1
|
Guimarães JG, de Campos GY, Machado MP, Oliveira Brito PKM, dos Reis TF, Goldman GH, Bonini Palma PV, de Campos Fraga-Silva TF, Cavallin DCU, Venturini J, da Silva TA. A novel mannan-specific chimeric antigen receptor M-CAR redirects T cells to interact with Candida spp. hyphae and Rhizopus oryzae spores. Bioengineered 2025; 16:2458786. [PMID: 39891522 PMCID: PMC11792852 DOI: 10.1080/21655979.2025.2458786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 08/28/2024] [Indexed: 02/03/2025] Open
Abstract
Invasive fungal infections (IFIs) are responsible for elevated rates of morbidity and mortality, causing around of 1.5 million deaths annually worldwide. One of the main causative agents of IFIs is Candida albicans, and non-albicans Candida species have emerged as a spreading global public health concernment. Furthermore, COVID-19 has contributed to a boost in the incidence of IFIs, such as mucormycosis, in which Rhizopus oryzae is the most prevalent causative agent. The effector host immune response against IFIs depends on the activity of T cells, which are susceptible to the regulatory effects triggered by fungal virulence factors. The fungal cell wall plays a crucial role as a virulence factor, and its remodeling compromises the development of a specific T-cell response. The redirection of Jurkat T cells to target Candida spp. by recognizing targets expressed on the fungal cell wall can be facilitated using chimeric antigen receptor (CAR) technology. This study generated an M-CAR that contains an scFv with specificity to α-1,6 mannose backbone of fungal mannan, and the expression of M-CAR on the surface of modified Jurkat cells triggered a strong activation against Candida albicans (hyphae form), Candida tropicalis (hyphae form), Candida parapsilosis (pseudohyphal form), and Candida glabrata (yeast form). Moreover, M-CAR Jurkat cells recognized Rhizopus oryzae spores, which induced high expression of cell activation markers. Thus, a novel Mannan-specific CAR enabled strong signal transduction in modified Jurkat cells in the presence of Candida spp. or R. oryzae.
Collapse
Affiliation(s)
- Júlia Garcia Guimarães
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences in Araraquara, Sao Paulo State University, São Paulo, Brazil
| | - Gabriela Yamazaki de Campos
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Michele Procópio Machado
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Patricia Vianna Bonini Palma
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | - James Venturini
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Thiago Aparecido da Silva
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences in Araraquara, Sao Paulo State University, São Paulo, Brazil
| |
Collapse
|
2
|
Rosati D, Valentine M, Bruno M, Pradhan A, Dietschmann A, Jaeger M, Leaves I, van de Veerdonk FL, Joosten LA, Roy S, Stappers MHT, Gow NA, Hube B, Brown AJ, Gresnigt MS, Netea MG. Lactic acid in the vaginal milieu modulates the Candida-host interaction. Virulence 2025; 16:2451165. [PMID: 39843417 PMCID: PMC11760238 DOI: 10.1080/21505594.2025.2451165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most common infections caused by Candida albicans. VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with Candida colonization of the vaginal mucosa. Compared to other host niches in which C. albicans can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota. We examined how lactic acid abundance in the vaginal niche impacts the interaction between C. albicans and the human immune system using an in vitro culture in vaginal simulative medium (VSM). The presence of lactic acid in VSM (VSM+LA) increased C. albicans proliferation, hyphal length, and its ability to cause damage during subsequent infection of vaginal epithelial cells. The cell wall of C. albicans cells grown in VSM+LA displayed a robust mannan fibrillar structure, β-glucan exposure, and low chitin content. These cell wall changes were associated with altered immune responses and an increased ability of the fungus to induce trained immunity. Neutrophils were compromised in clearing C. albicans grown in VSM+LA conditions, despite mounting stronger oxidative responses. Collectively, we found that fungal adaptation to lactic acid in a vaginal simulative context increases its immunogenicity favouring a pro-inflammatory state. This potentially contributes to the immune response dysregulation and neutrophil recruitment observed during recurrent VVC.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Marisa Valentine
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sumita Roy
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark H. T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Alistair J.P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Pfeiffer S, Swoboda I. The allergenic potential of enolases: physiological and pathophysiological insights. Curr Opin Allergy Clin Immunol 2025; 25:212-219. [PMID: 40131768 DOI: 10.1097/aci.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
PURPOSE OF REVIEW This review gives an overview on the current knowledge of the physiological and pathophysiological features of enolases and how these features might contribute to the enzymes' allergenic properties. It summarizes the most recent literature on allergenic enolases and raises questions that need to be answered in the future to gain a better understanding of the role of enolases in allergic diseases. RECENT FINDINGS The recent identification of two novel allergenic enolases, from London plane tree and whiff, further supports the uniqueness of this allergen family: the occurrence of enolases in the three major kingdoms of life and the capability to induce allergic symptoms via inhalation, ingestion, and skin contact. SUMMARY The importance and uniqueness of enolases as allergenic molecules is widely accepted. However, studies linking the biochemical and physiological features of enolases with their potential to induce allergies are still needed. This would contribute to a better understanding about the role of enolases in the induction of allergic diseases, to improve specificity and sensitivity of allergy diagnosis and to further enable the development of patient-tailored prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Pfeiffer
- The Molecular Biotechnology Section, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | | |
Collapse
|
4
|
Wang Z, Zhang Q, Zhang H, Lu Y. Roles of alcohol dehydrogenase 1 in the biological activities of Candida albicans. Crit Rev Microbiol 2025; 51:484-498. [PMID: 38916139 DOI: 10.1080/1040841x.2024.2371510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/21/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Candida albicans stands as the foremost prevalent human commensal pathogen and a significant contributor to nosocomial fungal infections. In the metabolism of C. albicans, alcohol dehydrogenase 1 (Adh1) is one of the important enzymes that converts acetaldehyde produced by pyruvate decarboxylation into ethanol at the end of glycolysis. Leveraging the foundational processes of alcoholic fermentation, Adh1 plays an active role in multiple biological phenomena, including biofilm formation, interactions between different species, the development of drug resistance, and the potential initiation of gastrointestinal cancer. Additionally, Adh1 within C. albicans has demonstrated associations with regulating the cell cycle, stress responses, and various intracellular states. Furthermore, Adh1 is extracellularly localized on the cell wall surface, where it plays roles in processes such as tissue invasion and host immune responses. Drawing from an analysis of ADH1 gene structure, expression patterns, and fundamental functions, this review elucidates the intricate connections between Adh1 and various biological processes within C. albicans, underscoring its potential implications for the prevention, diagnosis, and treatment of candidiasis.
Collapse
Affiliation(s)
- Ziqi Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Sakuma M, Viens A, Hopke A, Floyd DJ, Ghebremichael M, Mansour MK, Irimia D. Neutrophil extracellular traps capture the human pathogen, Candida albicans, in blood and delay hyphal transformation. J Leukoc Biol 2025; 117:qiaf002. [PMID: 39760697 DOI: 10.1093/jleuko/qiaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/01/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
In tissues, neutrophils neutralize Candida albicans through phagocytosis and delay C. albicans hyphae growth by deploying neutrophil extracellular traps (NETs). However, in the bloodstream, the dynamic interactions between NETs and C. albicans are far less understood. Here, we employ a microfluidic assay and measure a significant increase in intact NETs in blood within 3 h after adding C. albicans yeast or hyphae. We show that C. albicans yeast can be captured efficiently on NETs, thereby delaying the transition to hyphal growth. We measure higher amounts of intact NETs in blood samples from invasive candidiasis patients compared to healthy participants, both with and without stimulation. These findings suggest that both C. albicans yeast and hyphae in the bloodstream stimulate NET release, potentially aiding in their removal from the blood.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, 114 16th St, Boston, MA 02129, USA
- Shriners Children's Boston, 51 Blossom St, Boston, MA 02114, USA
| | - Adam Viens
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Alex Hopke
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, 114 16th St, Boston, MA 02129, USA
- Shriners Children's Boston, 51 Blossom St, Boston, MA 02114, USA
- Harvard Medical School, 229 Longwood Ave, Boston, MA 02115, USA
| | - Daniel J Floyd
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Musie Ghebremichael
- Harvard Medical School, 229 Longwood Ave, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT and Harvard, 600 Main St, Cambridge, MA 02139, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
- Harvard Medical School, 229 Longwood Ave, Boston, MA 02115, USA
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, 114 16th St, Boston, MA 02129, USA
- Shriners Children's Boston, 51 Blossom St, Boston, MA 02114, USA
- Harvard Medical School, 229 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
6
|
Jonani B, Herman BR, Arturo JF, Kwizera R, Mboowa G, Bongomin F. Immune responses to vaginal candidiasis in African women: A scoping review of cytokine profiles, T-cell activation, and gene expression. PLoS One 2025; 20:e0322072. [PMID: 40267085 PMCID: PMC12017564 DOI: 10.1371/journal.pone.0322072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Recent immunological studies of vaginal candidiasis in African populations have revealed complex host‒pathogen interactions with implications for therapeutic development and HIV acquisition risk. OBJECTIVE This scoping review synthesized evidence from Uganda, Zambia, South Africa, and Kenya between 2020 and 2024, focusing on immune responses, cellular dynamics, and tissue effects due vulvovaginal candidiasis. RESULTS Analysis revealed a coordinated inflammatory response marked by elevated levels of the proinflammatory cytokines IL-1β and IL-6 and increased chemokine IL-8-mediated immune cell recruitment. Compared with those in control individuals, distinct T-cell population patterns in colonized individuals show reduced Th17-like CD4+ T-cell activation, with concurrent increases in Th1/Th2-enriched CD4+ T cells. Molecular analysis revealed that 162 differentially expressed genes were involved primarily in neutrophil-mediated immunity and cytokine signaling pathways. Despite robust immune activation, tissue integrity remained intact, accompanied by elevated antimicrobial peptides SLPI and BD-2. Notably, Candida-colonized individuals presented reduced frequencies of HIV target cells (CCR5 + HLA-DR + CD4 + T cells). CONCLUSION These findings advance our understanding of population-specific immune responses to vaginal candidiasis and identify promising therapeutic targets, highlighting the need for longitudinal studies to characterize vulvovaginal candidiasis immunopathogenesis fully in African populations.
Collapse
Affiliation(s)
- Bwambale Jonani
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Laboratory Department, Sebbi Hospital, Wakiso, Uganda
| | | | | | - Richard Kwizera
- Department of Research, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| |
Collapse
|
7
|
Nouari W, Aribi M. Innate lymphoid cells, immune functional dynamics, epithelial parallels, and therapeutic frontiers in infections. Int Rev Immunol 2025:1-28. [PMID: 40242974 DOI: 10.1080/08830185.2025.2490233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Innate lymphoid cells (ILCs) have emerged as pivotal players in the field of immunology, expanding our understanding of innate immunity beyond conventional paradigms. This comprehensive review delves into the multifaceted world of ILCs, beginning with their serendipitous discovery and traversing their ontogeny and heterogeneity. We explore the distinct subsets of ILCs unraveling their intriguing plasticity, which adds a layer of complexity to their functional repertoire. As we journey through the functional activities of ILCs, we address their role in immune responses against various infections, categorizing their interactions with helminthic parasites, bacterial pathogens, fungal infections, and viral invaders. Notably, this review offers a detailed examination of ILCs in the context of specific infections, such as Mycobacterium tuberculosis, Citrobacter rodentium, Clostridium difficile, Salmonella typhimurium, Helicobacter pylori, Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Influenza virus, Cytomegalovirus, Herpes simplex virus, and severe acute respiratory syndrome coronavirus 2. This selection aimed for a comprehensive exploration of ILCs in various infectious contexts, opting for microorganisms based on extensive research findings rather than considerations of virulence or emergence. Furthermore, we raise intriguing questions about the potential immune functional resemblances between ILCs and epithelial cells, shedding light on their interconnectedness within the mucosal microenvironment. The review culminates in a critical assessment of the therapeutic prospects of targeting ILCs during infection, emphasizing their promise as novel immunotherapeutic targets. Nevertheless, due to their recent discovery and evolving understanding, effectively manipulating ILCs is challenging. Ensuring specificity and safety while evaluating long-term effects in clinical settings will be crucial.
Collapse
Affiliation(s)
- Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
8
|
Blair BA, Bragdon E, Dhillon G, Baker N, Stasiak L, Muthig M, Miramon P, Lorenz MC, Wheeler RT. Forward genetic screen in zebrafish identifies new fungal regulators that limit host-protective Candida-innate immune interaction. mBio 2025:e0052925. [PMID: 40172223 DOI: 10.1128/mbio.00529-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Candida is one of the most frequent causes of bloodstream infections, and our first line of defense against these invasive infections is the innate immune system. The early immune response is critical in controlling Candida albicans infection, but C. albicans has several strategies to evade host immune attack. Phagocytosis of C. albicans blocks hyphal growth, limiting host damage and virulence, but how C. albicans limits early recruitment and phagocytosis in vertebrate infection is poorly understood. To study innate immune evasion by intravital imaging, we utilized the transparent larval zebrafish infection model to screen 131 C. albicans mutants for altered virulence and phagocyte response. Infections with each of the seven hypovirulent mutants led to altered phagocyte recruitment and/or phagocytosis, falling into four categories. Of particular interest among these is NMD5, a predicted β-importin and newly identified virulence factor. The nmd5∆/∆ mutant fails to limit phagocytosis, and its virulence defects are eliminated when phagocyte activity is compromised, suggesting that its role in virulence is limited to immune evasion. These quantitative intravital imaging experiments are the first to document altered Candida-phagocyte interactions for several additional mutants and clearly distinguish recruitment from phagocytic uptake, suggesting that Candida modulates both events. This initial large-scale screen of individual C. albicans mutants in a vertebrate, coupled with high-resolution imaging of Candida-phagocyte interactions, provides a more nuanced view of how diverse mutations can lead to more effective phagocytosis, a key immune process that blocks germination and drives anti-fungal immunity. IMPORTANCE Candida albicans is part of the human microbial community and is a dangerous opportunistic pathogen, able to prevent its elimination by the host immune system. Although Candida avoids immune attack through several strategies, we still understand little about how it regulates when immune phagocytes get recruited to the infection site and when they engulf fungal cells. We tested over 130 selected Candida mutants for their ability to cause lethal infection and found several hypovirulent mutants, which provoked altered innate immune responses, resulting in lower overall inflammation and greater host survival. Of particular interest is NMD5, which acts to limit fungal phagocytosis and is predicted to regulate the activity of stress-associated transcription factors. Our high-content screening was enabled by modeling Candida infection in transparent vertebrate zebrafish larva. Our findings help us understand how Candida survives immune attack during commensal and pathogenic growth, and may eventually inform new strategies for controlling disease.
Collapse
Affiliation(s)
- Bailey A Blair
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Emma Bragdon
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Gursimran Dhillon
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Nnamdi Baker
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Lena Stasiak
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Mya Muthig
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Pedro Miramon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
9
|
Rocha V, Almeida H, Sarmento B, das Neves J. Anti- Candida Activity of Cysteine-Modified Amidated Decoralin in the Presence of Engineered Nanomaterials. Pharmaceutics 2025; 17:460. [PMID: 40284455 PMCID: PMC12030351 DOI: 10.3390/pharmaceutics17040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Candidiasis remains a chief concern in global healthcare. Drug safety issues and increasing resistance make it urgent to develop alternative antifungal agents, namely antimicrobial peptides. Amidated decoralin (Dec-CONH2) possesses considerable anti-Candida activity, and its association with nanocarriers could help in enhancing efficacy while reducing intrinsic toxicity to the host. Methods: We studied an N-terminal cysteine-modified version of the peptide (Cys-Dec-CONH2) and screened the effects of different nanosystems (polymeric nanoparticles (NPs), liposomes and gold NPs) on its activity against azole-sensitive and azole-resistant Candida species using a clinically relevant in vitro assay. Results: The antifungal activity of Cys-Dec-CONH2 was maintained (minimum inhibitory concentration (MIC) = 16-64 µg/mL), but the presence of poly(d,l-lactic-co-glycolic acid) (PLGA)- and polycaprolactone-based NPs impaired the antifungal effect of the peptide (MIC > 256 µg/mL). This effect was milder for polystyrene-based NPs, liposomes, and gold NPs (MIC ≤ 128 µg/mL). Additionally, the covalent surface functionalization of PLGA-based NPs with Cys-Dec-CONH2 or the presence of relevant biomolecules (albumin and mucin) resulted in complete inhibition of antifungal activity. Conclusions: Our data suggest that Cys-Dec-CONH2 is able to establish strong interfacial interactions with different nanomaterials, which need to be considered when developing nanomedicines based on this peptide for the management of candidiasis.
Collapse
Affiliation(s)
- Vânia Rocha
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (V.R.); (H.A.); (B.S.)
| | - Helena Almeida
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (V.R.); (H.A.); (B.S.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (V.R.); (H.A.); (B.S.)
- Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - José das Neves
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (V.R.); (H.A.); (B.S.)
- Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
10
|
Horn S, Schmid M, Berest I, Piattini F, Zhang J, de Bock K, Devuyst O, Nlandu Khodo S, Kisielow J, Kopf M. IL-1 protects from fatal systemic candidiasis in mice by inhibiting oxidative phosphorylation and hypoxia. Nat Commun 2025; 16:2626. [PMID: 40097388 PMCID: PMC11914259 DOI: 10.1038/s41467-025-57797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Invasive C. albicans infections result in high mortality rates. While IL-1 is important to combat C. albicans infections, the underlying mechanisms remain unclear. Using global and conditional Il1r1 knockouts in mice, here we show that IL-1R signaling in non-hematopoietic cells in the kidney and brain is crucial for a protective response. In the kidney, endothelial IL-1R contributes to fungal clearance independent of neutrophil recruitment, while IL-1R in hematopoietic cells is dispensable. IL-1R signaling indirectly recruits neutrophils and monocytes in the brain by regulating chemokines and adhesion molecules. Single-nucleus-RNA-sequencing data implicates excessive metabolic activity and oxidative phosphorylation across all cell types in the kidney of Il1r1-deficient mice within a few hours upon infection, with associated, localized hypoxia at infection foci. Lastly, we find that hypoxia promotes fungal growth and pathogenicity. In summary, our results show that IL-1R-signaling in non-hematopoietic cells is required to prevent fatal candidiasis by inhibiting a metabolic shift, including excessive oxidative phosphorylation and hypoxia.
Collapse
Affiliation(s)
- Sofia Horn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Mareike Schmid
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ivan Berest
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Federica Piattini
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zurich, Zurich, Switzerland
| | - Katrien de Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zurich, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Jan Kisielow
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Sharma R, Nahar A, Puri S. Candida albicans enhances iron uptake to maintain fluconazole resistance. Infect Immun 2025; 93:e0000225. [PMID: 39918306 PMCID: PMC11895461 DOI: 10.1128/iai.00002-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 03/12/2025] Open
Abstract
Widespread use of fluconazole has led to the emergence of fluconazole-resistant (FR) Candida spp. causing challenges in clinical treatment. Iron, an essential nutrient, affects the levels of ergosterol (a fluconazole target) in fungal membranes. Our lab-generated FR strain (fluconazole minimum inhibitory concentration [MIC] >125 µg/mL) showed a twofold lower MIC (4.66 µg/mL) for the iron chelator deferasirox (DFX), compared to its patent strain CAI4 (DFX MIC 9.34 µg/mL), suggesting a greater sensitivity to iron chelation. A sublethal dose of DFX (2.33 µg/mL) was able to effectively synergize with 125 µg/mL fluconazole to kill the FR strain. Iron estimation revealed significantly enhanced intracellular iron accumulation in the FR strain compared to CAI4. Expression of iron-uptake genes (FRP1, FRE10, and RBT5) was also significantly upregulated in the FR strain, particularly under high iron. FR strain also showed an increase in the levels of cellular ergosterol, along with an increase in the expression of ergosterol biosynthesis genes (ERG11 and ERG9), compared to CAI4, under both low and high iron. The strain further showed increased β-glucan levels and exposure. Additionally, FR strain showed significantly higher survival in high-iron mice compared to low-iron mice, during fluconazole treatment. Finally, we observed a synergistic fungicidal response between 2.33 µg/mL DFX and 125 µg/mL fluconazole, for FR clinical strains. Overall, this suggests that FR C. albicans actively uptakes more iron to maintain cellular conditions needed to support its resistance against fluconazole; and that DFX alone or in conjugation with fluconazole has the potential to overcome fluconazole drug resistance.
Collapse
Affiliation(s)
- Rishabh Sharma
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Anubhav Nahar
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Puumala E, Nandakumar M, Yiu B, Stogios PJ, Strickland BG, Zarnowski R, Wang X, Williams NS, Savchenko A, Andes DR, Robbins N, Whitesell L, Willson TM, Cowen LE. Structure-guided optimization of small molecules targeting Yck2 as a strategy to combat Candida albicans. Nat Commun 2025; 16:2156. [PMID: 40038303 PMCID: PMC11880385 DOI: 10.1038/s41467-025-57346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Candida albicans is the most common cause of life-threatening fungal infection in the developed world but remains a therapeutic challenge. Protein kinases have been rewarding drug targets across diverse indications but remain untapped for antifungal development. Previously, screening kinase inhibitors against C. albicans revealed a 2,3-aryl-pyrazolopyridine, GW461484A (GW), which targets casein kinase 1 (CK1) family member Yck2. Here, we report optimization of GW via two complementary approaches, synthesis of bioisosteres possessing an imidazo[1,2-a]pyridine core, and R-group substitution of GW's pyrazolo[1,5-a]pyridine core. Characterization of compounds reveals two 6-cyano derivatives with improved pharmacological properties that retain whole-cell bioactivity and selectivity for fungal Yck2 compared to human CK1α. Efficacy studies in mice indicate both analogs possess single-agent activity against C. albicans resistant to first-line echinocandin antifungals and potentiate non-curative echinocandin treatment. Results validate Yck2 as an antifungal target and encourage further development of inhibitors acting by this previously unexploited mode of action.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Meganathan Nandakumar
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Benjamin G Strickland
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Center for Structural Biology of Infectious Diseases (CSBID), Chicago, Illinois, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Ghosh S, Zheng M, He J, Wu Y, Zhang Y, Wang W, Shen J, Yeung KWK, Neelakantan P, Xu C, Qiao W. Electrically-driven drug delivery into deep cutaneous tissue by conductive microneedles for fungal infection eradication and protective immunity. Biomaterials 2025; 314:122908. [PMID: 39454504 DOI: 10.1016/j.biomaterials.2024.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Fungal infections affect over 13 million people worldwide and are responsible for 1.5 million deaths annually. Some deep cutaneous fungal infections may extend the dermal barriers to cause systemic infection, resulting in substantial morbidity and mortality. However, the management of deep cutaneous fungal infection is challenging and yet overlooked by traditional treatments, which only offer limited drug availability within deep tissue. In this study, we have developed an electrically stimulated microneedle patch to deliver miconazole into the subcutaneous layer. We tested its antifungal efficacy using in vitro and ex vivo models that mimic fungal infection. Moreover, we confirmed its anti-fungal and wound-healing effects in a murine subcutaneous fungal infection model. Furthermore, our findings also showed that the combination of miconazole and applied current synergistically stimulated the nociceptive sensory nerves, thereby activating protective cutaneous immunity mediated by dermal dendritic and γδ-T cells. Collectively, this study provides a new strategy for minimally invasive delivery of therapeutic agents and the modulation of the neuro-immune axis in deep tissue.
Collapse
Affiliation(s)
- Sumanta Ghosh
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mengjia Zheng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiahui He
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yefeng Wu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yaming Zhang
- Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weiping Wang
- Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
14
|
Zhao Y, Zhou Z, Cai G, Zhang D, Yu X, Li D, Li S, Zhang Z, Zhang D, Luo J, Hu Y, Gao A, Zhang H. Systemic infection by Candida albicans requires FASN-α subunit induced cell wall remodeling to perturb immune response. PLoS Pathog 2025; 21:e1012865. [PMID: 40138332 PMCID: PMC11940687 DOI: 10.1371/journal.ppat.1012865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/29/2024] [Indexed: 03/29/2025] Open
Abstract
Invasive fungal infections are a leading cause of mortality and morbidity in patients with severely impaired host defenses, while treatment options remain limited. Fatty acid synthase (FASN), the key enzyme regulating de novo biosynthesis of fatty acids, is crucial for the lethal infection of fungi; however, its pathogenic mechanism is still far from clear. Here, we identified the α subunit of FASN as a potential immunotherapeutic target against systemic Candida albicans infection. The avirulence of the encoded gene (FAS2) -deleted mutant in a mouse model of systemic candidiasis is not due to its fitness defects, because sufficient exogenous fatty acids in serum can overcome FASN inhibition. However, the FAS2-deleted mutant displays increased circulating innate immune responses and enhances activated neutrophil fungicidal activity through the unmasking of immunogenic cell wall epitopes via the Rho-1 dependent Mkc1-MAPK signaling pathway, which facilitates fungal clearance, reduces renal tissue damage and inflammatory cell infiltration, ultimately lowers fungal pathogenicity. Priming with the FAS2-deleted mutant provided significant protection against subsequent lethal infection with wild-type C. albicans in mice as early as one week, and it was well-tolerated with limited toxicity. Our findings indicate that the FASN-α subunit plays key roles in the regulation of neutrophil-associated antifungal immunity and could be a potential target for immunotherapeutic intervention.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Zhishan Zhou
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Guiyue Cai
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Dandan Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Xiaoting Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington District of Columbia, United States of America
| | - Shuixiu Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Zhanpeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Dongli Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Jiyao Luo
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Aili Gao
- Guangzhou Dermatology Hospital, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Vuscan P, Röring RJ, Kischkel B, Tintoré M, Cuñé J, de Lecea C, Joosten LAB, Netea MG. Effect of Saccharomyces cerevisiae β-glucan on the T helper cytokine profile. Cytokine 2025; 187:156871. [PMID: 39889564 DOI: 10.1016/j.cyto.2025.156871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
ABBi16 is a high-complexity blend of β-1,3/1,6-glucans from Saccharomyces cerevisiae with strong immunomodulatory activities, that have been recently shown to support anti-tumoral immune responses through the induction of trained immunity. Whether ABBi16 also modulates the balance between the various T helper (Th) lymphocyte responses is not known. Here, we show that ABBi16 induces Th1 responses, as indicated by stimulation of IFNγ and TNF production by human peripheral blood mononuclear cells (PBMCs). Moreover, the elevated secretion of IL-10 and IL-22 suggests a potential regulatory response of the Th1/Th2/Th17 balance. Co-stimulating PBMCs with ABBi16 alongside Bacille Calmette-Guerin (BCG), IL-1beta + IL-23, and IL-12 + IL-18 cytokine combinations further enhanced Th1 polarization and IL-22 induction, hinting at an additive effect of β-glucan on both Th1 and regulatory Th17 immune responses. ABBi16 did not induce IL-17 production, the prototype pro-inflammatory product of Th17 responses, suggesting that it can be safely used as an oral supplement in patients with autoimmune conditions. These results highlight the potential of ABBi16 to regulate the Th1/Th2/Th17 balance toward antimicrobial and regulatory effects.
Collapse
Affiliation(s)
- Patricia Vuscan
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maria Tintoré
- AB Biotek Human Nutrition and Health, Barcelona, Spain
| | - Jordi Cuñé
- AB Biotek Human Nutrition and Health, Barcelona, Spain
| | | | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany.
| |
Collapse
|
16
|
Blair BA, Bragdon E, Dhillon G, Baker N, Stasiak L, Muthig M, Miramon P, Lorenz MC, Wheeler RT. Forward genetic screen in zebrafish identifies new fungal regulators that limit host-protective Candida-innate immune interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638315. [PMID: 39990375 PMCID: PMC11844468 DOI: 10.1101/2025.02.14.638315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Candida is one of the most frequent causes of bloodstream infections, and our first line of defense against these invasive infections is the innate immune system. The early immune response is critical in controlling C. albicans infection, but C. albicans has several strategies to evade host immune attack. Phagocytosis of C. albicans blocks hyphal growth, limiting host damage and virulence, but how C. albicans limits early recruitment and phagocytosis in vertebrate infection is poorly understood. To study innate immune evasion by intravital imaging, we utilized the transparent larval zebrafish infection model to screen 131 C. albicans mutants for altered virulence and phagocyte response. Infections with each of seven hypovirulent mutants led to altered phagocyte recruitment and/or phagocytosis, falling into four categories. Of particular interest among these is NMD5, a predicted β-importin and newly-identified virulence factor. The nmd5∆/∆ mutant fails to limit phagocytosis and its virulence defects are eliminated when phagocyte activity is compromised, suggesting that its role in virulence is limited to immune evasion. These quantitative intravital imaging experiments are the first to document altered Candida-phagocyte interactions for several additional mutants, and clearly distinguish recruitment from phagocytic uptake, suggesting that Candida modulates both events. This initial large-scale screen of individual C. albicans mutants in a vertebrate, coupled with high-resolution imaging of Candida-phagocyte interactions, provides a more nuanced view of how diverse mutations can lead to more effective phagocytosis, a key immune process which blocks germination and drives anti-fungal immunity.
Collapse
Affiliation(s)
- Bailey A. Blair
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469
| | - Emma Bragdon
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Gursimran Dhillon
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Nnamdi Baker
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Lena Stasiak
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Mya Muthig
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Pedro Miramon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469
| |
Collapse
|
17
|
Zhou T, Solis NV, Marshall M, Yao Q, Pearlman E, Filler SG, Liu H. Fungal Als proteins hijack host death effector domains to promote inflammasome signaling. Nat Commun 2025; 16:1562. [PMID: 39939579 PMCID: PMC11821908 DOI: 10.1038/s41467-025-56657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025] Open
Abstract
High-damaging Candida albicans strains tend to form hyphae and exacerbate intestinal inflammation in ulcerative colitis patients through IL-1β-dependent mechanisms. Fungal agglutinin-like sequence (Als) proteins worsen DSS-induced colitis in mouse models. FADD and caspase-8 are important regulators of gut homeostasis and inflammation. However, whether they link directly to fungal proteins is not fully understood. Here, we report that Als proteins induce IL-1β release in immune cells. We show that hyphal Als3 is internalized in macrophages and interacts with caspase-8 and the inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC). Caspase-8 is essential for Als3-mediated ASC oligomerization and IL-1β processing. In non-immune cells, Als3 is associated with cell death core components FADD and caspase-8. N-terminal Als3 (N-Als3) expressed in Jurkat cells partially inhibits apoptosis. Mechanistically, N-Als3 promotes oligomerization of FADD and caspase-8 through their death effector domains (DEDs). N-Als3 variants with a mutation in the peptide-binding cavity or amyloid-forming region are impaired in DED oligomerization. Together, these results demonstrate that DEDs are intracellular sensors of Als3. This study identifies additional potential targets to control hypha-induced inflammation.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Norma V Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michaela Marshall
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Qing Yao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Gilead Sciences Inc, Foster City, CA, USA
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
18
|
Štěpánek O, Parigger M, Procházková E, Čmoková A, Kolařík M, Dračínská H, Černá V, Kalíková K, Grobárová V, Černý J, Scheler J, Schweiger G, Binder U, Baszczyňski O. Prodrugging fungicidal amphotericin B significantly decreases its toxic effects. Eur J Med Chem 2025; 283:117157. [PMID: 39673865 DOI: 10.1016/j.ejmech.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Amphotericin B (AmB) is one of the most effective antifungal drugs, with a strong, dose-dependent activity against most Candida and Aspergillus species responsible for life-threatening infections. However, AmB is severely toxic, which hinders its broad use. In this proof-of-concept study, we demonstrate that prodrugging AmB considerably decreases AmB toxicity without affecting its fungicidal activity. For this purpose, we modified the AmB structure by attaching a designer phosphate promoiety, thereby switching off its mode of action and preventing its toxic effects. The original fungicidal activity of AmB was then restored upon prodrug activation by host plasma enzymes. These AmB prodrugs showed a safer toxicity profile than commercial AmB deoxycholate in Candida and Aspergillus species and significantly prolonged larval survival of infected Galleria mellonella larvae. Based on these findings, prodrugging toxic antifungals may be a viable strategy for broadening the antifungal arsenal, opening up opportunities for targeted prodrug design.
Collapse
Affiliation(s)
- Ondřej Štěpánek
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Marie Parigger
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo Nám. 542/2, Prague, 160 00, Czech Republic
| | - Adéla Čmoková
- Institute of Microbiology, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 1594/7, Prague, 128 00, Czech Republic
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 1594/7, Prague, 128 00, Czech Republic
| | - Jakob Scheler
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Gottfried Schweiger
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria
| | - Ulrike Binder
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41/2, 6020, Innsbruck, Austria.
| | - Ondřej Baszczyňski
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague, 128 00, Czech Republic; Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo Nám. 542/2, Prague, 160 00, Czech Republic.
| |
Collapse
|
19
|
Kulig K, Wronowska E, Juszczak M, Zawrotniak M, Karkowska-Kuleta J, Rapala-Kozik M. Host cell responses to Candida albicans biofilm-derived extracellular vesicles. Front Cell Infect Microbiol 2025; 14:1499461. [PMID: 39877654 PMCID: PMC11772320 DOI: 10.3389/fcimb.2024.1499461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Candida albicans is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by C. albicans play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two C. albicans strains-3147 (ATCC 10231) and SC5314-in eliciting host responses. We demonstrate the capability of C. albicans EVs to trigger reactions in human epithelial and immune cells. The involvement of EVs in pathogenesis was evidenced from the initial stages of infection, specifically in adherence to epithelial cells. We further established the capacity of these EVs to induce cytokine production in the epithelial A549 cell line, THP-1 macrophage-like cells, and blood-derived monocytes differentiated into macrophages. Internalization of EVs by THP-1 macrophage-like cells was confirmed, identifying macropinocytosis and phagocytosis as the most probable mechanisms, as demonstrated using various inhibitors that target potential vesicle uptake pathways in human cells. Additionally, C. albicans EVs and their cargo were identified as chemoattractants for blood-derived neutrophils. After verification of the in vivo effect of biofilm-derived EVs on the host, using Galleria mellonella larvae as an alternative model, it was demonstrated that vesicles from C. albicans SC5314 increased mortality in the injected larvae. In conclusion, for both types of EVs a predominantly pro-inflammatory effect on host was observed, highlighting their significant role in the inflammatory response during C. albicans infection.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
20
|
Zeng S, Zhou M, Mu D, Wang S. Clinical implications of maternal multikingdom transmissions and early-life microbiota. THE LANCET. MICROBE 2025:101042. [PMID: 39818230 DOI: 10.1016/j.lanmic.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Mother-to-infant transmission of the bacteriome, virome, mycobiome, archaeome, and their mobile genetic elements has been recognised in nature as an important step for the infant to acquire and maintain a healthy early-life (from birth till age 3 years) microbiota. A comprehensive overview of other maternal multikingdom transmissions remains unavailable, except for that of the bacteriome. Associations between microorganisms and diseases throughout the human life span have been gradually discovered; however, whether these microorganisms are maternally derived and how they concomitantly interact with other microbial counterparts remain poorly understood. This Review first discusses the current understanding of maternal multikingdom transmissions, their contributions to the development of early-life microbiota, and the primary factors that influence the transmission processes. The clinical implications of the inherited microbiota on human health in early life have been emphasised upon next, along with highlighting of knowledge gaps that should be addressed in future research. Finally, interventions to restore typical vertical transmission or disturbed early-life microbiota have been discussed as potential therapeutic approaches.
Collapse
Affiliation(s)
- Shuqin Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meicen Zhou
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Shaopu Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Cowen L, Puumala E, Nandakumar M, Yiu B, Stogios P, Strickland B, Zarnowski R, Wang X, Williams N, Savchenko A, Andes D, Robbins N, Whitesell L, Willson T. Structure-guided optimization of small molecules targeting the yeast casein kinase, Yck2, as a therapeutic strategy to combat Candida albicans. RESEARCH SQUARE 2025:rs.3.rs-5524306. [PMID: 39866870 PMCID: PMC11760248 DOI: 10.21203/rs.3.rs-5524306/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Candida albicans is the most common cause of life-threatening fungal infection in the developed world but remains a therapeutic challenge. Protein kinases have been rewarding drug targets across diverse indications but remain untapped for antifungal development. Previously, screening kinase inhibitors against C. albicans revealed a 2,3-aryl-pyrazolopyridine, GW461484A (GW), which targets casein kinase 1 (CK1) family member Yck2. Here, we report optimization of GW via two complementary approaches, synthesis of bioisosteres possessing an imidazo[1,2-a]pyridine core, and R-group substitution of GW's pyrazolo[1,5-a]pyridine core. Characterization of compounds synthesized revealed two 6-cyano derivatives with improved pharmacological properties that retained whole-cell bioactivity and selectivity for fungal Yck2 compared to human CK1α. Efficacy studies in mice indicated both analogs possess single-agent activity against C. albicans resistant to first-line echinocandin antifungals and potentiate non-curative echinocandin treatment. Results validate Yck2 as an antifungal target and encourage further development of inhibitors acting by this previously unexploited mode of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Noelle Williams
- The University of Texas Southwestern Medical Center at Dallas
| | | | | | | | | | | |
Collapse
|
22
|
Penninger P, Brezovec H, Tsymala I, Teufl M, Phan-Canh T, Bitencourt T, Brinkmann M, Glaser W, Ellmeier W, Bonelli M, Kuchler K. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections. Cell Rep 2024; 43:114993. [PMID: 39580799 DOI: 10.1016/j.celrep.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Histone deacetylases (HDACs) contribute to shaping many aspects of T cell lineage functions in anti-infective surveillance; however, their role in fungus-specific immune responses remains poorly understood. Using a T cell-specific deletion of HDAC1, we uncover its critical role in limiting polarization toward Th17 by restricting expression of the cytokine receptors gp130 and transforming growth factor β receptor 2 (TGF-βRII) in a fungus-specific manner, thus limiting Stat3 and Smad2/3 signaling. Controlled release of interleukin-17A (IL-17A) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is vital to minimize apoptotic processes in renal tubular epithelial cells in vitro and in vivo. Consequently, animals harboring excess Th17-polarized HDCA1-deficient CD4+ T cells develop increased kidney pathology upon invasive Candida albicans infection. Importantly, pharmacological inhibition of class I HDACs similarly increased IL-17A release by both mouse and human CD4+ T cells. Collectively, this work shows that HDAC1 controls T cell polarization, thus playing a critical role in the antifungal immune defense and infection outcomes.
Collapse
Affiliation(s)
- Philipp Penninger
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Helena Brezovec
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Magdalena Teufl
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Trinh Phan-Canh
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Marie Brinkmann
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Walter Glaser
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, 1090 Vienna, Austria
| | - Michael Bonelli
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
23
|
Gómez-Gaviria M, Baruch-Martínez DA, Mora-Montes HM. Exploring the Biology, Virulence, and General Aspects of Candida dubliniensis. Infect Drug Resist 2024; 17:5755-5773. [PMID: 39722735 PMCID: PMC11669290 DOI: 10.2147/idr.s497862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Fungal infections have become a growing public health concern, aggravated by the emergence of new pathogenic species and increasing resistance to antifungal drugs. The most common candidiasis is caused by Candida albicans; however, Candida dubliniensis has become an emerging opportunistic pathogen, and although less prevalent, it can cause superficial and systemic infections, especially in immunocompromised individuals. This yeast can colonize the oral cavity, skin, and other tissues, and has been associated with oral infections in patients with human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS), making it difficult to treat. The special interest in the study of this species lies in its ability to evade commonly used antifungal drugs, such as fluconazole, under different concentrations. In addition, it is difficult to identify because it can be confused with the species C. albicans, which could interfere with adequate treatment. Although the study of virulence factors in C. dubliniensis is limited, proteomic comparisons with C. albicans indicate that these virulence factors could be similar between the two species. However, differences could exist considering the evolutionary processes and lifestyle of each species. In this study, a detailed review of the current literature on C. dubliniensis was conducted, considering aspects such as biology, possible virulence factors, immune response, pathogen-host interaction, diagnosis, and treatment.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Dario A Baruch-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| |
Collapse
|
24
|
Rai MN, Rai R. H 3K 4 Methylation and Demethylation in Fungal Pathogens: The Epigenetic Toolbox for Survival and Adaptation in the Host. Pathogens 2024; 13:1080. [PMID: 39770340 PMCID: PMC11728789 DOI: 10.3390/pathogens13121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/14/2025] Open
Abstract
Pathogenic fungi represent a diverse group of eukaryotic microorganisms that significantly impact human health and agriculture. In recent years, the role of epigenetic modifications, particularly histone modifications, in fungal pathobiology has emerged as a prominent area of interest. Among these modifications, methylation of histone H3 at lysine-4 (H3K4) has garnered considerable attention for its implications in regulating gene expression associated with diverse cellular processes. A body of literature has uncovered the pivotal roles of H3K4 methylation in multiple biological processes crucial for pathogenic adaptation in a wide range of fungal pathogens of humans and food crops. This review delves into the recent advancements in understanding the impact of H3K4 methylation/demethylation on fungal pathogenesis. We explore the roles of H3K4 methylation in various cellular processes, including fungal morphogenesis and development, genome stability and DNA repair, metabolic adaptation, cell wall maintenance, biofilm formation, antifungal drug resistance, and virulence. We also discuss the conservation of H3K4 methylation regulators and their potential as therapeutic targets to prevent fungal diseases. Collectively, this review underscores the intricate links between H3K4 methylation, fungal pathogenesis, and potential avenues for novel antifungal strategies.
Collapse
Affiliation(s)
- Maruti Nandan Rai
- College of Agricultural, Consumer, and Environmental Sciences (ACES), University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rikky Rai
- Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India;
| |
Collapse
|
25
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
26
|
Miranda S, Lassnig C, Schmidhofer K, Kjartansdottir H, Vogl C, Tangermann S, Tsymala I, Babl V, Müller M, Kuchler K, Strobl B. Lack of TYK2 signaling enhances host resistance to Candida albicans skin infection. Nat Commun 2024; 15:10493. [PMID: 39622833 PMCID: PMC11612186 DOI: 10.1038/s41467-024-54888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing diseases ranging from local to life-threating systemic infections. Tyrosine kinase 2 (TYK2), a crucial mediator in several cytokine signaling pathways, has been associated with protective functions in various microbial infections. However, its specific contribution in the immune response to fungal infections has remained elusive. In this study, we show that mice lacking TYK2 or its enzymatic activity exhibit enhanced resistance to C. albicans skin infections, limiting fungal spread and accelerating wound healing. Impaired TYK2-signaling prompted the formation of a distinctive layer of necrotic neutrophils around the fungal pathogens. Transcriptomic analysis revealed TYK2's pivotal role in regulating interferon-inducible genes in neutrophils, thereby impacting their antifungal capacity during infection. Furthermore, we show that TYK2-dependent interferon-gamma (IFNγ) production contributes to fungal dissemination from the skin to the kidneys. Our study uncovers a hitherto unrecognized detrimental role of TYK2 in cutaneous C. albicans infections.
Collapse
Affiliation(s)
- Sara Miranda
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Schmidhofer
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hrönn Kjartansdottir
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Tangermann
- Centre of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Verena Babl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Jaeger M, Dietschmann A, Austermeier S, Dinçer S, Porschitz P, Vornholz L, Maas RJ, Sprenkeler EG, Ruland J, Wirtz S, Azam T, Joosten LA, Hube B, Netea MG, Dinarello CA, Gresnigt MS. Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence 2024; 15:2333367. [PMID: 38515333 PMCID: PMC11008552 DOI: 10.1080/21505594.2024.2333367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic β-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sude Dinçer
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Pauline Porschitz
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Ralph J.A. Maas
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien G.G. Sprenkeler
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, USA
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| |
Collapse
|
28
|
Wang F, Zhang J, Zhang Q, Song Z, Xin C. Antifungal activities of Equol against Candida albicans in vitro and in vivo. Virulence 2024; 15:2404256. [PMID: 39267283 PMCID: PMC11409501 DOI: 10.1080/21505594.2024.2404256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can cause systemic infections in immunocompromised individuals. Morphological transition and biofilm formation are major virulence factors of C. albicans. Moreover, biofilm enhances resistance to antifungal agents. Therefore, it is urgent to identify new and effective compounds to target the biofilm of C. albicans. In the present study, the antifungal activities of equol against C. albicans were investigated. In vitro, the microdilution analysis and spot assay result showed that equol exhibited potent inhibitory activities against C. albicans. Further investigations confirmed that the antifungal effects of equol involved interference with the transition from yeast to hypha and biofilm formation of C. albicans. In addition, transcriptome sequencing and reverse transcription-quantitative PCR (qRT-PCR) analysis showed that equol significantly downregulated the expression of several genes in the Ras1-cAMP-PKA pathway related to hyphae and biofilm formation and significantly upregulated the expression of the negative transcriptional repressors RFG1 and TUP1. Moreover, equol effectively reduced the production of cAMP, a key messenger in the Ras1-cAMP-PKA pathway, while supplementation with cAMP partly rescued the equol-induced defects in hyphal development. Furthermore, in a mouse model of systemic candidiasis (SC), equol treatment significantly decreased the fungal burden (liver, kidneys, and lung) in mice and local tissue damage, while enhancing the production of interleukin-10 (IL-10). Together, these findings confirm that equol is a potentially effective agent for treatment of SC.
Collapse
Affiliation(s)
- Fen Wang
- Nanobiosensing and Microfluidic Point-of-Care Testing Key Laboratory of LuZhou, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jinping Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qian Zhang
- Department of blood transfusion, Zhejiang people’s hospital, Yichang, China
| | - Zhangyong Song
- School of Basic Medical Science, Southwest Medical University, Luzhou, People’s Republic of China
- Technical Platform for the Molecular Biology, Research Core Facility, Southwest Medical University, Luzhou, People’s Republic of China
- Southwest Medical University, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Caiyan Xin
- School of Basic Medical Science, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
29
|
Balakumar A, Cox A, Thangamani S. Cell aggregation mediated by ACE2 deletion in Candida auris modulates fungal colonization and host immune responses in the skin. mSphere 2024; 9:e0073424. [PMID: 39475280 PMCID: PMC11580408 DOI: 10.1128/msphere.00734-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024] Open
Abstract
Candida auris is an emerging multi-drug-resistant fungal pathogen that colonizes the skin and causes invasive infections in hospitalized patients. Multi-cellular aggregative phenotype is widely reported in the C. auris isolates, but its role in skin colonization and host immune response is not yet known. In this study, we generated aggregative phenotype by deleting the ACE2 gene in C. auris and determined the fungal colonization and host immune response using an intradermal mouse model of C. auris skin infection. Our results indicate that mice infected with ace2Δ strain had significantly lower fungal load after 3 and 14 days post-infections compared to the non-aggregative wild-type and the ACE2 reintegrated strain. The colonization of ace2Δ is associated with increased recruitment of CD11b+ Ly6G+ neutrophils and decreased accumulation of CD11b+ Ly6 Chi inflammatory monocytes and CD11b+ MHCII+ CD64+ macrophages. Furthermore, Th17 cells and type 3 innate lymphoid cells (ILCs) were significantly increased in the skin tissue of ace2Δ infected mice. Our findings suggest that aggregative phenotype mediated by ACE2 deletion in C. auris induces potent neutrophil and IL-17-mediated immune response and reduces fungal colonization in the skin.IMPORTANCEC. auris is a rapidly emerging fungal pathogen that can colonize hospitalized patients, especially in skin tissue, and cause invasive infections. C. auris isolates exhibit morphological heterogeneity, and the multicellular aggregative phenotype of C. auris is reported frequently in clinical settings. Understanding the role of fungal morphotypes in colonization, persistence, and immune response in the skin microenvironment will have potential applications in clinical diagnosis and novel preventive and therapeutic measures. Here, we utilized the murine model of intradermal infection and determined that the aggregative phenotype of C. auris as the result of ACE2 gene deletion elicits potential innate and adaptive immune responses in mice. These observations will help explain the differences in the skin colonization and immune responses of the aggregative morphotype of C. auris and open the door to developing novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, Indiana, USA
| |
Collapse
|
30
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Aptekmann A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. mBio 2024; 15:e0274824. [PMID: 39422509 PMCID: PMC11558994 DOI: 10.1128/mbio.02748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Candida auris, a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30%-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase is essential for efficient skin colonization, intradermal persistence as well as systemic virulence. RNA-seq analysis of wild-type parental and hog1Δ mutant strains revealed marked downregulation of genes involved in processes such as cell adhesion, cell wall rearrangement, and pathogenesis in hog1Δ mutant compared to the wild-type parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell wall architecture, as the hog1Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo. Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. IMPORTANCE Candida auris is a World Health Organization fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention. C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris. Therefore, understanding C. auris skin colonization mechanisms is critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay the foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
Affiliation(s)
- Raju Shivarathri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Manju Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Abhishek Datta
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Diprasom Das
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Adela Karuli
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ariel Aptekmann
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sabrina Jenull
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Shankar Thangamani
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
31
|
Balakumar A, Das D, Datta A, Mishra A, Bryak G, Ganesh SM, Netea MG, Kumar V, Lionakis MS, Arora D, Thimmapuram J, Thangamani S. Single-cell transcriptomics unveils skin cell specific antifungal immune responses and IL-1Ra- IL-1R immune evasion strategies of emerging fungal pathogen Candida auris. PLoS Pathog 2024; 20:e1012699. [PMID: 39536069 PMCID: PMC11588283 DOI: 10.1371/journal.ppat.1012699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Abtar Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Garrett Bryak
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Shrihari M. Ganesh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Devender Arora
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, Indiana, United States of America
| |
Collapse
|
32
|
Balakumar A, Das D, Datta A, Mishra A, Bryak G, Ganesh SM, Netea MG, Kumar V, Lionakis MS, Arora D, Thimmapuram J, Thangamani S. Single-Cell Transcriptomics Unveils Skin Cell Specific Antifungal Immune Responses and IL-1Ra- IL-1R Immune Evasion Strategies of Emerging Fungal Pathogen Candida auris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619653. [PMID: 39463935 PMCID: PMC11507746 DOI: 10.1101/2024.10.22.619653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that preferentially colonizes and persists in skin tissue, yet the host immune factors that regulate the skin colonization of C. auris in vivo are unknown. In this study, we employed unbiased single-cell transcriptomics of murine skin infected with C. auris to understand the cell type-specific immune response to C. auris. C. auris skin infection results in the accumulation of immune cells such as neutrophils, inflammatory monocytes, macrophages, dendritic cells, T cells, and NK cells at the site of infection. We identified fibroblasts as a major non-immune cell accumulated in the C. auris infected skin tissue. The comprehensive single-cell profiling revealed the transcriptomic signatures in cytokines, chemokines, host receptors (TLRs, C-type lectin receptors, NOD receptors), antimicrobial peptides, and immune signaling pathways in individual immune and non-immune cells during C. auris skin infection. Our analysis revealed that C. auris infection upregulates the expression of the IL-1RN gene (encoding IL-1R antagonist protein) in different cell types. We found IL-1Ra produced by macrophages during C. auris skin infection decreases the killing activity of neutrophils. Furthermore, C. auris uses a unique cell wall mannan outer layer to evade IL-1R-signaling mediated host defense. Collectively, our single-cell RNA seq profiling identified the transcriptomic signatures in immune and non-immune cells during C. auris skin infection. Our results demonstrate the IL-1Ra and IL-1R-mediated immune evasion mechanisms employed by C. auris to persist in the skin. These results enhance our understanding of host defense and immune evasion mechanisms during C. auris skin infection and identify potential targets for novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Abtar Mishra
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Garrett Bryak
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Shrihari M Ganesh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Devender Arora
- Bioinformatics Core, Purdue University, West Lafayette, IN 47906
| | | | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906
| |
Collapse
|
33
|
Yang YH, Xie KF, Yang S, Wang H, Ma HH, Zhou M, Wang ZW, Gu Y, Jia XM. BLNK negatively regulates innate antifungal immunity through inhibiting c-Cbl-mediated macrophage migration. Proc Natl Acad Sci U S A 2024; 121:e2400920121. [PMID: 39413134 PMCID: PMC11513953 DOI: 10.1073/pnas.2400920121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
B cell linker protein (BLNK) is crucial for orchestrating B cell receptor-associated spleen tyrosine kinase (Syk) signaling. However, the role of BLNK in Syk-coupled C-type lectin receptor (CLR) signaling in macrophages remains unclear. Here, we delineate that CLRs govern the Syk-mediated activation of BLNK, thereby impeding macrophage migration by disrupting podosome ring formation upon stimulation with fungal β-glucans or α-mannans. Mechanistically, BLNK instigates its association with casitas B-lineage lymphoma (c-Cbl), competitively impeding the interaction between c-Cbl and Src-family kinase Fyn. This interference disrupts Fyn-mediated phosphorylation of c-Cbl and subsequent c-Cbl-associated F-actin assembly. Consequently, BLNK deficiency intensifies CLR-mediated recruitment of the c-Cbl/phosphatidylinositol 3-kinase complex to the F-actin cytoskeleton, thereby enhancing macrophage migration. Notably, mice with monocyte-specific BLNK deficiency exhibit heightened resistance to infection with Candida albicans, a prominent human fungal pathogen. This resistance is attributed to the increased infiltration of Ly6C+ macrophages into renal tissue. These findings unveil a previously unrecognized role of BLNK for the negative regulation of macrophage migration through inhibiting CLR-mediated podosome ring formation during fungal infections.
Collapse
Affiliation(s)
- Yi-Heng Yang
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Ke-Fang Xie
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Shuai Yang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Hui-Hui Ma
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Min Zhou
- Department of Periodontology, Stemmatological Hospital, Tongji University, Shanghai200072, China
| | - Zhong-Wei Wang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Yebo Gu
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| |
Collapse
|
34
|
Shao Z, Wang L, Cao L, Chen T, Jia XM, Sun W, Gao C, Xiao H. The protein segregase VCP/p97 promotes host antifungal defense via regulation of SYK activation. PLoS Pathog 2024; 20:e1012674. [PMID: 39471181 PMCID: PMC11548748 DOI: 10.1371/journal.ppat.1012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024] Open
Abstract
C-type lectin receptors (CLRs) are essential to execute host defense against fungal infection. Nevertheless, a comprehensive understanding of the molecular underpinnings of CLR signaling remains a work in progress. Here, we searched for yet-to-be-identified tyrosine-phosphorylated proteins in Dectin-1 signaling and linked the stress-response protein valosin containing protein (VCP)/p97 to Dectin-1 signaling. Knockdown of VCP expression or chemical inhibition of VCP's segregase activity dampened Dectin-1-elicited SYK activation in BMDMs and BMDCs, leading to attenuated expression of proinflammatory cytokines/chemokines such as TNF-α, IL-6 and CXCL1. Biochemical analyses demonstrated that VCP and its cofactor UFD1 form a complex with SYK and its phosphatase SHP-1 following Dectin-1 ligation, and knockdown of VCP led to a more prominent SYK and SHP-1 association. Further, SHP-1 became polyubiquitinated upon Dectin-1 activation, and VCP or UFD1 overexpression accelerated SHP-1 degradation. Conceivably, VCP may promote Dectin-1 signaling by pulling the ubiquitinated SHP-1 out of the SYK complex for degradation. Finally, genetic ablation of VCP in the neutrophil and macrophage compartment rendered the mice highly susceptible to infection by Candida albicans, an observation also phenocopied by administering the VCP inhibitor. These results collectively demonstrate that VCP is a previously unappreciated signal transducer of the Dectin-1 pathway and a crucial component of antifungal defense, and suggest a new mechanism regulating SYK activation.
Collapse
Affiliation(s)
- Zhugui Shao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Li Wang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Limin Cao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
35
|
Gayatri M, Jothipandiyan S, Azeez MKA, Sudharsan M, Suresh D, Nithyanand P. Novel thiazolinyl-picolinamide-based palladium(II) complex extenuates the virulence and biofilms of vulvovaginal candidiasis (VVC) causing Candida. Int Microbiol 2024; 27:1527-1539. [PMID: 38467906 DOI: 10.1007/s10123-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Candida infections are growing all over the world as a result of their resistance to anti-fungal drugs. This raises concerns about public health, particularly in cases of vulvovaginal candidiasis (VVC). Therefore, the need for effective treatment options for Candida infections has become crucial. The main goal of the study is to evaluate the efficacy of novel palladium metal complexes against fluconazole-resistant Candida spp., particularly C. albicans and C. auris. The process begins with identifying the minimum inhibitory concentration (MIC), followed by growth curve assays, colony morphology analysis, characterization, and gene expression analysis. The investigation revealed that sub-MIC of Pd(II) complex B (250 μg/mL) inhibited Candida spp. more effectively than amphotericin B (500 μg/mL). Further, Pd(II) complex B drastically reduced the growth of Candida spp. biofilms by 70-80% for nascent biofilms and 70-75% for mature biofilms. Additionally, the yeast-to-hyphal switch and SEM studies revealed that Pd(II) complex B effectively hinders the growth of drug-resistant Candida cells. The gene expression investigation also evidenced that Pd(II) complex B downregulated virulence genes in C. albicans (ERG, EFG, UME6, and HGC) and C. auris (ERG, CDR, and HGC). The findings showed that Pd(II) complex B effectively inhibited the growth of Candida biofilm formation and was reported as a potential anti-biofilm agent against Candida spp. that are resistant to drugs.
Collapse
Affiliation(s)
- Munieswaran Gayatri
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Mohamed Khalid Abdul Azeez
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Murugesan Sudharsan
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India
| | - Devarajan Suresh
- Organometallics and Catalysis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
36
|
Vymazal O, Papatheodorou I, Andrejčinová I, Bosáková V, Vascelli G, Bendíčková K, Zelante T, Hortová-Kohoutková M, Frič J. Calcineurin-NFAT signaling controls neutrophils' ability of chemoattraction upon fungal infection. J Leukoc Biol 2024; 116:816-829. [PMID: 38648505 DOI: 10.1093/jleuko/qiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Calcineurin-nuclear factor of activated T cells (CN-NFAT) inhibitors are widely clinically used drugs for immunosuppression, but besides their required T cell response inhibition, they also undesirably affect innate immune cells. Disruption of innate immune cell function can explain the observed susceptibility of CN-NFAT inhibitor-treated patients to opportunistic fungal infections. Neutrophils play an essential role in innate immunity as a defense against pathogens; however, the effect of CN-NFAT inhibitors on neutrophil function was poorly described. Thus, we tested the response of human neutrophils to opportunistic fungal pathogens, namely Candida albicans and Aspergillus fumigatus, in the presence of CN-NFAT inhibitors. Here, we report that the NFAT pathway members were expressed in neutrophils and mediated part of the neutrophil response to pathogens. Upon pathogen exposure, neutrophils underwent profound transcriptomic changes with subsequent production of effector molecules. Importantly, genes and proteins involved in the regulation of the immune response and chemotaxis, including the chemokines CCL2, CCL3, and CCL4 were significantly upregulated. The presence of CN-NFAT inhibitors attenuated the expression of these chemokines and impaired the ability of neutrophils to chemoattract other immune cells. Our results amend knowledge about the impact of CN-NFAT inhibition in human neutrophils.
Collapse
Affiliation(s)
- Ondrej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Gianluca Vascelli
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Teresa Zelante
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Marcela Hortová-Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, 128 00, Czech Republic
| |
Collapse
|
37
|
Meier K, Beissert S, Ghoreschi K, Philipp S, Schwarz B, Tietz HJ, Asadullah K. [Recommendations for the management of oral candidiasis during treatment with biologicals-results from an expert meeting of dermatologists]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:823-826. [PMID: 39225881 PMCID: PMC11457714 DOI: 10.1007/s00105-024-05410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Katharina Meier
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Luisenstr. 2, 10117, Berlin, Deutschland.
| | - Stefan Beissert
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Deutschland
| | - Kamran Ghoreschi
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Luisenstr. 2, 10117, Berlin, Deutschland
| | - Sandra Philipp
- Hautarztpraxis Dr. med. Friedrich/Dr. med. Philipp, Oranienburg, Deutschland
| | - Beate Schwarz
- Hautarztpraxis/Studienzentrum Dr. Schwarz, Langenau, Deutschland
| | - Hans-Jürgen Tietz
- mycoclinic, Institut für Pilzkrankheiten und Innere Medizin, Berlin, Deutschland
| | - Khusru Asadullah
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Luisenstr. 2, 10117, Berlin, Deutschland
- Dermatologie Potsdam MVZ, Potsdam, Deutschland
| |
Collapse
|
38
|
Liu F, Chen Y, Huang Y, Jin Q, Ji J. Nanomaterial-based therapeutics for enhanced antifungal therapy. J Mater Chem B 2024; 12:9173-9198. [PMID: 39192670 DOI: 10.1039/d4tb01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The application of nanotechnology in antifungal therapy is gaining increasing attention. Current antifungal drugs have significant limitations, such as severe side effects, low bioavailability, and the rapid development of resistance. Nanotechnology offers an innovative solution to address these issues. This review discusses three key strategies of nanotechnology to enhance antifungal efficacy. Firstly, nanomaterials can enhance their interaction with fungal cells via ingenious surface tailoring of nanomaterials. Effective adhesion of nanoparticles to fungal cells can be achieved by electrostatic interaction or specific targeting to the fungal cell wall and cell membrane. Secondly, stimuli-responsive nanomaterials are developed to realize smart release of drugs in the specific microenvironment of pathological tissues, such as the fungal biofilm microenvironment and inflammatory microenvironment. Thirdly, nanomaterials can be designed to cross different physiological barriers, effectively addressing challenges posed by skin, corneal, and blood-brain barriers. Additionally, some new nanomaterial-based strategies in treating fungal infections are discussed, including the development of fungal vaccines, modulation of macrophage activity, phage therapy, the application of high-throughput screening in drug discovery, and so on. Despite the challenges faced in applying nanotechnology to antifungal therapy, its significant potential and innovation open new possibilities for future clinical antifungal applications.
Collapse
Affiliation(s)
- Fang Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| |
Collapse
|
39
|
Rosati D, Pradhan A, van Heck JIP, Helder L, Jaeger M, Gow NAR, Joosten LAB, Williams DL, Brown AJP, Bruno M, Netea MG. Candida albicans N-Linked Mannans Potentiate the Induction of Trained Immunity via Dectin-2. J Infect Dis 2024; 230:768-777. [PMID: 38446996 PMCID: PMC11420807 DOI: 10.1093/infdis/jiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses, which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T-cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by dectin 2. In conclusion, N-linked mannan is needed, in addition to β-glucans, for an effective induction of trained immunity by C. albicans.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Julia I P van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Leonie Helder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and PharmacyCluj-Napoca, Romania
| | - David L Williams
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Qian W, Ou J, Jin J, Li K, Ju X, Zhu M, Tian Y, Niu Z. Antigenic peptide-tobacco mosaic virus conjugates as a fungal vaccine candidate. Colloids Surf B Biointerfaces 2024; 245:114251. [PMID: 39317042 DOI: 10.1016/j.colsurfb.2024.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Fungal infections are becoming an increasingly serious challenge in clinic due to the increase in drug resistance and the lack of anti-fungal drugs. Vaccination is a useful approach to prevent fungal infections. However, the balance between effectiveness and side effects presents a challenge in vaccine development. In this work, we designed a plant virus-based conjugate vaccine. The non-infectiveness and innate immunogenicity of plant viruses make this vaccine both safe and effective. By conjugating a fungal antigenic peptide to the tobacco mosaic virus (TMV), the resultant vaccine improved the uptake efficiency of antigenic peptides by antigen-presenting cells and enhanced the ability to target lymph nodes. The results of in vivo vaccination in mice showed a significant increase of antigen-specific IgG antibody levels induced by the TMV conjugate vaccine. This work suggests that TMV conjugate vaccines may become a potential vaccine candidate for preventing fungal infections.
Collapse
Affiliation(s)
- Wei Qian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhao Ou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jiaodan Jin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejia Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Rishiq A, Liu M, Mandelboim O. Enhancing immunity against Candida albicans infections through TIGIT knockout. mBio 2024; 15:e0116524. [PMID: 39109867 PMCID: PMC11389390 DOI: 10.1128/mbio.01165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 09/12/2024] Open
Abstract
T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is an inhibitory receptor expressed by T and natural killer cells. Here, we used TIGIT knockout (KO) mice to demonstrate that mouse TIGIT directly interacts with Candida albicans. Reduced fungal growth and colonization were observed when TIGIT-KO splenocytes were co-cultured with C. albicans compared to the wild type (WT). In a systemic candidiasis model, TIGIT-KO mice exhibited improved survival and reduced body weight loss compared to WT mice. Organ-specific fungal burden assessment revealed significantly lower fungal loads in the kidneys, spleen, and lungs of TIGIT-KO mice. Finally, we show that the agglutinin-like sequence proteins ALS6, ALS7, and ALS9 of C. albicans are ligands for TIGIT and that the absence of these proteins abolishes the TIGIT effect in vivo. Our results identify the significance of TIGIT in modulating host defense against C. albicans and highlight the potential therapeutic implications for C. albicans infections. IMPORTANCE Our results identify the significance of T cell immunoreceptor with immunoglobulin and ITIM domain in modulating host defense against Candida albicans and highlight the potential therapeutic implications for C. albicans infections.
Collapse
Affiliation(s)
- Ahmed Rishiq
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mingdong Liu
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
42
|
Jensen O, Trujillo E, Hanson L, Ost KS. Controlling Candida: immune regulation of commensal fungi in the gut. Infect Immun 2024; 92:e0051623. [PMID: 38647290 PMCID: PMC11385159 DOI: 10.1128/iai.00516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.
Collapse
Affiliation(s)
- Owen Jensen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma Trujillo
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke Hanson
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kyla S. Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
43
|
Silva-Gomes R, Caldeira I, Fernandes R, Cunha C, Carvalho A. Metabolic regulation of the host-fungus interaction: from biological principles to therapeutic opportunities. J Leukoc Biol 2024; 116:469-486. [PMID: 38498599 DOI: 10.1093/jleuko/qiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Fungal infections present a significant global public health concern, impacting over 1 billion individuals worldwide and resulting in more than 3 million deaths annually. Despite considerable progress in recent years, the management of fungal infections remains challenging. The limited development of novel diagnostic and therapeutic approaches is largely attributed to our incomplete understanding of the pathogenetic mechanisms involved in these diseases. Recent research has highlighted the pivotal role of cellular metabolism in regulating the interaction between fungi and their hosts. In response to fungal infection, immune cells undergo complex metabolic adjustments to meet the energy demands necessary for an effective immune response. A comprehensive understanding of the metabolic circuits governing antifungal immunity, combined with the integration of individual host traits, holds the potential to inform novel medical interventions for fungal infections. This review explores recent insights into the immunometabolic regulation of host-fungal interactions and the infection outcome and discusses how the metabolic repurposing of immune cell function could be exploited in innovative and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caldeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
44
|
Dakalbab S, Hamdy R, Holigová P, Abuzaid EJ, Abu-Qiyas A, Lashine Y, Mohammad MG, Soliman SSM. Uniqueness of Candida auris cell wall in morphogenesis, virulence, resistance, and immune evasion. Microbiol Res 2024; 286:127797. [PMID: 38851008 DOI: 10.1016/j.micres.2024.127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Candida auris has drawn global attention due to its alarming multidrug resistance and the emergence of pan resistant strains. C. auris poses a significant risk in nosocomial candidemia especially among immunocompromised patients. C. auris showed unique virulence characteristics associated with cell wall including cell polymorphism, adaptation, endurance on inanimate surfaces, tolerance to external conditions, and immune evasion. Notably, it possesses a distinctive cell wall composition, with an outer mannan layer shielding the inner 1,3-β glucan from immune recognition, thereby enabling immune evasion and drug resistance. This review aimed to comprehend the association between unique characteristics of C. auris's cell wall and virulence, resistance mechanisms, and immune evasion. This is particularly relevant since the fungal cell wall has no human homology, providing a potential therapeutic target. Understanding the complex interactions between the cell wall and the host immune system is essential for devising effective treatment strategies, such as the use of repurposed medications, novel therapeutic agents, and immunotherapy like monoclonal antibodies. This therapeutic targeting strategy of C. auris holds promise for effective eradication of this resilient pathogen.
Collapse
Affiliation(s)
- Salam Dakalbab
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | | | - Eman J Abuzaid
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Yasmina Lashine
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | - Mohammad G Mohammad
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
45
|
Bays DJ, Jenkins EN, Lyman M, Chiller T, Strong N, Ostrosky-Zeichner L, Hoenigl M, Pappas PG, Thompson III GR. Epidemiology of Invasive Candidiasis. Clin Epidemiol 2024; 16:549-566. [PMID: 39219747 PMCID: PMC11366240 DOI: 10.2147/clep.s459600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
Invasive candidiasis (IC) is an increasingly prevalent, costly, and potentially fatal infection brought on by the opportunistic yeast, Candida. Previously, IC has predominantly been caused by C. albicans which is often drug susceptible. There has been a global trend towards decreasing rates of infection secondary to C. albicans and a rise in non-albicans species with a corresponding increase in drug resistance creating treatment challenges. With advances in management of malignancies, there has also been an increase in the population at risk from IC along with a corresponding increase in incidence of breakthrough IC infections. Additionally, the emergence of C. auris creates many challenges in management and prevention due to drug resistance and the organism's ability to transmit rapidly in the healthcare setting. While the development of novel antifungals is encouraging for future management, understanding the changing epidemiology of IC is a vital step in future management and prevention.
Collapse
Affiliation(s)
- Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Emily N Jenkins
- ASRT, Inc, Atlanta, GA, USA
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan Lyman
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nora Strong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Clinical and Translational Fungal Working Group, University of California San Diego, La Jolla, CA, USA
| | - Peter G Pappas
- Division of Infectious Diseases, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George R Thompson III
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
46
|
Honorato L, Bonilla JJA, Valdez AF, Frases S, Araújo GRDS, Sabino ALRDN, da Silva NM, Ribeiro L, Ferreira MDS, Kornetz J, Rodrigues ML, Cunningham I, Gow NAR, Gacser A, Guimarães AJ, Dutra FF, Nimrichter L. Toll-like receptor 4 (TLR4) is the major pattern recognition receptor triggering the protective effect of a Candida albicans extracellular vesicle-based vaccine prototype in murine systemic candidiasis. mSphere 2024; 9:e0046724. [PMID: 39037263 PMCID: PMC11351041 DOI: 10.1128/msphere.00467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic candidiasis remains a significant public health concern worldwide, with high mortality rates despite available antifungal drugs. Drug-resistant strains add to the urgency for alternative therapies. In this context, vaccination has reemerged as a prominent immune-based strategy. Extracellular vesicles (EVs), nanosized lipid bilayer particles, carry a diverse array of native fungal antigens, including proteins, nucleic acids, lipids, and glycans. Previous studies from our laboratory demonstrated that Candida albicans EVs triggered the innate immune response, activating bone marrow-derived dendritic cells (BMDCs) and potentially acting as a bridge between innate and adaptive immunity. Vaccination with C. albicans EVs induced the production of specific antibodies, modulated cytokine production, and provided protection in immunosuppressed mice infected with lethal C. albicans inoculum. To elucidate the mechanisms underlying EV-induced immune activation, our study investigated pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) involved in EVs-phagocyte engagement. EVs from wild-type and mutant C. albicans strains with truncated mannoproteins were compared for their ability to stimulate BMDCs. Our findings revealed that EV decoration with O- and N-linked mannans and the presence of β-1,3-glucans and chitin oligomers may modulate the activation of specific PRRs, in particular Toll-like receptor 4 (TLR4) and dectin-1. The protective effect of vaccination with wild-type EVs was found to be dependent on TLR4. These results suggest that fungal EVs can be harnessed in vaccine formulations to selectively activate PRRs in phagocytes, offering potential avenues for combating or preventing candidiasis.IMPORTANCESystemic candidiasis is a serious global health concern with high mortality rates and growing drug resistance. Vaccination offers a promising solution. A unique approach involves using tiny lipid-coated particles called extracellular vesicles (EVs), which carry various fungal components. Previous studies found that Candida albicans EVs activate the immune response and may bridge the gap between innate and adaptive immunity. To understand this better, we investigated how these EVs activate immune cells. We demonstrated that specific components on EV surfaces, such as mannans and glucans, interact with receptors on immune cells, including Toll-like receptor 4 (TLR4) and dectin-1. Moreover, vaccinating with these EVs led to strong immune responses and full protection in mice infected with Candida. This work shows how harnessing fungal EVs might lead to effective vaccines against candidiasis.
Collapse
Affiliation(s)
- Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jhon J. Artunduaga Bonilla
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro F. Valdez
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filhos (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filhos (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Natalia Martins da Silva
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Ribeiro
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Julio Kornetz
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Carlos Chagas (ICC), Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Iain Cunningham
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Attila Gacser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Allan J. Guimarães
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Fabianno F. Dutra
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Koren V, Ben-Zeev E, Voronov I, Fridman M. Chiral Fluorescent Antifungal Azole Probes Detect Resistance, Uptake Dynamics, and Subcellular Distribution in Candida Species. JACS AU 2024; 4:3157-3169. [PMID: 39211628 PMCID: PMC11350599 DOI: 10.1021/jacsau.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Azoles are essential for fungal infection treatment, yet the increasing resistance highlights the need for innovative diagnostic tools and strategies to revitalize this class of antifungals. We developed two enantiomers of a fluorescent antifungal azole probe (1 S and 1 R ), analyzing 60 Candida strains via live-cell microscopy. A database of azole distribution images in strains of Candida albicans, Candida glabrata, and Candida parapsilosis, among the most important pathogenic Candida species, was established and analyzed. This analysis revealed distinct populations of yeast cells based on the correlation between fluorescent probe uptake and cell diameter. Varied uptake levels and subcellular distribution patterns were observed in C. albicans, C. glabrata, and C. parapsilosis, with the latter displaying increased localization to lipid droplets. Comparison of the more potent fluorescent antifungal azole probe enantiomer 1 S with the moderately potent enantiomer 1 R highlighted time-dependent differences in the uptake profiles. The former displayed a marked elevation in uptake after approximately 150 min, indicating the time required for significant cell permeabilization to occur and its association with the azole's antifungal activity potency. Divergent uptake levels between susceptible and high efflux-based azole-resistant strains were detected, offering a rapid diagnostic approach for identifying azole resistance. This study highlights unique insights achievable through fluorescent antifungal azole probes, unraveling the complexities of azole resistance, subcellular dynamics, and uptake within fungal pathogens.
Collapse
Affiliation(s)
- Vlad Koren
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Ben-Zeev
- Ilana
and Pascal Mantoux Institute for Bioinformatics and Nancy and Stephen
Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ivan Voronov
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
48
|
Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024; 13:702. [PMID: 39204302 PMCID: PMC11356816 DOI: 10.3390/pathogens13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) play a crucial role in the human body's defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group's previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.
Collapse
Affiliation(s)
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| |
Collapse
|
49
|
Fink FM, Höpfl R, Witsch-Baumgartner M, Kropshofer G, Martin S, Fink V, Heeg M, Peters C, Zschocke J, Haas OA. Retrospective identification of the first cord blood-transplanted severe aplastic anemia in a STAT1-associated chronic mucocutaneous candidiasis family: case report, review of literature and pathophysiologic background. Front Immunol 2024; 15:1430938. [PMID: 39114664 PMCID: PMC11303233 DOI: 10.3389/fimmu.2024.1430938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Severe aplastic anemia (SAA) is a life-threatening bone marrow failure syndrome whose development can be triggered by environmental, autoimmune, and/or genetic factors. The latter comprises germ line pathogenic variants in genes that bring about habitually predisposing syndromes as well as immune deficiencies that do so only occasionally. One of these disorders is the autosomal dominant form of chronic mucocutaneous candidiasis (CMC), which is defined by germ line STAT1 gain-of-function (GOF) pathogenic variants. The resultant overexpression and constitutive activation of STAT1 dysregulate the Janus kinase/signal transducer and activator of transcription 1 (STAT) signaling pathway, which normally organizes the development and proper interaction of different components of the immunologic and hematopoietic system. Although SAA is an extremely rare complication in this disorder, it gained a more widespread interest when it became clear that the underlying causative pathomechanism may, in a similar fashion, also be instrumental in at least some of the idiopathic SAA cases. Based on these premises, we present herein what is the historically most likely first cord blood-transplanted SAA case in a CMC family with a documented STAT1 GOF pathogenic variant. In addition, we recapitulate the characteristics of the six CMC SAA cases that have been reported so far and discuss the significance of STAT1 GOF pathogenic variants and other STAT1 signaling derangements in the context of these specific types of bone marrow failure syndromes. Because a constitutively activated STAT1 signaling, be it driven by STAT1 GOF germ line pathogenic variants or any other pathogenic variant-independent events, is apparently important for initiating and maintaining the SAA disease process, we propose to acknowledge that SAA is one of the definite disease manifestations in STAT1-mutated CMC cases. For the same reason, we deem it necessary to also incorporate molecular and functional analyses of STAT1 into the diagnostic work-up of SAA cases.
Collapse
Affiliation(s)
- Franz-Martin Fink
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Reinhard Höpfl
- Department of Dermatology and Venerology, Medical University Hospital, Innsbruck, Austria
| | | | | | - Sabine Martin
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Valentin Fink
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Peters
- Stem Cell Transplantation Unit, St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Oskar A. Haas
- Central Laboratory, St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria
| |
Collapse
|
50
|
Hernández-Chávez MJ, Martínez-Duncker I, Clavijo-Giraldo DM, López-Ramirez LA, Mora-Montes HM. Candida tropicalis PMT2 Is a Dispensable Gene for Viability but Required for Proper Interaction with the Host. J Fungi (Basel) 2024; 10:502. [PMID: 39057387 PMCID: PMC11277967 DOI: 10.3390/jof10070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Candidemia is an opportunistic mycosis with high morbidity and mortality rates. Even though Candida albicans is the main causative agent, other Candida species, such as Candida tropicalis, are relevant etiological agents of candidiasis and candidemia. Compared with C. albicans, there is currently limited information about C. tropicalis' biological aspects, including those related to the cell wall and the interaction with the host. Currently, it is known that its cell wall contains O-linked mannans, and the contribution of these structures to cell fitness has previously been addressed using cells subjected to chemical treatments or in mutants where O-linked mannans and other wall components are affected. Here, we generated a C. tropicalis pmt2∆ null mutant, which was affected in the first step of the O-linked mannosylation pathway. The null mutant was viable, contrasting with C. albicans where this gene is essential. The phenotypical characterization showed that O-linked mannans were required for filamentation; proper cell wall integrity and organization; biofilm formation; protein secretion; and adhesion to extracellular matrix components, in particular to fibronectin; and type I and type II collagen. When interacting with human innate immune cells, it was found that this cell wall structure is dispensable for cytokine production, but mutant cells were more phagocytosed by monocyte-derived macrophages. Furthermore, the null mutant cells showed virulence attenuation in Galleria mellonella larvae. Thus, O-linked mannans are minor components of the cell wall that are involved in different aspects of C. tropicalis' biology.
Collapse
Affiliation(s)
- Marco J. Hernández-Chávez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, MOR, Mexico;
| | - Diana M. Clavijo-Giraldo
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Luz A. López-Ramirez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, GTO, Mexico; (M.J.H.-C.); (D.M.C.-G.); (L.A.L.-R.)
| |
Collapse
|