2024.1494995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025] Open
Abstract
Introduction Accurate genotyping of Killer cell Immunoglobulin-like Receptor (KIR) genes plays a pivotal role in enhancing our understanding of innate immune responses, disease correlations, and the advancement of personalized medicine. However, due to the high variability of the KIR region and high level of sequence similarity among different KIR genes, the generic genotyping workflows are unable to accurately infer copy numbers and complete genotypes of individual KIR genes from next-generation sequencing data. Thus, specialized genotyping tools are needed to genotype this complex region. Methods Here, we introduce Geny, a new computational tool for precise genotyping of KIR genes. Geny utilizes available KIR allele databases and proposes a novel combination of expectation-maximization filtering schemes and integer linear programming-based combinatorial optimization models to resolve ambiguous reads, provide accurate copy number estimation, and estimate the correct allele of each copy of genes within the KIR region. Results & Discussion We evaluated Geny on a large set of simulated short-read datasets covering the known validated KIR region assemblies and a set of Illumina short-read samples sequenced from 40 validated samples from the Human Pangenome Reference Consortium collection and showed that it outperforms the existing state-of-the-art KIR genotyping tools in terms of accuracy, precision, and recall. We envision Geny becoming a valuable resource for understanding immune system response and consequently advancing the field of patient-centric medicine.
Collapse
Affiliation(s)
- Qinghui Zhou
- Department of Computer Science, University of Victoria, Victoria, BC, Canada
| | - Mazyar Ghezelji
- Department of Computer Science, University of Victoria, Victoria, BC, Canada
| | - Ananth Hari
- Department of Electrical Engineering, University of Maryland, College Park, MD, United States
- National Cancer Institute, NIH, Bethesda, MD, United States
| | | | - Connor Holley
- Department of Computer Science, University of Victoria, Victoria, BC, Canada
| | | | - Ibrahim Numanagić
- Department of Computer Science, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
18
|
Anderson JL, Sandstrom K, Klenchin VA, Evans DT. Rhesus Macaque Killer Cell Ig-like Receptor Domain 0 Glycans Impact Surface Expression and Ligand Specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1787-1798. [PMID: 39465971 PMCID: PMC11625459 DOI: 10.4049/jimmunol.2400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Defining the MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as a model for infectious diseases and comparative immunogenetics. Several rhesus macaque KIRs belong to a phylogenetically distinct group with a three-amino acid deletion in domain 0 (D0). This deletion results in polymorphic differences in potential N-linked glycosylation (PNG) sites adjacent to a predicted KIR-MHC class I contact site. Whereas most KIRs have two tandem PNG sites in D0 (N36FTN39FT), the KIRs containing the deletion only have a single site in this region (N36FT). To discern the contribution of glycosylation to KIR expression and ligand recognition, we constructed PNG mutants for six lineage II KIR genes that eliminate or create sites for N-glycan addition at these locations. The impact of these mutations on total and surface expression was determined by immunoblotting and flow cytometry. Ligand engagement was assessed by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. We found that N36FT is glycosylated in KIR with a single site, and at least one site is glycosylated in KIRs with two tandem sites. In general, for rhesus KIRs with a single D0 glycosylation site, that site contributes to surface expression. For KIRs with two tandem sites, the first site can contribute to ligand specificity. This study establishes that D0 glycosylation of rhesus macaque KIRs modulates surface expression and contributes to ligand specificity.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
19
|
Maggi E, Munari E, Landolina N, Mariotti FR, Azzarone B, Moretta L. T cell landscape in the microenvironment of human solid tumors. Immunol Lett 2024; 270:106942. [PMID: 39486594 DOI: 10.1016/j.imlet.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
T cells are the main effectors involved in anti-tumor immunity, mediating most of the adaptive response towards cancer. After priming in lymph nodes, tumor antigens-specific naïve T lymphocytes proliferate and differentiate into effector CD4+ and CD8+ T cells that migrate from periphery into tumor sites aiming to eliminate cancer cells. Then while most effector T cells die, a small fraction persists and recirculates as long-lived memory T cells which generate enhanced immune responses when re-encountering the same antigen. A number of T (and non-T) cell subsets, stably resides in non-lymphoid peripheral tissues and may provide rapid immune response independently of T cells recruited from blood, against the reemergence of cancer cells. When tumor grows, however, tumor cells have evaded immune surveillance of effector cells (NK and CTL cells) which are exhausted, thus favoring the local expansion of T (and non-T) regulatory cells. In this review, the current knowledge of features of T cells present in the tumor microenvironment (TME) of solid adult and pediatric tumors, the mechanisms upregulating immune-checkpoint molecules and transcriptional and epigenetic landscapes leading to dysfunction and exhaustion of T effector cells are reviewed. The interaction of T cells with cancer- or TME non-neoplastic cells and their secreted molecules shape the T cell profile compromising the intrinsic plasticity of T cells and, therefore, favoring immune evasion. In this phase regulatory T cells contribute to maintain a high immunosuppressive TME thus facilitating tumor cell proliferation and metastatic spread. Despite the advancements of cancer immunotherapy, many tumors are unresponsive to immune checkpoint inhibitors, or therapeutical vaccines or CAR T cell-based adoptive therapy: some novel strategies to improve these T cell-based treatments are lastly proposed.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | | | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy.
| |
Collapse
|
20
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
21
|
Alsalloum A, Alrhmoun S, Perik-Zavosdkaia O, Fisher M, Volynets M, Lopatnikova J, Perik-Zavodskii R, Shevchenko J, Philippova J, Solovieva O, Zavjalov E, Kurilin V, Shiku H, Silkov A, Sennikov S. Decoding NY-ESO-1 TCR T cells: transcriptomic insights reveal dual mechanisms of tumor targeting in a melanoma murine xenograft model. Front Immunol 2024; 15:1507218. [PMID: 39660132 PMCID: PMC11628372 DOI: 10.3389/fimmu.2024.1507218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
The development of T cell receptor-engineered T cells (TCR-T) targeting intracellular antigens is a promising strategy for treating solid tumors; however, the mechanisms underlying their effectiveness remain poorly understood. In this study, we employed advanced techniques to investigate the functional state of T cells engineered with retroviral vectors to express a TCR specific for the NY-ESO-1 157-165 peptide in the HLA-A*02:01 context. Flow cytometry revealed a predominance of naïve T cells. Gene expression profiling using NanoString technology revealed upregulation of genes encoding chemokine receptors CCR2 and CCR5, indicating enhanced migration towards tumor sites. In the SK-Mel-37 xenograft model, these transduced T cells achieved complete tumor eradication. Furthermore, single-cell RNA sequencing (scRNA-seq) conducted 14 days post-TCR T cell infusion provided a comprehensive analysis of the in vivo adaptation of these cells, identifying a distinct subset of CD8+ effector T cells with an NK cell-like gene expression profile. Our findings indicate that NY-ESO-1 TCR-transduced T cells have the potential to mediate dual antitumor effects through both antigen-independent NK-like and antigen-specific CTL-like responses. This study underscores the potential of NY-ESO-1 TCR-T cells as potent tumor-eradicating agents, highlighting the importance of harnessing their versatile functional capabilities to refine and enhance therapeutic strategies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Transcriptome
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Melanoma/therapy
- Melanoma/immunology
- Melanoma/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Xenograft Model Antitumor Assays
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- CD8-Positive T-Lymphocytes/immunology
- Membrane Proteins/genetics
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Gene Expression Profiling
- Neoplasm Proteins
- Peptide Fragments
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Saleh Alrhmoun
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Olga Perik-Zavosdkaia
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Marina Fisher
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Marina Volynets
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Lopatnikova
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Roman Perik-Zavodskii
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Philippova
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Olga Solovieva
- Center for Collective Use SPF-vivarium ICG SB RAS, Ministry of Science and High Education of Russian Federation, Novosibirsk, Russia
| | - Evgenii Zavjalov
- Center for Collective Use SPF-vivarium ICG SB RAS, Ministry of Science and High Education of Russian Federation, Novosibirsk, Russia
| | - Vasily Kurilin
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Alexander Silkov
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Department of Immunology, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
22
|
Heirman P, Verswyvel H, Bauwens M, Yusupov M, De Waele J, Lin A, Smits E, Bogaerts A. Effect of plasma-induced oxidation on NK cell immune checkpoint ligands: A computational-experimental approach. Redox Biol 2024; 77:103381. [PMID: 39395241 PMCID: PMC11663777 DOI: 10.1016/j.redox.2024.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Non-thermal plasma (NTP) shows promise as a potent anti-cancer therapy with both cytotoxic and immunomodulatory effects. In this study, we investigate the chemical and biological effects of NTP-induced oxidation on several key, determinant immune checkpoints of natural killer (NK) cell function. We used molecular dynamics (MD) and umbrella sampling simulations to investigate the effect of NTP-induced oxidative changes on the MHC-I complexes HLA-Cw4 and HLA-E. Our simulations indicate that these chemical alterations do not significantly affect the binding affinity of these markers to their corresponding NK cell receptor, which is supported with experimental read-outs of ligand expression on human head and neck squamous cell carcinoma cells after NTP application. Broadening our scope to other key ligands for NK cell reactivity, we demonstrate rapid reduction in CD155 and CD112, target ligands of the inhibitory TIGIT axis, and in immune checkpoint CD73 immediately after treatment. Besides these transient chemical alterations, the reactive species in NTP cause a cascade of downstream cellular reactions. This is underlined by the upregulation of the stress proteins MICA/B, potent ligands for NK cell activation, 24 h post treatment. Taken together, this work corroborates the immunomodulatory potential of NTP, and sheds light on the interaction mechanisms between NTP and cancer cells.
Collapse
Affiliation(s)
- Pepijn Heirman
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium.
| | - Hanne Verswyvel
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium.
| | - Mauranne Bauwens
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan; Laboratory of Experimental Biophysics, Center for Advanced Technologies, 100174, Tashkent, Uzbekistan
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Abraham Lin
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| |
Collapse
|
23
|
Ritari J, Koskela S, Hyvärinen K, FinnGen, Ollila H, Partanen J. Disease associations of natural killer (NK) cell KIR gene content variation in 352,783 Finns. Hum Immunol 2024; 85:111177. [PMID: 39546901 DOI: 10.1016/j.humimm.2024.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Allelic, gene presence/absence, and gene-copy number variations in the KIR genes encoding Natural Killer (NK) cell surface receptors have been reported to be associated in case-control studies with infectious and autoimmune diseases, and relapse after stem cell transplantation. To understand more comprehensively the role of KIR gene presence/absence variation and HLA-KIR interactions in disease susceptibility, we imputed from genome SNP data the presence and absence of 10 KIR genes in the FinnGen cohort. The cohort consists of 352,783 Finns with extensive phenotypes from the national health registries. We tested associations between 762 FinnGen phenotypes and presence/absence variation based on imputation of KIR genes using 5,900 SNPs located in the KIR genomic segment. Our results provide a platform to query HLA-KIR associations in a large population cohort. We found 13 phenotype - KIR gene or KIR - HLA C combination associations with false discovery rate < 0.05. These results differ from the very high number of associations between HLA alleles and diseases reported earlier in the FinnGen cohort. Five of the 13 significant associations included malignant phenotypes, e.g., melanoma, thyroid gland neoplasm, and haematopoietic malignancy, supporting the essential role of NK cells in controlling malignancy.
Collapse
Affiliation(s)
- Jarmo Ritari
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Satu Koskela
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland; Blood Service Biobank, Finnish Red Cross Blood Service, Vantaa, Finland
| | - Kati Hyvärinen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - FinnGen
- Members of the FinnGen Consortium are Listed in Supplementary Table 1, Finland
| | - Hanna Ollila
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland; Blood Service Biobank, Finnish Red Cross Blood Service, Vantaa, Finland.
| |
Collapse
|
24
|
Li J, Tao W, Zhou W, Xing J, Luo M, Yang Y. The comprehensive analysis of gut microbiome and spleen transcriptome revealed the immunomodulatory mechanism of Dendrobium officinale leaf polysaccharide on immunosuppressed mice. Int J Biol Macromol 2024; 278:134975. [PMID: 39179063 DOI: 10.1016/j.ijbiomac.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
In recent years, the immunomodulatory efficacy of Dendrobium officinale leaf polysaccharide (DOLP) has attracted much attention, but its potential immunomodulatory mechanism remains unclear. Therefore, we investigated the molecular mechanism of DOLP to ameliorate cyclophosphamide-induced immunosuppressed mice based on transcriptome profiling technology. The results indicated that DOLP significantly mitigated damage to immune organs, regulated the expression levels of inflammatory factors and immunoglobulins, and restored the balance of gut microbiota. Furthermore, it modulated metabolic pathways associated with the immune system, including antigen processing and presentation, hematopoietic cell line development, and natural killer cell-mediated cytotoxicity. DOLP might promote host hematopoietic function to enhance immune cell proliferation and differentiation by up-regulating Cd19, Cr2 and Il7r but down-regulating Dntt. DOLP also up-regulated the expression of MHC-1 (Gm11127, H2-K1, H2-Q10, H2-Q6, and H2-Q7), thus promoting antigen recognition by NK cells to enhance the innate immunity and helping T cells to deliver antigen and secrete immune factors so that enhancing the adaptive immunity.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengfan Luo
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
25
|
Cozzolino M, Pellegrini L, Tartaglia S, Mancuso S, De Angelis F, Vaquero E, Alecsandru D, Pellicer A, Galliano D. Subcutaneous G-CSF administration improves IVF outcomes in patients with recurrent implantation failure presenting a KIR/HLA-C mismatch. J Reprod Immunol 2024; 165:104310. [PMID: 39106544 DOI: 10.1016/j.jri.2024.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
RESEARCH QUESTION Despite advances in assisted reproductive technologies, many blastocysts are lost unexpectedly during implantation. Alterations in maternal immune tolerance towards fetal antigens may contribute to adverse IVF outcomes. The purpose of this study is to evaluate whether administering Granulocyte Colony-Stimulating Factor (G-CSF) to couples with a Human Leukocyte Antigen/Killer-Cell Immunoglobulin-Like Receptor (HLA/KIR) mismatch could positively modulate the implantation process in patients with recurrent implantation failure (RIF). A KIR/HLA-C mismatch occurs when the interaction between KIRs and HLA-C causes an inhibition of NK cells, which may result in reduced G-CSF secretion leading to impaired placentation and increased risk of miscarriage, pre-eclampsia and fetal growth restriction. DESIGN A retrospective monocentric cohort study conducted at the IVI Clinic in Rome, including women with a history of at least two failed blastocyst transfers. Couples underwent KIR and HLA-C testing. Couples with a KIR/HLA-C mismatch received G-CSF subcutaneously up to week nine of gestation. The mismatch included cases with inhibitory KIR genotypes and HLA-C2C2 females with HLA-C1C1, or C1C2 males or HLA-C1C2 females with male HLA-C2C2. The reproductive outcomes were assessed, and the logistic regression models controlled for potential confounders affecting IVF outcomes. RESULTS 79 patients with RIF and a KIR/HLA-C mismatch were included in the study. 30 patients were administered G-CSF, and 49 received no treatment. In the univariate analysis, no statistically significant differences were reported in the reproductive outcomes after IVF between the women treated with G-CSF and the control group. However, the logistic regression analysis that controlled for confounding factors showed that patients treated with subcutaneous G-CSF had statistically significant higher ongoing-pregnancy (aOR=3.808) and live-birth (aOR=4.998) rates, and a lower miscarriage rate (aOR=0.057). No statistically significant differences were found in other reproductive outcomes. CONCLUSION The use of subcutaneous G-CSF in patients with a KIR/HLA-C mismatch undergoing IVF may reduce miscarriage and improve live-birth rates. G-CSF may modulate NK-mediated immune mechanisms and improve trophoblast invasion and development. Randomized trials are warranted to validate these findings and enhance the chances of successful pregnancies in couples with an immunological mismatch.
Collapse
Affiliation(s)
- Mauro Cozzolino
- IVIRMA Global Research Alliance, IVI Roma, Rome, Italy; IVIRMA Global Research Alliance, IVI Foundation-IIS la Fe, Valencia, Spain.
| | | | - Silvio Tartaglia
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienza della Salute della Donna e del Bambino e di Sanità Pubblica, Rome, Italy
| | | | | | - Elena Vaquero
- IVIRMA Global Research Alliance, IVI Roma, Rome, Italy
| | | | | | | |
Collapse
|
26
|
Martin KE, Hammer Q, Perica K, Sadelain M, Malmberg KJ. Engineering immune-evasive allogeneic cellular immunotherapies. Nat Rev Immunol 2024; 24:680-693. [PMID: 38658708 DOI: 10.1038/s41577-024-01022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics.
Collapse
Affiliation(s)
- Karen E Martin
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway.
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway.
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
Javandoust Gharehbagh F, Soltani-Zangbar MS, Yousefzadeh Y. Immunological mechanisms in preeclampsia: A narrative review. J Reprod Immunol 2024; 164:104282. [PMID: 38901108 DOI: 10.1016/j.jri.2024.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Maternal immunologic mechanisms for tolerance are essential for a successful pregnancy because they prevent maladaptive immune responses to the placenta and semi-allogeneic fetus and promote fetal growth. Preeclampsia is a major global cause of fetal mortality and morbidity. It is characterized by new-onset hypertension and proteinuria that occurs at twenty weeks of pregnancy or later. Preeclampsia is defined by a rise in cytokines that are pro-inflammatory and antiangiogenic components in the fetoplacental unit and the vascular endothelium of pregnant women, as well as an excessive and increasing stimulation of the immune system. Crucially, inflammation can result in low birth weight and inadequate placental perfusion in neonates. Preeclampsia, which is ultimately connected to inflammatory responses, can be impacted by several immunological mechanisms. Our goal in this work was to compile the most recent research on the pathoimmunology of preeclampsia, including studies on angiogenic variables and, in particular, immunological components.
Collapse
Affiliation(s)
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Gutiérrez-Bautista JF, Sampedro A, Ballesta-Alcaraz L, Aguilera-Franco M, Olivares-Durán MJ, Cobo F, Reguera JA, Rodríguez-Granger J, Torres-Llamas A, Martín-Sánchez J, Aznar-Peralta I, Vilchez JR, López-Nevot MÁ, Sampedro-Martínez A. Analysis of HLA Alleles in Different Cohorts of Patients Infected by L. infantum from Southern Spain. Int J Mol Sci 2024; 25:8205. [PMID: 39125781 PMCID: PMC11311343 DOI: 10.3390/ijms25158205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Leishmaniasis is an infectious disease caused by protozoa of the genus Leishmania, which is endemic in certain areas of Europe, such as southern Spain. The disease manifests in various clinical phenotypes, including visceral, cutaneous, mucosal, or asymptomatic leishmaniasis. This diversity in clinical outcomes may be influenced by the host immune response, with human leukocyte antigen (HLA) molecules playing a crucial role in determining susceptibility and progression of the infection. This study explores the association between specific HLA variants and Leishmania infantum infection. We recruited four cohorts: a control group, asymptomatic individuals, patients with symptomatic disease, and cohabitants of infected individuals. HLA typing was performed for all participants, followed by an association analysis with infection status and disease progression. Our findings indicate that the HLA-B*38 and HLA-C*03 alleles are associated with protection against L. infantum infection. These results contribute to a better understanding of the disease's progression, offer potential for new therapeutic approaches such as vaccines, and expand the existing knowledge in the literature.
Collapse
Affiliation(s)
- Juan Francisco Gutiérrez-Bautista
- Departamento de Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18016 Granada, Spain
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (L.B.-A.); (M.J.O.-D.); (J.R.V.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Antonio Sampedro
- Centro de Salud Zaidín Sur, Distrito Granada Metropolitano, Servicio Andaluz de Salud, 18007 Granada, Spain;
| | - Lucia Ballesta-Alcaraz
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (L.B.-A.); (M.J.O.-D.); (J.R.V.)
| | - María Aguilera-Franco
- Servicio de Microbiología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (F.C.); (J.A.R.); (J.R.-G.)
| | - María José Olivares-Durán
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (L.B.-A.); (M.J.O.-D.); (J.R.V.)
| | - Fernando Cobo
- Servicio de Microbiología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (F.C.); (J.A.R.); (J.R.-G.)
| | - Juan Antonio Reguera
- Servicio de Microbiología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (F.C.); (J.A.R.); (J.R.-G.)
| | - Javier Rodríguez-Granger
- Servicio de Microbiología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (F.C.); (J.A.R.); (J.R.-G.)
| | - Andrés Torres-Llamas
- Departamento de Parasitología, University of Granada, 18016 Granada, Spain; (A.T.-L.); (J.M.-S.)
| | - Joaquina Martín-Sánchez
- Departamento de Parasitología, University of Granada, 18016 Granada, Spain; (A.T.-L.); (J.M.-S.)
| | - Inés Aznar-Peralta
- GENYO Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian, 18016 Granada, Spain
| | - Jose Ramon Vilchez
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (L.B.-A.); (M.J.O.-D.); (J.R.V.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Miguel Ángel López-Nevot
- Departamento de Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18016 Granada, Spain
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (L.B.-A.); (M.J.O.-D.); (J.R.V.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
| | - Antonio Sampedro-Martínez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain;
- Servicio de Microbiología, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (F.C.); (J.A.R.); (J.R.-G.)
| |
Collapse
|
29
|
Cantoni C, Falco M, Vitale M, Pietra G, Munari E, Pende D, Mingari MC, Sivori S, Moretta L. Human NK cells and cancer. Oncoimmunology 2024; 13:2378520. [PMID: 39022338 PMCID: PMC11253890 DOI: 10.1080/2162402x.2024.2378520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
The long story of NK cells started about 50 y ago with the first demonstration of a natural cytotoxic activity within an undefined subset of circulating leukocytes, has involved an ever-growing number of researchers, fascinated by the apparently easy-to-reach aim of getting a "universal anti-tumor immune tool". In fact, in spite of the impressive progress obtained in the first decades, these cells proved far more complex than expected and, paradoxically, the accumulating findings have continuously moved forward the attainment of a complete control of their function for immunotherapy. The refined studies of these latter years have indicated that NK cells can epigenetically calibrate their functional potential, in response to specific environmental contexts, giving rise to extraordinarily variegated subpopulations, comprehensive of memory-like cells, tissue-resident cells, or cells in various differentiation stages, or distinct functional states. In addition, NK cells can adapt their activity in response to a complex body of signals, spanning from the interaction with either suppressive or stimulating cells (myeloid-derived suppressor cells or dendritic cells, respectively) to the engagement of various receptors (specific for immune checkpoints, cytokines, tumor/viral ligands, or mediating antibody-dependent cell-mediated cytotoxicity). According to this picture, the idea of an easy and generalized exploitation of NK cells is changing, and the way is opening toward new carefully designed, combined and personalized therapeutic strategies, also based on the use of genetically modified NK cells and stimuli capable of strengthening and redirecting their effector functions against cancer.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Massimo Vitale
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Enrico Munari
- Pathology Unit, Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Daniela Pende
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
30
|
Koumpis E, Papoudou-Bai A, Papathanasiou K, Kolettas E, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Diffuse Large B-Cell Lymphoma: Prognostic and Potential Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7048-7064. [PMID: 39057061 PMCID: PMC11276293 DOI: 10.3390/cimb46070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a multifaceted condition characterized by significant diversity in its molecular and pathological subtypes and clinical manifestation. Despite the progress made in the treatment of DLBCL through the development of novel drugs, an estimated one-third of patients encounter relapse or acquire refractory disease. The tumor microenvironment (TME) of DLBCL, a complex network consisting of cellular and noncellular components that engage in interactions with the tumor, is a parameter that is gaining increasing attention. The TME comprises both the immune and nonimmune microenvironments. The immune microenvironment comprises natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, myeloid-derived suppressor cells (MDSCs), and T and B lymphocytes. The nonimmune microenvironment consists of the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells, and other molecules that are secreted. Despite ongoing research, the exact impact of these components and their interaction on the progression of the disease remains elusive. A comprehensive review of significant discoveries concerning the cellular and noncellular constituents, molecular characteristics, and treatment response and prognosis of the TME in DLBCL, as well as the potential targeting of the TME with novel therapeutic approaches, is provided in this article.
Collapse
Affiliation(s)
- Epameinondas Koumpis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece;
| | - Konstantina Papathanasiou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Evangelos Kolettas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
- Biomedical Research Institute, Foundation for Research and Technology, 45 110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| |
Collapse
|
31
|
Schoufour TA, van der Plas - van Duijn A, Derksen I, Melgers M, van Veenendaal JM, Lensen C, Heemskerk MH, Neefjes J, Wijdeven RH, Scheeren FA. CRISPR-Cas9 screening reveals a distinct class of MHC-I binders with precise HLA-peptide recognition. iScience 2024; 27:110120. [PMID: 38939106 PMCID: PMC11209011 DOI: 10.1016/j.isci.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Human leukocyte antigen (HLA) class-I molecules present fragments of the cellular proteome to the T cell receptor (TCR) of cytotoxic T cells to control infectious diseases and cancer. The large number of combinations of HLA class-I allotypes and peptides allows for highly specific and dedicated low-affinity interactions to a diverse array of TCRs and natural killer (NK) cell receptors. Whether the divergent HLA class-I peptide complex is exclusive for interactions with these proteins is unknown. Using genome-wide CRISPR-Cas9 activation and knockout screens, we identified peptide-specific HLA-C∗07 combinations that can interact with the surface molecules CD55 and heparan sulfate. These interactions closely resemble the HLA class-I interaction with the TCR regarding both the affinity range and the specificity of the peptide and HLA allele. These findings indicate that various proteins can specifically bind HLA class-I peptide complexes due to their polymorphic nature, which suggests there are more interactions like the ones we describe here.
Collapse
Affiliation(s)
- Tom A.W. Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Anneloes van der Plas - van Duijn
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ian Derksen
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Marije Melgers
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | | | - Claire Lensen
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ruud H.M. Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Medical Center, 1007 MB Amsterdam, Noord-Holland, the Netherlands
| | - Ferenc A. Scheeren
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| |
Collapse
|
32
|
Vittayawacharin P, Kongtim P, Chu Y, June CH, Bollard CM, Ciurea SO. Adoptive cellular therapy after hematopoietic stem cell transplantation. Am J Hematol 2024; 99:910-921. [PMID: 38269484 DOI: 10.1002/ajh.27204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Effective cellular therapy using CD19 chimeric antigen receptor T-cells for the treatment of advanced B-cell malignancies raises the question of whether the administration of adoptive cellular therapy (ACT) posttransplant could reduce relapse and improve survival. Moreover, several early phase clinical studies have shown the potential beneficial effects of administration of tumor-associated antigen-specific T-cells and natural killer cells posttransplant for high-risk patients, aiming to decrease relapse and possibly improve survival. In this article, we present an in-depth review of ACT after transplantation, which has the potential to significantly improve the efficacy of this procedure and revolutionize this field.
Collapse
Affiliation(s)
- Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| | - Piyanuch Kongtim
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital and The George Washington University, Washington, DC, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
33
|
Boukouaci W, Rivera-Franco MM, Volt F, Lajnef M, Wu CL, Rafii H, Cappelli B, Scigliuolo GM, Kenzey C, Ruggeri A, Rocha V, Gluckman E, Tamouza R. HLA peptide-binding pocket diversity modulates immunological complications after cord blood transplant in acute leukaemia. Br J Haematol 2024; 204:1920-1934. [PMID: 38380743 DOI: 10.1111/bjh.19339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
Pocket motifs and their amino acid positions of HLA molecules are known to govern antigen presentation to effector cells. Our objective was to analyse their influence on the risk of graft-versus-host disease (GVHD) and relapse after umbilical cord blood transplant (UCBT). The transplant characteristics of 849 patients with acute leukaemia were obtained from the Eurocord/EBMT database. Higher acute (a) GVHD was associated with homozygosity of UCB HLA-C amino acid positions 77 and 80 (NN/KK) (p = 0.008). Severe aGVHD was associated with HLA-A pocket B YSAVMENVHY motif (p = 0.002) and NN and RR genotypes of the HLA-C amino acid positions 77 and 156 (p = 0.006 and p = 0.002). Such risk was also increased in case of recipient and UCB mismatches in P4 (p < 0.0001) and P9 (p = 0.003) pockets of HLA-DQB1 alleles. For chronic GVHD, the pocket B YYAVMEISNY motif of the HLA-B*15:01 allele and the absence of mismatch between recipient and UCB in the P6 pocket of HLA-DRB1 were associated with a lower risk (p = 0.0007 and p = 0.0004). In relapse, both UCB pocket B YFAVMENVHY belonging to HLA-A*32:01 and recipient pocket B YDSVGENYQY motif of the HLA-C*07:01 allele were associated with higher risk (p = 0.0026 and p = 0.015). We provide clues on HLA-mediated cellular interactions and their role in the development of GVHD and relapse.
Collapse
Affiliation(s)
| | - Monica M Rivera-Franco
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Fernanda Volt
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Mohamed Lajnef
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Ching-Lien Wu
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Hanadi Rafii
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Barbara Cappelli
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Graziana Maria Scigliuolo
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Chantal Kenzey
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Annalisa Ruggeri
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanderson Rocha
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Service of Hematology, Transfusion and Cell Therapy, and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Hospital das Clínicas, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | - Eliane Gluckman
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Ryad Tamouza
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| |
Collapse
|
34
|
Ferron E, David G, Willem C, Legrand N, Salameh P, Anquetil L, Walencik A, Gendzekhadze K, Gagne K, Retière C. Multifactorial determinants of NK cell repertoire organization: insights into age, sex, KIR genotype, HLA typing, and CMV influence. Front Immunol 2024; 15:1389358. [PMID: 38736873 PMCID: PMC11082329 DOI: 10.3389/fimmu.2024.1389358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.
Collapse
Affiliation(s)
- Enora Ferron
- Etablissement Français du Sang, Nantes, France
- INSERM UMR1307, CNRS UMR 6075, CRCI2NA, team 12, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Gaëlle David
- Etablissement Français du Sang, Nantes, France
- INSERM UMR1307, CNRS UMR 6075, CRCI2NA, team 12, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Catherine Willem
- Etablissement Français du Sang, Nantes, France
- INSERM UMR1307, CNRS UMR 6075, CRCI2NA, team 12, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Nolwenn Legrand
- Etablissement Français du Sang, Nantes, France
- INSERM UMR1307, CNRS UMR 6075, CRCI2NA, team 12, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Perla Salameh
- Etablissement Français du Sang, Nantes, France
- INSERM UMR1307, CNRS UMR 6075, CRCI2NA, team 12, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Laetitia Anquetil
- Etablissement Français du Sang, Nantes, France
- Laboratoire d’histocompatibilité de l’Etablissement Français du Sang de Centre-Pays de la Loire, Nantes, France
| | - Alexandre Walencik
- Etablissement Français du Sang, Nantes, France
- Laboratoire d’histocompatibilité de l’Etablissement Français du Sang de Centre-Pays de la Loire, Nantes, France
| | - Ketevan Gendzekhadze
- Department of Hematology and Hematopoietic Stem cell Transplantation (HCT), Human Leukocyte Antigen (HLA) Laboratory, City of Hope, Medical Center, Duarte, CA, United States
| | - Katia Gagne
- Etablissement Français du Sang, Nantes, France
- INSERM UMR1307, CNRS UMR 6075, CRCI2NA, team 12, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
- LabEx Transplantex, Université de Strasbourg, Strasbourg, France
| | - Christelle Retière
- Etablissement Français du Sang, Nantes, France
- INSERM UMR1307, CNRS UMR 6075, CRCI2NA, team 12, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
35
|
Cuadrado-Torroglosa I, García-Velasco JA, Alecsandru D. Maternal-Fetal Compatibility in Recurrent Pregnancy Loss. J Clin Med 2024; 13:2379. [PMID: 38673652 PMCID: PMC11051463 DOI: 10.3390/jcm13082379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, recurrent pregnancy loss (RPL) is an undesirable condition suffered by many patients of reproductive age. In this scenario, certain immune cell populations and molecules, involved in maternal-fetal compatibility, have emerged as factors related with the pathogenesis of RPL. Among them, uterine Natural Killer cells (uNKs) appear to be of great relevance. These cells are involved in numerous processes during pregnancy, such as the remodeling of uterine spiral arteries or the control of trophoblast invasion. These functions are regulated by the interactions that these cells establish with the extravillous trophoblast, mainly through their Killer Immunoglobulin-like Receptors (KIRs) and the Human Leukocyte Antigen-C (HLA-C) molecules expressed by the embryo. A high level of polymorphism has been reported for both molecules involved in this interaction, with some of the possible KIR-HLA-C combinations being associated with an increased risk of RPL. However, the complexity of the maternal-fetal interface goes beyond this, as other HLA molecules also appear to be related to this reproductive pathology. In this review, we will discuss the role of uNKs in pregnancy, as well as the polymorphisms and clinical implications of KIR-HLA-C binding. We will also address the involvement of other, different HLA molecules in RPL, and the current advice on the appropriate management of patients with 'immunological mismatch', thus covering the main aspects regarding the involvement of maternal-fetal compatibility in RPL.
Collapse
Affiliation(s)
- Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106, Torre A, Planta 1, 46026 Valencia, Spain; (I.C.-T.); (J.A.G.-V.)
| | - Juan A. García-Velasco
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106, Torre A, Planta 1, 46026 Valencia, Spain; (I.C.-T.); (J.A.G.-V.)
- IVIRMA Global Research Alliance, IVIRMA Madrid, Av. del Talgo, 68, 28023 Madrid, Spain
- Department of Obstetrics and Gynaecology, Rey Juan Carlos University, Av. de Atenas, s/n, 28922 Alcorcón, Spain
| | - Diana Alecsandru
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106, Torre A, Planta 1, 46026 Valencia, Spain; (I.C.-T.); (J.A.G.-V.)
- IVIRMA Global Research Alliance, IVIRMA Madrid, Av. del Talgo, 68, 28023 Madrid, Spain
| |
Collapse
|
36
|
Tsang HW, Kwan MYW, Chua GT, Tsao SSL, Wong JSC, Tung KTS, Chan GCF, To KKW, Wong ICK, Leung WH, Ip P. The central role of natural killer cells in mediating acute myocarditis after mRNA COVID-19 vaccination. MED 2024; 5:335-347.e3. [PMID: 38521068 DOI: 10.1016/j.medj.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Vaccine-related acute myocarditis is recognized as a rare and specific vaccine complication following mRNA-based COVID-19 vaccinations. The precise mechanisms remain unclear. We hypothesized that natural killer (NK) cells play a central role in its pathogenesis. METHODS Samples from 60 adolescents with vaccine-related myocarditis were analyzed, including pro-inflammatory cytokines, cardiac troponin T, genotyping, and immunophenotyping of the corresponding activation subsets of NK cells, monocytes, and T cells. Results were compared with samples from 10 vaccinated individuals without myocarditis and 10 healthy controls. FINDINGS Phenotypically, high levels of serum cytokines pivotal for NK cells, including interleukin-1β (IL-1β), interferon α2 (IFN-α2), IL-12, and IFN-γ, were observed in post-vaccination patients with myocarditis, who also had high percentage of CD57+ NK cells in blood, which in turn correlated positively with elevated levels of cardiac troponin T. Abundance of the CD57+ NK subset was particularly prominent in males and in those after the second dose of vaccination. Genotypically, killer cell immunoglobulin-like receptor (KIR) KIR2DL5B(-)/KIR2DS3(+)/KIR2DS5(-)/KIR2DS4del(+) was a risk haplotype, in addition to single-nucleotide polymorphisms related to the NK cell-specific expression quantitative trait loci DNAM-1 and FuT11, which also correlated with cardiac troponin T levels in post-vaccination patients with myocarditis. CONCLUSION Collectively, these data suggest that NK cell activation by mRNA COVID-19 vaccine contributed to the pathogenesis of acute myocarditis in genetically and epidemiologically vulnerable subjects. FUNDING This work was funded by the Hong Kong Collaborative Research Fund (CRF) 2020/21 and the CRF Coronavirus and Novel Infectious Diseases Research Exercises (reference no. C7149-20G).
Collapse
Affiliation(s)
- Hing Wai Tsang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mike Yat Wah Kwan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gilbert T Chua
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sabrina Siu Ling Tsao
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Joshua Sung Chih Wong
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital Authority, Hong Kong SAR, China
| | - Keith Tsz Suen Tung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Paediatric Haematology & Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Kelvin Kai Wang To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ian Chi Kei Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; School of Pharmacy, Medical Sciences Division, Macau University of Science and Technology, Macau SAR, China; School of Pharmacy, Aston University, Birmingham B4 7ET, England
| | - Wing Hang Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
37
|
Lin TD, Rubinstein ND, Fong NL, Smith M, Craft W, Martin-McNulty B, Perry R, Delaney MA, Roy MA, Buffenstein R. Evolution of T cells in the cancer-resistant naked mole-rat. Nat Commun 2024; 15:3145. [PMID: 38605005 PMCID: PMC11009300 DOI: 10.1038/s41467-024-47264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αβT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.
Collapse
Affiliation(s)
- Tzuhua D Lin
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | | | - Nicole L Fong
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Wendy Craft
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | | | - Rebecca Perry
- Department of Biological Science, University of Illinois at Chicago, Illinois, IL, USA
| | | | - Margaret A Roy
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, California, CA, USA.
- Department of Biological Science, University of Illinois at Chicago, Illinois, IL, USA.
| |
Collapse
|
38
|
Slieker RC, Warmerdam DO, Vermeer MH, van Doorn R, Heemskerk MHM, Scheeren FA. Reassessing human MHC-I genetic diversity in T cell studies. Sci Rep 2024; 14:7966. [PMID: 38575727 PMCID: PMC10995142 DOI: 10.1038/s41598-024-58777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.
Collapse
Affiliation(s)
- Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël O Warmerdam
- Centre for Future Affordable & Sustainable Therapy Development (FAST), The Hague, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Dermatology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
39
|
Yang Y, Hong Q, Zhang X, Liu Z. Rheumatoid arthritis and the intestinal microbiome: probiotics as a potential therapy. Front Immunol 2024; 15:1331486. [PMID: 38510244 PMCID: PMC10950920 DOI: 10.3389/fimmu.2024.1331486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by swollen joints, discomfort, stiffness, osteoporosis, and reduced functionality. Genetics, smoking, dust inhalation, high BMI, and hormonal and gut microbiota dysbiosis are all likely causes of the onset or development of RA, but the underlying mechanism remains unknown. Compared to healthy controls, patients with RA have a significantly different composition of gut microbiota. It is well known that the human gut microbiota plays a key role in the initiation, maintenance, and operation of the host immune system. Gut microbiota dysbiosis has local or systematic adverse effects on the host immune system, resulting in host susceptibility to various diseases, including RA. Studies on the intestinal microbiota modulation and immunomodulatory properties of probiotics have been reported, in order to identify their potential possibility in prevention and disease activity control of RA. This review summarized current studies on the role and potential mechanisms of gut microbiota in the development and progression of RA, as well as the preventative and therapeutic effects and potential mechanisms of probiotics on RA. Additionally, we proposed the challenges and difficulties in the application of probiotics in RA, providing the direction for the research and application of probiotics in the prevention of RA.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
40
|
Zhou Q, Ghezelji M, Hari A, Ford MKB, Holley C, Mirabello L, Chanock S, Sahinalp SC, Numanagić I. Geny: A Genotyping Tool for Allelic Decomposition of Killer Cell Immunoglobulin-Like Receptor Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582413. [PMID: 38529502 PMCID: PMC10962708 DOI: 10.1101/2024.02.27.582413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Accurate genotyping of Killer cell Immunoglobulin-like Receptor (KIR) genes plays a pivotal role in enhancing our understanding of innate immune responses, disease correlations, and the advancement of personalized medicine. However, due to the high variability of the KIR region and high level of sequence similarity among different KIR genes, the currently available genotyping methods are unable to accurately infer copy numbers, genotypes and haplotypes of individual KIR genes from next-generation sequencing data. Here we introduce Geny, a new computational tool for precise genotyping of KIR genes. Geny utilizes available KIR haplotype databases and proposes a novel combination of expectation-maximization filtering schemes and integer linear programming-based combinatorial optimization models to resolve ambiguous reads, provide accurate copy number estimation and estimate the haplotype of each copy for the genes within the KIR region. We evaluated Geny on a large set of simulated short-read datasets covering the known validated KIR region assemblies and a set of Illumina short-read samples sequenced from 25 validated samples from the Human Pangenome Reference Consortium collection and showed that it outperforms the existing genotyping tools in terms of accuracy, precision and recall. We envision Geny becoming a valuable resource for understanding immune system response and consequently advancing the field of patient-centric medicine.
Collapse
|
41
|
Velardi A, Mancusi A, Ruggeri L, Pierini A. How adoptive transfer of components of the donor immune system boosts GvL and prevents GvHD in HLA-haploidentical hematopoietic transplantation for acute leukemia. Bone Marrow Transplant 2024; 59:301-305. [PMID: 38212671 DOI: 10.1038/s41409-024-02199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Why a new Perspective in allogeneic hematopoietic transplantation? A summary. Nowadays, for high-risk acute leukemia patients without an HLA-matched donor (sibling or volunteer), hematopoietic transplants that use HLA-haploidentical grafts combined with enhanced post transplant immune suppression (i.e., high-dose cyclophosphamide) are widely used. They are associated with low TRM rates. However, they are also associated with significant chronic GvHD while they only partially abrogate leukemia relapse rates. One may speculate that post-transplant immune suppression, required for GvHD prophylaxis, weakens the anti-leukemic potential of the graft. Historically, haploidentical transplants became feasible for the first time through transplantation of T cell-depleted peripheral blood hematopoietic progenitor cells. Lack of post-transplant immune suppression allowed the emergence of donor-versus-recipient NK-cell alloreactions that eradicated AML. In an attempt to improve these results we recently combined an age-adapted, irradiation-based conditioning regimen with transplant of T-cell-depleted grafts and infusion of regulatory and conventional T cells, without any post transplant immune suppression. With the obvious limitations of a single center experience, this protocol resulted in extremely low relapse and chronic GvHD rates and, consequently, in a remarkable 75% chronic GvHD/relapse-free survival in over 50 AML patients up to the age of 65 many of whom at high risk of relapse.
Collapse
Affiliation(s)
- Andrea Velardi
- Department of Medicine and Surgery, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy.
| | - Antonella Mancusi
- Department of Medicine and Surgery, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Loredana Ruggeri
- Department of Medicine and Surgery, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Antonio Pierini
- Department of Medicine and Surgery, Division of Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| |
Collapse
|
42
|
Vivier E, Rebuffet L, Narni-Mancinelli E, Cornen S, Igarashi RY, Fantin VR. Natural killer cell therapies. Nature 2024; 626:727-736. [PMID: 38383621 DOI: 10.1038/s41586-023-06945-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 02/23/2024]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response. As our understanding has deepened, several therapeutic strategies focused on NK cells have been conceived and are currently in various stages of development, from preclinical investigations to clinical trials. Here we explore in detail the complexity of NK cell biology in humans and highlight the role of these cells in cancer immunity. We also analyse the harnessing of NK cell immunity through immune checkpoint inhibitors, NK cell engagers, and infusions of preactivated or genetically modified, autologous or allogeneic NK cell products.
Collapse
Affiliation(s)
- Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Paris-Saclay Cancer Cluster, Le Kremlin-Bicêtre, France.
| | - Lucas Rebuffet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Stéphanie Cornen
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | |
Collapse
|
43
|
Hayeck TJ, Li Y, Mosbruger TL, Bradfield JP, Gleason AG, Damianos G, Shaw GTW, Duke JL, Conlin LK, Turner TN, Fernández-Viña MA, Sarmady M, Monos DS. The Impact of Patterns in Linkage Disequilibrium and Sequencing Quality on the Imprint of Balancing Selection. Genome Biol Evol 2024; 16:evae009. [PMID: 38302106 PMCID: PMC10853003 DOI: 10.1093/gbe/evae009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.
Collapse
Affiliation(s)
- Tristan J Hayeck
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Li
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy L Mosbruger
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Adam G Gleason
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Damianos
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Grace Tzun-Wen Shaw
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jamie L Duke
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcelo A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitri S Monos
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Baek IC, Choi EJ, Kim HJ, Choi H, Shin HS, Lim DG, Kim TG. Association of KIR Genes with Middle East Respiratory Syndrome Coronavirus Infection in South Koreans. J Clin Med 2024; 13:258. [PMID: 38202265 PMCID: PMC10779705 DOI: 10.3390/jcm13010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Middle East respiratory syndrome (MERS) is a lower respiratory tract disease caused by a beta coronavirus (CoV) called MERS-CoV, characterized by a high mortality rate. We aimed to evaluate the association between genetic variation in killer cell immunoglobulin-like receptors (KIRs) and the risk of MERS in South Koreans. METHODS KIR genes were genotyped by multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP). A case-control study was performed to identify the odds ratios (OR) of KIR genes for MERS and the association of KIR genes and their ligands, human leukocyte antigens (HLA) genes. RESULTS KIR2DS4D and KIR3DP1F showed higher frequencies in the group of all patients infected with MERS-CoV than in the control group (p = 0.023, OR = 2.4; p = 0.039, OR = 2.7). KIR2DL1, KIR2DP1, and KIR3DP1D were significantly associated with moderate/mild (Mo/Mi) cases. KIR2DL2, KIR2DS1, and KIR3DP1F were affected in severe cases. When we investigated the association between KIR genes and their ligands in MERS patient and control groups, KIR3DL1+/Bw4(80I)+, KIR3DL1+/Bw6+, KIR3DL1+/Bw6-, KIR2DS1+/C2+, and KIR3DS+/Bw4(80I)+ were associated with MERS. KIR3DL1+/Bw6- was found in Mo/Mi cases. KIR2DS1+/C2+ and KIR2DS2+/C1+ were found in severe cases. CONCLUSION Further investigations are needed to prove the various immune responses of MERS-CoV-infected cells according to variations in the KIR gene and ligand gene. A treatment strategy based on current research on the KIR gene and MERS-CoV will suggest potential treatment targets.
Collapse
Affiliation(s)
- In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Eun-Jeong Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Hyoung-Jae Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Haeyoun Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyoung-Shik Shin
- Department of Infectious Diseases, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea;
| | - Dong-Gyun Lim
- Translational Research Center, Research Institute of Public Health, National Medical Center, Seoul 04564, Republic of Korea
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
45
|
Canossi A, Aureli A, Del Beato T, Novelli G, Buonomo O, Rossi P, Venditti A, Papola F, Sconocchia G. Impact of HLA Class I Antigen, Killer Inhibitory Receptor, and FCGR3A Genotypes on Breast Cancer Susceptibility and Tumor Stage. Curr Mol Med 2024; 24:920-930. [PMID: 37461339 DOI: 10.2174/1566524023666230717162458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND The identification in breast cancer (BC) of novel genetic biomarkers regulating natural killer (NK) cell function, including the HLA, KIR, and CD16A (FCGR3A), may be still a challenge. OBJECTIVE We aimed to evaluate whether the combined effect of these polymorphisms has an impact on BC susceptibility and progression. METHODS 47 BC Italian patients and healthy individuals (39 females and 66 males/ females) were genotyped by Sanger sequencing (HLA-C exon 2-4 and FCGR3A- 158V/F, 48L/R/H) and PCR-SSP typing (KIR genes). RESULTS HLA-C gene allele analysis showed the group C1, with HLA-C*07:02:01 allele, to be significantly associated with tumor progression (16.7% vs. 4.0%, p=0.04, OR=4.867), and instead, group C2, with HLA-C*05:01:01, was protective against disease susceptibility (0.0% vs. 7.2%, p=0.019, OR=0.087). In addition, we highlighted a significant reduction of the KIR2DS4ins in BC patients (pcorr.=0.022) and an increased combined presence of KIR2DL1 and KIR2DS1 genes in advanced BC patients compared to earlier stages (66.7% vs. 19.2%, p=0.002). The concurrent lack of KIR2DL2 and KIR2DS4 genes in the presence of HLA-C2 alleles was significantly associated with increased susceptibility to BC (p=0.012, OR=5.020) or with lymph node involvement (p=0.008, OR=6.375). Lastly, we identified different combinations of the FCGR3A-48/158 variants and KIR genes in BC patients compared to controls. CONCLUSION Our findings suggest that in the development of BC probably exists a disorder of the NK innate immunity influenced by KIR/HLA-C gene content and FCGR3A-158 polymorphisms and that the combined analysis of these biomarkers might help predict genetic risk scores for tailored screening of BC patients in therapy.
Collapse
Affiliation(s)
- Angelica Canossi
- Biomedicine, C.N.R. Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Anna Aureli
- Biomedicine, C.N.R. Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Tiziana Del Beato
- Biomedicine, C.N.R. Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Giorgio Novelli
- Maxillofacial surgery, University of Rome Tor Vergata, Rome, Italy
| | - Oreste Buonomo
- Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Piero Rossi
- Breast Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Franco Papola
- Organs Tranplantation and Immunology Institute, Ospedale San Salvatore L'Aquila, Coppito, Italy
| | - Giuseppe Sconocchia
- Biomedicine, C.N.R. Institute of Translational Pharmacology (IFT), Rome, Italy
| |
Collapse
|
46
|
Byrnes CP, Hastings A, Lacej I, Palanicawandar R, Olavarria E, Anand A. A retrospective analysis to evaluate if KIR B haplotype donors associate with a reduced risk of relapse in patients with haematological malignancies following haploidentical transplantation at the Blood and Bone Marrow Transplant Unit at Hammersmith Hospital ICHNHST. HLA 2024; 103:e15214. [PMID: 37712429 DOI: 10.1111/tan.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 09/16/2023]
Abstract
Relapse is a major cause of treatment failure in haploidentical haematopoietic progenitor cell transplant (HPCT) with PTCy. Natural killer cells suppress graft versus host disease and mediate the graft versus leukaemia effect, driven by killer cell immunoglobulin-like receptors (KIRs). Emerging research suggests that donor KIR genotype may influence graft outcome in haploidentical transplants with varying impacts between patient cohorts. This study investigates whether donors with greater KIR B motifs associate with outcomes such as greater relapse-free survival (RFS), overall survival (OS), nonrelapse mortality (NRM), acute graft versus host disease (GvHD) and infection. The study cohort included 98 haploidentical donor-recipient (D/R) pairs (myeloablative n = 37, RIC n = 61) with various haematological malignancies, receiving primary T-cell replete haploidentical HSCT with PTCγ. Following KIR SSO genotyping, donors are categorised into neutral (n = 63) or better and best (n = 35), based on KIR B motif content. Kaplan-Meier and Cox regression survival functions are performed to investigate associations with outcomes. Our results show that the better and best category has significantly poorer RFS (p = 0.013; hazard ratio [HR] 3.16, 95% CI 1.21-8.24: p = 0.018). The greater risk of relapse associated with poorer OS (p = 0.011; HR 2.24, 95% CI 1.18-4.24: p = 0.01) in the better and best category. The competing KIR receptor-ligand and missing licensing proof models failed to predict transplant outcomes. Here, we show neutral donors associate with favourable outcomes in T-cell replete haplo-HPCT with PTCγ after categorisation using the KIR B content model, due to the increased risk of relapse associated with the use of better and best donors.
Collapse
Affiliation(s)
- Christopher Paul Byrnes
- Histocompatibility and Immunogenetics laboratory, Infection & Immunity sciences, North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
- School of Medical Sciences, University of Manchester, Manchester, UK
| | | | - Ira Lacej
- Imperial College Healthcare NHS Trust, London, UK
| | | | - Eduardo Olavarria
- Department of Haematology, Imperial College Healthcare NHS Trust, London, UK
| | - Arthi Anand
- Histocompatibility and Immunogenetics laboratory, Infection & Immunity sciences, North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
47
|
Wasilewska A, Grabowska M, Moskalik-Kierat D, Brzoza M, Laudański P, Garley M. Immunological Aspects of Infertility-The Role of KIR Receptors and HLA-C Antigen. Cells 2023; 13:59. [PMID: 38201263 PMCID: PMC10778566 DOI: 10.3390/cells13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The mechanisms of immune tolerance of a mother against an antigenically foreign fetus without a concomitant loss of defense capabilities against pathogens are the factors underlying the success of a pregnancy. A significant role in human defense is played by killer immunoglobulin-like receptor (KIR) receptors, which regulate the function of the natural killer (NK) cells capable of destroying antigenically foreign cells, virus-infected cells, or tumor-lesioned cells. A special subpopulation of NK cells called uterine NK cells (uNK) is found in the uterus. Disruption of the tolerance process or overactivity of immune-competent cells can lead to immune infertility, a situation in which a woman's immune system attacks her own reproductive cells, making it impossible to conceive or maintain a pregnancy. Since the prominent role of the inflammatory response in infertility, including KIR receptors and NK cells, has been postulated, the process of antigen presentation involving major histocompatibility complex (MHC) molecules (HLA) appears to be crucial for a successful pregnancy. Proper interactions between KIR receptors on female uNK cells and HLA class I molecules, with a predominant role for HLA-C, found on the surface of germ cells, are strategically important during embryo implantation. In addition, maintaining a functional balance between activating and inhibitory KIR receptors is essential for proper placenta formation and embryo implantation in the uterus. A disruption of this balance can lead to complications during pregnancy. The discovery of links between KIR and HLA-C has provided valuable information about the complexity of maternal-fetal immune interactions that determine the success of a pregnancy. The great diversity of maternal KIR and fetal HLA-C ligands is associated with the occurrence of KIR/HLA-C combinations that are more or less favorable for reproductive success.
Collapse
Affiliation(s)
- Anna Wasilewska
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Marcelina Grabowska
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Dominika Moskalik-Kierat
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Martyna Brzoza
- Laboratory of Immunogenetics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.)
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Women’s Health Research Institute, Calisia University, 62-800 Kalisz, Poland
- OVIklinika Infertility Center, 01-377 Warsaw, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, 15-269 Białystok, Poland
| |
Collapse
|
48
|
Balas A, Moreno-Hidalgo MÁ, de la Calle-Prieto F, Vicario JL, Arsuaga M, Trigo E, de Miguel-Buckley R, Bellón T, Díaz-Menéndez M. Coronavirus-19 disease risk and protective factors associated with HLA/KIR polymorphisms in Ecuadorian patients residing in Madrid. Hum Immunol 2023; 84:571-577. [PMID: 37777360 DOI: 10.1016/j.humimm.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Immigrants represented 21.8% of cases in a Spanish cohort of hospitalised patients with COVID-19, a proportion exceeding the percentage of immigrants in that area's total population. Among the ethnic-related genetic risk factors for COVID-19, human leukocyte antigen (HLA) genotypes in diverse populations might bias the response to SARS-CoV-2 infection and/or progression. Similarly, genetic differences in natural killer-activating and inhibitory receptors could play a role in the immune system's response to the viral infection. METHODS We characterised HLA alleles and KIR genes in 52 Ecuadorian patients hospitalised for moderate and severe COVID-19 and 87 Ecuadorian controls from the general population living in the same area. RESULTS There was a significantly increased frequency of the HLA-B*39 antigen and the activating KIR2DS4 receptor in the presence of its HLA-C*04 ligand in the COVID-19 group when compared with the control group. In contrast, there was a significant reduction in the frequency of carriers of KIR2DL1 and of the KIR3DL1/Bw4 receptor/ligand combination among COVID-19 group. On the other hand, HLA-A*24:02 and HLA-DRB1*09:01 alleles showed significantly lower frequencies specifically in the severe COVID-19 group. CONCLUSION HLA-B*39 alleles might be genetic risk factors for developing COVID-19 in Ecuadorian individuals. In the presence of its ligand C*04, the natural killer-activating receptor KIR2DS4 might also increase the risk of developing COVID-19, while, in the presence of HLA-Bw4 alleles, the inhibitory receptor KIR3DL1 might play a protective role. Patients with COVID-19 who carry HLA-A*24:02 and HLA-DRB1*09:01 alleles might be protected against more severe forms of COVID-19.
Collapse
Affiliation(s)
- Antonio Balas
- Histocompatibility Unit, Centro de Transfusion de la Comunidad de Madrid, Madrid, Spain
| | | | - Fernando de la Calle-Prieto
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - José Luis Vicario
- Histocompatibility Unit, Centro de Transfusion de la Comunidad de Madrid, Madrid, Spain
| | - Marta Arsuaga
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Elena Trigo
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Rosa de Miguel-Buckley
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| | - Teresa Bellón
- Institute for Health Research Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.
| | - Marta Díaz-Menéndez
- National Referral Unit for Imported Tropical Diseases and Travel Medicine, Infectious Diseases Department, Hospital Universitario La Paz-Carlos III, IdiPAZ, CIBERINFEC, Madrid, Spain
| |
Collapse
|
49
|
Liu Z, Zhao X, Shen H, Liu X, Xu X, Fu R. Cellular immunity in the era of modern multiple myeloma therapy. Int J Cancer 2023; 153:1436-1447. [PMID: 37306091 DOI: 10.1002/ijc.34609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a relapsing clonal plasma cell malignancy and incurable thus far. With the increasing understanding of myeloma, highlighting the critical importance of the immune system in the pathogenesis of MM is essential. The immune changes in MM patients after treatment are associated with prognosis. In this review, we summarize currently available MM therapies and discuss how they affect cellular immunity. We find that the modern anti-MM treatments enhance antitumour immune responses. A deeper understanding of the therapeutic activity of individual drugs offers more effective treatment approaches that enhance the beneficial immunomodulatory effects. Furthermore, we show that the immune changes after treatment in MM patients can provide useful prognostic marker. Analysing cellular immune responses offers new perspectives for evaluating clinical data and making comprehensive predictions for applying novel therapies in MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
50
|
Decroos A, Cheminant M, Bruneau J, Carras S, Parinet V, Pelletier L, Lacroix L, Martin N, Giustiniani J, Lhermitte L, Asnafi V, Battistella M, Lemonnier F, De Leval L, Sicard H, Bonnafous C, Gauthier L, Genestier L, Caruso S, Gaulard P, Hermine O, Ortonne N. KIR3DL2 may represent a novel therapeutic target in aggressive systemic peripheral T-cell lymphoma. Haematologica 2023; 108:2830-2836. [PMID: 37165836 PMCID: PMC10542838 DOI: 10.3324/haematol.2022.282220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Amandine Decroos
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil
| | - Morgane Cheminant
- Université de Paris, Institut Imagine, Laboratory of Hematological Disorders, INSERM UMR1163, F-75015, Paris, France; Necker-Enfants Malades University Medical Center, AP-HP Clinical Hematology, F-75015, Paris
| | - Julie Bruneau
- Université de Paris, Institut Imagine, Laboratory of Hematological Disorders, INSERM UMR1163, F-75015, Paris, France; Necker-Enfants Malades University Medical Center, AP-HP, Department of Pathology, F-75015, Paris
| | - Sylvain Carras
- Institute for Advanced Biosciences, "Translational Epigenetics" team, UMR 1209/CNRS 5309, La Tronche
| | - Vincent Parinet
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil
| | - Laura Pelletier
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil
| | - Laetitia Lacroix
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil, France; Université de Paris, Institut Imagine, Laboratory of Hematological Disorders, INSERM UMR1163, F-75015, Paris
| | - Nadine Martin
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil
| | - Jérôme Giustiniani
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil
| | - Ludovic Lhermitte
- Université de Paris, Institut Necker-Enfants Malades, Laboratory of Onco-Hematology, APHP, INSERM UMR 1151, Paris
| | - Vahid Asnafi
- Université de Paris, Institut Necker-Enfants Malades, Laboratory of Onco-Hematology, APHP, INSERM UMR 1151, Paris
| | - Maxime Battistella
- Université Paris Cité ; INSERM U976 ; AP-HP, Department of Pathology, Saint-Louis hospital, F-75010 Paris
| | - François Lemonnier
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil, France; Henri Mondor hospital, Clinical Hematology, Unité Hémopathies Lymphoïdes, AP-HP, F-94010, Créteil
| | - Laurence De Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University
| | | | | | | | - Laurent Genestier
- Claude Bernard Lyon 1 University, ENS de Lyon, CNRS, UMR5308, INSERM U1111, CIRI, Centre International de Recherche en Infectiologie, Lymphoma Immunobiology Team (LIB), Equipe Labellisée Ligue Contre le Cancer, F-69007, Lyon, France; Hospices Civils de Lyon, Lyon
| | - Stefano Caruso
- Henri Mondor hospital, AP-HP, Department of Pathology, F-94010, Créteil
| | - Philippe Gaulard
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil, France; Henri Mondor hospital, AP-HP, Department of Pathology, F-94010, Créteil
| | - Olivier Hermine
- Université de Paris, Institut Imagine, Laboratory of Hematological Disorders, INSERM UMR1163, F-75015, Paris, France; Necker-Enfants Malades University Medical Center, AP-HP Clinical Hematology, F-75015, Paris
| | - Nicolas Ortonne
- Paris-Est Créteil University (UPEC), Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, F-94010, Créteil, France; Henri Mondor hospital, AP-HP, Department of Pathology, F-94010, Créteil.
| |
Collapse
|