1
|
Song Y, Lu J, Qin P, Chen H, Chen L. Interferon-I modulation and natural products: Unraveling mechanisms and therapeutic potential in severe COVID-19. Cytokine Growth Factor Rev 2025; 82:18-30. [PMID: 39261232 DOI: 10.1016/j.cytogfr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global public health threat, particularly to older adults, pregnant women, and individuals with underlying chronic conditions. Dysregulated immune responses to SARS-CoV-2 infection are believed to contribute to the progression of COVID-19 in severe cases. Previous studies indicates that a deficiency in type I interferon (IFN-I) immunity accounts for approximately 15 %-20 % of patients with severe pneumonia caused by COVID-19, highlighting the potential therapeutic importance of modulating IFN-I signals. Natural products and their derivatives, due to their structural diversity and novel scaffolds, play a crucial role in drug discovery. Some of these natural products targeting IFN-I have demonstrated applications in infectious diseases and inflammatory conditions. However, the immunomodulatory potential of IFN-I in critical COVID-19 pneumonia and the natural compounds regulating the related signal pathway remain not fully understood. In this review, we offer a comprehensive assessment of the association between IFN-I and severe COVID-19, exploring its mechanisms and integrating information on natural compounds effective for IFN-I regulation. Focusing on the primary targets of IFN-I, we also summarize the regulatory mechanisms of natural products, their impact on IFNs, and their therapeutic roles in viral infections. Collectively, by synthesizing these findings, our goal is to provide a valuable reference for future research and to inspire innovative treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yuheng Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Mishra T, Phillips S, Zhao Y, Wilms B, He C, Wu L. Epitranscriptomic m 6A modifications during reactivation of HIV-1 latency in CD4 + T cells. mBio 2024; 15:e0221424. [PMID: 39373537 PMCID: PMC11559067 DOI: 10.1128/mbio.02214-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Despite effective antiretroviral therapy reducing HIV-1 viral loads to undetectable levels, the presence of latently infected CD4+ T cells poses a major barrier to HIV-1 cure. N6-methyladenosine (m6A) modification of viral and cellular RNA has a functional role in regulating HIV-1 infection. m6A modification of HIV-1 RNA can affect its stability, translation, and splicing in cells and suppresses type-I interferon induction in macrophages. However, the function of m6A modification in regulating HIV-1 latency reactivation remains unknown. We used the Jurkat T cell line-derived HIV-1 latency model (J-Lat cells) to investigate changes in m6A levels of cellular RNA in response to latency reversal. We observed a significant increase in m6A levels of total cellular RNA upon reactivation of latent HIV-1 in J-Lat cells. This increase in m6A levels was transient and returned to steady-state levels despite continued high levels of viral gene expression in reactivated cells compared to control cells. Upregulation of m6A levels occurred without significant changes in the protein expression of m6A writers or erasers that add or remove m6A, respectively. Knockdown of m6A writers in J-Lat cells significantly reduced HIV-1 reactivation. Treatment with an m6A writer inhibitor reduced cellular RNA m6A levels, along with a reduction in HIV-1 reactivation. Furthermore, using m6A-specific sequencing, we identified cellular RNAs that are differentially m6A-modified during HIV-1 reactivation in J-Lat cells. Knockdown of identified m6A-modified RNA validates these results with an established primary CD4+ T cell model of HIV-1 latency. These results show the importance of m6A RNA modification in HIV-1 latency reversal. IMPORTANCE RNA m6A modification is important for regulating gene expression and innate immune responses to HIV-1 infection. However, the functional significance of m6A modification during HIV-1 latency reactivation is unknown. To address this important question, in this study, we used established cellular models of HIV-1 latency, m6A-specific sequencing at single-base resolution, and functional assays. We demonstrate that HIV-1 latency reversal leads to increased levels of cellular m6A modification, correlates with cellular m6A levels, and is dependent on the catalytic activity of the m6A methyltransferase enzyme. We also identified cellular genes that are differentially m6A-modified during HIV-1 reactivation, as well as the sites of m6A within HIV-1 RNA. Our novel findings point toward a significant role for m6A modification in HIV-1 latency reversal.
Collapse
Affiliation(s)
- Tarun Mishra
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Stacia Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Yutao Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Bethany Wilms
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence. Health Sci Rep 2024; 7:e70089. [PMID: 39319247 PMCID: PMC11420300 DOI: 10.1002/hsr2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Aim Human immunodeficiency virus (HIV) remains a significant global health challenge, with approximately 39 million people living with HIV worldwide as of 2022. Despite progress in antiretroviral therapy, achieving the UNAIDS "95-95-95" target to end the HIV epidemic by 2025 faces challenges, particularly in sub-Saharan Africa. The pursuit of an HIV vaccine is crucial, offering durable immunity and the potential to end the epidemic. Challenges in vaccine development include the lack of known immune correlates, suitable animal models, and HIV's high mutation rate. This study aims to explore the current state of HIV vaccine development, focusing on the challenges and innovative approaches being investigated. Methods In writing this review, we conducted a search of medical databases such as PubMed, ResearchGate, Web of Science, Google Scholar, and Scopus. The exploration of messenger ribonucleic acid vaccines, which have proven successful in the SARS-CoV-2 pandemic, presents a promising avenue for HIV vaccine development. Understanding HIV-1's ability to infiltrate various bodily compartments, establish reservoirs, and manipulate immune responses is critical. Robust cytotoxic T lymphocytes and broadly neutralizing antibodies are identified as key components, though their production faces challenges. Innovative approaches, including computational learning and advanced drug delivery systems, are being investigated to effectively activate the immune system. Results and Conclusions Discrepancies between animal models and human responses have hindered the progress of vaccine development. Despite these challenges, ongoing research is focused on overcoming these obstacles through advanced methodologies and technologies. Addressing the challenges in HIV vaccine development is paramount to realizing an effective HIV-1 vaccine and achieving the goal of ending the epidemic. The integration of innovative approaches and a deeper understanding of HIV-1's mechanisms are essential steps toward this transformative breakthrough.
Collapse
Affiliation(s)
- Godfred Yawson Scott
- Department of Medical DiagnosticsKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Dominic Worku
- Infectious Diseases DepartmentMorriston Hospital, Heol Maes EglwysMorristonUnited Kingdom
- Public Health WalesCardiffUnited Kingdom
| |
Collapse
|
5
|
Robino A, Bevilacqua E, Aldegheri L, Conti A, Bazzo V, Tornese G, Catamo E. Next-generation sequencing reveals additional HLA class I and class II alleles associated with type 1 diabetes and age at onset. Front Immunol 2024; 15:1427349. [PMID: 39185409 PMCID: PMC11341356 DOI: 10.3389/fimmu.2024.1427349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Type 1 diabetes is an autoimmune disease with an significant genetic component, played mainly by the HLA class II genes. Although evidence on the role of HLA class I genes in developing type 1 diabetes and its onset have emerged, current HLA screening is limited to determining DR3 and DR4 haplotypes. This study aimed to investigate the role of HLA genes on type 1 diabetes risk and age of onset by extensive typing. Methods This study included 115 children and young adults with type 1 diabetes for whom typing of HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1 and -DPB1 genes was conducted using Next Generation Sequencing. Results We observed that 13% of type 1 diabetes subjects had non-classical HLA haplotypes that predispose to diabetes. We also found that compared to type 1 diabetes subjects with classical HLA haplotypes, non-classical HLA subjects had a significantly higher frequency of HLA-B*39:06:02 (p-value=0.01) and HLA-C*07:02:01 (p-value=0.03) alleles, known to be involved in activating the immune response. Non-classical HLA subjects also presented peculiar clinical features compared to classical HLA subjects, such as multiple diabetic antibodies and the absence of other autoimmune diseases (i.e., coeliac disease and thyroiditis). We also observed that subjects with early onset had a higher frequency of DQ2/DQ8 genotype than late-onset individuals. Moreover, subjects with late-onset had a higher frequency of alleles HLA-B*27 (p-value=0.003), HLA-C*01:02:01 (p-value=0.027) and C*02:02:02 (p-value=0.01), known to be associated with increased protection against viral infections. Discussion This study reveals a broader involvement of the HLA locus in the development and onset of type 1 diabetes, providing insights into new possible disease prevention and management strategies.
Collapse
Affiliation(s)
- Antonietta Robino
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Elena Bevilacqua
- Transfusion Medicine Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Luana Aldegheri
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Andrea Conti
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Valentina Bazzo
- Transfusion Medicine Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Eulalia Catamo
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
6
|
Bimber BN, Sunshine J, McElfresh GW, Reed JS, Pathak R, Bateman KB, Hughes CM, Gilbride RM, Ford JC, Morrow D, Lifson JD, Sacha JB, Hansen SG, Picker LJ. Viral escape mutations do not account for non-protection from SIVmac239 challenge in RhCMV/SIV vaccinated rhesus macaques. Front Immunol 2024; 15:1444621. [PMID: 39170621 PMCID: PMC11336698 DOI: 10.3389/fimmu.2024.1444621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Simian immunodeficiency virus (SIV) vaccines based upon 68-1 Rhesus Cytomegalovirus (RhCMV) vectors show remarkable protection against pathogenic SIVmac239 challenge. Across multiple independent rhesus macaque (RM) challenge studies, nearly 60% of vaccinated RM show early, complete arrest of SIVmac239 replication after effective challenge, whereas the remainder show progressive infection similar to controls. Here, we performed viral sequencing to determine whether the failure to control viral replication in non-protected RMs is associated with the acquisition of viral escape mutations. While low level viral mutations accumulated in all animals by 28 days-post-challenge, which is after the establishment of viral control in protected animals, the dominant circulating virus in virtually all unprotected RMs was nearly identical to the challenge stock, and there was no difference in mutation patterns between this cohort and unvaccinated controls. These data definitively demonstrate that viral mutation does not explain lack of viral control in RMs not protected by RhCMV/SIV vaccination. We further demonstrate that during chronic infection RhCMV/SIV vaccinated RMs do not acquire escape mutation in epitopes targeted by RhCMV/SIV, but instead display mutation in canonical MHC-Ia epitopes similar to unvaccinated RMs. This suggests that after the initial failure of viral control, unconventional T cell responses induced by 68-1 RhCMV/SIV vaccination do not exert strong selective pressure on systemically replicating SIV.
Collapse
Affiliation(s)
- Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Justine Sunshine
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - G. W. McElfresh
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Jason S. Reed
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Reese Pathak
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Katherine B. Bateman
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - David Morrow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, United States
| | - Jonah B. Sacha
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Scott G. Hansen
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Louis J. Picker
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
7
|
Feng Y, Ho KL, Zhang M, Sundaresha NB, Cavanagh HL, Zhao S. Canine major histocompatibility complex class I (MHC-I) diversity landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580220. [PMID: 38405923 PMCID: PMC10888748 DOI: 10.1101/2024.02.14.580220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The genes of the Major Histocompatibility Complex class I (MHC-I) are among the most diverse in the mammalian genome, playing a crucial role in immunology. Understanding the diversity landscape of MHC-I is therefore of paramount importance. The dog is a key translational model in various biomedical fields. However, our understanding of the canine MHC-I diversity landscape lags significantly behind that of humans. To address this deficiency, we used our newly developed software, KPR de novo assembler and genotyper, to genotype 1,325 samples from 1,025 dogs with paired-end RNA-seq data from 43 BioProjects, after extensive quality control. Among 926 dogs that pass the QC, 591 dogs (64%) have at least one allele genotyped, and a total of 97 known alleles and 52 putative new alleles were identified. Further analysis reveals that DLA-I gene expression levels vary among the tissues, with lowest for testis and brain tissues and highest for blood, corpus luteum, and spleen. We identified dominant alleles in each of the 17 canine breeds, as well as among the entire canine population. Furthermore, our analysis also identifies breed-specific alleles and mutually co-occurred/exclusive alleles. Our study indicates that canine DLA-88 is as diversified as human HLA-A/B/C genes within the entire population, but less diversified within a breed than with HLA-A/B/C within an ethnic group. Lastly, we examined the hypervariable regions (HVR) within or across human/canine MHC-I alleles and found that 80% of the HVRs overlap between the two species. We further noted that 80% of the HVRs are within 4A contact with the peptides, and that the dog-human difference overlaps with only 20% HVRs. Our research offers valuable insights for immunological studies involving dogs.
Collapse
|
8
|
Lobos CA, Chatzileontiadou DSM, Sok B, Almedia C, Halim H, D'Orsogna L, Gras S. Molecular insights into the HLA-B35 molecules' classification associated with HIV control. Immunol Cell Biol 2024; 102:34-45. [PMID: 37811811 PMCID: PMC10952751 DOI: 10.1111/imcb.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/04/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Human leukocyte antigen (HLA) class I molecules have been shown to influence the immune response to HIV infection and acquired immunodeficiency syndrome progression. Polymorphisms within the HLA-B35 molecules divide the family into two groups, namely, Px and PY. The Px group is associated with deleterious effects and accelerated disease progression in HIV+ patients, whereas the PY group is not. The classification is based on the preferential binding of a tyrosine at the C-terminal part of the peptide in the PY group, and a nontyrosine residue in the Px group. However, there is a lack of knowledge on the molecular differences between the two groups. Here, we have investigated three HLA-B35 molecules, namely, HLA-B*35:01 (PY), HLA-B*35:03 (Px) and HLA-B*35:05 (unclassified). We selected an HIV-derived peptide, NY9, and demonstrated that it can trigger a polyfunctional CD8+ T-cell response in HLA-B*35:01+ /HIV+ patients. We determined that in the complex with the NY9 peptide, the PY molecule was more stable than the Px molecule. We solved the crystal structures of the three HLA molecules in complex with the NY9 peptide, and structural similarities with HLA-B*35:01 would classify the HLA-B*35:05 within the PY group. Interestingly, we found that HLA-B*35:05 can also bind a small molecule in its cleft, suggesting that small drugs could bind as well.
Collapse
Affiliation(s)
- Christian A Lobos
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Demetra SM Chatzileontiadou
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Bonin Sok
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Coral‐Ann Almedia
- Department of Clinical Immunology and PathWestFiona Stanley HospitalPerthWAAustralia
- School of MedicineUniversity of Western AustraliaPerthWAAustralia
| | - Hanim Halim
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Lloyd D'Orsogna
- Department of Clinical Immunology and PathWestFiona Stanley HospitalPerthWAAustralia
- School of MedicineUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| |
Collapse
|
9
|
Lee H, Kang H, Yun S, Ryu JH, Bae H, Chung BH, Yang CW, Oh EJ. The influence of HLA A, B, C, DR alleles and HLA haplotypes on cytomegalovirus-specific cell mediated immunity in seropositive Korean kidney transplant candidates. HLA 2023; 102:590-598. [PMID: 37158113 DOI: 10.1111/tan.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
We evaluated the effect of specific HLA alleles and haplotypes on cytomegalovirus (CMV)-specific cell mediated immunity (CMI) in kidney transplant (KT) candidates. CMV-specific ELISPOT against pp65 and IE-1 antigens (hereafter referred to as pp65 and IE-1, respectively) was performed in 229 seropositive KT candidates. We analyzed the results related to 44 selected HLA alleles (9 HLA-A, 15 HLA-B, 9 HLA-C, and 11 HLA-DR) and 13 HLA haplotypes commonly found in study participants. The pp65 and IE-1 results in 229 seropositive candidates were 227.5 (114.5-471.5) and 41.0 (8.8-185.8) (median [interquartile range]) spots/2 × 105 PBMCs, respectively. The pp65 and IE-1 results showed significant differences between candidates with different HLA alleles (A*02 vs. A*26 [p = 0.016], A*24 vs. A*30 [p = 0.031], B*07 vs. B*46 [p = 0.005], B*54 vs. B*35 [p = 0.041], B*54 vs. B*44 [p = 0.018], B*54 vs. B*51 [p = 0.025], and C*06 vs. C*14 [p = 0.034]). HLA-A*02 and B*54 were associated with increased pp65 and IE-1 results, respectively (p = 0.005 and p < 0.001, respectively). In contrast, the HLA-A*26 and B*46 alleles were associated with a decreased pp65 response, whereas the A*30 allele was associated with a decreased IE-1 response (p < 0.05). The pp65 results correlated with the HLA-A allele frequencies (R = 0.7546, p = 0.019) and the IE-1 results correlated with the HLA-C allele frequencies of the study participants (R = 0.7882, p = 0.012). Among 13 haplotypes, HLA-A*30 ~ B*13 ~ C*06 ~ DRB1*07 showed decreased CMV-CMIs compared to the other HLA haplotypes, probably due to a combination of HLA alleles associated with lower CMV-CMIs. Our results demonstrated that CMV-specific CMIs may be influenced by the HLA allele as well as the HLA haplotype. To better predict CMV reactivation, it is important to estimate risk in the context of HLA allele and haplotype information.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Laboratory Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Hyunhye Kang
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research and Development Institute for In Vitro Diagnostic Medical Devices of Catholic University of Korea, Seoul, Republic of Korea
| | - Sojeong Yun
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Republic of Korea
| | - Ji Hyeong Ryu
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjoo Bae
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research and Development Institute for In Vitro Diagnostic Medical Devices of Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
Schulz VE, Tuff JF, Tough RH, Lewis L, Chimukangara B, Garrett N, Abdool Karim Q, Abdool Karim SS, McKinnon LR, Kharsany ABM, McLaren PJ. Host genetic variation at a locus near CHD1L impacts HIV sequence diversity in a South African population. J Virol 2023; 97:e0095423. [PMID: 37747237 PMCID: PMC10617395 DOI: 10.1128/jvi.00954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE It has been previously shown that genetic variants near CHD1L on chromosome 1 are associated with reduced HIV VL in African populations. However, the impact of these variants on viral diversity and how they restrict viral replication are unknown. We report on a regional association analysis in a South African population and show evidence of selective pressure by variants near CHD1L on HIV RT and gag. Our findings provide further insight into how genetic variability at this locus contributes to host control of HIV in a South African population.
Collapse
Affiliation(s)
- Vanessa E. Schulz
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jeffrey F. Tuff
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Riley H. Tough
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Benjamin Chimukangara
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Department of Virology, University of KwaZulu-Natal, Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Lyle R. McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Paul J. McLaren
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Herbert NG, Goulder PJR. Impact of early antiretroviral therapy, early life immunity and immune sex differences on HIV disease and posttreatment control in children. Curr Opin HIV AIDS 2023; 18:229-236. [PMID: 37421384 PMCID: PMC10399946 DOI: 10.1097/coh.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW To review recent insights into the factors affecting HIV disease progression in children living with HIV, contrasting outcomes: following early ART initiation with those in natural, antiretroviral therapy (ART)-naive infection; in children versus adults; and in female individuals versus male individuals. RECENT FINDINGS Early life immune polarization and several factors associated with mother-to-child transmission of HIV result in an ineffective HIV-specific CD8+ T-cell response and rapid disease progression in most children living with HIV. However, the same factors result in low immune activation and antiviral efficacy mediated mainly through natural killer cell responses in children and are central features of posttreatment control. By contrast, rapid activation of the immune system and generation of a broad HIV-specific CD8+ T-cell response in adults, especially in the context of 'protective' HLA class I molecules, are associated with superior disease outcomes in ART-naive infection but not with posttreatment control. The higher levels of immune activation in female individuals versus male individuals from intrauterine life onwards increase HIV infection susceptibility in females in utero and may favour ART-naive disease outcomes rather than posttreatment control. SUMMARY Early-life immunity and factors associated with mother-to-child transmission typically result in rapid HIV disease progression in ART-naive infection but favour posttreatment control in children following early ART initiation.
Collapse
Affiliation(s)
- Nicholas G Herbert
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
12
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 PMCID: PMC10216808 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C. Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
13
|
Chen CW, Saubi N, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24098060. [PMID: 37175776 PMCID: PMC10179162 DOI: 10.3390/ijms24098060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Narcís Saubi
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
14
|
Silva NDSB, Souza ADS, Andrade HDS, Pereira RN, Castro CFB, Vince N, Limou S, Naslavsky MS, Zatz M, Duarte YADO, Mendes-Junior CT, Castelli EDC. Immunogenetics of HLA-B: SNP, allele, and haplotype diversity in populations from different continents and ancestry backgrounds. HLA 2023; 101:634-646. [PMID: 37005006 DOI: 10.1111/tan.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
HLA-B is among the most variable gene in the human genome. This gene encodes a key molecule for antigen presentation to CD8+ T lymphocytes and NK cell modulation. Despite the myriad of studies evaluating its coding region (with an emphasis on exons 2 and 3), few studies evaluated introns and regulatory sequences in real population samples. Thus, HLA-B variability is probably underestimated. We applied a bioinformatics pipeline tailored for HLA genes on 5347 samples from 80 different populations, which includes more than 1000 admixed Brazilians, to evaluate the HLA-B variability (SNPs, indels, MNPs, alleles, and haplotypes) in exons, introns, and regulatory regions. We observed 610 variable sites throughout HLA-B; the most frequent variants are shared worldwide. However, the haplotype distribution is geographically structured. We detected 920 full-length haplotypes (exons, introns, and untranslated regions) encoding 239 different protein sequences. HLA-B gene diversity is higher in admixed populations and Europeans while lower in African ancestry individuals. Each HLA-B allele group is associated with specific promoter sequences. This HLA-B variation resource may improve HLA imputation accuracy and disease-association studies and provide evolutionary insights regarding HLA-B genetic diversity in human populations.
Collapse
Affiliation(s)
- Nayane Dos Santos Brito Silva
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
- INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes Université, UMR 1064, F-44000, Nantes, France
| | - Andreia da Silva Souza
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Heloisa de Souza Andrade
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Raphaela Neto Pereira
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Camila Ferreira Bannwart Castro
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
- UniFSP, Centro Universitário Sudoeste Paulista, Itapetininga, São Paulo, Brazil
| | - Nicolas Vince
- INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes Université, UMR 1064, F-44000, Nantes, France
| | - Sophie Limou
- INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes Université, UMR 1064, F-44000, Nantes, France
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Celso Teixeira Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Erick da Cruz Castelli
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| |
Collapse
|
15
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
16
|
Shkurnikov M, Nersisyan S, Averinskaya D, Chekova M, Polyakov F, Titov A, Doroshenko D, Vechorko V, Tonevitsky A. HLA-A*01:01 allele diminishing in COVID-19 patients population associated with non-structural epitope abundance in CD8+ T-cell repertoire. PeerJ 2023; 11:e14707. [PMID: 36691482 PMCID: PMC9864130 DOI: 10.7717/peerj.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
In mid-2021, the SARS-CoV-2 Delta variant caused the third wave of the COVID-19 pandemic in several countries worldwide. The pivotal studies were aimed at studying changes in the efficiency of neutralizing antibodies to the spike protein. However, much less attention was paid to the T-cell response and the presentation of virus peptides by MHC-I molecules. In this study, we compared the features of the HLA-I genotype in symptomatic patients with COVID-19 in the first and third waves of the pandemic. As a result, we could identify the diminishing of carriers of the HLA-A*01:01 allele in the third wave and demonstrate the unique properties of this allele. Thus, HLA-A*01:01-binding immunoprevalent epitopes are mostly derived from ORF1ab. A set of epitopes from ORF1ab was tested, and their high immunogenicity was confirmed. Moreover, analysis of the results of single-cell phenotyping of T-cells in recovered patients showed that the predominant phenotype in HLA-A*01:01 carriers is central memory T-cells. The predominance of T-lymphocytes of this phenotype may contribute to forming long-term T-cell immunity in carriers of this allele. Our results can be the basis for highly effective vaccines based on ORF1ab peptides.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Darya Averinskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Milena Chekova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Fedor Polyakov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Aleksei Titov
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Chen CW, Saubi N, Kilpeläinen A, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines (Basel) 2022; 11:vaccines11010015. [PMID: 36679860 PMCID: PMC9861546 DOI: 10.3390/vaccines11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Athina Kilpeläinen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
18
|
Artamonova OG, Karamova AE, Chikin VV, Kubanov AA. HLA-B27 and its role of the pathogenesis of psoriatic arthritis. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The literature review presents the characteristics of the human leukocyte antigen (HLA)-B27 as a factor contributing to the development of psoriatic arthritis. HLA-B27 is a class I surface antigen encoded by the major histocompatibility complex (MHC) B locus located on chromosome 6. The main function is to present antigenic peptides to the CD8+ T-cells. HLA-B27 is the most important genetic biomarker for psoriatic arthritis, as it provides phenotypic differentiation in the patient population. The prevalence of HLA-B27 in various population groups are presented. The structural features of the HLA-B27 molecule are described. The characteristics of methods for detecting HLA-B27 status and determining its subtypes are given. The main mechanisms of the HLA-B27 polymorphism influence on the development of psoriatic arthritis are considered, and hypotheses are analyzed that explain the pathogenic effect of HLA-B27: the arthritogenic peptide hypothesis, the misfolding hypothesis, the HLA-B27 heavy chain homodimer formation hypothesis. The features of the clinical manifestations and course of HLA-B27-positive psoriatic arthritis are presented, allowing the use of HLA-B27 to predict the development of psoriatic joint damage.
Collapse
|
19
|
Control of HIV-1 Replication by CD8 + T Cells Specific for Two Novel Pol Protective Epitopes in HIV-1 Subtype A/E Infection. J Virol 2022; 96:e0081122. [PMID: 36154612 PMCID: PMC9555181 DOI: 10.1128/jvi.00811-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although many HIV-1-specific CD8+ T cell epitopes have been identified and used in various HIV-1 studies, most of these epitopes were derived from HIV-1 subtypes B and C. Only 17 well-defined epitopes, none of which were protective, have been identified for subtype A/E infection. The roles of HIV-1-specific T cells have been rarely analyzed for subtype A/E infection. In this study, we identified six novel HLA-B*15:02-restricted optimal HIV-1 subtype A/E epitopes and then analyzed the presentation of these epitopes by HIV-1 subtype A/E virus-infected cells and the T cell responses to these epitopes in treatment-naive HIV-1 subtype A/E-infected HLA-B*15:02+ Vietnamese individuals. Responders to the PolTY9 or PolLF10 epitope had a significantly lower plasma viral load (pVL) than nonresponders among HLA-B*15:02+ individuals, whereas no significant difference in pVL was found between responders to four other epitopes and nonresponders. The breadth of T cell responses to these two Pol epitopes correlated inversely with pVL. These findings suggest that HLA-B*15:02-restricted T cells specific for PolTY9 and PolLF10 contribute to the suppression of HIV-1 replication in HLA-B*15:02+ individuals. The HLA-B*15:02-associated mutation Pol266I reduced the recognition of PolTY9-specific T cells in vitro but did not affect HIV-1 replication by PolTY9-specific T cells in Pol266I mutant virus-infected individuals. These findings indicate that PolTY9-specific T cells suppress replication of the Pol266I mutant virus even though the T cells selected this mutant. This study demonstrates the effective role of T cells specific for these Pol epitopes to control circulating viruses in HIV-1 subtype A/E infection. IMPORTANCE It is expected that HIV-1-specific CD8+ T cells that effectively suppress HIV-1 replication will contribute to HIV-1 vaccine development and therapy to achieve an HIV cure. T cells specific for protective epitopes were identified in HIV-1 subtype B and C infections but not in subtype A/E infection, which is epidemic in Southeast Asia. In the present study, we identified six T cell epitopes derived from the subtype A/E virus and demonstrated that T cells specific for two Pol epitopes effectively suppressed HIV-1 replication in treatment-naive Vietnamese individuals infected with HIV-1 subtype A/E. One of these Pol protective epitopes was conserved among circulating viruses, and one escape mutation was accumulated in the other epitope. This mutation did not critically affect HIV-1 control by specific T cells in HIV-1 subtype A/E-infected individuals. This study identified two protective Pol epitopes and characterized them in cases of HIV-1 subtype A/E infection.
Collapse
|
20
|
Pace M, Ogbe A, Hurst J, Robinson N, Meyerowitz J, Olejniczak N, Thornhill JP, Jones M, Waters A, Lwanga J, Kuldanek K, Hall R, Zacharopoulou P, Martin GE, Brown H, Nwokolo N, Peppa D, Fox J, Fidler S, Frater J. Impact of antiretroviral therapy in primary HIV infection on natural killer cell function and the association with viral rebound and HIV DNA following treatment interruption. Front Immunol 2022; 13:878743. [PMID: 36110857 PMCID: PMC9468877 DOI: 10.3389/fimmu.2022.878743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Natural Killer (NK) cells play a key role in controlling HIV replication, with potential downstream impact on the size of the HIV reservoir and likelihood of viral rebound after antiretroviral therapy (ART) cessation. It is therefore important to understand how primary HIV infection (PHI) disrupts NK cell function, and how these functions are restored by early ART. We examined the impact of commencing ART during PHI on phenotypic and functional NK cell markers at treatment initiation (baseline), 3 months, 1 year, and 2 years in seven well-characterised participants in comparison to HIV seronegative volunteers. We then examined how those NK cell properties differentially impacted by ART related to time to viral rebound and HIV DNA levels in 44 individuals from the SPARTAC trial who stopped ART after 48 weeks treatment, started during PHI. NK cell markers that were significantly different between the seven people with HIV (PWH) treated for 2 years and HIV uninfected individuals included NKG2C levels in CD56dim NK cells, Tim-3 expression in CD56bright NK cells, IFN-γ expressed by CD56dim NK cells after IL-12/IL-18 stimulation and the fraction of Eomes-/T-bet+ in CD56dim and CD56bright NK cells. When exploring time to viral rebound after stopping ART among the 44 SPARTAC participants, no single NK phenotypic marker correlated with control. Higher levels of IL-12/IL-18 mediated NK cell degranulation at baseline were associated with longer times to viral rebound after treatment interruption (P=0.028). Additionally, we found higher fractions of CD56dim NK cells in individuals with lower levels of HIV DNA (P=0.048). NKG2A and NKp30 levels in CD56neg NK cells were higher in patients with lower HIV DNA levels (p=0.00174, r=-0.49 and p=0.03, r= -0.327, respectively) while CD27 levels were higher in those with higher levels of HIV DNA (p=0.026). These data show NK cell functions are heterogeneously impacted by HIV infection with a mixed picture of resolution on ART, and that while NK cells may affect HIV DNA levels and time to viral rebound, no single NK cell marker defined delayed viral rebound.
Collapse
Affiliation(s)
- Matthew Pace
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jacob Hurst
- Etcembly Ltd, Harwell Campus, Didcot, United Kingdom
| | - Nicola Robinson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John P. Thornhill
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mathew Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anele Waters
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Julianne Lwanga
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Kristen Kuldanek
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Rebecca Hall
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | | | - Genevieve E. Martin
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Helen Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nneka Nwokolo
- Department of HIV/GUM, Chelsea and Westminster Hospital, London, United Kingdom
| | - Dimitra Peppa
- Division of Infection and Immunity, University College, London, United Kingdom
| | - Julie Fox
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Sarah Fidler
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research (NIHR) Imperial College Biomedical Research Centre, London, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
21
|
Styles TM, Gangadhara S, Reddy PBJ, Sahoo A, Shiferaw A, Welbourn S, Kozlowski PA, Derdeyn CA, Velu V, Amara RR. V2 hotspot optimized MVA vaccine expressing stabilized HIV-1 Clade C envelope Gp140 delays acquisition of heterologous Clade C Tier 2 challenges in Mamu-A*01 negative Rhesus Macaques. Front Immunol 2022; 13:914969. [PMID: 35935987 PMCID: PMC9353326 DOI: 10.3389/fimmu.2022.914969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stabilized HIV envelope (Env) trimeric protein immunogens have been shown to induce strong autologous neutralizing antibody response. However, there is limited data on the immunogenicity and efficacy of stabilized Env expressed by a viral vector-based immunogen. Here, we compared the immunogenicity and efficacy of two modified vaccinia Ankara (MVA) vaccines based on variable loop 2 hotspot (V2 HS) optimized C.1086 envelope (Env) sequences, one expressing the membrane anchored gp150 (MVA-150) and the other expressing soluble uncleaved pre-fusion optimized (UFO) gp140 trimer (MVA-UFO) in a DNA prime/MVA boost approach against heterologous tier 2 SHIV1157ipd3N4 intrarectal challenges in rhesus macaques (RMs). Both MVA vaccines also expressed SIVmac239 Gag and form virus-like particles. The DNA vaccine expressed SIVmac239 Gag, C.1086 gp160 Env and rhesus CD40L as a built-in adjuvant. Additionally, all immunizations were administered intradermally (ID) to reduce induction of vaccine-specific IFNγ+ CD4 T cell responses. Our results showed that both MVA-150 and MVA-UFO vaccines induce comparable Env specific IgG responses in serum and rectal secretions. The vaccine-induced serum antibody showed ADCC and ADCVI activities against the challenge virus. Comparison with a previous study that used similar immunogens via intramuscular route (IM) showed that ID immunizations induced markedly lower SHIV specific CD4 and CD8 T cell responses compared to IM immunizations. Following challenge, MVA-UFO vaccinated animals showed a significant delay in acquisition of SHIV1157ipd3N4 infection but only in Mamu-A*01 negative macaques with an estimated vaccine efficacy of 64% per exposure. The MVA-150 group also showed a trend (p=0.1) for delay in acquisition of SHIV infection with an estimated vaccine efficacy of 57%. The vaccine-induced IFNγ secreting CD8 T cell responses showed a direct association and CD4 T cells showed an inverse association with delay in acquisition of SHIV infection. These results demonstrated that both MVA-150 and MVA-UFO immunogens induce comparable humoral and cellular immunity and the latter provides marginally better protection against heterologous tier 2 SHIV infection. They also demonstrate that DNA/MVA vaccinations delivered by ID route induce better antibody and lower CD4 and CD8 T cell responses compared to IM.
Collapse
Affiliation(s)
- Tiffany M. Styles
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Pradeep B. J. Reddy
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Anusmita Sahoo
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ayalensh Shiferaw
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Sarah Welbourn
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Cynthia A. Derdeyn
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Vijayakumar Velu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Rama Rao Amara
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Rama Rao Amara,
| |
Collapse
|
22
|
Zhang L, Li Z, Tang Z, Han L, Wei X, Xie X, Ren S, Meng K, Liu Y, Xu M, Qi L, Chen H, Wu J, Zhang N. Efficient Identification of Tembusu Virus CTL Epitopes in Inbred HBW/B4 Ducks Using a Novel MHC Class I-Restricted Epitope Screening Scheme. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:145-156. [PMID: 35623661 DOI: 10.4049/jimmunol.2100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The identification of MHC class I-restricted CTL epitopes in certain species, particularly nonmammals, remains a challenge. In this study, we developed a four-step identification scheme and confirmed its efficiency by identifying the Anpl-UAA*76-restricted CTL epitopes of Tembusu virus (TMUV) in inbred haplotype ducks HBW/B4. First, the peptide binding motif of Anpl-UAA*76 was determined by random peptide library in de novo liquid chromatography-tandem mass spectrometry, a novel nonbiased, data-independent acquisition method that we previously established. Second, a total of 38 TMUV peptides matching the motif were screened from the viral proteome, among which 11 peptides were conserved across the different TMUV strains. Third, the conserved TMUV peptides were refolded in vitro with Anpl-UAA*76 and Anpl-β2-microglobulin to verify the results from the previous two steps. To clarify the structural basis of the obtained motif, we resolved the crystal structure of Anpl-UAA*76 with the TMUV NS3 peptide LRKRQLTVL and found that Asp34 is critical for the preferential binding of the B pocket to bind the second residue to arginine as an anchor residue. Fourth, the immunogenicity of the conserved TMUV peptides was tested in vivo using specific pathogen-free HBW/B4 ducks immunized with the attenuated TMUV vaccine. All 11 conserved TMUV epitopes could bind stably to Anpl-UAA*76 in vitro and stimulate the secretion of IFN-γ and lymphocyte proliferation, and three conserved and one nonconserved peptides were selected to evaluate the CTL responses in vivo by flow cytometry and their tetramers. We believe that this new scheme could improve the identification of MHC class I-restricted CTL epitopes, and our data provide a foundation for further study on duck anti-TMUV CTL immunity.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziche Tang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lingxia Han
- Division of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoli Xie
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaimeng Ren
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Kai Meng
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yueyue Liu
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Minli Xu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lihong Qi
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Chen
- Division of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China;
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China;
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Nii-Trebi NI, Matsuoka S, Kawana-Tachikawa A, Bonney EY, Abana CZ, Ofori SB, Mizutani T, Ishizaka A, Shiino T, Ohashi J, Naruse TK, Kimura A, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Super high-resolution single-molecule sequence-based typing of HLA class I alleles in HIV-1 infected individuals in Ghana. PLoS One 2022; 17:e0269390. [PMID: 35653364 PMCID: PMC9162337 DOI: 10.1371/journal.pone.0269390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Polymorphisms in human leukocyte antigen (HLA) class I loci are known to have a great impact on disease progression in HIV-1 infection. Prevailing HIV-1 subtypes and HLA genotype distribution are different all over the world, and the HIV-1 and host HLA interaction could be specific to individual areas. Data on the HIV-1 and HLA interaction have been accumulated in HIV-1 subtype B- and C-predominant populations but not fully obtained in West Africa where HIV-1 subtype CRF02_AG is predominant. In the present study, to obtain accurate HLA typing data for analysis of HLA association with disease progression in HIV-1 infection in West African populations, HLA class I (HLA-A, -B, and -C) four-digit allele typing was performed in treatment-naïve HIV-1 infected individuals in Ghana (n = 324) by a super high-resolution single-molecule sequence-based typing (SS-SBT) using next-generation sequencing. Comparison of the SS-SBT-based data with those obtained by a conventional sequencing-based typing (SBT) revealed incorrect assignment of several alleles by SBT. Indeed, HLA-A*23:17, HLA-B*07:06, HLA-C*07:18, and HLA-C*18:02 whose allele frequencies were 2.5%, 0.9%, 4.3%, and 3.7%, respectively, were not determined by SBT. Several HLA alleles were associated with clinical markers, viral load and CD4+ T-cell count. Of note, the impact of HLA-B*57:03 and HLA-B*58:01, known as protective alleles against HIV-1 subtype B and C infection, on clinical markers was not observed in our cohort. This study for the first time presents SS-SBT-based four-digit typing data on HLA-A, -B, and -C alleles in Ghana, describing impact of HLA on viral load and CD4 count in HIV-1 infection. Accumulation of these data would facilitate high-resolution HLA genotyping, contributing to our understanding of the HIV-1 and host HLA interaction in Ghana, West Africa.
Collapse
Affiliation(s)
- Nicholas I. Nii-Trebi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christopher Z. Abana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson B. Ofori
- Department of Medicine, Koforidua Government Hospital, Eastern Region, Ghana
| | | | - Aya Ishizaka
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, Tokyo, Japan
| | - Taeko K. Naruse
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Kiyono
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - William K. Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- * E-mail: (WKA); (TM)
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (WKA); (TM)
| |
Collapse
|
24
|
Hierarchy of multiple viral CD8+ T-cell epitope mutations in sequential selection in simian immunodeficiency infection. Biochem Biophys Res Commun 2022; 607:124-130. [DOI: 10.1016/j.bbrc.2022.03.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
|
25
|
Wang B, Zhu F, Shi Z, Huang Z, Sun R, Wang Q, Ouyang G, Ji W. Molecular characteristics, polymorphism and expression analysis of mhc Ⅱ in yellow catfish(pelteobagrus fulvidraco)responding to Flavobacterium columnare infection. FISH & SHELLFISH IMMUNOLOGY 2022; 125:90-100. [PMID: 35483597 DOI: 10.1016/j.fsi.2022.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The major histocompatibility complex (MHC) is an important component of the immune system of vertebrates, which plays a vital role in presenting extrinsic antigens. In this study, we cloned and characterized the mhc ⅡA and mhc ⅡB genes of yellow catfish Pelteobagrus fulvidraco. The open reading frames (ORFs) of mhc ⅡA and mhc ⅡB genes were 708 bp and 747bp in length, encoding 235 and 248 amino acids, respectively. The structure of mhc ⅡA and mhc ⅡB includes a signal peptide, an α1/β1 domain, an α2/β2 domain, a transmembrane region and a cytoplasmic region. Homologous identity analysis revealed that both mhc ⅡA and mhc ⅡB shared high protein sequence similarity with that of Chinese longsnout catfish Leiocassis longirostris. mhc ⅡA and mhc ⅡB showed similar expression patterns in different tissues, with the higher expression level in spleen, head kidney and gill and lower expression in liver, stomach, gall bladder and heart. The mRNA expression level of mhc ⅡA and mhc ⅡB in different embryonic development stages also showed the similar trends. The higher expression was detected from fertilized egg to 32 cell stage, low expression from multicellular period to 3 days post hatching (dph), and then the expression increased to a higher level from 4 dph to 14 dph. The mRNA expression levels of mhc ⅡA and mhc ⅡB were significantly up-regulated not only in the body kidney and spleen, but also in the midgut, hindgut, liver and gill after challenge of Flavobacterium columnare. The results suggest that Mhc Ⅱ plays an important role in the anti-infection process of yellow catfish P. fulvidraco.
Collapse
Affiliation(s)
- Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangzheng Zhu
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Ouyang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Lee CA, Hirsch VM. Mutation in the Disordered Linker Region of Capsid Disrupts Viral Kinetics of a Neuropathogenic SIV in Rhesus Macaques. Microbiol Spectr 2022; 10:e0047822. [PMID: 35297654 PMCID: PMC9045278 DOI: 10.1128/spectrum.00478-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
TRIM5α polymorphism in rhesus macaques (RM) limits the genetic pool of animals in which we can perform simian immunodeficiency virus (SIV) studies without first screening animals for permissive TRIM5α genotypes. We have previously shown that polymorphisms in the TRIM5α B30.2/SPRY domain impact the level of SIVsmm viremia in RM and that amino acid substitutions (P37S/R98S) in the capsid N-terminal domain (CA-NTD) enables the virus to overcome restriction in RMs with the restrictive homozygous TRIM5αTFP/TFP genotype. Since this genotype also negatively impacted the development of central nervous system (CNS) lesions in animals infected with the parental source of CL757, we sought to generate a TRIM5αTFP/TFP-resistant clone, SIV-804E-CL757-P37S/R98S (CL757-SS), using a similar strategy. Unexpectedly, viral replication of CL757-SS was impaired in RMs with either the permissive TRIM5αTFP/Q or the restrictive TRIM5αTFP/TFP genotype. Analysis of the virus which emerged in the latter animals led to the discovery of a preexisting mutation relative to other SIVs. This P146T substitution in a conserved disordered linker region in the C-terminal domain of capsid (CA-CTD) has been shown to inhibit proper formation of HIV-1 capsid particles. Restoration of this residue to proline in the context of the TRIM5α-SS escape mutations not only restored viral replication, but also enhanced the infectivity of our previously reported neurotropic clone, even in RMs with permissive TRIM5α genotypes. IMPORTANCE SIV infection of rhesus macaques has become a valuable model for the development of AIDS vaccines and antiretroviral therapies. Polymorphisms in the rhesus macaque TRIM5α gene can affect SIV replication, making it necessary to genetically screen macaques for TRIM5α alleles that are permissive for SIV replication. This limits the pool of animals that can be used in a study, thereby making the acquisition of animals needed to fulfill study parameters difficult. We have constructed a viral clone that induces neuroAIDS in rhesus macaques regardless of their TRIM5α genotype, while also highlighting the important role the disordered linker domain plays in viral infectivity.
Collapse
Affiliation(s)
- Cheri A. Lee
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanessa M. Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Pymm P, Tenzer S, Wee E, Weimershaus M, Burgevin A, Kollnberger S, Gerstoft J, Josephs TM, Ladell K, McLaren JE, Appay V, Price DA, Fugger L, Bell JI, Schild H, van Endert P, Harkiolaki M, Iversen AKN. Epitope length variants balance protective immune responses and viral escape in HIV-1 infection. Cell Rep 2022; 38:110449. [PMID: 35235807 PMCID: PMC9631117 DOI: 10.1016/j.celrep.2022.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/31/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.
Collapse
Affiliation(s)
- Phillip Pymm
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Walter and Eliza Hall Institute of Medical Research, University of Melbourne, 1G Royalparade, Parkville, VIC 3052, Australia
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edmund Wee
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Anne Burgevin
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Victor Appay
- Institut National de la Santé et de la Recherche Médicale, Unité 1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Boulevard de l'Hopital, 75013 Paris, France; International Research Center of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Tenovus Building, CF14 4XN Cardiff, UK
| | - Lars Fugger
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DS Oxford, UK
| | - John I Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Maria Harkiolaki
- Structural Biology Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK.
| |
Collapse
|
28
|
Zacharopoulou P, Marchi E, Ogbe A, Robinson N, Brown H, Jones M, Parolini L, Pace M, Grayson N, Kaleebu P, Rees H, Fidler S, Goulder P, Klenerman P, Frater J. Expression of type I interferon-associated genes at antiretroviral therapy interruption predicts HIV virological rebound. Sci Rep 2022; 12:462. [PMID: 35013427 PMCID: PMC8748440 DOI: 10.1038/s41598-021-04212-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Although certain individuals with HIV infection can stop antiretroviral therapy (ART) without viral load rebound, the mechanisms under-pinning 'post-treatment control' remain unclear. Using RNA-Seq we explored CD4 T cell gene expression to identify evidence of a mechanism that might underpin virological rebound and lead to discovery of associated biomarkers. Fourteen female participants who received 12 months of ART starting from primary HIV infection were sampled at the time of stopping therapy. Two analysis methods (Differential Gene Expression with Gene Set Enrichment Analysis, and Weighted Gene Co-expression Network Analysis) were employed to interrogate CD4+ T cell gene expression data and study pathways enriched in post-treatment controllers versus early rebounders. Using independent analysis tools, expression of genes associated with type I interferon responses were associated with a delayed time to viral rebound following treatment interruption (TI). Expression of four genes identified by Cox-Lasso (ISG15, XAF1, TRIM25 and USP18) was converted to a Risk Score, which associated with rebound (p < 0.01). These data link transcriptomic signatures associated with innate immunity with control following stopping ART. The results from this small sample need to be confirmed in larger trials, but could help define strategies for new therapies and identify new biomarkers for remission.
Collapse
Affiliation(s)
- P Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Marchi
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - A Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - N Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - N Grayson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - P Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | - H Rees
- Wits Reproductive Health and HIV Institute of the University of the Witwatersrand in Johannesburg, Johannesburg, South Africa
| | - S Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
- Imperial College NIHR Biomedical Research Centre, London, UK
| | - P Goulder
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - P Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Biomedical Research Centre, Oxford, UK
| | - J Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- National Institute of Health Research Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
29
|
Miyamae J, Okano M, Nishiya K, Katakura F, Kulski JK, Moritomo T, Shiina T. Haplotype structures and polymorphisms of dog leukocyte antigen (DLA) class I loci shaped by intralocus and interlocus recombination events. Immunogenetics 2022; 74:245-259. [PMID: 34993565 DOI: 10.1007/s00251-021-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022]
Abstract
The dog leukocyte antigen (DLA) class I genomic region is located on chromosome 12, and the class I genomic region is composed of at least two distinct haplotypic gene structures, DLA-88-DLA-12 and DLA-88-DLA-88L. However, detailed information of the genomic differences among DLA-88, DLA-12, and DLA-88L are still lacking at the full-length gene level, and therefore, DLA allelic sequences classified for each of these loci are limited in number so far. In this study, we determined the DNA sequence of a 95-kb DLA class I genomic region including DLA-88, DLA-12/88L, and DLA-64 with three DLA homozygous dogs and of 37 full-length allelic gene sequences for DLA-88 and DLA-12/88L loci in 26 DLA class I homozygous dogs. Nucleotide diversity profiles of the 95-kb regions and sequence identity scores of the allelic sequences suggested that DLA-88L is a hybrid gene generated by interlocus and/or intralocus gene conversion between DLA-88 and DLA-12. The putative minimum conversion tract was estimated to be at least an 850-bp segment in length located from the 5´flanking untranslated region to the end of intron 2. In addition, at least one DLA-12 allele (DLA-12*004:01) was newly generated by interlocus gene conversion. In conclusion, the analysis for the occurrence of gene conversion within the dog DLA class I region revealed intralocus gene conversion tracts in 17 of 27 DLA-88 alleles and two of 10 DLA-12 alleles, suggesting that intralocus gene conversion has played an important role in expanding DLA allelic variations.
Collapse
Affiliation(s)
- Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan.
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kohei Nishiya
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Jerzy K Kulski
- Discipline of Psychiatry, Medical School, The University of Western Australia, Crawley, WA, Australia
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| |
Collapse
|
30
|
Kanno Y, Hau TTT, Kurokawa R, Nomura T, Nishizawa M, Matano T, Yamamoto H. Late-phase dominance of a single epitope-specific CD8+ T-cell response in passive neutralizing antibody-infused simian immunodeficiency virus controllers. AIDS 2021; 35:2281-2288. [PMID: 34224443 DOI: 10.1097/qad.0000000000003013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Analysis of the quantity and quality of epitope-specific CD8+ T-cell responses is crucial for understanding the mechanism of HIV/simian immunodeficiency virus (SIV) replication control. We have previously shown that acute-phase passive infusion of neutralizing antibodies (NAbs) results in augmented broad T-cell responses and robust SIVmac239 control in rhesus macaques. Analyzing long-term dynamics of CD8+ T-cell responses in these SIV controllers provides important insights into designing lasting anti-HIV immunity. DESIGN We analyzed dynamics and metabolic/functional profiles of SIV-specific CD8+ T-cell responses in rhesus macaques that controlled SIVmac239 replication following acute-phase passive NAb infusion. METHODS SIV epitope-specific CD8+ T-cell responses in peripheral blood at multiple chronic-phase time points were investigated in four passive NAb-infused SIV controllers. In particular, expression patterns of Eomesodermin (Eomes), phosphorylated AMP kinase (pAMPK), CD28 and programmed death-1 (PD-1) were examined. RESULTS In the NAb-infused SIV controllers, a single epitope-specific CD8+ T-cell response detected from acute infection and maintaining low levels up to year 1 showed a surge thereafter, up to year 2 postchallenge. Retention of an effector-skewed and unexhausted Eomes-high/pAMPK-low/CD28-negative/PD-1-low subpopulation in these epitope-specific CD8+ T cells implicated their front-line commitment in residual viral replication control. CONCLUSION In long-term SIV control following acute-phase passive NAb infusion, a single-epitope, high-quality CTL response was dominantly induced in the chronic phase. These results likely describe one favorable pattern of immunodominant epitope-specific CD8+ T-cell preservation and suggest the importance of incorporating metabolic marker signatures for understanding NAb/T-cell synergism-based HIV/SIV control.
Collapse
Affiliation(s)
- Yoshiaki Kanno
- AIDS Research Center, National Institute of Infectious Diseases
- The Institute of Medical Science, The University of Tokyo, Tokyo
| | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Rise Kurokawa
- AIDS Research Center, National Institute of Infectious Diseases
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases
| | | | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases
- The Institute of Medical Science, The University of Tokyo, Tokyo
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
31
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
32
|
Immunology and controlling of coronaviruses; the current enemy for humanity: A review. Int J Biol Macromol 2021; 193:1532-1540. [PMID: 34732305 PMCID: PMC8557928 DOI: 10.1016/j.ijbiomac.2021.10.216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022]
Abstract
The Severe Acute Respiratory Syndrome-related Coronavirus 2 (COVID-19 or SARS-CoV-2) epidemic is professed as world disaster producing a worrying increasing mortality, particularly amongst vulnerable humans worldwide. Whether COVID-19 has a strong ability for acceptable genetic flexibility that amended for breaking immune responses quickly, it is critical to understand the adaptation mechanism between viruses and hosts that allows individuals to follow viral development. This can contribute to finding the appropriate treatment to combat the epidemic. However, the present information about viral adaptation mechanisms in hosts is still insufficient, and future investigations may reveal the unknown. Mutations and genetic variations are naturally occurring; however, the current knowledge about their mechanism and pathways still has many secrets. The present review also provides insights into the immune system, immunological memory, and the development of the COVID-19 vaccine. Other fighting methods against COVID-19 are also highlighted. The potential of antibodies, natural metabolites, and current suggest vaccines were applied to the face of this new threat.
Collapse
|
33
|
La Porta CAM, Zapperi S. Immune Profile of SARS-CoV-2 Variants of Concern. Front Digit Health 2021; 3:704411. [PMID: 34713175 PMCID: PMC8521889 DOI: 10.3389/fdgth.2021.704411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023] Open
Abstract
The spread of the current Sars-Cov-2 pandemics leads to the development of mutations that are constantly monitored because they could affect the efficacy of vaccines. Three recently identified mutated strains, known as variants of concern, are rapidly spreading worldwide. Here, we study possible effects of these mutations on the immune response to Sars-Cov-2 infection using NetTepi a computational method based on artificial neural networks that considers binding and stability of peptides obtained by proteasome degradation for widely represented HLA class I alleles present in human populations as well as the T-cell propensity of viral peptides that measures their immune response. Our results show variations in the number of potential highly ranked peptides ranging between 0 and 20% depending on the specific HLA allele. The results can be useful to design more specific vaccines.
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, University of Milan, Milan, Italy.,Department of Environmental Science and Policy, University of Milan, Milan, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Genoa, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, Milan, Italy.,Department of Physics, University of Milan, Milan, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Milan, Italy
| |
Collapse
|
34
|
Okamura T, Shimizu Y, Asaka MN, Kanuma T, Tsujimura Y, Yamamoto T, Matsuo K, Yasutomi Y. Long-term protective immunity induced by an adjuvant-containing live-attenuated AIDS virus. NPJ Vaccines 2021; 6:124. [PMID: 34686680 PMCID: PMC8536741 DOI: 10.1038/s41541-021-00386-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
The use of an adjuvant in vaccination is thought to be effective for enhancing immune responses to various pathogens. We genetically constructed a live attenuated simian human immunodeficiency virus (SHIV) to express the adjuvant molecule Ag85B (SHIV-Ag85B). SHIV-Ag85B could not be detected 4 weeks after injection in cynomolgus macaques, and strong SHIV-specific T cell responses were induced in these macaques. When the macaques in which SHIV-Ag85B had become undetectable were challenged with pathogenic SHIV89.6P at 37 weeks after SHIV-Ag85B had become undetectable, SHIV89.6P was not detected after the challenge. Eradication of SHIV89.6P was confirmed by adoptive transfer experiments and CD8-depletion studies. The SHIV-Ag85B-inoculated macaques showed enhancement of Gag-specific monofunctional and polyfunctional CD8+ T cells in the acute phase of the pathogenic SHIV challenge. The results suggest that SHIV-Ag85B elicited strong sterile immune responses against pathogenic SHIV and that it may lead to the development of a vaccine for AIDS virus infection.
Collapse
Affiliation(s)
- Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Yuya Shimizu
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Masamitsu N Asaka
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Tomohiro Kanuma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan. .,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie, 514-8507, Japan.
| |
Collapse
|
35
|
Perera Molligoda Arachchige AS. NK cell-based therapies for HIV infection: Investigating current advances and future possibilities. J Leukoc Biol 2021; 111:921-931. [PMID: 34668588 DOI: 10.1002/jlb.5ru0821-412rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NK cells are well-known for their antiviral functions. Also, their role in HIV has been well established, with rapid responses elicited during early HIV infection. Most immune cells including CD4+ T cells, monocytes, Mϕs, and dendritic cells are readily infected by HIV. Recent evidence from multiple studies has suggested that similar to these cells, in chronic conditions like HIV, NK cells also undergo functional exhaustion with impaired cytotoxicity, altered cytokine production, and impaired ADCC. NK-based immunotherapy aims to successfully restore, boost, and modify their activity as has been already demonstrated in the field of cancer immunotherapy. The utilization of NK cell-based strategies for the eradication of HIV from the body provides many advantages over classical ART. The literature search consisted of manually selecting the most relevant studies from databases including PubMed, Embase, Google Scholar, and ClinicalTrial.gov. Some of the treatments currently under consideration are CAR-NK cell therapy, facilitating ADCC, TLR agonists, bNAbs, and BiKEs/TriKEs, blocking inhibitory NK receptors during infection, IL-15 and IL-15 superagonists (eg: ALT-803), and so on. This review aims to discuss the NK cell-based therapies currently under experimentation against HIV infection and finally highlight the challenges associated with NK cell-based immunotherapies.
Collapse
|
36
|
Potential Utility of Natural Killer Cells for Eliminating Cells Harboring Reactivated Latent HIV-1 Following the Removal of CD8 + T Cell-Mediated Pro-Latency Effect(s). Viruses 2021; 13:v13081451. [PMID: 34452317 PMCID: PMC8402732 DOI: 10.3390/v13081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
An impediment to curing HIV-1 infection is the persistence of latently infected cells in ART-treated people living with HIV (PLWH). A key strategy for curing HIV-1 infection is to activate transcription and translation of latent virus using latency reversing agents (LRAs) and eliminate cells harboring reactivated virus via viral cytopathic effect or immune clearance. In this review, we provide an overview of available LRAs and their use in clinical trials. Furthermore, we describe recent data suggesting that CD8+ T cells promote HIV-1 latency in the context of ART, even in the presence of LRAs, which might at least partially explain the clinical inefficiency of previous “shock and kill” trials. Here, we propose a novel cure strategy called “unlock, shock, disarm, and kill”. The general premise of this strategy is to shut down the pro-latency function(s) of CD8+ T cells, use LRAs to reverse HIV-1 latency, counteract anti-apoptotic molecules, and engage natural killer (NK) cells to mediate the killing of cells harboring reactivated latent HIV-1.
Collapse
|
37
|
CONNOLLY S, CARLSON JM, SCHAEFER M, BERE A, KILEMBE W, ALLEN S, HUNTER E. HLA-associated preadaptation in HIV Vif is associated with higher set point viral load and faster CD4+ decline in Zambian transmission pairs. AIDS 2021; 35:1157-1165. [PMID: 33710015 PMCID: PMC8546905 DOI: 10.1097/qad.0000000000002868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE S We investigated the relationship between human leukocyte antigen (HLA)-associated preadaptation for the entire subtype C HIV-1 proteome of the transmitted founder virus and subsequent HIV-1 disease progression in a cohort of heterosexual linked transmission pairs in Zambia. DESIGN An adaptation model was used to calculate an adaptation score for each virus-HLA combination in order to quantify the degree of preadaptation of the transmitted virus to the linked recipient's HLA alleles. These scores were then assessed for their relationship to viral load and longitudinal CD4+ decline in the recipient. METHODS Viral RNA was extracted from the plasma of the donor partner and the linked recipient near the time of transmission, as well as longitudinally from the linked recipient. Viral adaptation scores were calculated for each individual and each protein in the subtype C HIV-1 proteome. RESULTS The majority of HLA-associated sites were located in Gag, Pol and Nef; however, proportional to protein length, the accessory and regulatory proteins contained a relatively high proportion of HLA-associated sites. Over the course of infection, HLA-mediated immune adaptation increased for all proteins except Vpu and gp120. Preadaptation was positively associated with higher early set point viral load and faster CD4+ decline. When examined by protein, preadaptation in Pol and Vif were statistically significantly associated with these markers of disease progression. CONCLUSION Adaptation in Pol had the greatest impact on viral control. Despite containing a large proportion of HLA-associated sites, Vif was the only regulatory or accessory protein for which preadaptation significantly correlated with disease progression.
Collapse
Affiliation(s)
- Sarah CONNOLLY
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | - Malinda SCHAEFER
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Alfred BERE
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | - Susan ALLEN
- Zambia–Emory HIV Research Project, Lusaka, Zambia
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Eric HUNTER
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Zambia–Emory HIV Research Project, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
38
|
Smyth M, Khamina K, Popa A, Gudipati V, Agerer B, Lercher A, Kosack L, Endler L, Baazim H, Viczenczova C, Huppa JB, Bergthaler A. Characterization of CD8 T Cell-Mediated Mutations in the Immunodominant Epitope GP33-41 of Lymphocytic Choriomeningitis Virus. Front Immunol 2021; 12:638485. [PMID: 34194424 PMCID: PMC8236698 DOI: 10.3389/fimmu.2021.638485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) represent key immune effectors of the host response against chronic viruses, due to their cytotoxic response to virus-infected cells. In response to this selection pressure, viruses may accumulate escape mutations that evade CTL-mediated control. To study the emergence of CTL escape mutations, we employed the murine chronic infection model of lymphocytic choriomeningitis virus (LCMV). We developed an amplicon-based next-generation sequencing pipeline to detect low frequency mutations in the viral genome and identified non-synonymous mutations in the immunodominant LCMV CTL epitope, GP33-41, in infected wildtype mice. Infected Rag2-deficient mice lacking CTLs did not contain such viral mutations. By using transgenic mice with T cell receptors specific to GP33-41, we characterized the emergence of viral mutations in this epitope under varying selection pressure. We investigated the two most abundant viral mutations by employing reverse genetically engineered viral mutants encoding the respective mutations. These experiments provided evidence that these mutations prevent activation and expansion of epitope-specific CD8 T cells. Our findings on the mutational dynamics of CTL escape mutations in a widely-studied viral infection model contributes to our understanding of how chronic viruses interact with their host and evade the immune response. This may guide the development of future treatments and vaccines against chronic infections.
Collapse
Affiliation(s)
- Mark Smyth
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Venugopal Gudipati
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
39
|
Lahman MC, Paulson KG, Nghiem PT, Chapuis AG. Quality Is King: Fundamental Insights into Tumor Antigenicity from Virus-Associated Merkel Cell Carcinoma. J Invest Dermatol 2021; 141:1897-1905. [PMID: 33863500 DOI: 10.1016/j.jid.2020.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare skin malignancy that is a paradigm cancer for solid tumor immunotherapy. MCCs associated with Merkel cell polyomavirus (virus-positive MCC [VP-MCC]) or chronic UV exposure (virus-negative MCC [VN-MCC]) are anti-PD(L)1 responsive, despite VP-MCC's low mutational burden. This suggests that antigen quality, not merely mutation quantity, dictates immunotherapy responsiveness, and cell-based therapies targeting optimal antigens may be effective. Despite VP-MCC's antigenic homogeneity, diverse T-cell infiltration patterns are observed, implying microenvironment plasticity and multifactorial contributions to immune recognition. Moreover, VP-MCC exemplifies how antitumor adaptive immunity can provide tumor burden biomarkers for early detection and disease monitoring.
Collapse
Affiliation(s)
- Miranda C Lahman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelly G Paulson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Medical Oncology, Swedish Cancer Institute, Seattle, Washington, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Paul T Nghiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aude G Chapuis
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
40
|
Di Pilato M, Palomino-Segura M, Mejías-Pérez E, Gómez CE, Rubio-Ponce A, D'Antuono R, Pizzagalli DU, Pérez P, Kfuri-Rubens R, Benguría A, Dopazo A, Ballesteros I, Sorzano COS, Hidalgo A, Esteban M, Gonzalez SF. Neutrophil subtypes shape HIV-specific CD8 T-cell responses after vaccinia virus infection. NPJ Vaccines 2021; 6:52. [PMID: 33846352 PMCID: PMC8041892 DOI: 10.1038/s41541-021-00314-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.
Collapse
Affiliation(s)
- Mauro Di Pilato
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland. .,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain. .,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Miguel Palomino-Segura
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.,Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carmen E Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Andrea Rubio-Ponce
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Rocco D'Antuono
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Crick Advanced Light Microscopy Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Diego Ulisse Pizzagalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Patricia Pérez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Raphael Kfuri-Rubens
- Center of Integrated Protein Science Munich and Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Oscar S Sorzano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
| | - Santiago F Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| |
Collapse
|
41
|
Agerer B, Koblischke M, Gudipati V, Montaño-Gutierrez LF, Smyth M, Popa A, Genger JW, Endler L, Florian DM, Mühlgrabner V, Graninger M, Aberle SW, Husa AM, Shaw LE, Lercher A, Gattinger P, Torralba-Gombau R, Trapin D, Penz T, Barreca D, Fae I, Wenda S, Traugott M, Walder G, Pickl WF, Thiel V, Allerberger F, Stockinger H, Puchhammer-Stöckl E, Weninger W, Fischer G, Hoepler W, Pawelka E, Zoufaly A, Valenta R, Bock C, Paster W, Geyeregger R, Farlik M, Halbritter F, Huppa JB, Aberle JH, Bergthaler A. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8 + T cell responses. Sci Immunol 2021; 6:6/57/eabg6461. [PMID: 33664060 PMCID: PMC8224398 DOI: 10.1126/sciimmunol.abg6461] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control. Here, we identified nonsynonymous mutations in MHC-I-restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV-2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding in a cell-free in vitro assay. Reduced MHC-I binding of mutant peptides was associated with decreased proliferation, IFN-γ production and cytotoxic activity of CD8+ T cells isolated from HLA-matched COVID-19 patients. Single cell RNA sequencing of ex vivo expanded, tetramer-sorted CD8+ T cells from COVID-19 patients further revealed qualitative differences in the transcriptional response to mutant peptides. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through point mutations in MHC-I-restricted viral epitopes.
Collapse
Affiliation(s)
- Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Venugopal Gudipati
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Mark Smyth
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jakob-Wendelin Genger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mühlgrabner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Husa
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Lisa Ellen Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Ricard Torralba-Gombau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Sabine Wenda
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Gernot Walder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Erich Pawelka
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Zoufaly
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Department of Pathophysiology and Allergy Research, Division of Immunopathology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria.,Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - René Geyeregger
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
42
|
Hiremath PM, Suri D, Arora K, Shandilya J, Rawat A, Singh S. Human leukocyte antigen B27 and B57 alleles in HIV-infected long-term nonprogressor children. AIDS 2021; 35:703-705. [PMID: 33620877 DOI: 10.1097/qad.0000000000002770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Prabhudev M Hiremath
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
43
|
Mohamed H, Clemen R, Freund E, Lackmann JW, Wende K, Connors J, Haddad EK, Dampier W, Wigdahl B, Miller V, Bekeschus S, Krebs FC. Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection. PLoS One 2021; 16:e0247125. [PMID: 33647028 PMCID: PMC7920340 DOI: 10.1371/journal.pone.0247125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ramona Clemen
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany
| | - Eric Freund
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany
| | - Jan-Wilm Lackmann
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany.,CECAD proteomics facility, University of Cologne, Cologne, Germany
| | - Kristian Wende
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany
| | - Jennifer Connors
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Will Dampier
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vandana Miller
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sander Bekeschus
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology Greifswald (INP), Greifswald, Germany
| | - Fred C Krebs
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
44
|
Oyarzun P, Kashyap M, Fica V, Salas-Burgos A, Gonzalez-Galarza FF, McCabe A, Jones AR, Middleton D, Kobe B. A Proteome-Wide Immunoinformatics Tool to Accelerate T-Cell Epitope Discovery and Vaccine Design in the Context of Emerging Infectious Diseases: An Ethnicity-Oriented Approach. Front Immunol 2021; 12:598778. [PMID: 33717077 PMCID: PMC7952308 DOI: 10.3389/fimmu.2021.598778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/11/2021] [Indexed: 01/06/2023] Open
Abstract
Emerging infectious diseases (EIDs) caused by viruses are increasing in frequency, causing a high disease burden and mortality world-wide. The COVID-19 pandemic caused by the novel SARS-like coronavirus (SARS-CoV-2) underscores the need to innovate and accelerate the development of effective vaccination strategies against EIDs. Human leukocyte antigen (HLA) molecules play a central role in the immune system by determining the peptide repertoire displayed to the T-cell compartment. Genetic polymorphisms of the HLA system thus confer a strong variability in vaccine-induced immune responses and may complicate the selection of vaccine candidates, because the distribution and frequencies of HLA alleles are highly variable among different ethnic groups. Herein, we build on the emerging paradigm of rational epitope-based vaccine design, by describing an immunoinformatics tool (Predivac-3.0) for proteome-wide T-cell epitope discovery that accounts for ethnic-level variations in immune responsiveness. Predivac-3.0 implements both CD8+ and CD4+ T-cell epitope predictions based on HLA allele frequencies retrieved from the Allele Frequency Net Database. The tool was thoroughly assessed, proving comparable performances (AUC ~0.9) against four state-of-the-art pan-specific immunoinformatics methods capable of population-level analysis (NetMHCPan-4.0, Pickpocket, PSSMHCPan and SMM), as well as a strong accuracy on proteome-wide T-cell epitope predictions for HIV-specific immune responses in the Japanese population. The utility of the method was investigated for the COVID-19 pandemic, by performing in silico T-cell epitope mapping of the SARS-CoV-2 spike glycoprotein according to the ethnic context of the countries where the ChAdOx1 vaccine is currently initiating phase III clinical trials. Potentially immunodominant CD8+ and CD4+ T-cell epitopes and population coverages were predicted for each population (the Epitope Discovery mode), along with optimized sets of broadly recognized (promiscuous) T-cell epitopes maximizing coverage in the target populations (the Epitope Optimization mode). Population-specific epitope-rich regions (T-cell epitope clusters) were further predicted in protein antigens based on combined criteria of epitope density and population coverage. Overall, we conclude that Predivac-3.0 holds potential to contribute in the understanding of ethnic-level variations of vaccine-induced immune responsiveness and to guide the development of epitope-based next-generation vaccines against emerging pathogens, whose geographic distributions and populations in need of vaccinations are often well-defined for regional epidemics.
Collapse
Affiliation(s)
- Patricio Oyarzun
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Manju Kashyap
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Victor Fica
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | | | - Faviel F Gonzalez-Galarza
- Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Antony McCabe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Derek Middleton
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
45
|
Huot N, Rascle P, Petitdemange C, Contreras V, Stürzel CM, Baquero E, Harper JL, Passaes C, Legendre R, Varet H, Madec Y, Sauermann U, Stahl-Hennig C, Nattermann J, Saez-Cirion A, Le Grand R, Keith Reeves R, Paiardini M, Kirchhoff F, Jacquelin B, Müller-Trutwin M. SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nat Commun 2021; 12:1282. [PMID: 33627642 PMCID: PMC7904927 DOI: 10.1038/s41467-021-21402-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.
Collapse
Affiliation(s)
- Nicolas Huot
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Caroline Petitdemange
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | | | - Eduard Baquero
- grid.462718.eInstitut Pasteur, Unité de Virologie Structurale, Paris, France
| | - Justin L. Harper
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Caroline Passaes
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Rachel Legendre
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- grid.428999.70000 0001 2353 6535Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Yoann Madec
- grid.428999.70000 0001 2353 6535 Institut Pasteur; Epidemiology of Emerging Diseases Unit, Paris, France
| | - Ulrike Sauermann
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Christiane Stahl-Hennig
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Jacob Nattermann
- grid.452463.2Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Germany; German Center for Infection Research (DZIF), Bonn, Germany
| | - Asier Saez-Cirion
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - R. Keith Reeves
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Mirko Paiardini
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | | | - Beatrice Jacquelin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Michaela Müller-Trutwin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| |
Collapse
|
46
|
Shkurnikov M, Nersisyan S, Jankevic T, Galatenko A, Gordeev I, Vechorko V, Tonevitsky A. Association of HLA Class I Genotypes With Severity of Coronavirus Disease-19. Front Immunol 2021; 12:641900. [PMID: 33732261 PMCID: PMC7959787 DOI: 10.3389/fimmu.2021.641900] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/02/2021] [Indexed: 01/11/2023] Open
Abstract
Human leukocyte antigen (HLA) class I molecules play a crucial role in the development of a specific immune response to viral infections by presenting viral peptides at the cell surface where they will be further recognized by T cells. In the present manuscript, we explored whether HLA class I genotypes can be associated with the critical course of Coronavirus Disease-19 by searching possible connections between genotypes of deceased patients and their age at death. HLA-A, HLA-B, and HLA-C genotypes of n = 111 deceased patients with COVID-19 (Moscow, Russia) and n = 428 volunteers were identified with next-generation sequencing. Deceased patients were split into two groups according to age at the time of death: n = 26 adult patients aged below 60 and n = 85 elderly patients over 60. With the use of HLA class I genotypes, we developed a risk score (RS) which was associated with the ability to present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides by the HLA class I molecule set of an individual. The resulting RS was significantly higher in the group of deceased adults compared to elderly adults [p = 0.00348, area under the receiver operating characteristic curve (AUC ROC = 0.68)]. In particular, presence of HLA-A*01:01 allele was associated with high risk, while HLA-A*02:01 and HLA-A*03:01 mainly contributed to low risk. The analysis of patients with homozygosity strongly highlighted these results: homozygosity by HLA-A*01:01 accompanied early deaths, while only one HLA-A*02:01 homozygote died before 60 years of age. Application of the constructed RS model to an independent Spanish patients cohort (n = 45) revealed that the score was also associated with the severity of the disease. The obtained results suggest the important role of HLA class I peptide presentation in the development of a specific immune response to COVID-19.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Tatjana Jankevic
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexei Galatenko
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan Gordeev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
- O.M. Filatov City Clinical Hospital, Moscow, Russia
| | | | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
47
|
La Porta CAM, Zapperi S. Estimating the Binding of Sars-CoV-2 Peptides to HLA Class I in Human Subpopulations Using Artificial Neural Networks. Cell Syst 2020; 11:412-417.e2. [PMID: 32916095 PMCID: PMC7488596 DOI: 10.1016/j.cels.2020.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Epidemiological studies show that SARS-CoV-2 infection leads to severe symptoms only in a fraction of patients, but the determinants of individual susceptibility to the virus are still unknown. The major histocompatibility complex (MHC) class I exposes viral peptides in all nucleated cells and is involved in the susceptibility to many human diseases. Here, we use artificial neural networks to analyze the binding of SARS-CoV-2 peptides with polymorphic human MHC class I molecules. In this way, we identify two sets of haplotypes present in specific human populations: the first displays weak binding with SARS-CoV-2 peptides, while the second shows strong binding and T cell propensity. Our work offers a useful support to identify the individual susceptibility to COVID-19 and illustrates a mechanism underlying variations in the immune response to SARS-CoV-2. A record of this paper’s transparent peer review process is included in the Supplemental Information. Binding of SARS-CoV-2 peptides to HLA molecules is computed Weakly or strongly binding haplotypes are identified in human populations Results explain variations in the individual immune response to SARS-CoV-2
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milano 20133, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, Milano 20133, Italy.
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, via Celoria 16, Milano 20133, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, via R. Cozzi 53, Milano 20125, Italy
| |
Collapse
|
48
|
Acevedo-Saenz L, Perdomo-Celis F, Montoya CJ, Velilla PA. Polyfunctional CD8+ T-Cell Response to Autologous Peptides from Protease and Reverse Transcriptase of HIV-1 Clade B. Curr HIV Res 2020; 17:350-359. [PMID: 31622220 DOI: 10.2174/1570162x17666191017105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The diversity of the HIV proteome influences the cellular response and development of an effective vaccine, particularly due to the generation of viral variants with mutations located within CD8+ T-cell epitopes. These mutations can affect the recognition of the epitopes, that may result in the selection of HIV variants with mutated epitopes (autologous epitopes) and different CD8+ T-cell functional profiles. OBJECTIVE To determine the phenotype and functionality of CD8+ T-cell from HIV-infected Colombian patients in response to autologous and consensus peptides derived from HIV-1 clade B protease and reverse transcriptase (RT). METHODS By flow cytometry, we compared the ex vivo CD8+ T-cell responses from HIV-infected patients to autologous and consensus peptides derived from HIV-1 clade B protease and RT, restricted by HLA-B*35, HLA-B*44 and HLA-B*51 alleles. RESULTS Although autologous peptides restricted by HLA-B*35 and HLA-B*44 did not show any differences compared with consensus peptides, we observed the induction of a higher polyfunctional profile of CD8+ T-cells by autologous peptides restricted by HLA-B*51, particularly by the production of interferon-γ and macrophage inflammatory protein-1β. The response by different memory CD8+ T-cell populations was comparable between autologous vs. consensus peptides. In addition, the magnitude of the polyfunctional response induced by the HLA-B*51-restricted QRPLVTIRI autologous epitope correlated with low viremia. CONCLUSION Autologous peptides should be considered for the evaluation of HIV-specific CD8+ Tcell responses and to reveal some relevant epitopes that could be useful for therapeutic strategies aiming to promote polyfunctional CD8+ T-cell responses in a specific population of HIV-infected patients.
Collapse
Affiliation(s)
- Liliana Acevedo-Saenz
- Grupo Inmunovirologia, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigación Enfermería-CES, Facultad de Enfermería, Universidad CES, Medellin, Colombia
| | - Federico Perdomo-Celis
- Grupo Inmunovirologia, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Carlos J Montoya
- Grupo Inmunovirologia, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Paula A Velilla
- Grupo Inmunovirologia, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
49
|
A Single Substitution in gp41 Modulates the Neutralization Profile of SHIV during In Vivo Adaptation. Cell Rep 2020; 27:2593-2607.e5. [PMID: 31141685 DOI: 10.1016/j.celrep.2019.04.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/16/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) maintains a delicate balance between mediating viral entry and escaping antibody neutralization. Adaptation during transmission of neutralization-sensitive Envs with an "open" conformation remains poorly understood. By passaging a replication-competent simian-human immunodeficiency virus carrying a highly neutralization-sensitive Env (SHIVCNE40) in rhesus macaques, we show that SHIVCNE40 develops enhanced replication kinetics associated with neutralization resistance against antibodies and autologous serum. A gp41 substitution, E658K, functions as the major determinant for these properties. Structural modeling and functional verification indicate that the substitution disrupts an intermolecular salt bridge with the neighboring protomer, thereby promoting fusion and facilitating immune evasion. This effect is applicable across diverse HIV-1 subtypes. Our results highlight the critical role of gp41 in shaping the neutralization profile and the overall conformation of Env during viral adaptation. The unique intermolecular salt bridge could potentially be utilized for rational vaccine design involving more stable HIV-1 envelope trimers.
Collapse
|
50
|
Nakamura-Hoshi M, Takahara Y, Matsuoka S, Ishii H, Seki S, Nomura T, Yamamoto H, Sakawaki H, Miura T, Tokusumi T, Shu T, Matano T. Therapeutic vaccine-mediated Gag-specific CD8 + T-cell induction under anti-retroviral therapy augments anti-virus efficacy of CD8 + cells in simian immunodeficiency virus-infected macaques. Sci Rep 2020; 10:11394. [PMID: 32647227 PMCID: PMC7347614 DOI: 10.1038/s41598-020-68267-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Anti-retroviral therapy (ART) can inhibit HIV proliferation but not achieve virus eradication from HIV-infected individuals. Under ART-based HIV control, virus-specific CD8+ T-cell responses are often reduced. Here, we investigated the impact of therapeutic vaccination inducing virus-specific CD8+ T-cell responses under ART on viral control in a macaque AIDS model. Twelve rhesus macaques received ART from week 12 to 32 after simian immunodeficiency virus (SIV) infection. Six of them were vaccinated with Sendai virus vectors expressing SIV Gag and Vif at weeks 26 and 32, and Gag/Vif-specific CD8+ T-cell responses were enhanced and became predominant. All macaques controlled viremia during ART but showed viremia rebound after ART cessation. Analysis of in vitro CD8+ cell ability to suppress replication of autologous lymphocytes-derived SIVs found augmentation of anti-SIV efficacy of CD8+ cells after vaccination. In the vaccinated animals, the anti-SIV efficacy of CD8+ cells at week 34 was correlated positively with Gag-specific CD8+ T-cell frequencies and inversely with rebound viral loads at week 34. These results indicate that Gag-specific CD8+ T-cell induction by therapeutic vaccination can augment anti-virus efficacy of CD8+ cells, which may be insufficient for functional cure but contribute to more stable viral control under ART.
Collapse
Affiliation(s)
- Midori Nakamura-Hoshi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yusuke Takahara
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hiromi Sakawaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | - Tsugumine Shu
- ID Pharma Co., Ltd., 6 Ohkubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|