1
|
Li J, Cui J, Li X, Zhu D, Chen Z, Huang X, Wang Y, Wu Q, Tian Y. TMBIM-2 orchestrates systemic mitochondrial stress response via facilitating Ca2+ oscillations. J Cell Biol 2025; 224:e202408050. [PMID: 40100072 PMCID: PMC11917168 DOI: 10.1083/jcb.202408050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/11/2024] [Accepted: 02/09/2025] [Indexed: 03/20/2025] Open
Abstract
Neuronal mitochondrial function is critical for orchestrating inter-tissue communication essential for overall fitness. Despite its significance, the molecular mechanism underlying the impact of prolonged mitochondrial stresses on neuronal activity and how they orchestrate metabolism and aging remains elusive. Here, we identified the evolutionarily conserved transmembrane protein XBX-6/TMBIM-2 as a key mediator in the neuronal-to-intestinal mitochondrial unfolded protein response (UPRmt). Our investigations reveal that intrinsic neuronal mitochondrial stress triggers spatiotemporal Ca2+ oscillations in a TMBIM-2-dependent manner through the Ca2+ efflux pump MCA-3. Notably, persistent Ca2+ oscillations at synapses of ADF neurons are critical for facilitating serotonin release and the subsequent activation of the neuronal-to-intestinal UPRmt. TMBIM2 expression diminishes with age; however, its overexpression counteracts the age-related decline in aversive learning behavior and extends the lifespan of Caenorhabditis elegans. These findings underscore the intricate integration of chronic neuronal mitochondrial stress into neurotransmission processes via TMBIM-2-dependent Ca2+ equilibrium, driving metabolic adaptation and behavioral changes for the regulation of aging.
Collapse
Affiliation(s)
- Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jimeng Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Sansbury SE, Serebrenik YV, Lapidot T, Smith DG, Burslem GM, Shalem O. Pooled tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of unfolded protein responses. Mol Cell 2025; 85:1868-1886.e12. [PMID: 40273915 DOI: 10.1016/j.molcel.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
To achieve system-level insights into proteome organization, regulation, and function, we developed an approach to generate complex cell pools with endogenously tagged proteins amenable to high-throughput visualization and perturbation. Pooled imaging coupled to in situ barcode sequencing identified the subcellular localization of each HaloTag-tagged protein, and subsequent ligand-induced misfolding of the library followed by single-cell RNA sequencing revealed responses to spatially restricted protein misfolding. These datasets characterized protein quality control responses in previously uninterrogated cellular compartments, and cross-compartment analyses revealed mutually exclusive rather than collaborative responses, whereby the heat shock response (HSR) is induced in some compartments and repressed in others where autophagy genes are induced. We further assign protein quality control functions to previously uncharacterized genes based on shared transcriptional responses to protein misfolding across cellular compartments. Altogether, we present an efficient method for large-scale studies of proteome dynamics, function, and homeostasis.
Collapse
Affiliation(s)
- Stephanie E Sansbury
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yevgeniy V Serebrenik
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Tomer Lapidot
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David G Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
4
|
Amador-Martínez I, Aranda-Rivera AK, Martínez-Castañeda MR, Pedraza-Chaverri J. Mitochondrial quality control and stress signaling pathways in the pathophysiology of cardio-renal diseases. Mitochondrion 2025; 84:102040. [PMID: 40252890 DOI: 10.1016/j.mito.2025.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Mitochondria are essential organelles for cellular function and have become a broad field of study. In cardio-renal diseases, it has been established that mitochondrial dysfunction is a primary mechanism leading to these pathologies. Under stress, mitochondria can develop stress response mechanisms to maintain mitochondrial quality control (MQC) and functions. In contrast, the perturbation of these mechanisms has been associated with the pathogenesis of several diseases. Thus, targeting specific pathways within MQC could offer a therapeutic avenue for protecting mitochondrial integrity. However, the mechanisms related to MQC and mitochondrial stress signaling in the cardio-renal axis have been poorly explored. The primary limitations include the lack of reproducibility in the experimental models of cardio-renal disease, the incomplete knowledge of molecules that generate bidirectional damage, and the temporality of the study models. Therefore, we believe that integration of all of those limitations, along with recent advances in MQC mechanisms (i.e., mitophagy), stress signaling pathways (e.g., integrated stress response, mitochondrial unfolded protein response, and mitochondrial protein import), associated pharmacology, and targeted therapeutic approaches could reveal what the deregulation of these mechanisms is like and provide ideas for generating strategies that seek to avoid the progression of cardio-renal diseases.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ana Karina Aranda-Rivera
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mauricio Raziel Martínez-Castañeda
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Edificio B - 101, 1° Piso, Circuito de Posgrado, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
5
|
Yin X, Wang R, Thackeray A, Baehrecke EH, Alkema MJ. VPS13D mutations affect mitochondrial homeostasis and locomotion in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2025; 15:jkaf023. [PMID: 39957248 PMCID: PMC12005150 DOI: 10.1093/g3journal/jkaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Mitochondria control cellular metabolism, serve as hubs for signaling and organelle communication, and are important for the health and survival of cells. VPS13D encodes a cytoplasmic lipid transfer protein that regulates mitochondrial morphology, mitochondria and endoplasmic reticulum contact, and quality control of mitochondria. VPS13D mutations have been reported in patients displaying ataxic and spastic gait disorders with variable age of onset. Here, we used CRISPR/Cas9 gene editing to create VPS13D-related spinocerebellar ataxia-4 missense mutations and C-terminal deletion in VPS13D's ortholog vps-13D in Caenorhabditis elegans. Consistent with SCAR4 patient movement disorders and mitochondrial dysfunction, vps-13D mutant worms exhibit locomotion defects and abnormal mitochondrial morphology. Importantly, animals with a vps-13D deletion or a N3017I missense mutation exhibited an increase in mitochondrial unfolded protein response. The cellular and behavioral changes caused by VPS13D mutations in C. elegans advance the development of animal models that are needed to study SCAR4 pathogenesis.
Collapse
Affiliation(s)
- Xiaomeng Yin
- Department of Neurobiology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruoxi Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Andrea Thackeray
- Department of Neurobiology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Nozaki Y, Kobayashi M, Fukuoh T, Ishimatsu M, Narita T, Taki K, Hirao Y, Ayabe S, Yokoyama M, Otani Y, Mizunoe Y, Matsumoto M, Ohno N, Kaifu T, Okazaki S, Goitsuka R, Nakagawa Y, Shimano H, Iwakura Y, Higami Y. Mipep deficiency in adipocytes impairs mitochondrial protein maturation and leads to systemic inflammation and metabolic dysfunctions. Sci Rep 2025; 15:12839. [PMID: 40229443 PMCID: PMC11997187 DOI: 10.1038/s41598-025-97307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
Most mitochondrial proteins encoded in the nuclear genome are synthesized in the cytoplasm. These proteins subsequently undergo maturation through the cleavage of a signal sequence at the N-terminus by one or two mitochondrial signal peptidases, which is essential for their function within mitochondria. The present study demonstrates that adipocyte-specific knockout of one mitochondrial signal peptidase, mitochondrial intermediate peptidase (MIPEP), resulted in disordered mitochondrial proteostasis of MIPEP substrate proteins and their defective maturation. MIPEP deficiency in white and brown adipocytes suppressed the expression of adipocyte differentiation, lipid metabolism, and mitochondrial biogenesis genes. These alterations led to lipoatrophy in white adipose tissue and the whitening of brown adipose tissue. Additionally, it induced an atypical mitochondrial unfolded protein response and local inflammation in white and brown adipose tissue. Furthermore, it induced fatty liver and splenomegaly and caused systemic impairments in glucose metabolism and inflammation. These findings indicate that maturation defects of certain mitochondrial proteins and subsequent proteostasis disorders in white and brown adipocytes cause chronic and systemic inflammatory and metabolic dysfunctions.
Collapse
Affiliation(s)
- Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| | - Tomoyoshi Fukuoh
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mamiko Ishimatsu
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takumi Narita
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kanari Taki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuto Hirao
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shota Ayabe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miku Yokoyama
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuina Otani
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shogo Okazaki
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Ryo Goitsuka
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.
| |
Collapse
|
7
|
Zu X, Chen S, Li Z, Hao L, Fu W, Zhang H, Yin Z, Wang Y, Wang J. SPI1 activates mitochondrial unfolded response signaling to inhibit chondrocyte senescence and relieves osteoarthritis. Bone Res 2025; 13:47. [PMID: 40229258 PMCID: PMC11997156 DOI: 10.1038/s41413-025-00421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Chondrocyte senescence is a critical pathological hallmark of osteoarthritis (OA). Aberrant mechanical stress is considered a pivotal determinant in chondrocyte aging; however, the precise underlying mechanism remains elusive. Our findings demonstrate that SPI1 plays a significant role in counteracting chondrocyte senescence and inhibiting OA progression. SPI1 binds to the PERK promoter, thereby promoting its transcriptional activity. Importantly, PERK, rather than GCN2, facilitates eIF2α phosphorylation, activating the mitochondrial unfolded protein response (UPRmt) and impeding chondrocyte senescence. Deficiency of SPI1 in mechanical overload-induced mice leads to diminished UPRmt activation and accelerated OA progression. Intra-articular injection of adenovirus vectors overexpressing SPI1 and PERK effectively mitigates cartilage degeneration. In summary, our study elucidates the crucial regulatory role of SPI1 in the pathogenesis of chondrocyte senescence by activating UPRmt signaling through PERK, which may present a novel therapeutic target for treating OA. SPI1 alleviates the progression of OA by inhibiting mechanical stress-induced chondrocyte senescence through mitochondrial UPR signaling.
Collapse
Affiliation(s)
- Xiangyu Zu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Shenghong Chen
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China
| | - Zhengyuan Li
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China
| | - Lin Hao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China
| | - Wenhan Fu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
| | - Yin Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, the First Affiliated Hospital of Anhui Medical University, Anhui, China.
- Anhui Public Health Clinical Center, Anhui, China.
| | - Jun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
- Anhui Province Key Laboratory of zoonoses, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Ying Z, Xin Y, Liu Z, Tan T, Huang Y, Ding Y, Hong X, Li Q, Li C, Guo J, Liu G, Meng Q, Zhou S, Li W, Yao Y, Xiang G, Li L, Wu Y, Liu Y, Mu M, Ruan Z, Liang W, Wang J, Wang Y, Liao B, Liu Y, Wang W, Lu G, Qin D, Pei D, Chan WY, Liu X. The mitochondrial unfolded protein response inhibits pluripotency acquisition and mesenchymal-to-epithelial transition in somatic cell reprogramming. Nat Metab 2025:10.1038/s42255-025-01261-6. [PMID: 40205158 DOI: 10.1038/s42255-025-01261-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
The mitochondrial unfolded protein response (UPRmt), a mitochondria-to-nucleus retrograde pathway that promotes the maintenance of mitochondrial function in response to stress, plays an important role in promoting lifespan extension in Caenorhabditis elegans1,2. However, its role in mammals, including its contributions to development or cell fate decisions, remains largely unexplored. Here, we show that transient UPRmt activation occurs during somatic reprogramming in mouse embryonic fibroblasts. We observe a c-Myc-dependent, transient decrease in mitochondrial proteolysis, accompanied by UPRmt activation at the early phase of pluripotency acquisition. UPRmt impedes the mesenchymal-to-epithelial transition (MET) through c-Jun, thereby inhibiting pluripotency acquisition. Mechanistically, c-Jun enhances the expression of acetyl-CoA metabolic enzymes and reduces acetyl-CoA levels, thereby affecting levels of H3K9Ac, linking mitochondrial signalling to the epigenetic state of the cell and cell fate decisions. c-Jun also decreases the occupancy of H3K9Ac at MET genes, further inhibiting MET. Our findings reveal the crucial role of mitochondrial UPR-modulated MET in pluripotent stem cell plasticity. Additionally, we demonstrate that the UPRmt promotes cancer cell migration and invasion by enhancing epithelial-to-mesenchymal transition (EMT). Given the crucial role of EMT in tumour metastasis3,4, our findings on the connection between the UPRmt and EMT have important pathological implications and reveal potential targets for tumour treatment.
Collapse
Affiliation(s)
- Zhongfu Ying
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Yanmin Xin
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zihuang Liu
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianxin Tan
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yile Huang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yingzhe Ding
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xuejun Hong
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuzhi Li
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chong Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jingyi Guo
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gaoshen Liu
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Meng
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shihe Zhou
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenxin Li
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Yao
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ge Xiang
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linpeng Li
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaohui Mu
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zifeng Ruan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenxi Liang
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junwei Wang
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Baojian Liao
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Liu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Wuming Wang
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
9
|
Markov N, Sabirova S, Sharapova G, Gomzikova M, Brichkina A, Barlev NA, Egger M, Rizvanov A, Simon HU. Mitochondrial, metabolic and bioenergetic adaptations drive plasticity of colorectal cancer cells and shape their chemosensitivity. Cell Death Dis 2025; 16:253. [PMID: 40185729 PMCID: PMC11971274 DOI: 10.1038/s41419-025-07596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
The extent of mitochondrial heterogeneity and the presence of mitochondrial archetypes in cancer remain unknown. Mitochondria play a central role in the metabolic reprogramming that occurs in cancer cells. This process adjusts the activity of metabolic pathways to support growth, proliferation, and survival of cancer cells. Using a panel of colorectal cancer (CRC) cell lines, we revealed extensive differences in their mitochondrial composition, suggesting functional specialisation of these organelles. We differentiated bioenergetic and mitochondrial phenotypes, which point to different strategies used by CRC cells to maintain their sustainability. Moreover, the efficacy of various treatments targeting metabolic pathways was dependent on the respiration and glycolysis levels of cancer cells. Furthermore, we identified metabolites associated with both bioenergetic profiles and cell responses to treatments. The levels of these molecules can be used to predict the therapeutic efficacy of anti-cancer drugs and identify metabolic vulnerabilities of CRC. Our study indicates that the efficacy of CRC therapies is closely linked to mitochondrial status and cellular bioenergetics.
Collapse
Affiliation(s)
- Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Sirina Sabirova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan, Russia
| | - Gulnaz Sharapova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan, Russia
| | - Anna Brichkina
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Nick A Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Marcel Egger
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany.
| |
Collapse
|
10
|
van den Berg W, Gupta BP. Genome-Wide Temporal Gene Expression Reveals a Post-Reproductive Shift in the Nematode Caenorhabditis briggsae. Genome Biol Evol 2025; 17:evaf057. [PMID: 40171711 PMCID: PMC11992569 DOI: 10.1093/gbe/evaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
The nematodes Caenorhabditis briggsae and its well-known cousin Caenorhabditis elegans offer many features for comparative investigations of genetic pathways that affect physiological processes. Reproduction is one such process that directly impacts longevity due to its significant energetic demands. To study gene expression changes during reproductive and post-reproductive phases in both these nematodes, we conducted whole-genome transcriptome profiling at various adult stages. The results revealed that the majority of differentially expressed (DE) genes were downregulated during the reproductive period in both species. Interestingly, in C. briggsae, this trend reversed during post-reproduction, with three-quarters of the DE genes becoming upregulated. Additionally, a smaller set of DE genes showed an opposite expression trend, i.e. upregulation followed by post-reproductive downregulation. Overall, we termed this phenomenon the "post-reproductive shift". In contrast, the post-reproductive shift was much less pronounced in C. elegans. In C. briggsae, DE genes were enriched in processes related to the matrisome, muscle development and function during the reproductive period. Post-reproductive downregulated genes were enriched in DNA damage repair, stress response, and immune response. Additionally, terms related to fatty acid metabolism, catabolism, and transcriptional regulation exhibited complex patterns. Experimental manipulations in C. briggsae to affect their reproductive status predictably altered gene expression, providing in vivo support for the post-reproductive shift. Overall, our study reveals novel gene expression patterns during reproductive and post-reproductive changes in C. briggsae. The data provide a valuable resource for cross-sectional comparative studies in nematodes and other animal models to understand evolution of genetic pathways affecting reproduction and aging.
Collapse
Affiliation(s)
- Wouter van den Berg
- Department of Biology, McMaster University, Hamilton, Ontario L8S-4K1, Canada
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8S-4K1, Canada
| |
Collapse
|
11
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
12
|
Di Pede A, Ko B, AlOkda A, Tamez González AA, Zhu S, Van Raamsdonk JM. Mild activation of the mitochondrial unfolded protein response increases lifespan without increasing resistance to stress. Open Biol 2025; 15:240358. [PMID: 40169016 PMCID: PMC11961262 DOI: 10.1098/rsob.240358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/06/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway that responds to mitochondrial insults by altering gene expression to recover mitochondrial homeostasis. The mitoUPR is mediated by the stress-activated transcription factor ATFS-1 (activating transcription factor associated with stress 1). Constitutive activation of ATFS-1 increases resistance to exogenous stressors but paradoxically decreases lifespan. In this work, we determined the optimal levels of expression of activated ATFS-1 with respect to lifespan and resistance to stress by treating constitutively active atfs-1(et17) worms with different concentrations of RNA interference (RNAi) bacteria targeting atfs-1. We observed the maximum lifespan of atfs-1(et17) worms at full-strength atfs-1 RNAi, which was significantly longer than wild-type lifespan. Under the conditions of maximum lifespan, atfs-1(et17) worms did not show enhanced resistance to stress, suggesting a trade-off between stress resistance and longevity. The maximum resistance to stress in atfs-1(et17) worms occurred on empty vector. Under these conditions, atfs-1(et17) worms are short-lived. This indicates that constitutive activation of ATFS-1 can increase lifespan or enhance resistance to stress but not both, at the same time. Overall, these results demonstrate that constitutively active ATFS-1 can extend lifespan when expressed at low levels and that this lifespan extension is not dependent on the ability of ATFS-1 to enhance resistance to stress.
Collapse
Affiliation(s)
- Alexa Di Pede
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdelrahman AlOkda
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Aura A. Tamez González
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Shusen Zhu
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M. Van Raamsdonk
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
McGill Percy KC, Liu Z, Qi X. Mitochondrial dysfunction in Alzheimer's disease: Guiding the path to targeted therapies. Neurotherapeutics 2025; 22:e00525. [PMID: 39827052 DOI: 10.1016/j.neurot.2025.e00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, marked by the accumulation of amyloid-β (Aβ) plaques and tau tangles. Emerging evidence suggests that mitochondrial dysfunction plays a pivotal role in AD pathogenesis, driven by impairments in mitochondrial quality control (MQC) mechanisms. MQC is crucial for maintaining mitochondrial integrity through processes such as proteostasis, mitochondrial dynamics, mitophagy, and precise communication with other subcellular organelles. In AD, disruptions in these processes lead to bioenergetic failure, gene dysregulation, the accumulation of damaged mitochondria, neuroinflammation, and lipid homeostasis impairment, further exacerbating neurodegeneration. This review elucidates the molecular pathways involved in MQC and their pathological relevance in AD, highlighting recent discoveries related to mitochondrial mechanisms underlying neurodegeneration. Furthermore, we explore potential therapeutic strategies targeting mitochondrial dysfunction, including gene therapy and pharmacological interventions, offering new avenues for slowing AD progression. The complex interplay between mitochondrial health and neurodegeneration underscores the need for innovative approaches to restore mitochondrial function and mitigate the onset and progression of AD.
Collapse
Affiliation(s)
- Kyle C McGill Percy
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zunren Liu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Gedaly R, Orozco G, Lewis LJ, Valvi D, Chapelin F, Khurana A, Hidalgo GE, Shmookler A, Tripathi A, Zhang C, Zwischenberger JB, Marti F. Effect of mitochondrial oxidative stress on regulatory T cell manufacturing for clinical application in transplantation: Results from a pilot study. Am J Transplant 2025; 25:720-733. [PMID: 39515758 PMCID: PMC11973835 DOI: 10.1016/j.ajt.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The manufacturing process of regulatory T (Treg) cells for clinical application begins with the positive selection of CD25+ cells using superparamagnetic iron oxide nanoparticle (SPION)-conjugated anti-CD25 antibodies (spCD25) and immunomagnetic cell separation technology. Our findings revealed that the interaction of spCD25 with its cell target induced the internalization of the complex spCD25-interleukin-2 receptor. Accumulation of intracellular spCD25 triggered oxidative stress, causing delayed Treg expansion and temporary reduction in suppressor activity. This activation delay hindered the efficient generation of clinically competent cells. During this early phase, Treg cells exhibited elevated mitochondrial superoxide and lipid peroxidation levels, with a concomitant decrease in mitochondrial respiration rates. The results uncovered the increased mitochondrial unfolded protein response. This protective, redox-sensitive activity is inherent in Tregs when contrasted with homologous, spCD25-treated, conventional T cells. Although the temporary effects of spCD25 on clinically competent cells did not impede their use in a safety/feasibility pilot study with kidney transplant recipients, it is reasonable to anticipate a potential reduction in their therapeutic efficacy. The mechanistic understanding of the adverse effects triggered by spCD25 is crucial for improving the manufacturing process of clinically competent Treg cells, a pivotal step in the successful implementation of immune cell therapy in transplantation.
Collapse
Affiliation(s)
- Roberto Gedaly
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Division of Transplantation, Quality and Biostatistics Section, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Alliance Research Initiative (TILT Alliance), University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Gabriel Orozco
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Lillie J Lewis
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Deepa Valvi
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Fanny Chapelin
- Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Alliance Research Initiative (TILT Alliance), University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Biomedical Engineering, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Aman Khurana
- Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Alliance Research Initiative (TILT Alliance), University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Radiology, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Giovanna E Hidalgo
- Pathology and Laboratory Medicine, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Aaron Shmookler
- Pathology and Laboratory Medicine, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Aashutosh Tripathi
- Department of Microbiology, Immunology, and Molecular Genetics. University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Cuiping Zhang
- Flow Cytometry & Immune Monitoring Core Facility, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Joseph B Zwischenberger
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA.
| | - Francesc Marti
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA; Alliance Research Initiative (TILT Alliance), University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
15
|
Li Y, Duan Y, Chu Q, Lv H, Li J, Guo X, Gao Y, Liu M, Tang W, Hu H, Liu H, Sun J, Wang X, Yi F. G-protein coupled receptor GPR124 protects against podocyte senescence and injury in diabetic kidney disease. Kidney Int 2025; 107:652-665. [PMID: 39828038 DOI: 10.1016/j.kint.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Although emerging studies highlight the pivotal role of podocyte senescence in the pathogenesis of diabetic kidney disease (DKD) and aging-related kidney diseases, therapeutic strategies for preventing podocyte senescence are still lacking. Here, we identified a previously unrecognized role of GPR124, a novel adhesion G protein-coupled receptor, in maintaining podocyte structure and function by regulation of cellular senescence in DKD. Podocyte GPR124 was significantly reduced in db/db diabetic (a type 2 diabetic mouse model) and streptozocin-induced diabetic mice (a type 1 diabetic model), which was further confirmed in kidney biopsies from patients with DKD. The level of GPR124 in glomeruli was positively correlated with the estimated glomerular filtration rate and negatively correlated with serum creatinine levels. Podocyte-specific deficiency of GPR124 significantly aggravated podocyte injury and proteinuria in the two models of diabetic mice. Moreover, GPR124 regulated podocyte senescence in both diabetic and aged mice. Mechanistically, GPR124 directly bound with vinculin and negatively regulated focal adhesion kinase (FAK) signaling, thereby mediating podocyte senescence and function. Importantly, overexpression of GPR124 or pharmacological inhibition of FAK protected against podocyte senescence and injury under diabetic conditions. Our studies suggest that targeting GPR124 may be an innovative therapeutic strategy for patients with DKD and aging-related kidney diseases.
Collapse
MESH Headings
- Podocytes/pathology
- Podocytes/metabolism
- Animals
- Cellular Senescence
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/prevention & control
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/deficiency
- Humans
- Male
- Mice, Inbred C57BL
- Signal Transduction
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/metabolism
- Mice
- Mice, Knockout
- Focal Adhesion Kinase 1/metabolism
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Proteinuria/pathology
- Proteinuria/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/metabolism
- Glomerular Filtration Rate
- Cells, Cultured
Collapse
Affiliation(s)
- Yujia Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yiqi Duan
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qingqing Chu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hang Lv
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiangyun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanjiao Gao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huili Hu
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
16
|
Turkel I, Kubat GB, Fatsa T, Acet O, Ozerklig B, Yazgan B, Simsek G, Singh KK, Kosar SN. Acute treadmill exercise induces mitochondrial unfolded protein response in skeletal muscle of male rats. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149532. [PMID: 39675514 DOI: 10.1016/j.bbabio.2024.149532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mitochondria are often referred to as the energy centers of the cell and are recognized as key players in signal transduction, sensing, and responding to internal and external stimuli. Under stress conditions, the mitochondrial unfolded protein response (UPRmt), a conserved mitochondrial quality control mechanism, is activated to maintain mitochondrial and cellular homeostasis. As a physiological stimulus, exercise-induced mitochondrial perturbations trigger UPRmt, coordinating mitochondria-to-nucleus communication and initiating a transcriptional program to restore mitochondrial function. The aim of this study was to evaluate the UPRmt signaling response to acute exercise in skeletal muscle. Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min on a 0 % grade. Plantaris muscles were collected from both sedentary and exercise groups at various times: immediately (0), and at 1, 3, 6, 12, and 24 h post-exercise. Reactive oxygen species (ROS) production was assessed using hydrogen peroxide assay and dihydroethidium staining. Additionally, the mRNA and protein expression of UPRmt markers were measured using ELISA and real-time PCR. Mitochondrial activity was assessed using succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) staining. Our results demonstrated that acute exercise increased ROS production and upregulated UPRmt markers at both gene and protein levels. Moreover, skeletal muscle exhibited an increase in mitochondrial activity in response to exercise, as indicated by SDH and COX staining. These findings suggest that acute treadmill exercise is sufficient to induce ROS production, activate UPRmt signaling, and enhance mitochondrial activity in skeletal muscle, expanding our understanding of mitochondrial adaptations to exercise.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey; Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Tugba Fatsa
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Ozgu Acet
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Canada
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
17
|
Xie M, Li D, Zeng H, Huang Y, Xu R, Wang Z, Yu J, Sun Y. BAM8-22 targets spinal MrgC receptors to modulate UPR mt activity in the mechanism of bone cancer pain. Front Pharmacol 2025; 16:1575733. [PMID: 40230701 PMCID: PMC11994654 DOI: 10.3389/fphar.2025.1575733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Background Bone cancer pain (BCP) significantly impacts patients' overall quality of life. Cellular energy metabolism homeostasis is critically dependent on mitochondrial integrity, and emerging evidence suggests that mitochondrial dysfunction in chronic BCP exacerbates pain progression by disrupting nociceptive signaling pathways. Notably, G protein-coupled receptors (GPCRs), a major class of membrane receptors, modulate mitochondrial function through diverse molecular mechanisms. In this study, we investigated the role of Mas-related G protein-coupled receptor C (MrgC) in BCP pathogenesis and its regulatory effects on mitochondrial function. Methods Male C3H/HeN mice were utilized to establish a BCP model. Transmission electron microscopy and flow cytometry were employed to assess changes in mitochondrial ultrastructure, as well as levels of mtROS, ATP, and MMP in mice experiencing BCP. Following intrathecal injection of BAM8-22, we analyzed the effects of activated MrgC on mitochondrial unfolded protein response (UPRmt)-related molecules (ATF5, HSP60, LONP1, CLPP) and pain-related behaviors in BCP mice. The regulatory mechanism of MrgC on UPRmt was further explored in N2a and 293T cells. Results Mice with bone cancer pain showed improved mRNA and protein levels of UPRmt-related molecules, increased MMP and ATP, decreased mitochondrial ROS levels in the spinal cord after receiving an intrathecal injection of BAM8-22. Additionally, the paw withdrawal mechanical threshold in BCP mice increased, while the number of spontaneous foot lifts decreased. In complementary cellular studies, transfection-mediated overexpression of MrgC in N2a cells enhanced UPRmt biomarker expression, whereas RNA interference-mediated MrgC knockdown produced the opposite effect. Conclusion By activating spinal MrgC to mediate UPRmt activity and protect mitochondrial function, BAM8-22 contributes to the molecular development of BCP. This discovery suggests a new therapeutic target for BCP and offers a possible research avenue.
Collapse
Affiliation(s)
- Mingming Xie
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Li
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haohao Zeng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiacheng Yu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yu’e Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
18
|
Pitkänen M, Monteuuis G, Jackson CB, Matilainen O. Neopterin extends C. elegans lifespan in an ATFS-1-dependent manner. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001543. [PMID: 40191444 PMCID: PMC11971658 DOI: 10.17912/micropub.biology.001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Neopterin, a byproduct of tetrahydrobiopterin synthesis, is commonly used as a biomarker for immune system activation. In addition to its role in immune responses, neopterin levels are known to increase with age. Its impact on longevity, however, remains unclear. Here, we demonstrate that neopterin supplementation extends lifespan in Caenorhabditis elegans . Additionally, neopterin shows moderate activation of the mitochondrial unfolded protein response (UPR mt ), and that the neopterin-mediated lifespan extension is dependent on ATFS-1 , the primary transcription factor regulating UPR mt . These findings highlight the need for further investigation into the biological functions and health-promoting effects of neopterin.
Collapse
Affiliation(s)
- Miina Pitkänen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Geoffray Monteuuis
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|
19
|
Zanfardino P, Amati A, Perrone M, Petruzzella V. The Balance of MFN2 and OPA1 in Mitochondrial Dynamics, Cellular Homeostasis, and Disease. Biomolecules 2025; 15:433. [PMID: 40149969 PMCID: PMC11940761 DOI: 10.3390/biom15030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondrial dynamics, governed by fusion and fission, are crucial for maintaining cellular homeostasis, energy production, and stress adaptation. MFN2 and OPA1, key regulators of mitochondrial fusion, play essential roles beyond their structural functions, influencing bioenergetics, intracellular signaling, and quality control mechanisms such as mitophagy. Disruptions in these processes, often caused by MFN2 or OPA1 mutations, are linked to neurodegenerative diseases like Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy (ADOA). This review explores the molecular mechanisms underlying mitochondrial fusion, the impact of MFN2 and OPA1 dysfunction on oxidative phosphorylation and autophagy, and their role in disease progression. Additionally, we discuss the divergent cellular responses to MFN2 and OPA1 mutations, particularly in terms of proliferation, senescence, and metabolic signaling. Finally, we highlight emerging therapeutic strategies to restore mitochondrial integrity, including mTOR modulation and autophagy-targeted approaches, with potential implications for neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare, 70124 Bari, Italy; (P.Z.); (A.A.); (M.P.)
| |
Collapse
|
20
|
Oeztuerk M, Herebian D, Dipali K, Hentschel A, Rademacher N, Kraft F, Horvath R, Distelmaier F, Meuth SG, Ruck T, Schara-Schmidt U, Roos A. Multi-omics-based phenotyping of AFG3L2-mutant lymphoblasts determines key factors of a pathophysiological interplay between mitochondrial vulnerability and neurodegeneration in spastic ataxia type 5. Front Mol Neurosci 2025; 18:1548255. [PMID: 40051915 PMCID: PMC11882581 DOI: 10.3389/fnmol.2025.1548255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025] Open
Abstract
Mitochondrial integrity is fundamental to cellular function, upheld by a network of proteases that regulate proteostasis and mitochondrial dynamics. Among these proteases, AFG3L2 is critical due to its roles in maintaining mitochondrial homeostasis, regulating mitochondrial protein quality, and facilitating mitochondrial biogenesis. Mutations in AFG3L2 are implicated in a spectrum of diseases, including spinocerebellar ataxia type 28 (SCA28) and spastic ataxia 5 (SPAX5), as well as other systemic conditions. This study employs a multi-omics approach to investigate the biochemical impact of AFG3L2 mutations in immortalized lymphoblastoid cell lines derived from a patient with biallelic variants leading to spastic ataxia (SPAX5). Our proteomic analysis revealed AFG3L2 impairment, with significant dysregulation of proteins critical for mitochondrial function, cytoskeletal integrity, and cellular metabolism. Specifically, disruptions were observed in mitochondrial dynamics and calcium homeostasis, alongside downregulation of key proteins like COX11, a copper chaperone for complex IV assembly, and NFU1, an iron-sulfur cluster protein linked to spastic paraparesis and infection-related worsening. Lipidomic analysis highlighted substantial alterations in lipid composition, with significant decreases in sphingomyelins, phosphatidylethanolamine, and phosphatidylcholine, reflecting disruptions in lipid metabolism and membrane integrity. Metabolomic profiling did not reveal any significant findings. Our comprehensive investigation into loss of functional AFG3L2 elucidates a pathophysiology extending beyond mitochondrial proteostasis, implicating a wide array of cellular processes. The findings reveal substantial cellular disturbances at multiple levels, contributing to neurodegeneration through disrupted mitochondrial respiratory chain, calcium homeostasis, cytoskeletal integrity, and altered lipid homeostasis. This study underscores the complexity of SPAX5 pathophysiology and the importance of multi-omics approaches in developing effective strategies to address the impact of loss of functional AFG3L2. Our data also highlight the value of immortalized lymphoblastoid cells as a tool for pre-clinical testing and research, offering a detailed biochemical fingerprint that enhances our understanding of SPAX5 and identifies potential areas for further investigation.
Collapse
Affiliation(s)
- Menekse Oeztuerk
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Kale Dipali
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Nina Rademacher
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
21
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
22
|
Zhao Q, Fang Z, Wang P, Qian Z, Yang Y, Ran L, Zheng J, Tang Y, Cui X, Li YY, Zhang Z, Jiang H. Polylactic Acid Micro/Nanoplastic Exposure Induces Male Reproductive Toxicity by Disrupting Spermatogenesis and Mitochondrial Dysfunction in Mice. ACS NANO 2025; 19:5589-5603. [PMID: 39869919 DOI: 10.1021/acsnano.4c15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment. Mice exposed to PLA-MPs for a long time exhibited significant reproductive toxicity, evidenced by decreased sperm concentration and motility, increased sperm deformity rates, and disrupted sex hormone levels. Further analysis revealed that PLA impaired BTB, induced mitochondrial dysfunction in the testes, and triggered oxidative stress through excessive ROS production from mitochondria, leading to further testicular damage. Notably, PLA nanoplastics internalized in the mitochondrial sheath and disrupted the mitochondrial structure of sperm, causing dose-dependent impairments in mitochondrial function. Transcriptome analyses further indicated that PLA-MPs disrupted spermatogenesis by inhibiting the expression of key mRNA involved in this process. Collectively, our findings highlight the reproductive toxic effect of biodegradable PLA by damaging BTB and impairing mitochondrial function, which provides insights into the toxicological implications of biodegradable microplastics for mammalian fertility.
Collapse
Affiliation(s)
- Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Zhenwei Qian
- Peking University 302 Clinical Medical School, Beijing 100039, China
| | - Yuzhuo Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Lingxiang Ran
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Jiachen Zheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Yanlin Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Xuejing Cui
- CAS, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
23
|
Thapa BV, Das M, Held JP, Patel MR. Loss of an uncharacterized mitochondrial methionine tRNA-synthetase induces mitochondrial unfolded protein response in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636310. [PMID: 39975410 PMCID: PMC11838591 DOI: 10.1101/2025.02.03.636310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential for translation, as they charge tRNA molecules with their corresponding amino acids. Alterations in aaRSs can significantly disrupt both cytosolic and mitochondrial translation. Through a forward genetic screen for mitochondrial unfolded protein response (UPRmt) activators in C. elegans, we identified a missense mutation (P447V) in the previously uncharacterized gene Y105E8A.20, which encodes a dually localized methionine tRNA synthetase (MetRS). Here, we characterize the UPRmt induction by Y105E8A.20, which we call mars-2, and demonstrate that the P447V allele is a loss-of-function mutation. Furthermore, we show impaired mars-2 activity in the mitochondria triggers UPRmt. This strain provides a valuable tool for studying mitochondrial translation and understanding how aaRSs are involved in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Bharat Vivan Thapa
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Mohit Das
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James P Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
24
|
Lanzillotta S, Esteve D, Lanzillotta C, Tramutola A, Lloret A, Forte E, Pesce V, Picca A, Di Domenico F, Perluigi M, Barone E. Altered mitochondrial unfolded protein response and protein quality control promote oxidative distress in down syndrome brain. Free Radic Biol Med 2025; 227:80-93. [PMID: 39586382 DOI: 10.1016/j.freeradbiomed.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Down Syndrome (DS) is a genetic disorder caused by the presence of an extra copy of chromosome 21, and leading to various developmental and cognitive defects. A critical feature of DS is the occurrence of oxidative distress particularly in the brain, which exacerbates neurodevelopmental processes. Mitochondria play a crucial role in cell energy metabolism and their impairment is one of the major causes of oxidative distress in several pathologies. Hence, this study investigates mitochondrial proteostasis by the mean of the mitochondrial Unfolded Protein Response (UPRmt) and the mitochondrial protein quality control (MQC) mechanisms in the context of DS, focusing on their implications in redox homeostasis in brain development. We analyzed key UPRmt markers and mitochondrial function in the frontal cortex isolated fromTs2Cje mice, a model for DS, across different developmental stages. Our results demonstrate significant alterations in UPRmt markers, particularly at postnatal day 0 (P0) and 1 month (1M). These changes indicate early UPRmt activation, primarily driven by the ATF5/GRP75 axis, although compromised by reduced levels of other components. Impaired UPRmt correlates with decreased mitochondrial activity, evidenced by reduced oxygen consumption rates and altered expression of OXPHOS complexes. Additionally, elevated oxidative stress markers such as 3-nitrotyrosine (3-NT), 4-hydroxynonenal (HNE), and protein carbonyls (PC) were observed, linking mitochondrial dysfunction to increased oxidative damage. Defects of MQC, including disrupted biogenesis, increased fission, and the activation of mitophagy were evident mostly at P0 and 1M consistent with UPRmt activation. Principal Component Analysis revealed distinct phenotypic differences between Ts2Cje and control mice, driven by these molecular alterations. Our findings underscore the critical role of UPRmt and MQC in DS brain development, highlighting potential therapeutic targets to mitigate mitochondrial dysfunction and oxidative distress, thereby alleviating some of the neurodevelopmental and cognitive impairments associated with DS.
Collapse
Affiliation(s)
- Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain; Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Yin X, Wang R, Thackeray A, Baehrecke EH, Alkema MJ. VPS13D mutations affect mitochondrial homeostasis and locomotion in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634397. [PMID: 39896501 PMCID: PMC11785166 DOI: 10.1101/2025.01.22.634397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mitochondria control cellular metabolism, serve as hubs for signaling and organelle communication, and are important for the health and survival of cells. VPS13D encodes a cytoplasmic lipid transfer protein that regulates mitochondrial morphology, mitochondria and endoplasmic reticulum (ER) contact, quality control of mitochondria. VPS13D mutations have been reported in patients displaying ataxic and spastic gait disorders with variable age of onset. Here we used CRISPR/Cas9 gene editing to create VPS13D related-spinocerebellar ataxia-4 (SCAR4) missense mutations and C-terminal deletion in VPS13D 's orthologue vps-13D in C. elegans . Consistent with SCAR4 patient movement disorders and mitochondrial dysfunction, vps-13D mutant worms exhibit locomotion defects and abnormal mitochondrial morphology. Importantly, animals with a vps-13D deletion or a N3017I missense mutation exhibited an increase in mitochondrial unfolded protein response (UPR mt ). The cellular and behavioral changes caused by VPS13D mutations in C. elegans advance the development of animal models that are needed to study SCAR4 pathogenesis.
Collapse
|
26
|
Chen C, He J, Huang W, Xu D, Li Z, Yang A. PLK3 weakens antioxidant defense and inhibits proliferation of porcine Leydig cells under oxidative stress. Sci Rep 2025; 15:2612. [PMID: 39837970 PMCID: PMC11751325 DOI: 10.1038/s41598-025-86867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (H2O2)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system. 601 differentially expressed genes (DEGs) associated with OS, cell cycle regulation, and intracellular processes were identified. These DEGs were significantly enriched in critical aging pathways, including the p53 signaling pathway, autophagy, and cellular senescence. Protein-protein interaction (PPI) network analysis unveiled 15 key genes related to cell cycle and DNA replication, with polo-like kinase 3 (PLK3) exhibiting increased expression under OS. In vitro, PLK3 knockdown significantly enhanced the viability and antioxidant capacity of LCs under OS. This study deepens our understanding of how LCs respond to OS and provides new therapeutic targets for enhancing cellular resistance to oxidative damage and promoting tissue health.
Collapse
Affiliation(s)
- Chujie Chen
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- College of Life Sciences and Resource Environment, Yichun university, Yichun, Jiangxi, China
| | - Jinyan He
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weixian Huang
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Dong Xu
- Department of Biological and Environmental Engineering, Yueyang Vocational Technical College, Yueyang, Hunan, China
| | - Zhaohui Li
- Xiangtan Livestock Breeding Station, Xiangtan, Hunan, China
| | - Anqi Yang
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
27
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
28
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
29
|
Panda M, Markaki M, Tavernarakis N. Mitostasis in age-associated neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167547. [PMID: 39437856 DOI: 10.1016/j.bbadis.2024.167547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are essential organelles that play crucial roles in various metabolic and signalling pathways. Proper neuronal function is highly dependent on the health of these organelles. Of note, the intricate structure of neurons poses a critical challenge for the transport and distribution of mitochondria to specific energy-intensive domains, such as synapses and dendritic appendages. When faced with chronic metabolic challenges and bioenergetic deficits, neurons undergo degeneration. Unsurprisingly, disruption of mitostasis, the process of maintaining cellular mitochondrial content and function within physiological limits, has been implicated in the pathogenesis of several age-associated neurodegenerative disorders. Indeed, compromised integrity and metabolic activity of mitochondria is a principal hallmark of neurodegeneration. In this review, we survey recent findings elucidating the role of impaired mitochondrial homeostasis and metabolism in the onset and progression of age-related neurodegenerative disorders. We also discuss the importance of neuronal mitostasis, with an emphasis on the major mitochondrial homeostatic and metabolic pathways that contribute to the proper functioning of neurons. A comprehensive delineation of these pathways is crucial for the development of early diagnostic and intervention approaches against neurodegeneration.
Collapse
Affiliation(s)
- Mrutyunjaya Panda
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Medicine, University of Verona, Verona 37134, Italy; Faculdade de Farmácia, University of Lisbon, Lisbon 1649-003, Portugal
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece.
| |
Collapse
|
30
|
Fang M, Liu Y, Gao X, Yu J, Tu X, Mo X, Zhu H, Zou Y, Huang C, Fan S. Perillaldehyde alleviates polyQ-induced neurodegeneration through the induction of autophagy and mitochondrial UPR in Caenorhabditis elegans. Biofactors 2025; 51:e2089. [PMID: 38990058 DOI: 10.1002/biof.2089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease associated with autophagy disorder and mitochondrial dysfunction. Here, we identified therapeutic potential of perillaldehyde (PAE), a monoterpene compound obtained from Perilla frutescens (L.) Britt., in the Caenorhabditis elegans (C. elegans) model of HD, which included lifespan extension, healthspan improvement, decrease in polyglutamine (polyQ) aggregation, and preservation of mitochondrial network. Further analyses indicated that PAE was able to induce autophagy and mitochondrial unfolded protein reaction (UPRmt) activation and positively regulated expression of associated genes. In lgg-1 RNAi C. elegans or C. elegans with UPRmt-related genes knockdown, the effects of PAE treatment on polyQ aggregation or rescue polyQ-induced toxicity were attenuated, suggesting that its neuroprotective activity depended on autophagy and UPRmt. Moreover, we found that pharmacological and genetic activation of UPRmt generally protected C. elegans from polyQ-induced cytotoxicity. Finally, PAE promoted serotonin synthesis by upregulating expression of TPH-1, and serotonin synthesis and neurosecretion were required for PAE-mediated UPRmt activation and its neuroprotective activity. In conclusion, PAE is a potential therapy for polyQ-related diseases including HD, which is dependent on autophagy and cell-non-autonomous UPRmt activation.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Wang RJ, Ni YJ, Liu YQ. Hesperetin Increases Lifespan and Antioxidant Ability Correlating with IIS, HSP, mtUPR, and JNK Pathways of Chronic Oxidative Stress in Caenorhabditis elegans. Int J Mol Sci 2024; 25:13148. [PMID: 39684858 DOI: 10.3390/ijms252313148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Hesperetin (Hst) is a common citrus fruit flavonoid with antioxidant, anti-inflammatory, and anti-neurodegenerative effects. To explore the antioxidant and anti-aging effects and mechanisms of Hst, we induced chronic oxidative stress in Caenorhabditis elegans (C. elegans) using low-concentration H2O2 and examined its effects on lifespan, healthy life index, reactive oxygen species (ROS), antioxidant enzymes, and transcriptomic metrics. Hst significantly prolonged lifespan, increased body bending and pharyngeal pumping frequency, decreased ROS accumulation, and increased antioxidant enzyme activity in normal and stressed C. elegans. Hst significantly upregulated daf-18, daf-16, gst-2, gst-3, gst-4, gst-39, hsp-16.11, sip-1, clpp-1, and dve-1 and downregulated ist-1 and kgb-1 mRNAs in stressed C. elegans. These genes are involved in the insulin/insulin-like growth factor-1 signaling (IIS), heat shock protein (HSP), mitochondrial unfolded protein response (mtUPR), and c-Jun N-terminal kinase (JNK) pathways. In summary, Hst increases lifespan and antioxidant ability, correlating with these pathways, during chronic oxidative stress in C. elegans.
Collapse
Affiliation(s)
- Run-Jia Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ya-Jing Ni
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Liu Y, Li Q, Tian G, Zhou X, Chen P, Chen B, Shan Z, Qi B. Neuronal PRDX-2-Mediated ROS Signaling Regulates Food Digestion via peripheral UPR mt Activation. Nat Commun 2024; 15:10582. [PMID: 39632952 PMCID: PMC11618335 DOI: 10.1038/s41467-024-55013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
All organisms depend on food digestion for survival, yet the brain-gut signaling mechanisms that regulate this process are not fully understood. Here, using an established C. elegans digestion model, we uncover a pathway in which neuronal ROS (free radicals) signal the intestine to suppress digestion. Genetic screening reveals that reducing genes responsible for maintaining ROS balance increases free radicals and decreases digestion. PRDX-2 knockout in olfactory neurons (AWC) elevates ROS and reduces digestive capacity, mediated by the neuropeptide NLP-1 and activation of the mitochondrial unfolded protein response (UPRmt) in the intestine. Additionally, over-expressing nlp-1 or ablating AWC neurons both trigger UPRmt and inhibit digestion. These findings reveal a brain-gut connection in which neuronal PRDX-2-mediated ROS signaling modulates food digestion, highlighting a critical role of free radicals in shutting down digestion to alleviate stress and reduce food consumption.
Collapse
Affiliation(s)
- Yating Liu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qian Li
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guojing Tian
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xinyi Zhou
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Panpan Chen
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bo Chen
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhao Shan
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
33
|
Topper MJ, Guarnieri JW, Haltom JA, Chadburn A, Cope H, Frere J, An J, Borczuk A, Sinha S, Kim J, Park J, Butler D, Meydan C, Foox J, Bram Y, Richard SA, Epsi NJ, Agan B, Chenoweth JG, Simons MP, Tribble D, Burgess T, Dalgard C, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Beigel K, Widjaja GA, Janssen KA, Lie T, Murdock DG, Angelin A, Soto Albrecht YE, Olali AZ, Cen Z, Dybas J, Priebe W, Emmett MR, Best SM, Kelsey Johnson M, Trovao NS, Clark KB, Zaksas V, Meller R, Grabham P, Schisler JC, Moraes-Vieira PM, Pollett S, Mason CE, Syrkin Wurtele E, Taylor D, Schwartz RE, Beheshti A, Wallace DC, Baylin SB. Lethal COVID-19 associates with RAAS-induced inflammation for multiple organ damage including mediastinal lymph nodes. Proc Natl Acad Sci U S A 2024; 121:e2401968121. [PMID: 39602262 PMCID: PMC11626201 DOI: 10.1073/pnas.2401968121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes. Twenty-two of these are "noncanonical" immune genes, which we link to components of the renin-angiotensin-activation-system that manifest as increased fibrin deposition, leaky vessels, thrombotic tendency, PANoptosis, and mitochondrial dysfunction. Immunohistochemistry of mediastinal lymph nodes reveals altered architecture, excess collagen deposition, and pathogenic fibroblast infiltration. Many of the above findings are paralleled in animal models of SARS-CoV-2 infection and human peripheral blood mononuclear and whole blood samples from individuals with early and later SARS-CoV-2 variants. We then redefine cytokine storm in lethal COVID-19 as driven by upstream immune gene and mitochondrial signaling producing downstream RAAS (renin-angiotensin-aldosterone system) overactivation and organ damage, including compromised mediastinal lymph node function.
Collapse
Affiliation(s)
- Michael J. Topper
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joseph W. Guarnieri
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jeffrey A. Haltom
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Henry Cope
- School of Medicine, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Justin Frere
- Icahn School of Medicine, Mount Sinai, New York, NY10023
| | - Julia An
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | | | | | | | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY10065
| | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY10065
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Nusrat J. Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Josh G. Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD20814
| | | | | | | | | | | | | | | | | | - Katherine Beigel
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kevin A. Janssen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The University of Pennsylvania, Philadelphia, PA19104
| | - Arnold Z. Olali
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Zimu Cen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Joseph Dybas
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Monroe Dunaway Anderson Cancer Center, Houston, TX77030
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Medical Branch, Galveston, TX77555
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA02155
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT59840
| | - Maya Kelsey Johnson
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA02155
- Fogarty International Center, NIH, Bethesda, MD20892
| | - Kevin B. Clark
- COVID-19 International Research Team, Medford, MA02155
- Cures Within Reach, Chicago, IL60602
- Champions Service, Computational Sciences Support Network, Multi-Tier Assistance, Training, and Computational Help Track, NSF's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA02155
- Center for Translational Data Science, University of Chicago, Chicago, IL60615
- Clever Research Lab, Springfield, IL62704
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA02155
- Morehouse School of Medicine, Atlanta, GA30310
| | - Peter Grabham
- COVID-19 International Research Team, Medford, MA02155
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY19103
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA02155
- University of North Carolina, Chapel Hill, NC27599
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA02155
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil13083-862
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
- New York Genome Center, New York, NY10013
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA02155
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA50011
- Center for Bioinformatics and Computational Biology Iowa State University, Ames, IA50011
- Center for Genetics Development, and Cell Biology Iowa State University, Ames, IA50011
| | - Deanne Taylor
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA02155
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Blue Marble Space Institute of Science, Seattle, WA98104
- McGowan Institute for Regenerative Medicine and Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA15219
| | - Douglas C. Wallace
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA19104
| | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
34
|
Kim H, Chen Q, Ju D, Purandare N, Chen X, Samavati L, Li L, Zhang R, Grossman LI, Zhang K. ER-tethered stress sensor CREBH regulates mitochondrial unfolded protein response to maintain energy homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2410486121. [PMID: 39589874 PMCID: PMC11626163 DOI: 10.1073/pnas.2410486121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The Mitochondrial Unfolded Protein Response (UPRmt), a mitochondria-originated stress response to altered mitochondrial proteostasis, plays important roles in various pathophysiological processes. In this study, we revealed that the endoplasmic reticulum (ER)-tethered stress sensor CREBH regulates UPRmt to maintain mitochondrial homeostasis and function in the liver. CREBH is enriched in and required for hepatic Mitochondria-Associated Membrane (MAM) expansion induced by energy demands. Under a fasting challenge or during the circadian cycle, CREBH is activated to promote expression of the genes encoding the key enzymes, chaperones, and regulators of UPRmt in the liver. Activated CREBH, cooperating with peroxisome proliferator-activated receptor α (PPARα), activates expression of Activating Transcription Factor (ATF) 5 and ATF4, two major UPRmt transcriptional regulators, independent of the ER-originated UPR (UPRER) pathways. Hepatic CREBH deficiency leads to accumulation of mitochondrial unfolded proteins, decreased mitochondrial membrane potential, and elevated cellular redox state. Dysregulation of mitochondrial function caused by CREBH deficiency coincides with increased hepatic mitochondrial oxidative phosphorylation (OXPHOS) but decreased glycolysis. CREBH knockout mice display defects in fatty acid oxidation and increased reliance on carbohydrate oxidation for energy production. In summary, our studies uncover that hepatic UPRmt is activated through CREBH under physiological challenges, highlighting a molecular link between ER and mitochondria in maintaining mitochondrial proteostasis and energy homeostasis under stress conditions.
Collapse
Affiliation(s)
- Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Qi Chen
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Donghong Ju
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Neeraja Purandare
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI48201
| | - Lobelia Samavati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Li Li
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI48201
| |
Collapse
|
35
|
Xu Y, Liu M, Gao S, Li X, Chen J, Ye F. ATF5-mediated mitochondrial unfolded protein response protects against Pb-induced mitochondria damage in SH-SY5Y cell. Neurotoxicology 2024; 105:293-302. [PMID: 39547369 DOI: 10.1016/j.neuro.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Mitochondria is the primary target of lead (Pb) in neural cells, and Pb exposure can cause impairment to mitochondrial function and morphology. Recent studies have reported that a conserved cellular stress response, called mitochondrial unfolded protein response (mtUPR), is activated in response to mitochondrial dysfunction and protein misfolding and play protective roles in aging and neurodegeneration, but it's unknown whether mtUPR could protect against Pb-induced neurotoxicity. In this study, we found that sublethal level exposure of PbAc (2.5 μM) could cause mitochondria damage and then activate mtUPR by promoting the expression of mitochondrial proteases (LonP1 and ClpP), molecular chaperone (HSPA1A). ATF5 mediated mtUPR activation as knocking out ATF5 significantly inhibited Pb-induced LonP1 and ClpP expression. Moreover, ATF5 deficiency exacerbated Pb-induced mitochondrial morphological and oxidative phosphorylation (OXPHOS) functional damage, resulting in oxidative stress and ultimately promoting cell death. Conversely, overexpression of ATF5 confers protection against Pb-induced oxidative stress and cell death. Collectively, thess results highlight that mtUPR mediated by ATF5 safeguards against mitochondria damage caused by Pb exposure, providing insights into the development of new strategies for mitigating the Pb neurotoxicity.
Collapse
Affiliation(s)
- Yihan Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China, Ministry of Education &∼ Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sikang Gao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyi Li
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Fang Ye
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
36
|
Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H. Mitochondrial dysfunction in acute kidney injury. Ren Fail 2024; 46:2393262. [PMID: 39192578 PMCID: PMC11360640 DOI: 10.1080/0886022x.2024.2393262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this review aims to present the latest research advancements on mitochondrial dysfunction in AKI, providing a valuable reference and theoretical foundation for clinical prevention and treatment of this condition, ultimately enhancing patient prognosis.
Collapse
Affiliation(s)
- Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziwei Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
37
|
Petel Légaré V, Harji ZA, Rampal CJ, Antonicka H, Gurberg TJN, Persia O, Rodríguez EC, Shoubridge EA, Armstrong GAB. CHCHD10 P80L knock-in zebrafish display a mild ALS-like phenotype. Exp Neurol 2024; 382:114945. [PMID: 39260590 DOI: 10.1016/j.expneurol.2024.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Mutations in the nuclear-encoded mitochondrial gene CHCHD10 have been observed in patients with a spectrum of diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To investigate the pathogenic nature of disease-associated variants of CHCHD10 we generated a zebrafish knock-in (KI) model expressing the orthologous ALS-associated CHCHD10P80L variant (zebrafish: Chchd10P83L). Larval chchd10P83L/P83L fish displayed reduced Chchd10 protein expression levels, motor impairment, reduced survival and abnormal neuromuscular junctions (NMJ). These deficits were not accompanied by changes in transcripts involved in the integrated stress response (ISR), phenocopying previous findings in our knockout (chchd10-/-). Adult, 11-month old chchd10P83L/P83L zebrafish, displayed smaller slow- and fast-twitch muscle cell cross-sectional areas compared to wild type zebrafish muscle cells. Motoneurons in the spinal cord of chchd10P83L/P83L zebrafish displayed similar cross-sectional areas to that of wild type motor neurons and significantly fewer motor neurons were observed when compared to chchd2-/- adult spinal cords. Bulk RNA sequencing using whole spinal cords of 7-month old fish revealed transcriptional changes associated with neuroinflammation, apoptosis, amino acid metabolism and mt-DNA inflammatory response in our chchd10P83L/P83L model. The findings presented here, suggest that the CHCHD10P80L variant confers an ALS-like phenotype when expressed in zebrafish.
Collapse
Affiliation(s)
- Virginie Petel Légaré
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Canada
| | - Ziyaan A Harji
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Canada
| | - Christian J Rampal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Canada
| | - Hana Antonicka
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada
| | - Tyler J N Gurberg
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Canada
| | - Olivia Persia
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Canada
| | - Esteban C Rodríguez
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Canada
| | - E A Shoubridge
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gary A B Armstrong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Canada.
| |
Collapse
|
38
|
Zhang Y, Jiang J, Ding H, Li Q, Xiao Y, Sun H. Development of novel imipridone derivatives with potent anti-cancer activities as human caseinolytic peptidase P (hClpP) activators. Bioorg Chem 2024; 153:107765. [PMID: 39243740 DOI: 10.1016/j.bioorg.2024.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Based on a clinically staged small molecular hClpP activator ONC201, a class of imipridone derivatives was designed and synthesized. These compounds were evaluated in a protease hydrolytic assay, as well as cell growth inhibition assays in three cancer cell lines, MIA PACA-2, HCT116, and MV4-11. A number of compounds that can more potently activate hClpP and more effectively inhibit cell growth in the three cancer cell lines than ONC201 were identified. The most potent compound, ZYZ-17, activated hClpP with an EC50 value of 0.24 µM and inhibited the growth of the three cancer cell lines with IC50 values of less than 10 nM. Mechanism studies for ZYZ-17 revealed that it potently activates cellular hClpP, efficiently induces the degradation of hClpP substrates, and robustly induces apoptosis in the three cancer cell lines. Furthermore, ZYZ-17 demonstrated a promising pharmacokinetic (PK) profile and exhibited highly potent in vivo antitumor activity in a pancreatic cancer MIA PACA-2 xenograft model in BALB/c nude mice.
Collapse
Affiliation(s)
- Yanzhi Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiannan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
39
|
Sheng Y, Abreu A, Markovich Z, Ebea P, Davis L, Park E, Sheng P, Xie M, Han SM, Xiao R. A mitochondrial unfolded protein response-independent role of DVE-1 in longevity regulation. Cell Rep 2024; 43:114889. [PMID: 39423131 PMCID: PMC11648574 DOI: 10.1016/j.celrep.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The special AT-rich sequence-binding (SATB) protein DVE-1 is widely recognized for its pivotal involvement in orchestrating the retrograde mitochondrial unfolded protein response (mitoUPR) in C. elegans. In our study of downstream factors contributing to lifespan extension in sensory ciliary mutants, we find that DVE-1 is crucial for this longevity effect independent of its canonical mitoUPR function. Additionally, DVE-1 also influences lifespan under conditions of dietary restriction and germline loss, again distinct from its role in mitoUPR. Mechanistically, while mitochondrial stress typically prompts nuclear accumulation of DVE-1 to initiate the transcriptional mitoUPR program, these long-lived mutants reduce DVE-1 nuclear accumulation, likely by enhancing its cytosolic translocation. This observation suggests a cytosolic role for DVE-1 in lifespan extension. Overall, our study implies that, in contrast to the more narrowly defined role of the mitoUPR-related transcription factor ATFS-1, DVE-1 may possess broader functions than previously recognized in modulating longevity and defending against stress.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pearl Ebea
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Leah Davis
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Park
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute on Aging, University of Florida, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
40
|
Li R, Qin T, Guo Y, Zhang S, Guo X. CEAM is a mitochondrial-localized, amyloid-like motif-containing microprotein expressed in human cardiomyocytes. Biochem Biophys Res Commun 2024; 734:150737. [PMID: 39388734 DOI: 10.1016/j.bbrc.2024.150737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Microproteins synthesized through non-canonical translation pathways are frequently found within mitochondria. However, the functional significance of these mitochondria-localized microproteins in energy-intensive organs such as the heart remains largely unexplored. In this study, we demonstrate that the long non-coding RNA CD63-AS1 encodes a mitochondrial microprotein. Notably, in ribosome profiling data of human hearts, there is a positive correlation between the expression of CD63-AS1 and genes associated with cardiomyopathy. We have termed this microprotein CEAM (CD63-AS1 encoded amyloid-like motif containing microprotein), reflecting its sequence characteristics. Our biochemical assays show that CEAM forms protease-resistant aggregates within mitochondria, whereas deletion of the amyloid-like motif transforms CEAM into a soluble cytosolic protein. Overexpression of CEAM triggers mitochondrial stress responses and adversely affect mitochondrial bioenergetics in cultured cardiomyocytes. In turn, the expression of CEAM is reciprocally inhibited by the activation of mitochondrial stresses induced by oligomycin. When expressed in mouse hearts via adeno-associated virus, CEAM impairs cardiac function. However, under conditions of pressure overload-induced cardiac hypertrophy, CEAM expression appears to offer a protective benefit and mitigates the expression of genes associated with cardiac remodeling, presumably through a mechanism that suppresses stress-induced translation reprogramming. Collectively, our study uncovers a hitherto unexplored amyloid-like microprotein expressed in the human cardiomyocytes, offering novel insights into myocardial hypertrophy pathophysiology.
Collapse
Affiliation(s)
- Ruobing Li
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ti Qin
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yabo Guo
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shan Zhang
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Xiaogang Guo
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
41
|
Duong LD, West JD, Morano KA. Redox regulation of proteostasis. J Biol Chem 2024; 300:107977. [PMID: 39522946 DOI: 10.1016/j.jbc.2024.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead to their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network. Here, we highlight recent advances in our understanding of how cells respond to the challenges of protein folding and metabolic alterations that occur during oxidative stress. Immediately after an oxidative insult, cells selectively block the translation of most new proteins and shift molecular chaperones from folding to a holding role to prevent wholesale protein aggregation. At the same time, adaptive responses in gene expression are induced, allowing for increased expression of antioxidant enzymes, enzymes that carry out the reduction of oxidized proteins, and molecular chaperones, all of which serve to mitigate oxidative damage and rebalance proteostasis. Likewise, concomitant activation of protein clearance mechanisms, namely proteasomal degradation and particular autophagic pathways, promotes the degradation of irreparably damaged proteins. As oxidative stress is associated with inflammation, aging, and numerous age-related disorders, the molecular events described herein are therefore major determinants of health and disease.
Collapse
Affiliation(s)
- Long Duy Duong
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio, USA.
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
42
|
Park JH, Wandless TJ. p53 engagement is a hallmark of an unfolded protein response in the nucleus of mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622663. [PMID: 39574672 PMCID: PMC11581032 DOI: 10.1101/2024.11.08.622663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Exposure to exogenous and endogenous stress is associated with the intracellular accumulation of aberrant unfolded and misfolded proteins. In eukaryotic cells, protein homeostasis within membrane-bound organelles is regulated by specialized signaling pathways, with the unfolded protein response in the endoplasmic reticulum serving as a foundational example. Yet, it is unclear if a similar surveillance mechanism exists in the nucleus. Here we leveraged engineered proteins called destabilizing domains to acutely expose mammalian cells to nuclear- or cytosolic- localized unfolded protein. We show that the appearance of unfolded protein in either compartment engages a common transcriptional response associated with the transcription factors Nrf1 and Nrf2. Uniquely, only in the nucleus does unfolded protein activate a robust p53-driven transcriptional response and a transient p53-independent cell cycle delay. These studies highlight the distinct effects of localized protein folding stress and the unique protein quality control environment of the nucleus.
Collapse
|
43
|
Yu G, Huang Z, Guo C, Li J, Wang X, Wang Y, Wang X. Heat Shock Factor HSFA6b Mediates Mitochondrial Unfolded Protein Response in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3116. [PMID: 39599325 PMCID: PMC11597222 DOI: 10.3390/plants13223116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024]
Abstract
Mitochondria are important organelles in eukaryotes and are involved in various metabolic processes. Mitochondrial proteotoxic stress triggers the mitochondrial unfolded protein response (UPRmt) to restore mitochondrial protein homeostasis and maintain normal life activities. However, the regulatory mechanism of plant UPRmt remains to be revealed in Arabidopsis. Based on the fact that UPRmt activates heat shock protein (HSP) genes, we identified the heat shock transcription factor HSFA6b as a key regulator mediating UPRmt through reverse genetics. HSFA6b responded to mitochondrial proteotoxic stress and regulated mitochondrial heat shock proteins' genes' (mtHSPs) expression. HSFA6b translocated to the nuclear after treatment with doxycycline (Dox)-a mitochondrial ribosome translation inhibitor. HSFA6b binds to the mtHSPs promoters and activates mtHSPs expression. The HSFA6b mutation blocked the UPRmt signals to promote root growth under mitochondrial proteotoxic stress and accelerated leaf senescence during development. Our study reveals a novel signal-regulating mechanism in the UPRmt pathways and provides new insights regarding the regulation of plant growth and development and stress resistance by the UPRmt pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
44
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
45
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
46
|
Curley M, Rai M, Chuang CL, Pagala V, Stephan A, Coleman Z, Robles-Murguia M, Wang YD, Peng J, Demontis F. Transgenic sensors reveal compartment-specific effects of aggregation-prone proteins on subcellular proteostasis during aging. CELL REPORTS METHODS 2024; 4:100875. [PMID: 39383859 PMCID: PMC11573793 DOI: 10.1016/j.crmeth.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Loss of proteostasis is a hallmark of aging that underlies many age-related diseases. Different cell compartments experience distinctive challenges in maintaining protein quality control, but how aging regulates subcellular proteostasis remains underexplored. Here, by targeting the misfolding-prone FlucDM luciferase to the cytoplasm, mitochondria, and nucleus, we established transgenic sensors to examine subcellular proteostasis in Drosophila. Analysis of detergent-insoluble and -soluble levels of compartment-targeted FlucDM variants indicates that thermal stress, cold shock, and pro-longevity inter-organ signaling differentially affect subcellular proteostasis during aging. Moreover, aggregation-prone proteins that cause different neurodegenerative diseases induce a diverse range of outcomes on FlucDM insolubility, suggesting that subcellular proteostasis is impaired in a disease-specific manner. Further analyses with FlucDM and mass spectrometry indicate that pathogenic tauV337M produces an unexpectedly complex regulation of solubility for different FlucDM variants and protein subsets. Altogether, compartment-targeted FlucDM sensors pinpoint a diverse modulation of subcellular proteostasis by aging regulators.
Collapse
Affiliation(s)
- Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chia-Lung Chuang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zane Coleman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
47
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2024:10.1007/s12013-024-01581-6. [PMID: 39422790 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
48
|
Xiong X, Hou J, Zheng Y, Jiang T, Zhao X, Cai J, Huang J, He H, Xu J, Qian S, Lu Y, Wang X, Wang W, Ye Q, Zhou S, Lian M, Xiao J, Song W, Xie C. NAD +-boosting agent nicotinamide mononucleotide potently improves mitochondria stress response in Alzheimer's disease via ATF4-dependent mitochondrial UPR. Cell Death Dis 2024; 15:744. [PMID: 39394148 PMCID: PMC11470026 DOI: 10.1038/s41419-024-07062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Extensive studies indicate that mitochondria dysfunction is pivotal for Alzheimer's disease (AD) pathogenesis; while cumulative evidence suggests that increased mitochondrial stress response (MSR) may mitigate neurodegeneration in AD, explorations to develop a MSR-targeted therapeutic strategy against AD are scarce. We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which NAD+-boosting agent nicotinamide mononucleotide (NMN) regulates MSR in AD models. Here, we report dyshomeostasis plasma UPRmt-mitophagy-mediated MSR profiles in AD patient samples. NMN restores NAD+ metabolic profiles and improves MSR through the ATF4-dependent UPRmt pathway in AD-related cross-species models. At the organismal level, NAD+ repletion with NMN supplementation ameliorates mitochondrial proteotoxicity, decreases hippocampal synaptic disruption, decreases neuronal loss, and brain atrophy in mice model of AD. Remarkably, omics features of the hippocampus with NMN show that NMN leads to transcriptional changes of genes and proteins involved in MSR characteristics, principally within the astrocyte unit rather than microglia and oligodendrocytes. In brief, our work provides evidence that MSR has an active role in the pathogenesis of AD, as reducing mitochondrial homeostasis via atf4 depletion in AD mice aggravates the hallmarks of the disease; conversely, bolstering mitochondrial proteostasis by NMN decreases protein aggregation, restores memory performance, and delays disease progression, ultimately translating to increased healthspan.
Collapse
Affiliation(s)
- Xi Xiong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialong Hou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Jiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemiao Zhao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinlai Cai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiani Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haijun He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaxue Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangjie Qian
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Lu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Yuhuan City People's Hospital, Taizhou, China
| | - XinShi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenwen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Ye
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuoting Zhou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengjia Lian
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, The First People's Hospital of Wenling, Taizhou, China
| | - Jian Xiao
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Weihong Song
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- Key Laboratory Of Alzheimer's Disease Of Zhejiang Province, Institute Of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- Key Laboratory Of Alzheimer's Disease Of Zhejiang Province, Institute Of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Geriatrics, Geriatric Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
49
|
Zhao J, Yang Y, Qin J, Tao S, Jiang C, Huang H, Wan Q, Chen Y, Xu S, Qiao H. Transcutaneous Auricular Vagus Nerve Stimulation Ameliorates Preeclampsia-Induced Apoptosis of Placental Trophoblastic Cells Via Inhibiting the Mitochondrial Unfolded Protein Response. Neurosci Bull 2024; 40:1502-1518. [PMID: 38874677 PMCID: PMC11422338 DOI: 10.1007/s12264-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/28/2024] [Indexed: 06/15/2024] Open
Abstract
Preeclampsia is a serious obstetric complication. Currently, there is a lack of effective preventive approaches for this disease. Recent studies have identified transcutaneous auricular vagus nerve stimulation (taVNS) as a potential novel non-pharmaceutical therapeutic modality for preeclampsia. In this study, we investigated whether taVNS inhibits apoptosis of placental trophoblastic cells through ROS-induced UPRmt. Our results showed that taVNS promoted the release of acetylcholine (ACh). ACh decreased the expression of UPRmt by inhibiting the formation of mitochondrial ROS (mtROS), presumably through M3AChR. This reduced the release of pro-apoptotic proteins (cleaved caspase-3, NF-κB-p65, and cytochrome C) and helped preserve the morphological and functional integrity of mitochondria, thus reducing the apoptosis of placental trophoblasts, improving placental function, and relieving preeclampsia. Our study unravels the potential pathophysiological mechanism of preeclampsia. In-depth characterization of the UPRmt is essential for developing more effective therapeutic strategies for preeclampsia targeting mitochondrial function.
Collapse
Affiliation(s)
- Jing Zhao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Xianyang, 712046, China
| | - Yanan Yang
- Department of Public Health, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Jiayi Qin
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Siyu Tao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Chunmei Jiang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Huixuan Huang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Qiunan Wan
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Yuqi Chen
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Shouzhu Xu
- Department of Public Health, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China.
| | - Haifa Qiao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Xianyang, 712046, China.
| |
Collapse
|
50
|
Jozwik KM, Held JP, Hecht CA, Patel MR. A viable hypomorphic mutation in the mitochondrial ribosome subunit, MRPS-31, exhibits mitochondrial dysfunction in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001344. [PMID: 39410965 PMCID: PMC11474418 DOI: 10.17912/micropub.biology.001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
The mitochondrial ribosome (mitoribosome) translates mitochondrial genome encoded proteins essential for cellular energy production. Given this critical role, defects in the mitoribosome can cause mitochondrial stress and manifest as multisystemic diseases. In a screen for unique activators of the mitochondrial unfolded protein response (UPR mt ) in Caenorhabditis elegans , we recovered a strain harboring a missense mutation in the gene encoding mitochondrial ribosome protein S31 ( MRPS-31 )-a component of the mitoribosome small subunit. Herein, we confirm causality of the mrps-31 allele and characterize its induction of UPR mt and impact on organismal development, providing a valuable model for further study of the mitoribosome.
Collapse
Affiliation(s)
- Kylie M. Jozwik
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - James P. Held
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - Chloe A. Hecht
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - Maulik R. Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
- Evolutionary Studies, Vanderbilt University, Nashville, Tennessee, United States
- Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|