1
|
Deng H, Zhou W, Wei J, Jin T, Chen Y, Zhu L, Yang H, Lv X. Bone marrow mesenchymal stem cell-derived exosomes alleviating sepsis-induced lung injury by inhibiting ferroptosis of macrophages. Int Immunopharmacol 2025; 158:114789. [PMID: 40367688 DOI: 10.1016/j.intimp.2025.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVE To investigate whether bone marrow mesenchymal stem cells derived exosomes (BMSCs-exo) can alleviate sepsis-induced lung injury and its related mechanism by inhibiting ferroptosis of macrophages. METHODS RAW264.7 cells were first stimulated with lipopolysaccharide (LPS) to observe whether macrophage ferroptosis occurred. After pre-treating BMSCs with the exosome inhibitor GW4869, the lung-protective effect was observed to determine if it was eliminated. Furthermore, BMSCs-exo was extracted to clarify if it could exert effects like BMSCs. Finally, key molecules responsible for the effects were identified through sequencing and other related techniques. RESULTS Following stimulation with LPS, the expression of GPX4 in RAW264.7 cells decreased significantly, while the expression of PTGS2 increased significantly. The intracellular GSH content decreased, while MDA content increased. BMSCs-exo reversed the decrease in GPX4 and increase in PTGS2, increased GSH and decreased MDA. Sequencing revealed that lncRNA SNHG12 in macrophages was significantly upregulated after co-culture with BMSCs-exo. Knockdown of lncRNA SNHG12 in BMSCs via siRNA resulted in a significant decrease in the inhibitory effect on macrophage ferroptosis both in vivo and in vitro. CONCLUSION BMSCs-exo can inhibit macrophage ferroptosis through lncRNA SNHG12, thereby alleviating the sepsis-induced lung injury and improving the survival rate.
Collapse
Affiliation(s)
- Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China; Shanghai Institute of Acupuncture and Anesthesia, Shanghai, 200433, China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China; Shanghai Institute of Acupuncture and Anesthesia, Shanghai, 200433, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China; Shanghai Institute of Acupuncture and Anesthesia, Shanghai, 200433, China
| | - Tian Jin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China; Shanghai Institute of Acupuncture and Anesthesia, Shanghai, 200433, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China; Shanghai Institute of Acupuncture and Anesthesia, Shanghai, 200433, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China; Shanghai Institute of Acupuncture and Anesthesia, Shanghai, 200433, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China; Shanghai Institute of Acupuncture and Anesthesia, Shanghai, 200433, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China; Shanghai Institute of Acupuncture and Anesthesia, Shanghai, 200433, China.
| |
Collapse
|
2
|
Ballirano P, Pacella A, Mirata S, Passalacqua M, Di Carlo MC, Arrizza L, Montereali MR, Scarfì S. Fibrous erionite modifications following THP-1 macrophage phagocytosis: An insight into the mechanisms of interaction with biological systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137546. [PMID: 39954433 DOI: 10.1016/j.jhazmat.2025.137546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Erionite is a ubiquitous natural zeolite, often occurring with fibrous habit, whose strong tumorigenic activity to humans has been certified by its inclusion in the Group 1 Human-Carcinogenic list by the International Agency for Research on Cancer. To date, the reason(s) of erionite toxicity are still unclear, albeit several hypotheses have been proposed. The present work, based on the combined analysis of the chemical and structural modifications of erionite fibres following incubation in human THP-1 macrophages and evaluation of cellular response, indicates that, upon macrophage phagocytosis, a large release of cations is counterbalanced by a significant sequestration of hydronium ions from lysosomes provoking a quick pH dysregulation. This would be restored by the hyperactivation of ATP-dependent proton pumps with significant energy expenditure for the cell, ultimately causing mitochondrial suffering, leading to chronic inflammation and eventually cancer development.
Collapse
Affiliation(s)
- Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy; Rectorial Laboratory Fibres and Inorganic Particulate, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy.
| | - Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, Genova I-16132, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa I-56122, Italy
| | - Mario Passalacqua
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa I-56122, Italy; Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, Genova I-16132, Italy
| | - Maria Cristina Di Carlo
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Lorenzo Arrizza
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome I-00185, Italy
| | - Maria Rita Montereali
- Italian National Agency for New Technologies, ENEA, Casaccia Research Centre, Via Anguillarese 301, S. Maria di Galeria, Rome I-00123, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, Genova I-16132, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa I-56122, Italy
| |
Collapse
|
3
|
Li L, Yang Z, Liu H, He Z, Wen Z, Chen H, Zhang Z, Liu Z, Fan X, Liu L, Chen Y. Exaggerated Lung Inflammation Induced by Lung-Targeted mRNA-LNP Dampens Vaccines against Tuberculosis. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40378077 DOI: 10.1021/acsami.5c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The challenges in developing a tuberculosis (TB) vaccine stem from the complex life cycle of Mycobacterium tuberculosis (Mtb) and various bacterial proteins encoded by approximately 4000 genes. mRNA is easy to design and can accommodate multiple antigens, suggesting that it may be an effective TB vaccine technology. Here, we designed an mRNA encoding Ag85B and ESAT6 that was delivered by lung targeted lipid nanoparticles (LNPlung-mRNAA-E), intending to stimulate lung immunity to combat TB. To enhance the vaccine efficacy, we further cofabricated monophosphoryl lipid A (MPLA) with mRNA to evaluate the adjuvanted mRNA vaccine (LNPlung-mRNAA-E-MPLA). Both vaccines elicited robust CD4+ T cell response, resulting in markedly locally higher production of IFN-γ, TNF-α, and IL-2. As anticipated, the addition of MPLA further enhanced the immunogenicity of LNPlung-mRNAA-E. However, the Mtb challenge experiment showed that LNPlung-mRNAA-E-MPLA neither provided effective protection nor enhanced the immune protection primed by BCG (Bacillus Calmette-Guérin). The subsequent HE staining of the lung revealed that the LNPlung-mRNAA-E-MPLA induced pulmonary inflammation, leading to tissue damage. Moreover, the inflammatory cytokines including IL-6, IL-1β, and MCP-1 were significantly increased and the MPLA additive exacerbated the inflammatory process. Therefore, the lung targeted mRNA vaccine and MPLA adjuvant synergistically induced lung inflammation and weakened protection from Mtb infection. Thus, this work provides valuable implications for developing targeted lung vaccines: Addressing chronic lung inflammation induced by vaccine systems is critical for lung-targeted mRNA vaccines.
Collapse
Affiliation(s)
- Liyan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zeyu Yang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong Liu
- Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Zepeng He
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenfu Wen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Haolin Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhihui Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
- Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou 450046, China
| |
Collapse
|
4
|
van Linge CC, Hulme KD, Peters-Sengers H, Kullberg RF, de Jong MD, Russell CA, de Vos AF, van der Poll T. mTOR inhibition impacts the flagellin-augmented inflammatory and antimicrobial response of human airway epithelial cells to Pseudomonas aeruginosa. PLoS One 2025; 20:e0321462. [PMID: 40338861 PMCID: PMC12061179 DOI: 10.1371/journal.pone.0321462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/06/2025] [Indexed: 05/10/2025] Open
Abstract
OBJECTIVE The airway epithelium provides a first line of defense against pathogens by release of antimicrobial factors and neutrophil-attracting chemokines. Pseudomonas (P.) aeruginosa, a Gram-negative bacterium that expresses flagellin as an important virulence factor, is a common cause of injurious airway inflammation. The aim of our study was to determine the contribution of flagellin to the inflammatory, antimicrobial, and metabolic responses of the airway epithelium to P. aeruginosa. Furthermore, as we previously showed that targeting mTOR limited the glycolytic and inflammatory response induced by flagellin, we assessed the effect of rapamycin on human bronchial epithelial (HBE) cells stimulated with flagellated and non-flagellated P. aeruginosa. METHODS Primary pseudostratified HBE cells, cultured on an air-liquid-interface, were treated on the basolateral side with medium, vehicle or rapamycin, exposed on the apical side with flagellated or flagellin-deficient P. aeruginosa, and analyzed for their inflammatory, antimicrobial, and glycolytic responses. RESULTS Flagellin augmented the P. aeruginosa-induced expression of antimicrobial factors and secretion of chemokines by HBE cells but did not further increase the glycolytic response. Treatment of HBE cells with rapamycin inhibited mTOR activation in general and flagellin-augmented mTOR activation in particular, but did not affect the glycolytic response. Rapamycin, however, diminished the flagellin-augmented inflammatory and antimicrobial response induced by Pseudomonas. CONCLUSIONS These results demonstrate that flagellin is a significant factor that augments the inflammatory and antimicrobial response of human airway epithelial cells upon exposure to P. aeruginosa and suggest that mTOR inhibition by rapamycin in the airway epithelium diminishes these exaggerated responses.
Collapse
Affiliation(s)
- Christine C.A. van Linge
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Katina D. Hulme
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Robert F.J. Kullberg
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A. Russell
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Alex F. de Vos
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Better J, Estiri M, Wetstein M, Pervizaj-Oruqaj L, Malainou C, Ogungbemi-Alt V, Ferrero MR, Langelage M, Kuznetsova I, Vazquez-Armendariz AI, Kimmig L, Pak O, Mansouri S, Savai R, Wilhelm J, Alexopoulos I, Sommer N, Herold S, Matt U. Cell type-specific efferocytosis determines functional plasticity of alveolar macrophages. Sci Immunol 2025; 10:eadl3852. [PMID: 40315300 DOI: 10.1126/sciimmunol.adl3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
Resolution of lung injuries is vital to maintain gas exchange, but there is an increased risk of secondary bacterial infections during this stage. Alveolar macrophages (AMs) are crucial to clear bacteria and control the resolution of inflammation, but environmental cues that switch functional phenotypes of AMs remain incompletely understood. Here, we found that AMs lack the capacity to mount an effective immune response against bacteria during resolution of inflammation. Neutrophil (PMN)-derived myeloperoxidase (MPO) fueled canonical glutaminolysis via the mitochondrial membrane transporter uncoupling protein-2 (UCP2), resulting in decreased mtROS-dependent killing of bacteria and secretion of pro-inflammatory cytokines. MPO-enhanced UCP2 expression inhibited mitochondrial hyperpolarization and boosted efferocytosis irrespective of the presence of bacterial pathogens. Conversely, efferocytosis of other cell types resulted in a distinct anti-inflammatory AM phenotype while maintaining antibacterial phenotypic plasticity. Overall, our findings indicate that the uptake of apoptotic PMNs or MPO switches AMs to prioritize resolution of inflammation over antibacterial responses, a feature that is conserved in murine extrapulmonary macrophages and human AMs.
Collapse
Affiliation(s)
- Julian Better
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Mohammad Estiri
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Michael Wetstein
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Learta Pervizaj-Oruqaj
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christina Malainou
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victoria Ogungbemi-Alt
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Maximiliano Ruben Ferrero
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomedicine Research Institute of Buenos Aires - CONICET-Partner Institute of the Max Planck Society (IBioBA-MPSP), Buenos Aires, Argentina
| | - Martin Langelage
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Irina Kuznetsova
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Lucas Kimmig
- University of Chicago Medicine, Chicago, IL, USA
| | - Oleg Pak
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Siavash Mansouri
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rajkumar Savai
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Natascha Sommer
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ulrich Matt
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
6
|
David C, Verney C, Si-Tahar M, Guillon A. Evaluating the evidence for GM-CSF as a host-directed therapy in respiratory infections. Cytokine 2025; 189:156902. [PMID: 39999678 DOI: 10.1016/j.cyto.2025.156902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Novel therapeutic approaches are needed to treat respiratory infections due to the rising antimicrobial resistance and the lack of effective antiviral therapies. A promising avenue to overcome treatment failure is to develop strategies that target the host immune response rather than the pathogen itself. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a critical role in controlling homeostasis in lungs, alveolar macrophages being the most sensitive cells to GM-CSF signaling. In this review, we discuss the importance of GM-CSF secretion for lung homeostasis and its alteration during respiratory infections. We also present the pre-clinical evidence and clinical investigations evaluating GM-CSF-based treatments (administration or inhibition) as a therapeutic strategy for treating respiratory infections, highlighting both supporting and contradictory findings.
Collapse
Affiliation(s)
- Camille David
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Charles Verney
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France; CHRU de Tours, Service de Médecine Intensive Réanimation, Tours, France.
| |
Collapse
|
7
|
Xie Y, Han J, Wang Q, Fang X, Pan B, Han D, Li J, Shao W, Hong X, Tu W, Geng W, Li W, Tian Z, Chen R, Xu Y, Kan H. Electroacupuncture alleviates diesel exhaust particles-induced inflammatory response in lung through dopamine inhibition of NLRP3 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118184. [PMID: 40222111 DOI: 10.1016/j.ecoenv.2025.118184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Fine particulate matter (PM2.5) remains a major environmental problem both in China and worldwide. Extensive researches have indicated that PM2.5 exposure can lead to various adverse health effects through pulmonary and systemic inflammation, making it crucial to explore effective individual intervention strategies. Electroacupuncture, an ancient Chinese medical treatment, has been proven safe and effective for treating some diseases, however, its potential in preventing PM2.5-induced toxicity remains unclear. This study aimed to explore the potential of electroacupuncture in mitigating pulmonary inflammation induced by diesel exhaust particles (DEP). Electroacupuncture was administered 15 minutes before intratracheal instillation of DEP, and the results showed that it markedly reduced DEP-induced pulmonary inflammation, as evidenced by significantly decreased pro-inflammatory markers at both gene and protein levels in lung, via regulating the macrophage polarization. Further analysis indicated that electroacupuncture promoted the production and release of dopamine from the adrenal medulla of mice, which then translocated to lung via circulation and inhibited the pulmonary NLRP3/caspase-1 signaling pathway. In addition, the time effectiveness experiment suggested that the anti-inflammatory effect of electroacupuncture against DEP can last for 48 hours. These findings suggest that electroacupuncture holds potential as a therapeutic intervention for health issues caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Yuanting Xie
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Qianfeng Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200032, China
| | - Xinyi Fang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Bin Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Dongyang Han
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jingyu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenpu Shao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xiaoqing Hong
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenyue Tu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenye Geng
- Scientific Research Department of Shanghai Medical College, Fudan Zhangjiang Institute, Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Zhanzhuang Tian
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Gasmi M, Hejazi M, Muscella A, Marsigliante S, Sharma A. Aging-associated changes in immunological parameters: Implications for COVID-19 immune response in the elderly. Physiol Rep 2025; 13:e70364. [PMID: 40405557 PMCID: PMC12098970 DOI: 10.14814/phy2.70364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 05/24/2025] Open
Abstract
Aging has a profound impact on the immune system, leading to a gradual decline in its function and increased systemic inflammation, collectively known as immunosenescence and inflammaging. These changes make older adults more susceptible to infections, including COVID-19, and contribute to worse clinical outcomes, such as higher morbidity and mortality rates. This review explores immunological changes associated with aging, including impaired innate immune responses, reduced T- and B-cell function, and altered cytokine profiles. A comprehensive literature search identified relevant studies on the topic, and inclusion criteria focused on studies addressing age-related immune changes and their impact on responses to COVID-19. The findings underscore the need for targeted healthcare strategies to mitigate the negative effects of aging on immunity and improve immune resilience, and ultimately clinical outcomes and quality of life for this vulnerable population.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar SaidTunisTunisia
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA)University of SalentoLecceItaly
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (DiSTeBA)University of SalentoLecceItaly
| | - Aastha Sharma
- Department of Basic and Applied Science, School of Engineering and ScienceUniversity‐GD Goenka University GurugramGurugramIndia
| |
Collapse
|
9
|
Li X, Chen M, Chen T, Xie L, Luo Q, Fan X, Yin Y, Meng S, Jin Z, He Y, Wen Y. The intricate interplay among microbiota, mucosal immunity, and viral infection in the respiratory tract. J Transl Med 2025; 23:488. [PMID: 40301955 PMCID: PMC12042608 DOI: 10.1186/s12967-025-06433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 05/01/2025] Open
Abstract
The mucosal system serves as the primary barrier against respiratory diseases and plays a crucial role in combating viral infections through mucosal immunity. The resident microbial community constitutes the main component of the mucosal system and exerts a significant inhibitory impact on the invasion of exogenous agents. However, the precise relationship between resident microbiota, mucosal immunity, and viral infections remains incomplete. This review aims to summarize the regulatory interactions between the resident microbiota of the mucosal system and innate immune components such as mucosal immunity and trained immunity. By clarifying these complex relationships, this review seeks to identify potential targets for augmenting respiratory disease prevention strategies and developing novel vaccine formulations. Furthermore, we propose the possibility of integrating the fields of microbiome-based therapeutics and vaccine development to create multifunctional vaccine formulations capable of targeting mucosal immunity induction. Such an approach holds great potential in offering novel pathways and strategies for the prevention and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Xinyue Li
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Maohua Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Chen
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Lingxin Xie
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Luo
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyue Fan
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Yin
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Siqin Meng
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Zhixing Jin
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yonglin He
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Yao Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing, PR China.
| |
Collapse
|
10
|
Matsushita M, Muri J, Berest I, Li F, Liu H, Corak B, Zamboni N, Buescher J, Othman A, Corrado M, Cupovic J, Werner S, Kovacs W, Kopf M. Peroxisomes are critical for a unique metabolic demand and survival of alveolar macrophages. Cell Rep 2025; 44:115623. [PMID: 40287943 DOI: 10.1016/j.celrep.2025.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Tissue-resident macrophages (TRMs) populate throughout various tissues, and their homeostatic metabolism is heavily influenced by these microenvironments. Peroxisomes are organelles that contribute to lipid metabolism. However, the involvement of these organelles in the bioenergetics of TRMs remains undetermined. We conducted a developmental screen of TRMs using a conditional peroxisomal biogenesis factor 5 (Pex5) knockout mouse model that lacks functional peroxisomes in all immune cell subsets. Pulmonary alveolar macrophages (AMs) appeared as the only subset of TRMs that required functional peroxisomes for their development. Pex5 deficiency resulted in reduced AM survival due to increased sensitivity to lipotoxicity, in line with an excess accumulation of ceramides. The absence of peroxisomes had a significant effect on overall mitochondrial fitness and altered their metabolic program, allowing them to engage in glycolysis in addition to oxidative phosphorylation. Our results revealed that AMs have a unique metabolic regulation, where peroxisomes play a central role in their homeostatic development and maintenance.
Collapse
Affiliation(s)
- Mai Matsushita
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Muri
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ivan Berest
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Fengqi Li
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Huan Liu
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Basak Corak
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Joerg Buescher
- Metabolomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Alaa Othman
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne and Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jovana Cupovic
- Department of Developmental Immunology, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Werner Kovacs
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Parajuli N, Subedi K, Solone XK, Jiang A, Zhou L, Mi QS. Epigenetic Control of Alveolar Macrophages: Impact on Lung Health and Disease. Cells 2025; 14:640. [PMID: 40358164 PMCID: PMC12071345 DOI: 10.3390/cells14090640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alveolar macrophages (AMs) are immune cells located in the alveoli-the tiny air sacs in the lungs where gas exchange occurs. Their functions are regulated by various epigenetic mechanisms, which are essential for both healthy lung function and disease development. In the lung's microenvironment, AMs play critical roles in immune surveillance, pathogen clearance, and tissue repair. This review examines how epigenetic regulation influences AM functions and their involvement in lung diseases. Key mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs, regulate gene expression in response to environmental signals. In healthy lungs, these modifications enable AMs to quickly respond to inhaled threats. However, when these processes malfunction, they could contribute to diseases such as pulmonary fibrosis, COPD, and pulmonary hypertension. By exploring how epigenetic changes affect AM polarization, plasticity, and immune responses, we can gain deeper insights into their role in lung diseases and open new avenues for treating and preventing respiratory conditions. Ultimately, understanding the epigenetic mechanisms within AMs enhances our knowledge of lung immunology and offers potential for innovative interventions to restore lung health and prevent respiratory diseases.
Collapse
Affiliation(s)
- Nirmal Parajuli
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (N.P.); (K.S.); (X.K.S.); (A.J.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Kalpana Subedi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (N.P.); (K.S.); (X.K.S.); (A.J.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Xzaviar Kaymar Solone
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (N.P.); (K.S.); (X.K.S.); (A.J.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (N.P.); (K.S.); (X.K.S.); (A.J.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (N.P.); (K.S.); (X.K.S.); (A.J.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (N.P.); (K.S.); (X.K.S.); (A.J.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Medicine, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
12
|
Nelson DE, Olszewski MA. Editorial: Exploring the molecular mechanisms that regulate macrophage polarization. Front Immunol 2025; 16:1599215. [PMID: 40308610 PMCID: PMC12041800 DOI: 10.3389/fimmu.2025.1599215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Affiliation(s)
- David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Michal A. Olszewski
- Department of Veterans’ Affairs, Ann Arbor Health System, Ann Arbor, MI, United States
- Division of Pulmonary & Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
13
|
McPeek MK, Martin JR, Gomez JC, Li Y, Dang H, Earp HS, Doerschuk CM. Host responses to S. pneumoniae in wild type and Mertk mutant mice. PLoS One 2025; 20:e0320660. [PMID: 40238852 PMCID: PMC12002534 DOI: 10.1371/journal.pone.0320660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/23/2025] [Indexed: 04/18/2025] Open
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. Mertk is a receptor tyrosine kinase and a member of the TAM family. It serves as an efferocytosis receptor involved in the recognition and removal of apoptotic debris by phagocytic cells, dampening the inflammatory response. Here we show that at 24h post-inoculation with S. pneumoniae, Mertk-/- mice generated through homologous recombination and backcrossed (HRB-Mertk-/- mice) have fewer bacteria present in their pneumonic lung than wild type mice. This enhanced clearance was not observed in Mertk-/- mice generated by CRISPR technology. The enhanced clearance of HRB-Mertk-/- mice was associated with fewer neutrophils and more IFNγ in the bronchoalveolar lavage, but was not prevented by a neutralizing IFNγ antibody. Mertk is highly expressed on alveolar macrophages. Transcriptomic changes observed in HRB-Mertk-/- alveolar macrophages were associated with leukocyte activation, cellular motility, and response to stimulus, suggesting that they are primed for an inflammatory response. HRB-Mertk-/- mice similarly had enhanced host defense pathways in S. pneumoniae-stimulated alveolar macrophages in vitro and in pneumonic lung tissue. However, HRB-Mertk-/- alveolar macrophages demonstrated no defect in phagocytosis and acidification in vivo, and genes and gene sets describing phagocytic pathways were not enriched, suggesting that the enhanced clearance may be through alterations in the lung microenvironment. HRB-Mertk-/- mice are reported to have a long 129P2 DNA insert (~645 genes) in chromosome 2 adjacent to Mertk, as well as other alterations at multiple sites. Thus, while Mertk deficiency may contribute to the enhanced bacterial clearance, it is not solely responsible, because the phenotype is not seen in the CRISPR-Mertk-/- mice. The 129P2 DNA insert in the HRB-Mertk-/- mice must be mediating at least some of this phenotype. Understanding the mechanistic differences and the means by which this 129P2 DNA insert enhances bacterial clearance remains critically important.
Collapse
Affiliation(s)
- Matthew K. McPeek
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jessica R. Martin
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John C. Gomez
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yitong Li
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Claire M. Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
14
|
Kim M, Park S, Lee N, Kim D, Kim D, Jin Y, Lee SJ, Hong JJ, Lee H. Advanced MicroRNA delivery for lung inflammatory therapy: surfactant protein A controls cellular internalisation and degradation of extracellular vesicles. Thorax 2025; 80:322-334. [PMID: 39632081 PMCID: PMC12015036 DOI: 10.1136/thorax-2024-221793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Alveolar macrophages (AMs) are the first line of defence against pathogens that initiate an inflammatory response in the lungs and exhibit a strong affinity for surfactant protein A (SP-A). Extracellular vesicles (EVs) have emerged as a promising drug delivery platform due to their minimal cytotoxicity. However, precise targeting of specific cell types and the rapid lysosomal degradation of EVs within recipient cells remain persistent challenges. METHOD In this study, we explored the biological significance of SP-A-EVs as novel drug delivery systems for combating lung inflammation. We first verified that respiratory EVs express SP-A receptor (SP-R210), facilitating the conjugation of SP-A with EVs. The delivery efficiency, cellular internalisation pathways and therapeutic effects were evaluated using an in vivo mouse model. RESULTS SP-A-EVs were robustly internalised into AMs both in vitro and in vivo. Furthermore, our investigation revealed that the toll-like receptor 4-mediated endocytosis pathway was employed for the uptake of SP-A-EVs, significantly delaying their degradation compared with natural EVs, which primarily followed the conventional lysosomal degradation pathway within AMs. In a functional study, we successfully loaded anti-inflammatory microRNA (let-7b) into SP-A-EVs, leading to the suppression of AM activation and the alleviation of lung inflammation induced by lipopolysaccharide. CONCLUSION These findings underscore the potential of SP-A-EVs as highly effective drug delivery systems for targeted therapeutics in lung-related disorders, capitalising on the strong affinity between AMs and SP-A and the modulation of cellular internalisation.
Collapse
Affiliation(s)
- Miji Kim
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
- Korea Research Institute of Bioscience and Biotechnology National Primate Research Center, Ochang, South Korea
- University of Science and Technology, Daejeon, South Korea
| | - Sujeong Park
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
- University of Science and Technology, Daejeon, South Korea
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Nayoung Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Dohyun Kim
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Dongwoo Kim
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Yang Jin
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Seon-Jin Lee
- University of Science and Technology, Daejeon, South Korea
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Jung Joo Hong
- Korea Research Institute of Bioscience and Biotechnology National Primate Research Center, Ochang, South Korea
- University of Science and Technology, Daejeon, South Korea
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| |
Collapse
|
15
|
Xu C, Sun P, Jiang Q, Meng Y, Dong L, Wang X, Hu X, Li C, Li G, Zheng R, You X, Yang X. Tissue-resident Klebsiella quasipneumoniae contributes to progression of idiopathic pulmonary fibrosis by triggering macrophages mitophagy in mice. Cell Death Discov 2025; 11:168. [PMID: 40221415 PMCID: PMC11993561 DOI: 10.1038/s41420-025-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic interstitial lung disease with unclear underlying pathogenic mechanisms. Dysbiosis of the lung microbiota is believed to be associated with the development of fibrosis; however, the roles of the microbiome in the respiratory functions of hosts with IPF remain poorly understood. To investigate the relationship between the lung microbiome and the pathological processes of idiopathic pulmonary fibrosis under laboratory conditions, C57BL/6 J mice were exposed to bleomycin and observed at 7, 14, 21, and 28 days post-exposure. 16S rDNA analysis revealed that the lung microbial community exhibited dysbiosis in the bleomycin-induced pulmonary fibrosis model, characterized by an abnormally high proportion of Klebsiella quasipneumoniae (K. quasipneumoniae), as confirmed by RNA fluorescence in situ hybridization. Throughout the progression of experimental pulmonary fibrosis, Tax4Fun analysis indicated that the abundance of K. quasipneumoniae differed significantly between model mice and control mice, correlating with the sustained activation of reactive oxygen species (ROS) pathways. Importantly, the dysbiosis of K. quasipneumoniae may serve as a critical factor triggering increased ROS levels, accompanied by macrophage mitophagy, ultimately leading to the overexpression of TGF-β1, a key player in the pathogenesis of pulmonary fibrosis. These findings suggest that lung microbiota dysbiosis exacerbates the progression of bleomycin-induced pulmonary fibrosis related to macrophage mitophagy.
Collapse
Affiliation(s)
- Chunjie Xu
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Peiyi Sun
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Qiyue Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069, Beijing, China
| | - Yao Meng
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Luyao Dong
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, 841100, China.
| | - Xuefu You
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| | - Xinyi Yang
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development/ Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
- Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, 100050, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
16
|
Gao S, He Y, Deng X, Lu N, Bao J, Li A, He X, He S, Fu N, Hosyanto FF, Xu L. Chemokine CXCL14 Inhibits the Survival of Mycobacterium smegmatis inside Macrophages by Upregulating A20 to Promote ROS Production. ACS Infect Dis 2025; 11:844-858. [PMID: 40100073 DOI: 10.1021/acsinfecdis.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Tuberculosis remains a major global health threat, with traditional antibiotic treatments facing challenges such as drug resistance. Host-directed therapy (HDT) has emerged as a promising approach to combat tuberculosis by enhancing the host immune response. CXCL14, a chemokine family member, plays a crucial role in regulating host antipathogenic immune responses. To elucidate the role of CXCL14 and its key regulatory molecules in mycobacterial infections, we identified new targets for host-directed therapy. RAW264.7 macrophages were pretreated with CXCL14 and infected with Mycobacterium smegmatis. CFU, ROS levels, and apoptosis were assessed. Cell RNA was extracted for high-throughput sequencing, and significantly differentially expressed genes were screened and identified. The effects of candidate genes were verified using knockdown and overexpression techniques. A mouse model of mycobacterial infection was established to validate the role of CXCL14 in vivo. CXCL14 pretreatment significantly reduced intracellular mycobacteria and increased ROS levels in macrophages without affecting apoptosis. Transcriptome analysis identified A20 as a key differentially expressed gene. A20 overexpression promoted ROS production and decreased intracellular mycobacteria, while A20 knockdown reversed these effects. The combination of CXCL14 and A20 overexpression effectively inhibited mycobacterial survival in macrophages. CXCL14 significantly inhibited mycobacterial survival in mice and reduced organ damage in vivo. CXCL14 promoted ROS production in macrophages by upregulating A20 expression, thereby inhibiting mycobacterial survival. In the mouse model, CXCL14 alleviated inflammatory responses and histopathological damage caused by mycobacterial infection. These findings suggest that CXCL14 is a promising new HDT molecule for the treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Sijia Gao
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yonglin He
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xichuan Deng
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Nan Lu
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Bao
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Anlong Li
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xintong He
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shiyan He
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Nanzhe Fu
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Felycia Fernanda Hosyanto
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lei Xu
- Department of Pathogenic Biology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
17
|
Woods PS, Cetin-Atalay R, Meliton AY, Sun KA, Shamaa OR, Shin KWD, Tian Y, Haugen B, Hamanaka RB, Mutlu GM. HIF-1 regulates mitochondrial function in bone marrow-derived macrophages but not in tissue-resident alveolar macrophages. Sci Rep 2025; 15:11574. [PMID: 40185846 PMCID: PMC11971270 DOI: 10.1038/s41598-025-95962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
HIF-1α plays a critical role in shaping macrophage phenotype and effector function. We have previously shown that tissue-resident alveolar macrophages (TR-AMs) have extremely low glycolytic capacity at steady-state but can shift toward glycolysis under hypoxic conditions. Here, we generated mice with tamoxifen-inducible myeloid lineage cell specific deletion of Hif1a (Hif1afl/fl:LysM-CreERT2+/-) and from these mice, we isolated TR-AMs and bone marrow-derived macrophages (BMDMs) in which Hif1a is deleted. We show that TR-AM HIF-1α is required for the glycolytic shift under prolyl hydroxylase inhibition but is dispensable at steady-state for inflammatory effector function. In contrast, HIF-1α deletion in BMDMs led to diminished glycolytic capacity at steady-state and reduced inflammatory capacity, but higher mitochondrial function. Gene set enrichment analysis revealed enhanced c-Myc transcriptional activity in Hif1a-/- BMDMs, and upregulation of gene pathways related to ribosomal biogenesis and cellular proliferation. We conclude that HIF-1α regulates mitochondrial function in BMDMs but not in TR-AMs. The findings highlight the heterogeneity of HIF-1α function in distinct macrophage populations and provide new insight into how HIF-1α regulates gene expression, inflammation, and metabolism in different types of macrophages.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Benjamin Haugen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA.
| |
Collapse
|
18
|
Chen X, Lai C, Cai L, Huang L. Cross one single body 49 tissues single-cell transcriptome reveals detailed macrophage heterogeneity during pig pregnancy. Front Immunol 2025; 16:1574120. [PMID: 40242774 PMCID: PMC12000058 DOI: 10.3389/fimmu.2025.1574120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Pregnancy involves complex physiological adaptations across maternal organs and the immune system to support fetal development. Macrophages play a dual role during pregnancy: defending against pathogens and supporting tissue adaptation. However, comprehensive and in-depth studies of cross-tissue transcriptional heterogeneity of macrophages during healthy pregnancy at the single-cell level remain elusive. Methods We performed single-cell RNA sequencing (scRNA-seq) to profile macrophages from a healthy pregnant pig across 49 tissues. Immunofluorescence was performed to verify the specific expression of transcription factors. Results In this study, we generated a macrophage atlas containing 114,881 macrophages from 49 tissues/organs within one single healthy pregnant pig, identified 33 subtypes, and revealed extensive tissue-specific diversity. We observed significant heterogeneity of macrophage subtypes across five different anatomical sites of adipose tissue. Notably, the Mφ MARCO+ subtype, primarily derived from mesenteric adipose tissue, showed higher activity in pattern recognition receptor signaling pathways compared to subtypes in other tissues, including different fat depots. Cross-tissue analysis revealed distinct expression patterns of transcription factors, cytokines, and cell surface receptors, including the transcription factor PLSCR1, specifically expressed in lung macrophages and verified by immunofluorescence. Cross-species analysis unveiled conservation and heterogeneity among macrophages in pigs, humans, and mice. Conclusion We constructed a multiple-tissue single-cell transcriptome atlas of macrophages in one single healthy pregnant pig, revealing their molecular differences and commonalities across tissues and species. Our study provides a valuable resource for understanding macrophage diversity and tissue-specific macrophage adaptations during pregnancy in pigs.
Collapse
Affiliation(s)
| | | | - Liping Cai
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
19
|
Shao M, Chen Q, Zhang X, Dong S, Wei R, Shi H, Yi F. Dynamic Alterations in DNA Methylation of CD4 + T Cells and Macrophages in a Murine Model of Tuberculous Pleural Infection Induced by BCG Vaccination. MedComm (Beijing) 2025; 6:e70166. [PMID: 40170749 PMCID: PMC11959155 DOI: 10.1002/mco2.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
Tuberculous pleural effusion (TPE) is a prevalent form of extrapulmonary tuberculosis, and immune abnormalities play a crucial role in promoting its development. However, the dynamic changes and regulatory characteristics of immune cells during TPE progression remain incompletely understood. This study analyzed DNA methylation and transcriptome data from macrophages and CD4+ T cells from pleural lavage fluid of BCG-induced tuberculous pleurisy mouse models at specific time points (Days 0, 1, 7, and 14). The results revealed substantial alterations in DNA methylation patterns associated with inflammatory factors and interferon genes. Notably, macrophages exhibited the most pronounced differences in DNA methylation profiles on Day 1, while CD4+ T cells demonstrated gradual changes over time. The investigation further indicated that DNA methylation primarily regulated the differentiation of Th1, Th17, and Th22 cells but not Th9 cells. Additionally, single-cell RNA sequencing analysis revealed an increasing expression of C1q during infection, which was regulated by DNA methylation. Importantly, C1q+ and C1q- macrophages demonstrated distinct roles in modulating immune responses during infection. This research provides valuable insights into the DNA methylation profile of immune cells during Mycobacterium bovis infection-induced pleurisy in a mouse model, enhancing our understanding of the upstream regulatory mechanisms underlying immune response development in TPE.
Collapse
Affiliation(s)
- Ming‐Ming Shao
- Department of Respiratory and Critical Care MedicineBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Medical Research CenterBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Qing‐Yu Chen
- Department of Respiratory and Critical Care MedicineBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Xin Zhang
- Department of Respiratory and Critical Care MedicineBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Shu‐Feng Dong
- Department of Respiratory and Critical Care MedicineBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Rui‐Qi Wei
- Department of Respiratory and Critical Care MedicineBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Huan‐Zhong Shi
- Department of Respiratory and Critical Care MedicineBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Feng‐Shuang Yi
- Department of Respiratory and Critical Care MedicineBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Medical Research CenterBeijing Institute of Respiratory Medicine and Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
20
|
Iliakis CS, Crotta S, Wack A. The Interplay Between Innate Immunity and Nonimmune Cells in Lung Damage, Inflammation, and Repair. Annu Rev Immunol 2025; 43:395-422. [PMID: 40036704 DOI: 10.1146/annurev-immunol-082323-031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
As the site of gas exchange, the lung is critical for organismal survival. It is also subject to continual environmental insults inflicted by pathogens, particles, and toxins. Sometimes, these insults result in structural damage and the initiation of an innate immune response. Operating in parallel, the immune response aims to eliminate the threat, while the repair process ensures continual physiological function of the lung. The inflammatory response and repair processes are thus inextricably linked in time and space but are often studied in isolation. Here, we review the interplay of innate immune cells and nonimmune cells during lung insult and repair. We highlight how cellular cross talk can fine-tune the circuitry of the immune response, how innate immune cells can facilitate or antagonize proper organ repair, and the prolonged changes to lung immunity and physiology that can result from acute immune responses and repair processes.
Collapse
Affiliation(s)
- Chrysante S Iliakis
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| |
Collapse
|
21
|
Wang X, Zhao H, Lin W, Fan W, Zhuang T, Wang X, Li Q, Wei X, Wang Z, Chen K, Yang L, Ding L. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156513. [PMID: 40010033 DOI: 10.1016/j.phymed.2025.156513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory condition characterized by dysregulated immune responses and high mortality rates, with limited effective therapeutic options currently available. Panax notoginseng saponins (PNS), bioactive compounds derived from Panax notoginseng, have shown promise in mitigating lipopolysaccharide (LPS)-induced ALI. However, the molecular mechanisms underlying their therapeutic effects remain poorly understood. Given the critical role of M2-like macrophage polarization in resolving inflammation and promoting tissue repair, we investigated whether PNS exerts its protective effects in ALI by modulating this process. Furthermore, we explored the specific involvement of the signal transducer and activator of transcription 6 (STAT6) pathway in mediating these effects. METHODS Chemical profiling of PNS was performed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), followed by quantitative analysis of its major bioactive components via high-performance liquid chromatography (HPLC). To evaluate the therapeutic efficacy of PNS and its principal constituents, we established an ALI mouse model through intratracheal administration of LPS. Comprehensive assessments included lung field shadowing, oxygen saturation levels, pulmonary function, and systematic histopathological examination. The regulatory effects of PNS on macrophage polarization were examined in THP-1 cells and bone marrow-derived macrophages (BMDMs), with cellular phenotypes analyzed by flow cytometry. To elucidate the mechanistic role of STAT6 in PNS-mediated protection, experiments were conducted using Stat6-deficient BMDMs and Stat6 knockout mice. RESULTS UPLC-Q-TOF-MS and HPLC identified and quantified the principal components of PNS: Notoginsenoside R1, Ginsenoside Rg1, Ginsenoside Re, and Ginsenoside Rb1. PNS treatment dose-dependently reduced inflammatory responses in LPS-induced ALI mice, as evidenced by decreased cytokine levels. Each of the four major PNS components independently alleviated ALI symptoms in mice. Pathway analysis revealed 56 potential ALI-related targets, with Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggesting that PNS exerts its protective effects by modulating inflammatory signaling pathways. In vitro studies demonstrated that PNS promoted STAT6 phosphorylation and nuclear translocation, enhancing M2-like macrophage polarization and interleukin-10 (IL-10) secretion in a STAT6-dependent manner. Genetic ablation of Stat6 partially reversed the protective effects of PNS on ALI, macrophage polarization, and IL-10 production, confirming the pivotal role of STAT6 in mediating PNS activity. CONCLUSION This study demonstrates that PNS alleviates LPS-induced ALI by promoting STAT6-dependent M2-like macrophage polarization, highlighting its potential as a therapeutic agent for ALI. These findings provide mechanistic insights into the anti-inflammatory actions of PNS and underscore the importance of STAT6 signaling in its protective effects.
Collapse
Affiliation(s)
- Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Hanyang Zhao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wenyuan Lin
- Endocrinology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Wenxiang Fan
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xu Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Qi Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xiaohui Wei
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Kaixian Chen
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| |
Collapse
|
22
|
Li S, Zhou X, Duan Q, Niu S, Li P, Feng Y, Zhang Y, Xu X, Gong SP, Cao H. Autophagy and Its Association with Macrophages in Clonal Hematopoiesis Leading to Atherosclerosis. Int J Mol Sci 2025; 26:3252. [PMID: 40244103 PMCID: PMC11989900 DOI: 10.3390/ijms26073252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by lipid accumulation and immune cell infiltration, is linked to plaque formation and cardiovascular events. While traditionally associated with lipid metabolism and endothelial dysfunction, recent research highlights the roles of autophagy and clonal hematopoiesis (CH) in its pathogenesis. Autophagy, a cellular process crucial for degrading damaged components, regulates macrophage homeostasis and inflammation, both of which are pivotal in atherosclerosis. In macrophages, autophagy influences lipid metabolism, cytokine regulation, and oxidative stress, helping to prevent plaque instability. Defective autophagy exacerbates inflammation, impairs cholesterol efflux, and accelerates disease progression. Additionally, autophagic processes in endothelial cells and smooth muscle cells further contribute to atherosclerotic pathology. Recent studies also emphasize the interplay between autophagy and CH, wherein somatic mutations in genes like TET2, JAK2, and DNMT3A drive immune cell expansion and enhance inflammatory responses in atherosclerotic plaques. These mutations modify macrophage function, intensifying the inflammatory environment and accelerating atherosclerosis. Chaperone-mediated autophagy (CMA), a selective form of autophagy, also plays a critical role in regulating macrophage inflammation by degrading pro-inflammatory cytokines and oxidized low-density lipoprotein (ox-LDL). Impaired CMA activity leads to the accumulation of these substrates, activating the NLRP3 inflammasome and worsening inflammation. Preclinical studies suggest that pharmacologically activating CMA may mitigate atherosclerosis progression. In animal models, reduced CMA activity accelerates plaque instability and increases inflammation. This review highlights the importance of autophagic regulation in macrophages, focusing on its role in inflammation, plaque formation, and the contributions of CH. Building upon current advances, we propose a hypothesis in which autophagy, programmed cell death, and clonal hematopoiesis form a critical intrinsic axis that modulates the fundamental functions of macrophages, playing a complex role in the development of atherosclerosis. Understanding these mechanisms offers potential therapeutic strategies targeting autophagy and inflammation to reduce the burden of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Shuanhu Li
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Engineering Research Center of Brain Health Industry of Chinese Medicine, Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, University Government Committee of Shaanxi Province, Xianyang 712046, China;
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (Q.D.); or (X.X.)
| | - Shukun Niu
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Pengquan Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Yihan Feng
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Ye Zhang
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (Q.D.); or (X.X.)
| | - Shou-Ping Gong
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Huiling Cao
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Engineering Research Center of Brain Health Industry of Chinese Medicine, Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, University Government Committee of Shaanxi Province, Xianyang 712046, China;
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| |
Collapse
|
23
|
Chokshi NV, Vinchhi P, Chauhan S, Bora V, Patel BM, Patel MM. Design, fabrication, and in vitro-in vivo evaluation of surface-engineered pyrazinamide-loaded lipid nanoparticles for tuberculosis therapy. Pharm Dev Technol 2025; 30:474-487. [PMID: 40207731 DOI: 10.1080/10837450.2025.2492136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
Pyrazinamide (PYZ), a nicotinamide derivative, is an essential first-line anti-TB drug. However, its dose-dependent hepatotoxicity poses a considerable challenge, accentuating the need for improved delivery approaches. The key objective of the research work was to develop mannose-appended pyrazinamide-containing solid-lipid nanoparticles (Mn-PYZ-SNs) for the targeted management of TB. The developed Mn-PYZ-SNs depicted a particle size of 422±09 nm, which was slightly higher than that of unconjugated PYZ-SNs (Un-PYZ-SNs)(401±08 nm), with a minimal reduction in entrapment efficiency(83.64±1.42%). The in vitro drug release studies demonstrated comparable sustained release patterns for both formulations, with a similarity factor (f2) of 77.33, indicating that the structural integrity of PYZ-SNs was maintained during mannose conjugation. Fluorescence imaging and flow cytometric analysis revealed significantly enhanced cellular uptake of Mn-C6-SNs, with a 1.60-fold increase compared to Un-C6-SNs. The in vivo pharmacokinetic studies conducted on Sprague-Dawley rats showed a 4.7-fold improvement in relative bioavailability for Mn-PYZ-SNs. Biodistribution studies demonstrated significantly higher lung accumulation of Mn-PYZ-SNs (1.93-fold) compared to Un-PYZ-SNs at 24 hours. The aforementioned results imply that the developed Mn-PYZ-SNs could be a promising carrier for the treatment of TB. via the oral intestinal lymphatic pathway, circumventing its hepatic first-pass metabolism, and thereby preventing hepatic adverse effects.
Collapse
Affiliation(s)
- Nimitt V Chokshi
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Preksha Vinchhi
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | | - Vivek Bora
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
24
|
Ning J, Sah RK, Wang J. Coculture of mesenchymal stem cells and macrophage: A narrative review. J Pharmacol Exp Ther 2025; 392:103531. [PMID: 40154096 DOI: 10.1016/j.jpet.2025.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/24/2025] [Indexed: 04/01/2025] Open
Abstract
Stem cell transplantation is a promising treatment for repairing damaged tissues, but challenges like immune rejection and ethical concerns remain. Mesenchymal stem cells (MSCs) offer high differentiation potential and immune regulatory activity, showing promise in treating diseases such as gynecological, neurological, and kidney disorders. With scientific progress, MSC applications are overcoming traditional treatment limitations. In MSCs-macrophage coculture, MSCs transform macrophages into anti-inflammatory M2 macrophages, reducing inflammation, whereas macrophages enhance MSCs osteogenic differentiation. This coculture is vital for immune modulation and tissue repair, with models varying by contact type and dimensional arrangements. Factors such as coculture techniques and cell ratios influence outcomes. Benefits include improved heart function, wound healing, reduced lung inflammation, and accelerated bone repair. Challenges include optimizing coculture conditions. This study reviews the methodologies, factors, and mechanisms of MSC-macrophage coculture, providing a foundation for tissue engineering applications. SIGNIFICANCE STATEMENT: This review underlines the significant role of mesenchymal stem cell-macrophage coculture, providing a foundation for tissue engineering application.
Collapse
Affiliation(s)
- Jun Ning
- Department of General Gynecology II, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, China
| | - Rajiv Kumar Sah
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, Houston, Texas
| | - Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
25
|
Pearce EM, Evans E, Mayday MY, Reyes G, Simon MR, Blum J, Kim H, Mu J, Shaw PJ, Rowan CM, Auletta JJ, Martin PL, Hurley C, Kreml EM, Qayed M, Abdel-Azim H, Keating AK, Cuvelier GDE, Hume JR, Killinger JS, Godder K, Hanna R, Duncan CN, Quigg TC, Castillo P, Lalefar NR, Fitzgerald JC, Mahadeo KM, Satwani P, Moore TB, Hanisch B, Abdel-Mageed A, Davis DB, Hudspeth MP, Yanik GA, Pulsipher MA, Dvorak CCJL, Zinter MS. Integrating Pulmonary and Systemic Transcriptomic Profiles to Characterize Lung Injury after Pediatric Hematopoietic Stem Cell Transplant. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324969. [PMID: 40236411 PMCID: PMC11998824 DOI: 10.1101/2025.03.31.25324969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Hematopoietic stem cell transplantation (HCT) is potentially curative for numerous malignant and non-malignant diseases but can lead to lung injury due to chemoradiation toxicity, infection, and immune dysregulation. Bronchoalveolar lavage (BAL) is the most commonly used procedure for diagnostic sampling of the lung but is invasive, cannot be performed in medically fragile patients, and is challenging to perform serially. We previously showed that BAL transcriptomes representing pulmonary inflammation and cellular injury can phenotype post-HCT lung injury and predict mortality outcomes. However, whether peripheral blood testing is a suitable minimally-invasive surrogate for pulmonary sampling in the HCT population remains unknown. To address this question, we compared 210 paired BAL and peripheral blood transcriptomes obtained from 166 pediatric HCT patients at 27 children's hospitals. BAL and blood mRNA abundance showed minimal overall correlation at the level of individual genes, gene set enrichment scores, imputed cell fractions, and T- and B-cell receptor clonotypes. Instead, we identified significant site-specific transcriptional programs. In BAL, expression of innate and adaptive immune pathways was tightly co-regulated with expression of epithelial mesenchymal transition and hypoxia pathways, and these signatures were associated with mortality. In contrast, in blood, expression of endothelial injury, DNA repair, and cellular metabolism pathways was associated with mortality. Integration of paired BAL and blood transcriptomes dichotomized patients into two groups, of which one group showed twice the rate of hypoxia and significantly worse outcomes within 7 days of enrollment. These findings reveal a compartmentalized injury response, where BAL and peripheral blood transcriptomes provide distinct but complementary insights into local and systemic mechanisms of post-HCT lung injury.
Collapse
Affiliation(s)
- Emma M Pearce
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Erica Evans
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Madeline Y Mayday
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Departments of Laboratory Medicine and Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Gustavo Reyes
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Miriam R Simon
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob Blum
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hanna Kim
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Mu
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Peter J Shaw
- The Children`s Hospital at Westmead, Westmead, NSW, Australia
| | - Courtney M Rowan
- Indiana University, Department of Pediatrics, Division of Critical Care Medicine, Indianapolis, IN, USA
| | - Jeffrey J Auletta
- Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Paul L Martin
- Division of Pediatric and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Caitlin Hurley
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Erin M Kreml
- Department of Child Health, Division of Critical Care Medicine, University of Arizona, Phoenix, AZ, USA
| | - Muna Qayed
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Division of Hematology/Oncology and Transplant and Cell Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Loma Linda University School of Medicine, Cancer Center, Children Hospital and Medical Center, Loma Linda, CA, USA
| | - Amy K Keating
- Harvard Medical School, Boston, Massachusetts; Division of Pediatric Oncology, Department of Pediatrics, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado and University of Colorado, Aurora, CO, USA
| | - Geoffrey D E Cuvelier
- CancerCare Manitoba, Manitoba Blood and Marrow Transplant Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Janet R Hume
- University of Minnesota, Department of Pediatrics, Division of Critical Care Medicine, Minneapolis, MN, USA
| | - James S Killinger
- Division of Pediatric Critical Care, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Kamar Godder
- Cancer and Blood Disorders Center, Nicklaus Children's Hospital, Miami, FL, USA
| | - Rabi Hanna
- Department of Pediatric Hematology, Oncology and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christine N Duncan
- Harvard Medical School, Boston, Massachusetts; Division of Pediatric Oncology, Department of Pediatrics, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Troy C Quigg
- Pediatric Blood and Marrow Transplantation Program, Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX, USA
- Section of Pediatric BMT and Cellular Therapy, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Paul Castillo
- University of Florida, Gainesville, UF Health Shands Children's Hospital, Gainesville, FL, USA
| | - Nahal R Lalefar
- Division of Pediatric Hematology/Oncology, UCSF Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| | - Julie C Fitzgerald
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Kris M Mahadeo
- Department of Pediatrics, Division of Hematology/Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Division of Pediatric and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Prakash Satwani
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Theodore B Moore
- Department of Pediatric Hematology-Oncology, Mattel Children's Hospital, University of California, Los Angeles, CA, USA
| | - Benjamin Hanisch
- Children's National Hospital, Washington, District of Columbia, USA
| | - Aly Abdel-Mageed
- Section of Pediatric BMT and Cellular Therapy, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Dereck B Davis
- Department of Pediatrics, Hematology/Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michelle P Hudspeth
- Adult and Pediatric Blood & Marrow Transplantation, Pediatric Hematology/Oncology, Medical University of South Carolina Children's Hospital/Hollings Cancer Center, Charleston, SC, USA
| | - Greg A Yanik
- Pediatric Blood and Bone Marrow Transplantation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| | - Christopher C Joseph L Dvorak
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Matt S Zinter
- Division of Critical Care Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Izuka S, Komai T, Tsuchida Y, Tsuchiya H, Okamura T, Fujio K. The role of monocytes and macrophages in idiopathic inflammatory myopathies: insights into pathogenesis and potential targets. Front Immunol 2025; 16:1567833. [PMID: 40181992 PMCID: PMC11965591 DOI: 10.3389/fimmu.2025.1567833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are heterogeneous autoimmune disorders characterized by muscle inflammation, weakness, and extramuscular manifestations such as interstitial lung disease, skin rash, arthritis, dysphagia, myocarditis and other systemic organ involvement. Although T and B cells have historically been central to the understanding of IIM immunopathology, monocytes and their differentiated progenitor cells, macrophages, are increasingly being recognized as critical mediators of both tissue damage and repair. In subtypes such as dermatomyositis, immune-mediated necrotizing myopathy and antisynthetase syndrome, macrophages infiltrate skeletal muscle and other affected tissues, contributing to inflammation via production of pro-inflammatory cytokines, chemokines, and reactive oxygen species. Dysregulated interferon signaling, mitochondrial stress, and aberrant metabolic states in these cells further perpetuate tissue injury in IIMs. Conversely, certain macrophage subsets can support muscle fiber regeneration and dampen inflammation, underscoring the dual roles these cells can play. Future research into the heterogeneity of monocytes and macrophages, including single-cell transcriptomic and metabolomic approaches, will help clarify disease mechanisms, identify biomarkers of disease activity and prognosis, and guide novel therapeutic strategies targeting these innate immune cells in IIM.
Collapse
Affiliation(s)
- Shinji Izuka
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Yu Q, Yang J, Chen H, Liu R, Hu R, Cai J, Yang S, Zheng B, Guo P, Cai Z, Zhang S, Zhang G. Macrophages hijack carbapenem-resistance hypervirulent Klebsiella pneumoniae by blocking SLC7A11/GSH-manipulated iron oxidative stress. Free Radic Biol Med 2025; 230:234-247. [PMID: 39965717 DOI: 10.1016/j.freeradbiomed.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Infection with carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is life-threatening because of its pronounced virulence and antibiotic resistance. Recent studies revealed that iron and ROS enhance the ability of macrophages to eliminate intracellular pathogenic bacteria. However, whether and how iron-related oxygen stress responses in macrophages elicit a protective role against CR-hvKP infection remains largely unknown. In a mouse model of CR-hvKP pulmonary infection, the production of the Solute Carrier Family 7 member 11 (SLC7A11) was increased. Treatment with the ferroptosis agonist Erastin or Sorafenib decreased the SLC7A11 expression and the bacterial load in infected lung tissues, alleviating CR-hvKP-induced acute lung injury, increasing the content of TLR4, ROS and LPO. In vitro experiments showed that CR-hvKP infection resulted in a remarkable time-dependent changes in the expression of SLC7A11, GSH, ferrous iron, ROS and LPO in MH-S cells. Mechanically, blocking the expression of SLC7A11 in CR-hvKP-infected MH-S cells increased iron and ROS, improving the ability of macrophages to clear CR-hvKP in an LPO-dependent manner. Taken together, our study reveals that improving iron-related oxygen stress via blocking the SLC7A11/GSH pathway promoting the macrophages to phagocytose and eliminate CR-hvKP, which provides a new promising strategy against CR-hvKP infection.
Collapse
Affiliation(s)
- Qing Yu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jie Yang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Heyu Chen
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Ruishan Liu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Ruomeng Hu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jiachang Cai
- Clinical Microbiology Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Peng Guo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310005, Zhejiang, China
| | - Zhijian Cai
- Institute of Immunology, And Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Shufang Zhang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, Hangzhou 310009, China.
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
28
|
Kgoadi K, Bajpai P, Ibegbu CC, Dkhar HK, Enriquez AB, Dawa S, Cribbs SK, Rengarajan J. Alveolar macrophages from persons with HIV mount impaired TNF signaling networks to M. tuberculosis infection. Nat Commun 2025; 16:2397. [PMID: 40064940 PMCID: PMC11894076 DOI: 10.1038/s41467-025-57668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
People living with HIV (PLWH) have an increased risk for developing tuberculosis after M. tuberculosis infection, despite anti-retroviral therapy (ART). To delineate the underlying mechanisms, we conducted single cell transcriptomics on bronchoalveolar lavage cells from PLWH on ART and HIV uninfected healthy controls infected with M. tuberculosis ex vivo. We identify an M1-like proinflammatory alveolar macrophage subset that sequentially acquires TNF signaling capacity in controls but not in PLWH. Cell-cell communication analyses reveal interactions between M1-like macrophages and effector memory T cells within TNF superfamily, chemokine, and costimulatory networks in the airways of controls. These interaction networks were lacking in PLWH infected with M. tuberculosis, where anti-inflammatory M2-like alveolar macrophages and T regulatory cells dominated along with dysregulated T cell signatures. Our data support a model in which impaired TNF-TNFR signaling, M2-like alveolar macrophages and aberrant macrophage-T cell crosstalk, lead to ineffective immunity to M. tuberculosis in PLWH on ART.
Collapse
Affiliation(s)
- Khanyisile Kgoadi
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Prashant Bajpai
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Chris C Ibegbu
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | | | - Ana Beatriz Enriquez
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Stanzin Dawa
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Sushma K Cribbs
- Division of Pulmonary, Allergy, Critical Care & Sleep, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
29
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
30
|
Joshi H, Anaya E, Addanki A, Almgren-Bell A, Todd EM, Morley SC. Mechanosensitivity of macrophage polarization: comparing small molecule leukadherin-1 to substrate stiffness. Front Immunol 2025; 16:1420325. [PMID: 40114914 PMCID: PMC11922956 DOI: 10.3389/fimmu.2025.1420325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Macrophages sustain tissue homeostasis through host defense and wound repair. To promote host defense, macrophages upregulate surface markers associated with antigen processing and secrete pro-inflammatory mediators such as IL-6 and IL-1β. After pathogen clearance, macrophages shift phenotype to promote wound repair. Shifts in phenotypes are termed "polarization" and have historically been modeled by exposure to soluble mediators such as LPS+IFNγ (host defense) or IL-4+IL-13 (tissue repair). Greater emphasis is now being placed on understanding how the mechanical environment of macrophages, such as tissue compliance, regulates macrophages responses. Here, we compare incubation of primary macrophages on collagen-coated silica gels of varying stiffness to treatment with the small molecule integrin activator, leukadherin-1 (LA1), to examine how substrate stiffness alters macrophage polarization in response to multiple stimuli. LA1 was developed as an immunomodulator to treat inflammatory diseases by impairing trafficking of inflammatory cells. A recent clinical trial examining LA1 as an immunomodulator in solid tumors was terminated early because no benefit was observed. We hypothesized that LA1 treatment may exert additional, unexpected effects on macrophage polarization by replicating mechanotransduction. Specifically, we hypothesized that LA1 would mimic effects of incubation on stiffer substrates, as both conditions would be predicted to activate integrins. Our results show that soft substrate (0.2 kPa) trends towards upregulation of host defense molecules, in contrast to prior reports using different experimental systems. We further show that soft substrates enhance NLRP3-mediated IL-1β production, compared to stiff, in both primary mouse and human macrophages. LA1 mimicked incubation on stiff substrates in inhibiting NLRP3 activation and in regulating expression of several surface markers but differed by reducing IL-6 production. Our results show that macrophage inflammatory responses are regulated by adhesion-based, integrin-mediated mechanical signaling. Modulation of NLRP3-mediated IL-1β production by LA1 supports the possibility of repurposing LA1 to treat NLRP3-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Edgar Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Anvitha Addanki
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Alison Almgren-Bell
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elizabeth M. Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
31
|
Guo X, Deng Y, Jiang W, Li H, Luo Y, Zhang H, Wu H. Single cell transcriptomic analysis reveals tumor immune infiltration by macrophage cells gene signature in lung adenocarcinoma. Discov Oncol 2025; 16:261. [PMID: 40029500 DOI: 10.1007/s12672-025-01834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play pivotal roles in innate immunity and contribute to the advancement of lung cancer. We aimed to identify novel TAM-related biomarkers and significance of macrophage infiltration in lung adenocarcinoma (LUAD) through an integrative analysis of single-cell RNA-sequencing (scRNA-seq) data. To describe the cell atlas and construct a novel prognostic signature in LUAD. METHODS The gene signature linked to TAMs was identified utilizing Scanpy from the scRNA-seq dataset GSE131907. Subsequent analysis involved evaluating the expression levels of these genes, their potential molecular mechanisms, and prognostic significance in LUAD using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We also constructed a risk score models through LASSO Cox regression for these genes. The underlying mechanism was further elucidated through the application of GSEA, ESTIMATE, TIDE, and other bioinformatic algorithms. RESULTS Single-cell atlas was described by analyze 29 scRNA-seq samples from 19 LUAD patients. The TAMs-related gene signature (TGS) was identified as an independent prognostic factor by LASSO Cox regression analysis using differential expression genes (DEGs) derived from pro- and anti-inflammatory macrophage cells. Risk score model including nine TAMs-related genes (FOSL1, ZNF697, ADM, UBE2S, TICAM1, S100P, BIRC3, TLE1, and DEFB1) were obtained for prognosis construction. Moreover, the risk model underwent additional validation in four external GEO cohorts: GSE31210, GSE72094, GSE26939, and GSE30219. Interestingly, TGS-high tumors revealed enrichments in TGF-β signaling and hypoxia pathways, which shown low immune infiltration and immunosuppression by ESTIMATE and TIDE algorithm. The TGS-high risk group exhibited lower richness and diversity in the T-cell receptor (TCR) repertoire. CONCLUSION This study introduces a novel TGS score developed through LASSO Cox regression analysis, utilizing DEGs in pro- and anti-inflammatory macrophage cells. High TGS tumors exhibited enrichment in TGF-β signaling and hypoxia pathways, suggesting their potential utility in predicting prognosis and immune responses in patients with LUAD. These results offer promising implications for the development of therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Thoracic Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center Shenzhen Cancer Hospital, Shenzhen, China
| | - Youjun Deng
- Department of Thoracic Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center Shenzhen Cancer Hospital, Shenzhen, China
| | - Wenjun Jiang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Heng Li
- Department of Thoracic Surgery, Yunnan Hospital of Oncology, Kunming, China
| | - Yisheng Luo
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huachuan Zhang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Hao Wu
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China.
| |
Collapse
|
32
|
Li C, Li J, Bai Y, Zhang K, Wang Z, Zhang Y, Guan Q, Wang S, Li Z, Li Z, Chen L. Polysialic acid-based nanoparticles for enhanced targeting and controlled dexamethasone release in pulmonary inflammation treatment. Int J Biol Macromol 2025; 297:139550. [PMID: 39778853 DOI: 10.1016/j.ijbiomac.2025.139550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions characterized by severe inflammation and respiratory failure. Despite the use of dexamethasone (Dex) in treatment, challenges such as poor solubility and systemic side effects persist, highlighting the need for novel therapeutic approaches. This study introduces an innovative nanoparticle delivery system based on chitosan (CS) and polysialic acid (PSA), engineered via electrostatic assembly, to improve the targeted delivery of Dex to inflamed lung tissues. To enhance drug encapsulation and stability, novel taurine-Vitamin E succinate amphiphilic molecules (TVES and TGVES) were synthesized. The unique ability of PSA to specifically target Siglec-1 receptors on M1 macrophages-key contributors to ALI/ARDS-related inflammation-positions this system as a promising strategy for targeted pulmonary therapies. In vitro targeting of M1 macrophages and in vivo reduction of inflammation demonstrate the potential to transform treatment by delivering therapeutic agents precisely to the site of need. This cutting-edge nanoparticle platform not only holds promise for improving ALI/ARDS outcomes but also paves the way for the application of functional additives like taurine in advanced medical therapies.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory for New Drug Development, Shenyang 110036, China
| | - Jing Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Yujie Bai
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zeyu Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Yifan Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Qingyu Guan
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Shiqi Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China; Liaoning Key Laboratory for New Drug Development, Shenyang 110036, China.
| |
Collapse
|
33
|
Song L, Ye H, Lv Z, Liu Y, Lu Z, Chen J, Pan H, Cai L, Chen Y, Huang S, Zan X, Huang X, Yu C. Hexahistidine-metal assembly encapsulated fibroblast growth factor 21 for lipopolysaccharide-induced acute lung injury. Eur J Pharm Biopharm 2025; 208:114650. [PMID: 39870250 DOI: 10.1016/j.ejpb.2025.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) represents a spectrum of potentially fatal conditions that currently lack effective drug treatment. Recent researches suggest that Fibroblast Growth Factor 21 (FGF21) may protect against ALI/ARDS. However, the clinical use of FGF21 is limited by its rapid degradation, restricted targeting capabilities, and numerous adverse effects. Addressing this challenge, the study employs a pH-responsive nanoparticle delivery system known as Hexahistidine-metal Assembly (HmA) for administering FGF21. The entrapment efficiency (EE%) and loading capacity (LCwt%) of HmA exceed 90 % and 35 %, respectively, while the HmA@FGF21 nanoparticles exhibit an average size of 130 nm, a PDI value of approximately 0.28, and a zeta potential of 24 mV. In animal experiments, HmA@FGF21 administered in lipopolysaccharide (LPS)-induced lung injury significantly exceed those of standalone FGF21, including mitigating the pathological manifestations and reducing the wet/dry ratio, total protein concentration, and overall cell count in BALF of ALI, whether administered via the airway or intravenously. This therapeutic approach therefore shows promise for precise delivery of FGF21 to the lungs to treat ALI, and may offer a novel, and efficient method for delivery of potential pharmacological agents to address other lung diseases.
Collapse
Affiliation(s)
- Lanlan Song
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Huihui Ye
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Zhanghang Lv
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yichen Liu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Ziyi Lu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Jun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Haofeng Pan
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Luqiong Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yuxin Chen
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shiqing Huang
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xingjie Zan
- Joint Centre of Translational Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| | - Chang Yu
- Intervention Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
34
|
Woods PS, Mutlu GM. Differences in glycolytic metabolism between tissue-resident alveolar macrophages and recruited lung macrophages. Front Immunol 2025; 16:1535796. [PMID: 40092977 PMCID: PMC11906440 DOI: 10.3389/fimmu.2025.1535796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Immunometabolism has emerged as a key area of focus in immunology and has the potential to lead to new treatments for immune-related diseases. It is well-established that glycolytic metabolism is essential for adaptation to hypoxia and for macrophage inflammatory function. Macrophages have been shown to upregulate their glycolytic metabolism in response to pathogens and pathogen-associated molecular patterns such as LPS. As a direct link to the external environment, the lungs' distinctive nutrient composition and multiple macrophage subtypes provide a unique opportunity to study macrophage metabolism. This review aims to highlight how the steady-state airway and severely inflamed airway offer divergent environments for macrophage glycolytic metabolism. We describe the differences in glycolytic metabolism between tissue-resident alveolar macrophages, and other lung macrophages at steady-state and during inflammation/injury. We also provide an overview of experimental guidelines on how to assess metabolism at the cellular level using Seahorse-based bioenergetic analysis including a review of pharmacologic agents used to inhibit or activate glycolysis.
Collapse
Affiliation(s)
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University
of Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Hu Y, Liu J, Xu M, Pu K. Dual-Locked Fluorescence Probe for Monitoring the Dynamic Transition of Pulmonary Macrophages. J Am Chem Soc 2025; 147:7148-7157. [PMID: 39946549 DOI: 10.1021/jacs.5c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Pulmonary macrophages undergo dynamic changes in population, proportion, and polarization during respiratory diseases. Monitoring these changes is critical for understanding their roles in pathology, improving the diagnosis, and guiding drug development. However, current analytic methods based on tissue biopsy are invasive and static, limiting their ability to provide such dynamic information. Herein, we report a dual-locked macrophage-specific renal-clearable probe (DMRPNOCas) for the dynamic monitoring of pulmonary macrophages during influenza A virus (IAV) infection. DMRPNOCas activates fluorescence in the presence of two biomarkers (caspase-1 and NO) only coexpressed by M1 macrophages. To optimize the NO reactivity, the scaffold of DMRPNOCas is screened from the hemicyanine derivatives with an o-phenylenediamine group positioned differently on the indole ring. Notably, the para-substituted o-phenylenediamine demonstrates a higher NO-activated fluorescence compared to its meta-substituted counterpart. This enhancement, as revealed by quantum chemical calculations, is attributed to differential inhibition of twisted intramolecular charge transfer induced by the NO reaction. DMRPNOCas specifically distinguishes M1 macrophages from other leukocytes including T cells, neutrophils, and M2 macrophages, a capability unmatched by single-locked control probes and other reported probes. Consequently, DMRPNOCas enables in vivo dynamic monitoring of pulmonary macrophages, uncovering extensive recruitment and M1 polarization of monocyte-derived macrophages within 48 h of IAV infection. This process is accompanied by a significant reduction in alveolar macrophages. These findings provide new insights into macrophage-mediated pulmonary inflammation and underscore the potential of dual-locked probes for precise diagnosis and monitoring of pathological processes.
Collapse
Affiliation(s)
- Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
36
|
Feng Y, Tang M, Li H, Yao S, Li B. Mouse mesenchymal stem cell-derived exosomal miR-205-5p modulates LPS-induced macrophage polarization and alleviates lung injury by regulating the USP7/FOXM1 axis. Drug Deliv Transl Res 2025:10.1007/s13346-025-01813-z. [PMID: 40000557 DOI: 10.1007/s13346-025-01813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Exosomal microRNAs produced from mesenchymal stem cells (MSCs) are crucial in the management of acute lung injury (ALI). In this work, mMSCs separated from bone marrow were used to extract exosomes (MSC-Exos). MSC-Exos treatment attenuated pathological changes and scores, and edema in ALI mice. Also, MSC-Exos administration modulated the concentrations of inflammatory factors as well as the macrophage polarization both in vivo and in vitro. Upregulation of miR-205-5p in MSC-Exos regulated the macrophage polarization and the contents of inflammatory factors in animal and cell models. MiR-205-5p targeted USP7, and negatively modulated the expression of USP7. USP7 interacted with FOXM1, and reduced the ubiquitination degradation of FOXM1. MSC-derived exosomal miR-205-5p modulated ubiquitination of FOXM1 by targeting USP7. The ameliorative effect of MSC-Exos on the macrophage polarization and the inflammatory factors release was reversed with the overexpression of USP7 in animal and cell models. Collectively, MSC-derived exosomal miR-205-5p regulated lipopolysaccharide (LPS)-induced macrophage polarization and alleviated lung injury by the USP7/FOXM1 axis, which developed a potential target for the treatment of ALI.
Collapse
Affiliation(s)
- Yinglu Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Min Tang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Haopeng Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Bo Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
37
|
Xia J, Dong R, Fang Y, Guo J, Xiong Z, Zhang T, Sun W. A micro-lung chip with macrophages for targeted anti-fibrotic therapy. Biofabrication 2025; 17:025020. [PMID: 39914008 DOI: 10.1088/1758-5090/adb338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. Macrophages are implicated in the fibrotic process, but exhibit remarkable plasticity in the activated immune environmentin vivo, presenting significant challenges as therapeutic targets. To explore the influence of macrophages on IPF and develop macrophage-targeted therapies, we engineered a micro-lung chip with a lung epithelium-interstitium tissue unit to establish a controlled immune environment containing only macrophages. We discovered that macrophages exacerbated inflammation and fibrosis by comparing microchips treated with bleomycin (BLM) in the presence and absence of macrophages. Based on the duration of BLM treatment, we established pathological models corresponding to inflammation and fibrosis stages. Transcriptome analysis revealed that activation of the PI3K-AKT signalling pathway facilitates the transition from inflammation to fibrosis. However, LY294002, a PI3K inhibitor, not only suppressed fibrosis and decreased the accumulation of M2 macrophages but also intensified the severity of inflammation. These findings suggest that macrophages play a pivotal role in the potential development at the tissue level. The micro-lung chip co-cultured with macrophages holds significant potential for exploring the pathological progression of IPF and elucidating the mechanisms of anti-fibrotic drugs.
Collapse
Affiliation(s)
- Jingjing Xia
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Ruming Dong
- School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Yongcong Fang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Jiabin Guo
- School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Zhuo Xiong
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Ting Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Wei Sun
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, United States of America
| |
Collapse
|
38
|
Jiang RD, Luo YZ, Lin HF, Zheng XS, Zeng WT, Liu MQ, Deng HH, Wang Q, Lai YN, Chen Y, Guo ZS, Zeng Y, Gong QC, Qiu C, Dong M, Wang X, Wang ZY, Ji LN, Hou PP, Li Q, Shen XR, Li B, Gao Y, Zhang AH, Jiang TT, Shi AM, Zhou P, Lin XH, Deng ZQ, Li JM, Shi ZL. Impaired inflammatory resolution with severe SARS-CoV-2 infection in leptin knock out obese hamster. iScience 2025; 28:111837. [PMID: 39981511 PMCID: PMC11841202 DOI: 10.1016/j.isci.2025.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 12/13/2024] [Indexed: 02/22/2025] Open
Abstract
Comorbidities, such as obesity, increase the risk of severe COVID-19. However, the mechanisms underlying severe illnesses in individuals with obesity are poorly understood. Here, we used gene-edited leptin knock out (Leptin -/-) obese hamsters to establish a severe infection model. This model exhibits robust viral replication, severe lung lesions, pronounced clinical symptoms, and fatal infection, mirroring severe COVID-19 in patients with obesity. Using single-cell transcriptomics on lung tissues pre- and post-infection, we found that monocyte-derived alveolar macrophages (MD-AM) play a key role in lung hyper-inflammation, including two unique MD-AM cell fate branches specific to Leptin -/- hamsters. Notably, reduced Trem2-dependent efferocytosis pathways in Leptin -/- hamsters indicated weakened inflammation resolution, consistent with the scRNA-seq data from patients with obesity. In summary, our study highlights the obesity-associated mechanisms underlying severe SARS-CoV-2 infections and establishes a reliable preclinical animal model for developing obesity-specific therapeutics for critical COVID-19.
Collapse
Affiliation(s)
- Ren-Di Jiang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Zhe Luo
- BGI Research, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Feng Lin
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Shuang Zheng
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Wen-Tao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mei-Qin Liu
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Hao-Hao Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Qi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Na Lai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zi-Shuo Guo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Zeng
- BGI Research, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Chun Gong
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Mei Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Yi Wang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Li-Na Ji
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Pan-Pan Hou
- Guangzhou National Laboratory, Guangzhou, China
| | - Qian Li
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xu-Rui Shen
- Guangzhou National Laboratory, Guangzhou, China
| | - Bei Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ai-Hua Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ting-Ting Jiang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ai-Min Shi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Peng Zhou
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Xin-Hua Lin
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, China
| | - Zi-Qing Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Jian-Min Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Animal Core facility, Key Laboratory of Model Animal, Department of Cell Biology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
39
|
Kostinov МP, Polishchuk VB, Ryzhov АА, Zhuravlev PI, Karchevskaya NA, Tarabrin EA, Solovieva IL, Cherdantsev AP, Khrapunova IA, Foshina EP. Measles vaccination in lung transplant candidates. Front Immunol 2025; 16:1481206. [PMID: 40046049 PMCID: PMC11880224 DOI: 10.3389/fimmu.2025.1481206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
Background The incidence of measles is now increasing. Measles is especially dangerous for high-risk individuals, including lung transplant candidates with severe progressive bronchopulmonary disorders. Objective The objective of this study was to investigate how vaccine-induced immunity is developed in lung transplant candidates seronegative for measles. In order to study vaccine-induced measles immunity, the study subjects were divided in two groups. The main group consisted of 22 patients (11 males and 11 females) with severe bronchopulmonary disorders, aged 19 to 58. The control group was made up of healthcare providers who were matched with respect to age and gender to the patients in the main group. All study subjects were given a single dose of measles vaccine. Levels of anti-measles IgG antibodies (Ab) were measured by enzyme-linked immunosorbent assay (ELISA) using the VectoMeasles-IgG kit (Russia). Results One month after vaccination, both study groups showed a statistically significant increase in anti-measles IgG Ab compared to baseline levels. In the main group, vaccine-induced Ab levels were significantly lower than in the control group (0.41 [0.098; 1.75] IU/mL vs. 1.94 [0.96; 3.3] IU/mL; р<0.0001). The rates of seroconversion were 73% and 100% in the main and control groups, respectively. The majority of non-responders (83%) in the main group had restrictive pulmonary disease. One year after vaccination, anti-measles Ab were detected in 36% (5/14) of the patients in the main group. Conclusion Administration of a single dose of measles vaccine to seronegative lung transplant candidates with severe progressive bronchopulmonary disorders was safe and resulted in protective levels of antibodies in 73% of patients. One year after vaccination, anti-measles Ab were detected in 36% of the patients, which suggested that a single dose failed to induce a robust immune response in this patient population.
Collapse
Affiliation(s)
- Мikhail P. Kostinov
- Laboratory for Vaccination and Immunotherapy of Allergic Diseases, I. I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
- Department of Epidemiology and Modern Vaccination Technology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valentina B. Polishchuk
- Laboratory for Vaccination and Immunotherapy of Allergic Diseases, I. I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Аleksey А. Ryzhov
- Laboratory for Vaccination and Immunotherapy of Allergic Diseases, I. I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Pavel I. Zhuravlev
- Department of Epidemiology and Modern Vaccination Technology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia A. Karchevskaya
- Department of Thoracic Surgery, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow, Russia
| | - Evgeniy A. Tarabrin
- Department of Hospital Surgery, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Izabella A. Khrapunova
- Department of Epidemiology and Modern Vaccination Technology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena P. Foshina
- Laboratory of Immunological Research Methods, I. I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| |
Collapse
|
40
|
Zhang M, Lan H, Jiang M, Yang M, Chen H, Peng S, Wang X, Zhang Y, Huang X, Li L, Chen C, Hong J. NLRP3 inflammasome mediates pyroptosis of alveolar macrophages to induce radiation lung injury. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136740. [PMID: 39642726 DOI: 10.1016/j.jhazmat.2024.136740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/30/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Alveolar macrophages play a crucial role in maintaining lung homeostasis. However, the mechanisms underlying alveolar macrophage pyroptosis and inflammasome activation in radiation-induced lung injury remain unclear. In this study, we employed multicolor flow cytometry and single-cell RNA sequencing to reveal the immune cell and cell death landscape in the tissue microenvironment of radiation-induced lung injury. Additionally, we utilized mass spectrometry, co-immunoprecipitation and Duolink techniques to investigate the core inflammasome responsible for mediating alveolar macrophage pyroptosis. We noticed that the percentage of alveolar macrophages, T, B and epithelial cells decreased significantly post-irradiation. Notably, the proportional changes in alveolar macrophages closely correlated with Szapiels' pneumonia score. Furthermore, alveolar macrophages emerged as the earliest cell type to initiate pyroptosis and act as pivotal regulators of cell communication. In vitro and in vivo experiments, we observed a significant increase in NLRP3 binding to the apoptosis-associated speck-like protein in irradiated alveolar macrophages. In vivo, MCC950 effectively inhibited alveolar macrophage pyroptosis and significantly reducing inflammatory cells recruitment. Subsequently, targeting AM pyroptosis ultimately inhibit the infiltration of interstitial macrophages and the activation of fibroblasts, decrease collagen deposition and alleviate the severity of radiation-induced lung fibrosis. Targeting alveolar macrophage pyroptosis and NLRP3 inflammasome activation hold substantial therapeutic potential for mitigating radiation-induced lung injury.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Hailin Lan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Meina Jiang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Minghuan Yang
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Hongquan Chen
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Shaoli Peng
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yarui Zhang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China.
| | - Chun Chen
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
41
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
42
|
Lv K, Li Q, Jiang N, Chen Q. Role of TRIM29 in disease: What is and is not known. Int Immunopharmacol 2025; 147:113983. [PMID: 39755113 DOI: 10.1016/j.intimp.2024.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Tripartite motif-containing proteins (TRIMs), comprising the greatest subfamily of E3 ubiquitin ligases with approximately 80 members of this family, are widely distributed in mammalian cells. TRIMs actively participate in ubiquitination of target proteins, a type of post-translational modification associated with protein degradation and other functions. Tripartite motif-containing protein 29 (TRIM29), a member of the TRIM family, differs from other members of this family in that it lacks the RING finger structural domain containing cysteine and histidine residues that mediates DNA binding, protein-protein interactions, and ubiquitin ligase, at its N-terminus. The expression of TRIM29 was initially found to be associated with cancer and diabetic nephropathy progression, and antiviral immunity which is triggered by virus-derived nucleic acids binding to pattern recognition receptors (PRRs) on immune cells. Recently, TRIM29 has also been explored as a diagnostic biomarker and therapeutic target for some immune-related diseases. Here, we review the functions of TRIM29 in the progression of diseases and the inherent mechanisms, as well as the remaining gaps in the literature. A thorough understanding of the detailed regulatory mechanisms of TRIM29 will ultimately facilitate the development of different therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Kunying Lv
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
43
|
Wang Y, Wang W, Zhang Y, Fleishman JS, Wang H. Targeting ferroptosis offers therapy choice in sepsis-associated acute lung injury. Eur J Med Chem 2025; 283:117152. [PMID: 39657462 DOI: 10.1016/j.ejmech.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Sepsis-associated acute lung injury (SALI) is a common complication of sepsis, consisting of a dysfunctional host response to infection-mediated heterogenous complexes. SALI is reported in up to 50 % of patients with sepsis and causes poor outcomes. Despite high incidence, there is a lack of understanding in its pathogenesis and optimal treatment. A better understanding of the molecular mechanisms underlying SALI may help produce better therapeutics. The effects of altered cell-death mechanisms, such as non-apoptotic regulated cell death (RCD) (i.e., ferroptosis), on the development of SALI are beginning to be discovered, while targeting ferroptosis as a meaningful target in SALI is increasingly being recognized. Here, we outline how a susceptible lung alveoli may develop SALI. Then we discuss the general mechanisms underlying ferroptosis, and how it contributes to SALI. We then outline the chemical structures of the emerging agents or compounds that can protect against SALI by inhibiting ferroptosis, summarizing their potential pharmacological effects. Finally, we highlight key limitations and possible strategies to overcome them. This review suggests that a detailed mechanistic and biological understanding of ferroptosis can foster the development of pharmacological antagonists in the treatment of SALI.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yi Zhang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
44
|
Albers GJ, Michalaki C, Ogger PP, Lloyd AF, Causton B, Walker SA, Caldwell A, Halket JM, Sinclair LV, Forde SH, McCarthy C, Hinks TSC, Lloyd CM, Byrne AJ. Airway macrophage glycolysis controls lung homeostasis and responses to aeroallergen. Mucosal Immunol 2025; 18:121-134. [PMID: 39426627 DOI: 10.1016/j.mucimm.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The lungs represent a dynamic microenvironment where airway macrophages (AMs) are the major lung-resident macrophages. AMs dictate the balance between tissue homeostasis and immune activation and thus have contradictory functions by maintaining tolerance and tissue homeostasis, as well as initiating strong inflammatory responses. Emerging evidence has highlighted the connection between macrophage function and cellular metabolism. However, the functional importance of these processes in tissue-resident specialized macrophage populations such as those found in the airways, remain poorly elucidated. Here, we reveal that glycolysis is a fundamental pathway in AMs which regulates both lung homeostasis and responses to inhaled allergen. Using macrophage specific targeting in vivo, and multi-omics approaches, we determined that glycolytic activity in AMs is necessary to restrain type 2 (T2) immunity during homeostasis. Exposure to a range of common aeroallergens, including house dust mite (HDM), drove AM-glycolysis and furthermore, AM-specific inhibition of glycolysis altered inflammation in the airways and HDM-driven airway metabolic adaptations in vivo. Additionally, allergen sensitised asthmatics had profound metabolic changes in the airways, compared to non-sensitised asthmatic controls. Finally, we found that allergen driven AM-glycolysis in mice was TLR2 dependent. Thus, our findings demonstrate a direct relationship between glycolysis in AMs, AM-mediated homeostatic processes, and T2 immune responses in the lungs. These data suggest that glycolysis is essential for the plasticity of AMs. Depending on the immunological context, AM-glycolysis is required to exert homeostatic activity but once activated by allergen, AM-glycolysis influences inflammatory responses. Thus, precise modulation of glycolytic activity in AMs is essential for preserving lung homeostasis and regulating airway inflammation.
Collapse
Affiliation(s)
- Gesa J Albers
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Amy F Lloyd
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Benjamin Causton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna Caldwell
- Dept. of Nutritional Sciences, School of Life Course & Population Health Sciences, King's College London, London, UK; Department of Nutritional Sciences, KIng's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - John M Halket
- Department of Nutritional Sciences, KIng's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Linda V Sinclair
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Sarah H Forde
- Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac McCarthy
- Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Timothy S C Hinks
- Respiratory Medicine Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, and the NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK; Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
45
|
Zhang Y, Zhan C, Mei L, Li X, Liu W, Sheng M, Wang Y, Zhao Q, Zhang L, Shao M, Shao W. Silencing of lncRNA Gm26917 Attenuates Alveolar Macrophage-mediated Inflammatory Response in LPS-induced Acute Lung Injury Via Inhibiting NKRF Ubiquitination. Inflammation 2025:10.1007/s10753-025-02240-5. [PMID: 39825194 DOI: 10.1007/s10753-025-02240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model. We initially observed a significant upregulation of Gm26917 expression in both ALI conditions and in MH-S cells treated with LPS. Furthermore, the silencing of Gm26917 via lentivirus-mediated methods conferred protection against LPS-induced ALI. Additionally, siRNA-mediated knockdown of Gm26917 attenuated LPS-induced inflammatory responses and modulated the function of alveolar macrophages. Subsequent mechanistic studies revealed that Gm26917 interacts with NKRF, and its knockdown suppressed NKRF ubiquitination, thereby enhancing NKRF binding to p50 and subsequently inhibiting the NF-κB signaling pathway. In conclusion, our findings demonstrate that silencing Gm26917 can mitigate LPS-induced ALI by modulating the NF-κB signaling pathway in alveolar macrophages through interactions with NKRF.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chunai Zhan
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Long Mei
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinyu Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Weiyi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yaoyun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qing Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lizhi Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
46
|
Ryanto GRT, Suraya R, Nagano T. The Importance of Lung Innate Immunity During Health and Disease. Pathogens 2025; 14:91. [PMID: 39861052 PMCID: PMC11768135 DOI: 10.3390/pathogens14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes. Disturbances in lung innate immunity properties and processes, whether over-responsiveness of the process triggered by innate immunity or lack of responses due to dysfunctions in the immune cells that make up the innate immunity system of the lung, could be correlated to various pathological conditions. In this review, we discuss globally how the components of lung innate immunity are important not only for maintaining lung homeostasis but also during the pathophysiology of notable lung diseases beyond acute pulmonary infections, including chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
47
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
48
|
Peters JM, Irvine EB, Makatsa MS, Rosenberg JM, Wadsworth MH, Hughes TK, Sutton MS, Nyquist SK, Bromley JD, Mondal R, Roederer M, Seder RA, Darrah PA, Alter G, Seshadri C, Flynn JL, Shalek AK, Fortune SM, Bryson BD. High-dose intravenous BCG vaccination induces enhanced immune signaling in the airways. SCIENCE ADVANCES 2025; 11:eadq8229. [PMID: 39742484 PMCID: PMC11694782 DOI: 10.1126/sciadv.adq8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Intradermal Bacillus Calmette-Guérin (BCG) is the most widely administered vaccine, but it does not sufficiently protect adults against pulmonary tuberculosis. Recent studies in nonhuman primates show that intravenous BCG administration offers superior protection against Mycobacterium tuberculosis (Mtb). We used single-cell analysis of bronchoalveolar lavage cells from rhesus macaques vaccinated via different routes and doses of BCG to identify alterations in the immune ecosystem in the airway following vaccination. Our findings reveal that high-dose intravenous BCG induces an influx of polyfunctional T cells and macrophages in the airways, with alveolar macrophages from high-dose intravenous BCG displaying a basal activation state in the absence of purified protein derivative stimulation, defined in part by interferon signaling. Enhanced intercellular immune signaling and stronger T helper 1-T helper 17 transcriptional responses were observed following purified protein derivative stimulation. These results suggest that high-dose intravenous BCG vaccination creates a specialized immune environment that primes airway cells for effective Mtb clearance.
Collapse
Affiliation(s)
- Joshua M. Peters
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward B. Irvine
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mohau S. Makatsa
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jacob M. Rosenberg
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, MGH, Boston, MA, USA
| | - Marc H. Wadsworth
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Travis K. Hughes
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | | | - Sarah K. Nyquist
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Joshua D. Bromley
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Rajib Mondal
- Research Laboratory of Electronics, Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Sarah M. Fortune
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bryan D. Bryson
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| |
Collapse
|
49
|
Dagnachew YM, Lim HY, Wupeng L, Lim SY, Lim SJN, Thiam CH, Tan SW, Eng JLJ, Mei D, Hazwany Mohammad Azhar S, Ong WS, Tan QHC, Wong WSF, Angeli V. Collagen deposition in lung parenchyma driven by depletion of interstitial Lyve-1 + macrophages prevents cigarette smoke-induced emphysema and loss of airway function. Front Immunol 2025; 15:1493395. [PMID: 39830508 PMCID: PMC11738928 DOI: 10.3389/fimmu.2024.1493395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Collagen is essential for maintaining lung structure and function and its remodeling has been associated with respiratory diseases including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood. Methods To address this question, we employed Lyve1wt/cre ; Csf1rflox/flox mice with specific depletion of Lyve-1+ macrophages and assessed the content, types and organization of collagen in lung compartments at steady state and after chronic exposure to cigarette smoke (CS). Results Using this mouse model, we found that the absence of this subpopulation of tissue resident macrophage led to the deposition of type I collagen fibers around the alveoli and bronchi at steady state. Further analysis by polarized light microscopy and Sircol collagen assay revealed that the collagen fibers accumulating in the lungs depleted of Lyve-1+ macrophages were thicker and crosslinked. A decrease in MMP-9 gene expression and proteolytic activity together with an increase in Col1a1, Timp-3 and Lox expression accompanied the collagen alterations. Next, we investigated the effect of the collagen remodeling on the pathophysiology of COPD and airway function in mice lacking Lyve-1+ macrophages exposed chronically to cigarette smoke (CS), a well-established animal model of COPD. We found that deposition of collagen prior CS exposure protected these mice against destruction of alveoli (emphysema), and bronchi thickening and prevented loss of airway function. Discussion Thus, we uncover that interstitial Lyve-1+ macrophages regulate the composition, amount, and architecture of collagen network in the lungs at steady state and that such collagen remodeling functionally impacts the development of COPD. This study further supports the potential of targeting collagen as promising approaches to treat respiratory diseases.
Collapse
Affiliation(s)
- Yinebeb Mezgebu Dagnachew
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Sciences, School of Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Liao Wupeng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore, Singapore
| | - Sheau Yng Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sheng Jie Natalie Lim
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shu Wen Tan
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Joan Lau Joo Eng
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Dan Mei
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Wei Siong Ong
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qi Hui Caris Tan
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wai-Shiu Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Chen L, Hu P, Fang W, Wu T, Shi J. Nebulized Immunotherapy of Orthotopic Lung Cancer by Mild Magnetothermal-Based Innate Immunity Activations. Angew Chem Int Ed Engl 2025; 64:e202413127. [PMID: 39343740 DOI: 10.1002/anie.202413127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Advances in adaptive immunity have greatly contributed to the development of cancer immunotherapy. However, its over-low efficacy and insufficient invasion of immune cells in the tumor tissue, and safety problems caused by cytokine storm, have seriously impeded further clinical application for solid tumor immunotherapy. Notably, the immune microenvironment of the lungs is naturally enriched with alveolar macrophages (AMs). Herein, we introduce a novel nebulized magnetothermal immunotherapy strategy to treat orthotopic lung cancer by using magnetothermal nanomaterial (Zn-CoFe2O4@Zn-MnFe2O4-PEG, named ZCMP), which can release iron ions via an acid/thermal-catalytic reaction to maximize the use of lung's immune environment through the cascade activations of AMs and natural killer (NK) cells. Nebulized administration greatly enhance drug bioavailability by localized drug accumulation at the lesion site. Upon mild magnetic hyperthermia, the released iron ions catalyze endogenous H2O2 decomposition to produce reactive oxygen species (ROS), which triggers the M1 polarization of AMs, and the resultant inflammatory cytokine IFN-β, IL-1β and IL-15 releases to activate c-Jun, STAT5 and GZMB related signaling pathways, promoting NK cells proliferation and activation. This innovative strategy optimally utilizes the lung's immune environment and shows excellent immunotherapeutic outcomes against orthotopic lung cancer.
Collapse
Affiliation(s)
- Lizhu Chen
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
| | - Ping Hu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| | - Wenming Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| | - Tong Wu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
| | - Jianlin Shi
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| |
Collapse
|