1
|
Han S, Li S, Li L, Li S. Genetic characterization of four bacteriophages of Salmonella enterica derived from different geographic regions in China via genomic comparison. Res Vet Sci 2025; 189:105608. [PMID: 40199046 DOI: 10.1016/j.rvsc.2025.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
Based on the AT content > GC content in four Salmonella enterica lytic bacteriophage genomes, information entropy analysis revealed that overall nucleotide usage bias is shaped in the gene population. This genetic feature directly contributes to synonymous codons tending toward the A/T end rather than the C/G end. Furthermore, the interplay between the nucleotide composition constraint from the bacteriophage itself and the natural selection caused by outside environments forces our bacteriophages into similar evolutionary trends in terms of overall codon usage patterns. We identified the nucleotide composition constraint which plays an important role in shaping synonymous codon usage patterns including the keto skew at the first codon position, the pyrimidine skew at the second position and the AT skew at the third position. Although the four bacteriophages were isolated from different geographical regions in China, they display similar evolutionary trends in terms of genomic organization and synonymous codon usage, which are strongly influenced by the nucleotide composition constraint of the bacteriophage. The findings of the present study reveal important details of the evolutionary and host-pathogen interactions of Salmonella enterica, which will benefit the efficient utilization of phages for therapeutic and other applications.
Collapse
Affiliation(s)
- Shengyi Han
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China
| | - Shuping Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China
| | - Lingxia Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China; College of Agriculture and Animal Husbandry, Xining 810016, China.
| | - Shengqing Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China.
| |
Collapse
|
2
|
Zhong T, Huang S, Liu R, Zhuo J, Lu H, Gan C, Fu J, Qian Q. The complete mitochondrial genome of Sinojackia microcarpa: evolutionary insights and gene transfer. BMC Genomics 2025; 26:446. [PMID: 40329166 PMCID: PMC12054226 DOI: 10.1186/s12864-025-11633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND As a dicotyledonous plant within the Styracaceae family, Sinojackia microcarpa (S. microcarpa) is notable for its library-shaped fruit and sparse distribution, serving as a model system for studying the entire tree family. However, the scarcity of genomic data, particularly concerning the mitochondrial and nuclear sequences of S. microcarpa, has substantially impeded our understanding of its evolutionary traits and fundamental biological mechanisms. RESULTS This study presents the first complete mitochondrial genome sequence of S. microcarpa and conducts a comparative analysis of its protein-encoding genes across eight plant species. Our analysis revealed that the mitochondrial genome of S. microcarpa spans 687,378 base pairs and contains a total of 59 genes, which include 37 protein-coding genes (PCGs), 20 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA) genes. Sixteen plastid-derived fragments strongly linked with mitochondrial genes, including one intact plastid-related gene (rps7), were identified. Additionally, Ka/Ks ratio analysis revealed that most mitochondrial genes are under purifying selection, with a few genes, such as nad9 and ccmB, showing signs of relaxed or adaptive evolution. An analysis of twenty-nine protein-coding genes from twenty-four plant species reveals that S. microcarpa exhibits a closer evolutionary relationship with species belonging to the genus Camellia. The findings of this study provide new genomic data that enhance our understanding of S. microcarpa, and reveal its mitochondrial genome's evolutionary proximity to other dicotyledonous species. CONCLUSIONS Overall, this research enhances our understanding of the evolutionary and comparative genomics of S. microcarpa and other plants in the Styracaceae family and lays the foundation for future genetic studies and evolutionary analyses in the Styracaceae family.
Collapse
Affiliation(s)
- Tailin Zhong
- College of Urban Construction of Zhejiang Shuren University, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Shaoxing, Zhejiang, People's Republic of China
| | - Shijie Huang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China
- Key Laboratory of Bamboo Science and Technology of Ministry of Education, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300, China
| | - Rongxiu Liu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China
- Key Laboratory of Bamboo Science and Technology of Ministry of Education, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300, China
| | - Juan Zhuo
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China
- Key Laboratory of Bamboo Science and Technology of Ministry of Education, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haifei Lu
- College of Urban Construction of Zhejiang Shuren University, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Shaoxing, Zhejiang, People's Republic of China
| | - Chunlin Gan
- Lishan Forest Farm, Xin'gan County, Xin'gan, Jiangxi, People's Republic of China
| | - Jun Fu
- State-owned Paiyangshan Forest Farm in Guangxi Zhuang Autonomous Region, Ningming, Guangxi, People's Republic of China
| | - Qixia Qian
- College of Landscape Architecture, Zheiiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Damase TR, Cooke JP. RNA therapeutics in cardiovascular medicine. Curr Opin Cardiol 2025; 40:139-149. [PMID: 39998478 PMCID: PMC12055242 DOI: 10.1097/hco.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
PURPOSE OF REVIEW RNA therapeutics came to global attention when mRNA-based vaccines provided an answer to the SARS-CoV-2 pandemic. The immense significance of this development notwithstanding, it is important to note that almost a decade prior to the pandemic, RNA drugs had made important inroads toward the amelioration of disease. The first class of RNA therapies to be introduced into clinical use were the antisense oligomers and siRNA drugs which generally induce a therapeutic effect by acting to brake or to modulate mRNA expression. RNA therapeutics is quickly becoming the fourth pillar of pharmacotherapy, and will have broad applications, including for the treatment of cardiovascular disease. RECENT FINDINGS The United States (US) Food and Drug Administration (FDA) has approved several antisense oligomers (ASOs) and siRNA-based drugs to treat disorders associated with cardiovascular disease. In addition, multiple RNA-based drugs are in clinical trials to assess their safety and efficacy in patients with cardiovascular disorders, such as Zodasiran, a siRNA therapy that targets angiopoietin-like protein 3 (ANGPTL3) to reduce LDL cholesterol. SUMMARY Because of limitless sequence choice; speed of design; and relative ease of synthesis, RNA drugs will be rapidly developed, will have broad applications, and will be generated at lower cost than other drug types. This review aims to highlight RNA therapies for cardiovascular diseases that are approved, and those that are under clinical evaluation.
Collapse
Affiliation(s)
- Tulsi Ram Damase
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, Texas, USA
| | | |
Collapse
|
4
|
Liu D, Li J, Xu C, Li Y, Chen X, Zhao F, Tong H, Yang Y, Qiu X, Yu Z. Loss of Nup160 dysregulates Cdc42 in the podocytes of podocyte-specific Nup160 knockout mice. Hum Mol Genet 2025:ddaf064. [PMID: 40298220 DOI: 10.1093/hmg/ddaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Mutations in four genes encoding the outer ring complex of nuclear pore complexes (NPCs), NUP85, NUP107, NUP133 and NUP160, cause monogenic steroid-resistant nephrotic syndrome (SRNS). Knockout of NUP85, NUP107, or NUP133 in immortalized human podocytes activates CDC42, an important effector of SRNS pathogenesis. However, it is unknown whether or not loss of NUP160 dysregulates CDC42 in the podocytes. Here, we generated a podocyte-specific Nup160 knockout mouse model with double-fluorescent (mT/mG) Cre reporter genes using CRISPR/Cas9 and Cre/loxP technologies. We investigated nephrotic syndrome-associated phenotypes in the Nup160podo-/- mice, and performed single-cell transcriptomic and proteomic analysis of glomerular suspension cells and cultured primary podocytes, respectively. The Nup160podo-/- mice exhibited progressive proteinuria and fusion of podocyte foot processes. We found decreased Cdc42 protein and normal Cdc42 transcriptional level in the podocytes of the Nup160podo-/- mice using analysis of single-cell transcriptomes and proteomes. We subsequently observed that Cdc42 protein decreased in both kidney tissues and cultured primary podocytes of the Nup160podo-/- mice, although Cdc42 mRNA levels were elevated in the cultured primary podocytes of the Nup160podo-/- mice. We also found that Cdc42 activity was significantly reduced in the cultured primary podocytes of the Nup160podo-/- mice. In conclusion, loss of Nup160 dysregulated Cdc42 in the podocytes of the Nup160podo-/- mice with proteinuria and fusion of podocyte foot processes. Our findings suggest that the dysregulation of CDC42 may contribute to the pathogenesis of SRNS in patients with mutations in NUP160.
Collapse
Affiliation(s)
- Deying Liu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Jiaxin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Chan Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Yuanyuan Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Xiaohan Chen
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Feng Zhao
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
| | - Huajuan Tong
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
| | - Yonghui Yang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
| | - Xiaojian Qiu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
| | - Zihua Yu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| |
Collapse
|
5
|
Inoki T, Tsuruta A, Masakado Y, Kai Y, Yoshida Y, Matsunaga N, Ohdo S, Koyanagi S. N-acetyltransferase 10 promotes glioblastoma malignancy via mRNA stabilization of Jumonji and AT-rich interaction domain containing 2. J Biol Chem 2025:108544. [PMID: 40288646 DOI: 10.1016/j.jbc.2025.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of malignant brain cancer, with a poor prognosis and a five-year survival rate of approximately 15%. The malignancy of GBM, including its treatment resistance and high recurrence rate, is largely attributed to the presence of cancer stem cells. Recent studies have identified the N-acetyltransferase 10 (NAT10), an enzyme responsible for catalyzing N4-acetylcytidine (ac4C) modification in RNA, as a key factor in cancer biology, with diverse roles across multiple cancer types. However, the specific contribution of this RNA modification to the malignancy of GBM remains unexplored. Here, we demonstrate that NAT10 expression is associated with poor prognosis in GBM patients and that NAT10 promotes GBM malignancy by enhancing stemness properties in human GBM cell line U251 and A172. A search for the underlying mechanism of NAT10-mediated enhancement of GBM stemness led to identification of polycomb repressive complex 2 (PRC2)-related genes as an epigenetic regulator. NAT10 mediates the acetylation of the coding region of Jumonji and AT-rich Interaction Domain containing 2 (JARID2) mRNA, which results in increased mRNA stability and elevated protein levels. Notably, knockdown of JARID2 significantly reduced GBM stemness, suppressed tumor growth, and extended the survival of xenograft mice. Our findings suggest that NAT10-mediated acetylation of JARID2 mRNA up-regulates its protein levels, thereby promoting stemness and contributing to the malignancy of GBM. Targeting this NAT10-JARID2 axis may represent a novel therapeutic approach for treatment of GBM.
Collapse
Affiliation(s)
- Takuto Inoki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8512, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8512, Japan
| | - Yoshinori Masakado
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8512, Japan
| | - Yuichiro Kai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8512, Japan
| | - Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8512, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8512, Japan
| | - Shigehiro Ohdo
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8512, Japan.
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8512, Japan.
| |
Collapse
|
6
|
Arendrup FSW, Andersen KL, Lund AH. A tripartite cell-free translation system to study mammalian translation. Nat Protoc 2025:10.1038/s41596-025-01155-7. [PMID: 40240502 DOI: 10.1038/s41596-025-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/24/2025] [Indexed: 04/18/2025]
Abstract
Genetic manipulation of cellular systems often leads to the adaptation of gene expression programs, rendering detailed mechanistic insights challenging to isolate and elucidate. The proteome constitutes the ultimate manifestation of gene expression programs with multiple layers of regulation to ensure faithful execution. While current high-throughput techniques to investigate regulation at the level of translation, such as Ribo-Seq and nascent proteomics, can capture nuanced changes in the translational landscape, they suffer from potential confounding factors imposed by adaptation of the cellular states. Cell-free translation systems have been used to elucidate molecular mechanisms for decades, but experimental setups have rigid composition and often rely on non-human model systems and artificially designed mRNA constructs. Here we detail a tripartite cell-free translation system based on the separation of mRNAs, ribosomes and ribosome-depleted cytoplasmic lysate from human cells, allowing for flexible reconstitution of translation reactions, which can be performed in 1-4 days. In this setup, cellular parts such as the cytoplasmic lysate can be kept constant, while ribosome complexes or mRNA can be varied or subjected to treatments or vice versa. We detail how complete mRNA populations can be used as input with subsequent detection of nascent peptides using autoradiography or mass spectrometry. We utilize this protocol to resolve which aspects of the translational machinery are selectively affected by environmental and cellular stress conditions that trigger ribosome stalling and collisions, which have been unresolvable until now.
Collapse
Affiliation(s)
- Frederic S W Arendrup
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kasper L Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Tiwade PB, Fung V, VanKeulen-Miller R, Narasipura EA, Ma Y, Fenton OS. Non-Viral RNA Therapies for Non-Small Cell Lung Cancer and Their Corresponding Clinical Trials. Mol Pharm 2025; 22:1752-1774. [PMID: 40131145 DOI: 10.1021/acs.molpharmaceut.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ribonucleic acid (RNA)-based therapies represent a promising class of drugs for the treatment of non-small cell lung cancer (NSCLC) due to their ability to modulate gene expression. Therapies leveraging small interfering RNA (siRNA), messenger RNA (mRNA), microRNA (miRNA), and antisense oligonucleotides (ASOs) offer various advantages over conventional treatments, including the ability to target specific genetic mutations and the potential for personalized medicine approaches. However, the clinical translation of these therapeutics for the treatment of NSCLC faces challenges in delivery due to their immunogenicity, negative charge, and large size, which can be mitigated with delivery platforms. In this review, we provide a description of the pathophysiology of NSCLC and an overview of RNA-based therapeutics, specifically highlighting their potential application in the treatment of NSCLC. We discuss relevant classes of RNA and their therapeutic potential for NSCLC. We then discuss challenges in delivery and non-viral delivery strategies such as lipid- and polymer-based nanoparticles that have been developed to address these issues in preclinical models. Furthermore, we provide a summary table of clinical trials that leverage RNA therapies for NSCLC [which includes their National Clinical Trial (NCT) numbers] to highlight the current progress in NSCLC. We also discuss how these NSCLC therapies can be integrated with existing treatment modalities to enhance their efficacy and improve patient outcomes. Overall, we aim to highlight non-viral strategies that tackle RNA delivery challenges while showcasing RNA's potential as a next-generation therapy for NSCLC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/therapy
- Lung Neoplasms/drug therapy
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- RNA, Small Interfering/administration & dosage
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/administration & dosage
- Clinical Trials as Topic
- Animals
- Nanoparticles/chemistry
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- RNA, Messenger/genetics
- Genetic Therapy/methods
- Drug Delivery Systems/methods
Collapse
Affiliation(s)
- Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vincent Fung
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eshan Amruth Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Aardening Z, Khandal H, Erlichman OA, Savaldi-Goldstein S. The whole and its parts: cell-specific functions of brassinosteroids. TRENDS IN PLANT SCIENCE 2025; 30:389-408. [PMID: 39562236 DOI: 10.1016/j.tplants.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).
Collapse
Affiliation(s)
- Ziv Aardening
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
9
|
Duan Y, Cao Q. Systematic revelation and meditation on the significance of long exons using representative eukaryotic genomes. BMC Genomics 2025; 26:290. [PMID: 40128699 PMCID: PMC11931755 DOI: 10.1186/s12864-025-11504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Long exons/introns are not evenly distributed in the genome, but the biological significance of this phenomenon remains elusive. MATERIALS AND METHODS Exon properties were analyzed in seven well-annotated reference genomes, including human and other representative model organisms: mouse, fruitfly, worm, mouse-ear cress, corn, and rice. RESULTS In all species, last exons in genes tend to be the longest. Additionally, we found that (1) canonical splicing motifs are strongly underrepresented in 3'UTR; (2) Last exons tend to have low GC content; (3) Comparing with other species, first exons in D. melanogaster genes demonstrate lower GC content than internal exons. CONCLUSIONS It cannot be excluded that last exons of genes exert essential regulatory roles and is subjected to natural selection, exhibiting differential splicing tendency, and GC content compared to other parts of the gene body.
Collapse
Affiliation(s)
- Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qi Cao
- Health Science Center, International Cancer Institute, Peking University, Beijing, 100191, China.
| |
Collapse
|
10
|
Berlanga JJ, Matamoros T, Pulido M, Sáiz M, Bayón M, Toribio R, Ventoso I. The differential effect of SARS-CoV-2 NSP1 on mRNA translation and stability reveals new insights linking ribosome recruitment, codon usage, and virus evolution. Nucleic Acids Res 2025; 53:gkaf261. [PMID: 40193709 PMCID: PMC11975289 DOI: 10.1093/nar/gkaf261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
The nonstructural protein 1 (NSP1) of SARS-CoV-2 blocks the messenger RNA (mRNA) entry channel of the 40S ribosomal subunit, causing inhibition of translation initiation and subsequent degradation of host mRNAs. However, target mRNA specificity and how viral mRNAs escape NSP1-mediated degradation have not been clarified to date. Here we found that NSP1 acts as a translational switch capable of blocking or enhancing translation depending on how preinitiation complex, 43S-PIC, is recruited to the mRNA, whereas NSP1-mediated mRNA degradation mostly depends on codon usage bias. Thus, fast-translating mRNAs with optimal codon usage for human cells that preferentially recruit 43S-PIC by threading showed a dramatic sensitivity to NSP1. Translation of SARS-CoV-2 mRNAs escapes NSP1-mediated inhibition by a proper combination of suboptimal codon usage and slotting-prone 5' UTR. Thus, the prevalence of nonoptimal codons found in SARS-CoV-2 and other coronavirus genomes is favored by the distinctive effect that NSP1 plays on translation and mRNA stability.
Collapse
Affiliation(s)
- Juan José Berlanga
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Tania Matamoros
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Miguel Rodríguez Pulido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mercedes Núñez Bayón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Iván Ventoso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
11
|
Ravi S, Sharma T, Yip M, Yang H, Xie J, Gao G, Tai PL. A deep learning model trained on expressed transcripts across different tissue types reveals cell-type codon-optimization preferences. Nucleic Acids Res 2025; 53:gkaf233. [PMID: 40156867 PMCID: PMC11954528 DOI: 10.1093/nar/gkaf233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/03/2025] [Accepted: 03/28/2025] [Indexed: 04/01/2025] Open
Abstract
Species-specific differences in protein translation can affect the design of protein-based drugs. Consequently, efficient expression of recombinant proteins often requires codon optimization. Publicly available optimization tools do not always result in higher expression levels and can lead to protein misfolding and reduced expression. Here, we aimed to develop a novel deep learning (DL) tool using a recurrent neural network (RNN) to define cell type-dependent codon biases. Using gene expression data from three different tissue types (brain, liver, and muscle) and all secretory genes, we trained DL models to predict optimal codon usage. Codon-optimized sequences for test reporter genes exhibited enhanced protein expression compared to their original sequences and those optimized using a publicly available tool. Interestingly, DL models trained on genes expressed in liver cells (hepatocytes) resulted in the highest levels of expression when tested in vitro, irrespective of the cell type. Our findings also demonstrate that DL-based codon optimization algorithms can significantly enhance protein translation, particularly for secretory proteins, which are crucial for therapeutic applications. This research represents a novel approach to codon optimization with broader implications for protein-based pharmaceuticals, vaccine manufacturing, gene therapy, and other recombinant DNA products.
Collapse
Affiliation(s)
- Sandhiya Ravi
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Tapan Sharma
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Mitchell Yip
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Huiya Yang
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Jun Xie
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Guangping Gao
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Phillip W L Tai
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
12
|
Ranga S, Yadav R, Chauhan M, Chhabra R, Ahuja P, Balhara N. Modifications of RNA in cancer: a comprehensive review. Mol Biol Rep 2025; 52:321. [PMID: 40095076 DOI: 10.1007/s11033-025-10419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
RNA modifications play essential roles in post-transcriptional gene regulation and have emerged as significant contributors to cancer biology. Major chemical modifications of RNA include N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (ψ), and N7-methylguanosine (m7G). Their dynamic regulation highlights their roles in gene expression modulation, RNA stability, and translation. Advanced high-throughput detection methods, ranging from liquid chromatography-mass spectrometry and high-performance liquid chromatography to next-generation sequencing (NGS) and nanopore direct RNA sequencing, have enabled detailed studies of RNA modifications in cancer cells. Aberrant RNA modifications are associated with the dysregulation of tumor suppressor genes and oncogenes, influencing cancer progression, therapy resistance, and immune evasion. Emerging research suggests the therapeutic potential of targeting RNA-modifying enzymes and their inhibitors in cancer treatment. This review compiles and analyzes the latest findings on RNA modifications, presenting an in-depth discussion of the diverse chemical alterations that occur in RNA and their profound implications in cancer biology. It integrates fundamental principles with cutting-edge research, offering a holistic perspective on how RNA modifications influence gene expression, tumor progression, and therapeutic resistance. It emphasizes the need for further studies to elucidate the complex roles of RNA modifications in cancer, as well as the potential for multimodality therapeutic strategies that exploit the dynamic and reversible nature of these epitranscriptomic marks. It also attempts to highlight the challenges, gaps, and limitations of RNA modifications in cancer that should be tackled before their functional implications. Understanding the interplay between RNA modifications, cancer pathways, and their inhibitors will be crucial for developing promising RNA-based therapeutic approaches to cancer and personalized medicine strategies.
Collapse
Affiliation(s)
- Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Meenakshi Chauhan
- Department of Obstetrics and Gynaecology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Ravindresh Chhabra
- Department of Biochemistry, Central University of Panjab, Bathinda, Panjab, 151401, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
13
|
Tregnago C, Benetton M, Ries RE, Peplinski JH, Alonzo TA, Stirewalt D, Othus M, Duployez N, Sonneveld E, Abrahamsson J, Fogelstrand L, von Neuhoff N, Hasle H, Reinhardt D, Meshinchi S, Locatelli F, Pigazzi M. Influence of Nucleophosmin ( NPM1) Genotypes on Outcome of Patients With AML: An AIEOP-BFM and COG-SWOG Intergroup Collaboration. J Clin Oncol 2025; 43:972-984. [PMID: 39621969 DOI: 10.1200/jco-24-01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 03/01/2025] Open
Abstract
PURPOSE Several genomic subsets of NPM1 mutations with varying sequences (type A, B, D, etc) have been identified. Despite molecular heterogeneity, NPM1 mutations cumulatively portend a more favorable outcome, but biology and prognostic implications of different genomic subsets have not been extensively studied. In this multicentric study, we investigated the impact of NPM1 genotypes on patient's outcomes and interrogated the underlying biology of the different subtypes. MATERIALS AND METHODS Of more than 4,000 patients enrolled in multiple pediatric cooperative (AIEOP, BFM, ELAM02, NOPHO, DCOG, and COG trials), or adult (SWOG) trials, 348 pediatric and 75 adult AML patients with known NPM1 genotype and available outcome were selected for this study. Diverse NPM1 variants were correlated with the probabilities of overall survival (OS) and event-free survival. Nuclear localization and translational efficiency of the NPM1 variants was studied. RESULTS Evaluation of clinical outcome on the basis of NPM1 genotypes showed that patients with type A, B, and other rare variants had similarly favorable outcomes, whereas those with type D had a significantly worse outcome (OS of 63% for type D v 86% for type non-D, P = .005). Multivariate analysis confirmed type D as an independent prognostic factor associated with inferior OS (hazard ratio, 3; P = .005). In vitro, we demonstrated that in type D versus type A synonymous variants, codon optimality plays major roles in determining gene expression levels, and translation efficiency, which resulted in a more expressed NPM1-D mRNA and protein, mediating peculiar mitochondrial gene expression. CONCLUSION The evaluation of specific NPM1 genotypes identified AML patients with type D mutations being significantly associated with inferior outcomes, suggesting a reclassification of D cases to higher-risk groups.
Collapse
Affiliation(s)
- Claudia Tregnago
- Department of Women's and Children's Health, Onco-hematology Lab and Clinic, University of Padova, Padova, Italy
| | - Maddalena Benetton
- Department of Women's and Children's Health, Onco-hematology Lab and Clinic, University of Padova, Padova, Italy
| | - Rhonda E Ries
- Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jack H Peplinski
- Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Derek Stirewalt
- Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Megan Othus
- SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nicolas Duployez
- Laboratory of Hematology, Lille University Hospital, Lille, France
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jonas Abrahamsson
- Institution for Clinical Sciences, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nils von Neuhoff
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Soheil Meshinchi
- Translational Sciences and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Martina Pigazzi
- Department of Women's and Children's Health, Onco-hematology Lab and Clinic, University of Padova, Padova, Italy
- Foundation Istituto Ricerca Pediatrica (IRP), Padova, Italy
| |
Collapse
|
14
|
Wang J, Wang J, Cao H, Xing Y, Wang Z, Ma J, Zhao R, Zhang W, Guo J, Chang X. The Relationship Between Ribosome-Associated Quality Control and Neurological Disorders. J Gerontol A Biol Sci Med Sci 2025; 80:glae304. [PMID: 39719885 DOI: 10.1093/gerona/glae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 12/26/2024] Open
Abstract
Ribosome-associated quality control (RQC), a ubiquitous process essential for maintaining protein homeostasis in eukaryotes, acts as a critical surveillance system for protein translation. By identifying and eliminating stalled ribosomes, RQC prevents aberrant translation and the production of potentially toxic misfolded proteins. The review focuses on the role of RQC in mammals, where its complete functionality remains to be elucidated. This study delves into the mechanisms through which dysfunction in RQC plays a role in the development of neurological disorders, focusing on neurodegenerative and neurodevelopmental diseases. We explore the underlying mechanisms by which RQC dysfunction contributes to the pathogenesis of neurological disorders, particularly neurodegenerative and neurodevelopmental diseases. Further research is crucial to unravel the intricate mechanisms governing RQC's influence on neurological function. This knowledge will pave the way for exploring therapeutic avenues targeting RQC factors as potential interventions for these debilitating diseases. By shedding light on RQC's contribution to neurological disorders, this review opens doors for developing targeted therapies and interventions.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianhua Wang
- Department of Cardiology, Jincheng People's Hospital, Jincheng, China
| | - Hanshuai Cao
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yingming Xing
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhuoran Wang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jing Ma
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Rongjuan Zhao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueli Chang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Müller JA, Schwake G, Reiser A, Woschée D, Alirezaeizanjani Z, Rädler JO, Rudorf S. Less is more: slow-codon windows enhance eGFP mRNA resilience against RNA interference. J R Soc Interface 2025; 22:20240582. [PMID: 40101776 PMCID: PMC11919499 DOI: 10.1098/rsif.2024.0582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/30/2024] [Accepted: 01/16/2025] [Indexed: 03/20/2025] Open
Abstract
Extensive efforts have been devoted to enhancing the translation efficiency of mRNA delivered to mammalian cells via codon optimization. However, the impact of codon choice on mRNA stability remains underexplored. In this study, we investigated the influence of codon usage on mRNA degradation kinetics in cultured human cell lines using live-cell imaging on single-cell arrays. By measuring mRNA lifetimes at the single-cell level for synthetic mRNA constructs, we confirmed that mRNAs containing slowly translated codon windows have shorter lifetimes. Unexpectedly, these mRNAs did not exhibit decreased stability in the presence of small interfering RNA (siRNA) compared with the unmutated sequence, suggesting an interference of different concurrent degradation mechanisms. We employed stochastic simulations to predict ribosome density along the open reading frame, revealing that the ribosome densities correlated with mRNA stability in a cell-type- and codon-position-specific manner. In summary, our results suggest that the effect of codon choice and its influence on mRNA lifetime is context-dependent with respect to cell type, codon position and RNA interference.
Collapse
Affiliation(s)
- Judith A Müller
- Ludwig-Maximilians-Universität, Faculty of Physics, Munich 80539, Germany
| | - Gerlinde Schwake
- Ludwig-Maximilians-Universität, Faculty of Physics, Munich 80539, Germany
| | - Anita Reiser
- Ludwig-Maximilians-Universität, Faculty of Physics, Munich 80539, Germany
| | - Daniel Woschée
- Ludwig-Maximilians-Universität, Faculty of Physics, Munich 80539, Germany
| | | | - Joachim O Rädler
- Ludwig-Maximilians-Universität, Faculty of Physics, Munich 80539, Germany
| | - Sophia Rudorf
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover 30419, Germany
| |
Collapse
|
16
|
Adepoju OA, Quinnell D, Sirohi H, Amlabu E, Sallau AB, Ibrahim A, Atawodi SE, Shuaibu MN, Chang G, Balogun EO. Overproduction and Characterization of Recombinant Soluble Trypanosoma brucei Phospholipase A 2. Eng Life Sci 2025; 25:e70005. [PMID: 40124852 PMCID: PMC11926252 DOI: 10.1002/elsc.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 03/25/2025] Open
Abstract
Trypanosoma brucei phospholipase A2 (TbPLA2) is a validated drug target but the difficulty in expressing its soluble recombinant protein has limited its exploitation for drug and vaccine development for African and American trypanosomiases. We utilized recombinant deoxyribonucleic acid (DNA) technology approaches to express soluble TbPLA2 in Escherichia coli and Pichia pastoris and biochemically characterize the purified enzyme. Full-length TbPLA2 was insoluble and deposited as inclusion bodies when expressed in E. coli. However, soluble and active forms were obtained when both the full-length and truncated TbPLA2 were expressed in fusion with N-terminal FLAG tag and C-terminal eGFP in P. pastoris, and the truncated protein in fusion with N-terminal FLAG tag and C-terminal mClover in E. coli. Truncated TbPLA2 lacking the signal peptide and transmembrane domain was finally expressed in Rosetta 2 cells and purified to homogeneity. Its migration on sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) confirmed its size to be 39 kDa. Kinetic studies revealed that the enzyme has a specific activity of 107.14 µmol/min/mg, a V max of 25.1 µmol/min, and a K M of 1.58 mM. This is the first report on the successful expression of soluble and active recombinant TbPLA2, which will facilitate the discovery of its specific inhibitors for the development of therapeutics for trypanosomiasis.
Collapse
Affiliation(s)
- Oluwafemi Abiodun Adepoju
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Daniel Quinnell
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Harshverdhan Sirohi
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Emmanuel Amlabu
- Department of BiochemistryPrince Abubakar Audu UniversityAnyigbaNigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic BiotechnologyAhmadu Bello UniversityZariaNigeria
| | - Abdullahi Balarabe Sallau
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic BiotechnologyAhmadu Bello UniversityZariaNigeria
| | - Abdulrazak Ibrahim
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Forum for Agricultural Research in Africa (FARA), PMB CT 173, CantonmentsAccraGhana
| | | | - Mohammed Nasiru Shuaibu
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic BiotechnologyAhmadu Bello UniversityZariaNigeria
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Pharmacology, School of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Emmanuel Oluwadare Balogun
- Department of BiochemistryAhmadu Bello UniversityZariaNigeria
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCaliforniaUSA
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic BiotechnologyAhmadu Bello UniversityZariaNigeria
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoHongoTokyoJapan
| |
Collapse
|
17
|
Feng X, Liu Z, Mo Y, Zhang S, Ma XX. Role of nucleotide pair frequency and synonymous codon usage in the evolution of bovine viral diarrhea virus. Arch Virol 2025; 170:64. [PMID: 40011265 DOI: 10.1007/s00705-025-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 02/28/2025]
Abstract
Synonymous codon usage plays an important role in the adaptation of viruses to their hosts. Bovine viral diarrhea virus (BVDV) relies on a high mutation rate in its genome to achieve the necessary fitness in a particular host. However, the question of which selective forces influence nucleotide pair and synonymous codon usage patterns in different BVDV genotypes remains unresolved. Here, 169 BVDV strains isolated at different times in various countries were analyzed to compare their dinucleotide frequency and synonymous codon usage. Examination of the nucleotide usage pattern in the open reading frame (ORF) of BVDV revealed a significantly higher frequency of purine than pyrimidine, with the highest extent of nucleotide usage bias observed in the first codon position. Moreover, a nucleotide pair bias, especially favoring CpG dinucleotides, was observed in all of the genotypes. Together, the nucleotide composition constraints and nucleotide pair bias appear to have influenced the overall codon usage pattern. Nucleotide pair and synonymous codon usage biases were associated with individual genotypes to different degrees. Of particular note, BVDV-1 exhibited more variation in its nucleotide pair and synonymous codon usage than BVDV-2 and BVDV-3, suggesting that these patterns are shaped both by selection of mutations in the viral genome and translational selection in the host.
Collapse
Affiliation(s)
- Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zeyu Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yongli Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shubin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
18
|
Schwehn PM, Falter-Braun P. Inferring protein from transcript abundances using convolutional neural networks. BioData Min 2025; 18:18. [PMID: 40016737 PMCID: PMC11866710 DOI: 10.1186/s13040-025-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana). RESULTS After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r2) of 0.30 in H. sapiens and 0.32 in A. thaliana. CONCLUSIONS For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model's learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Collapse
Affiliation(s)
- Patrick Maximilian Schwehn
- Institute of Network Biology (INET), Molecular Targets and Therapies Center (MTTC), Helmholtz Munich, Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapies Center (MTTC), Helmholtz Munich, Neuherberg, Germany.
- Microbe-Host Interactions, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
19
|
Elazar A, D. A. SM, Madan Babu M. Interrogating nucleotide sequences with AI to understand codon usage patterns. Proc Natl Acad Sci U S A 2025; 122:e2426326122. [PMID: 39928880 PMCID: PMC11848311 DOI: 10.1073/pnas.2426326122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025] Open
Affiliation(s)
- Assaf Elazar
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Steve Mathew D. A.
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St. Jude Children’s Research Hospital, Memphis, TN38105
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore632014, India
| | - M. Madan Babu
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St. Jude Children’s Research Hospital, Memphis, TN38105
| |
Collapse
|
20
|
Xie H, Zhang K, Yin H, Zhang S, Pan S, Wu R, Han Y, Xu Y, Jiang W, You B. Acetyltransferase NAT10 inhibits T-cell immunity and promotes nasopharyngeal carcinoma progression through DDX5/HMGB1 axis. J Immunother Cancer 2025; 13:e010301. [PMID: 39939141 PMCID: PMC11822433 DOI: 10.1136/jitc-2024-010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunosuppression significantly contributes to treatment failure in nasopharyngeal carcinoma (NPC). Messenger RNA (mRNA) modifications such as methylation and acetylation play crucial roles in immunosuppression. However, N4-acetylcytidine (ac4C), the only acetylation modification event has rarely been studied in NPC. METHODS First, clinical tissue samples and nude mouse models were used to explore the expression of N-acetyltransferase 10 (NAT10) in NPC and its influence on it. Second, The Cancer Genome Atlas immune database and transgenic mouse peripheral blood immune cell panel were used to verify the immune cells mainly affected by NAT10. Then, NAT10 ac4C acetylation modification and expression of significantly upregulated transcription factors were explored by acetylated RNA immunoprecipitation sequence binding to RNA sequencing. Then, the downstream regulatory genes of CCAAT enhancer binding protein γ (CEBPG), dead box helicase 5 (DDX5) and helicase-like transcription factors (HLTF) were analyzed by luciferase report and chromatin Immunoprecipitation. Finally, the effect of inhibition of NAT10 on anti-programmed cell death protein 1 (PD-1) treatment sensitivity was verified by animal models. RESULTS In this study, we aimed to explore the role of NAT10, the enzyme responsible for ac4C modification, in NPC progression and patient prognosis. Elevated NAT10 promoted NPC progression and correlated with poor prognosis in patients with NPC. NAT10-mediated ac4C modification of CEBPG, DDX5, and HLTF mRNA improved their stability and translation efficiency, with the NAT10/ac4C/DDX5 axis upregulating high mobility group box 1 (HMGB1) and inhibiting CD4+ and CD8+ T cells. Inhibition of NAT10 increased the sensitivity to PD-1 therapy. Additionally, HLTF was found to transcriptionally regulate NAT10, indicating the formation of an HLTF-NAT10 positive feedback loop. CONCLUSIONS Our study elucidates the mechanism by which the NAT10/DDX5/HMGB1 axis promotes the immunosuppression of NPC by promoting T-cell dysfunction. In addition, NAT10 knockdown can enhance anti-PD-1 treatment sensitivity as a combination therapy for NPC.
Collapse
Affiliation(s)
- Haijing Xie
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Kaiwen Zhang
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | | | - Siyu Zhang
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Si Pan
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Rui Wu
- Nantong University, Nantong, Jiangsu, China
| | - Yumo Han
- Nantong University, Nantong, Jiangsu, China
| | - Yi Xu
- Nantong University, Nantong, Jiangsu, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Bo You
- Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| |
Collapse
|
21
|
Müller MD, Becker T, Denk T, Hashimoto S, Inada T, Beckmann R. The ribosome as a platform to coordinate mRNA decay. Nucleic Acids Res 2025; 53:gkaf049. [PMID: 39921564 PMCID: PMC11806357 DOI: 10.1093/nar/gkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Messenger RNA (mRNA) homeostasis is a critical aspect of cellular function, involving the dynamic interplay between transcription and decay processes. Recent advances have revealed that the ribosome plays a central role in coordinating mRNA decay, challenging the traditional view that free mRNA is the primary substrate for degradation. This review examines the mechanisms whereby ribosomes facilitate both the licensing and execution of mRNA decay. This involves factors such as the Ccr4-Not complex, small MutS-related domain endonucleases, and various quality control pathways. We discuss how translational fidelity, as well as the presence of nonoptimal codons and ribosome collisions, can trigger decay pathways such as nonstop decay and no-go decay. Furthermore, we highlight the direct association of canonical exonucleases, such as Xrn1 and the Ski-exosome system, with the ribosome, underscoring the ribosome's multifaceted role as a platform for regulatory processes governing mRNA stability. By integrating recent findings, this review offers a comprehensive overview of the structural basis of how ribosomes not only facilitate translation but also serve as critical hubs for mRNA decay coordination.
Collapse
Affiliation(s)
- Martin B D Müller
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Satoshi Hashimoto
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
22
|
Davis ET, Raman R, Byrne SR, Ghanegolmohammadi F, Mathur C, Begley U, Dedon PC, Begley TJ. Genes and Pathways Comprising the Human and Mouse ORFeomes Display Distinct Codon Bias Signatures that Can Regulate Protein Levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636209. [PMID: 39974974 PMCID: PMC11838421 DOI: 10.1101/2025.02.03.636209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Arginine, glutamic acid and selenocysteine based codon bias has been shown to regulate the translation of specific mRNAs for proteins that participate in stress responses, cell cycle and transcriptional regulation. Defining codon-bias in gene networks has the potential to identify other pathways under translational control. Here we have used computational methods to analyze the ORFeome of all unique human (19,711) and mouse (22,138) open-reading frames (ORFs) to characterize codon-usage and codon-bias in genes and biological processes. We show that ORFeome-wide clustering of gene-specific codon frequency data can be used to identify ontology-enriched biological processes and gene networks, with developmental and immunological programs well represented for both humans and mice. We developed codon over-use ontology mapping and hierarchical clustering to identify multi-codon bias signatures in human and mouse genes linked to signaling, development, mitochondria and metabolism, among others. The most distinct multi-codon bias signatures were identified in human genes linked to skin development and RNA metabolism, and in mouse genes linked to olfactory transduction and ribosome, highlighting species-specific pathways potentially regulated by translation. Extreme codon bias was identified in genes that included transcription factors and histone variants. We show that re-engineering extreme usage of C- or U-ending codons for aspartic acid, asparagine, histidine and tyrosine in the transcription factors CEBPB and MIER1, respectively, significantly regulates protein levels. Our study highlights that multi-codon bias signatures can be linked to specific biological pathways and that extreme codon bias with regulatory potential exists in transcription factors for immune response and development.
Collapse
Affiliation(s)
| | - Rahul Raman
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shane R. Byrne
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chetna Mathur
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
| | - Ulrike Begley
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Thomas J. Begley
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY
| |
Collapse
|
23
|
Weeks AT, Bird AJ. Regulation of sod1 mRNA and protein abundance by zinc in fission yeast is dependent on the CCR4-NOT complex. J Biol Chem 2025; 301:108156. [PMID: 39761853 PMCID: PMC11830320 DOI: 10.1016/j.jbc.2025.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 02/02/2025] Open
Abstract
Zinc is an essential micronutrient that serves as a cofactor in a wide variety of enzymes, including Cu-Zn Superoxide Dismutase 1 (Sod1). We have discovered in Schizosaccharomyces pombe that Sod1 mRNA and protein levels are regulated in response to cellular zinc availability. We demonstrate that lower levels of sod1 mRNA and protein accumulate under low zinc conditions and that this regulation does not require the sod1 promoter or known factors that regulate the transcription of sod1 in response to zinc and other environmental stresses. Further analyses using yeast deletion strains and an inactive allele of Caf1 revealed that the reduced accumulation of sod1 mRNA and protein under low zinc conditions depends on the Caf1 and Ccr4 deadenylases of the CCR4-NOT complex. We also found that Caf1 and Ccr4 are both required for growth under zinc-limiting conditions. To gain additional mechanistic insight we used immunoblot analysis to map the regions required for the regulation of the Sod1 protein by zinc. We found that the sod1 ORF and 3'UTR are both necessary and sufficient for the zinc-dependent changes in Sod1 protein abundance. Our studies reveal a novel mechanism of altering mRNA and protein abundance in response to zinc status, which depends on the CCR4-NOT complex.
Collapse
Affiliation(s)
- Andrew T Weeks
- Department of Human Nutrition, Ohio State University, Columbus, Ohio, USA
| | - Amanda J Bird
- Department of Human Nutrition, Ohio State University, Columbus, Ohio, USA; Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
24
|
Han Y, Zhang X, Miao L, Lin H, Zhuo Z, He J, Fu W. Biological function and mechanism of NAT10 in cancer. CANCER INNOVATION 2025; 4:e154. [PMID: 39817252 PMCID: PMC11732740 DOI: 10.1002/cai2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 01/18/2025]
Abstract
N-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase with an acetylation catalytic function and can bind various protein and RNA molecules. As the N4-acetylcytidine (ac4C) "writer" enzyme, NAT10 is reportedly involved in a variety of physiological and pathological activities. Currently, the NAT10-related molecular mechanisms in various cancers are not fully understood. In this review, we first describe the cellular localization of NAT10 and then summarize its numerous biological functions. NAT10 is involved in various biological processes by mediating the acetylation of different proteins and RNAs. These biological functions are also associated with cancer progression and patient prognosis. We also review the mechanisms by which NAT10 plays roles in various cancer types. NAT10 can affect tumor cell proliferation, metastasis, and stress tolerance through its acetyltransferase properties. Further research into NAT10 functions and expression regulation in tumors will help explore its future potential in cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yufeng Han
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinxin Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Lei Miao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Huiran Lin
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
- State Key Laboratory of Chemical OncogenomicsPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
| | - Jing He
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen Fu
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
25
|
Ruzov AS, Ermakov AS. The non-canonical nucleotides and prebiotic evolution. Biosystems 2025; 248:105411. [PMID: 39900260 DOI: 10.1016/j.biosystems.2025.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
The mystery of the origin of life has been puzzling mankind for several millenia. Starting from the second half of the 20th century, when the crucial role of nucleic acids in biological heredity became apparent, the emphasis in the field has shifted to the explanation of the origin of nucleic acids and the mechanisms of copying of macromolecules. In the 1960s, the hypothesis of the RNA World was proposed, according to which the first stages of the origin of life on Earth were associated with the appearance of self-replicating complexes based on RNA, that were akin to RNA-enzymes that catalyze critical for life chemical reactions. Currently, it has been shown that different forms of RNA include not only canonical (adenine, uracil, guanine, cytosine), but also about 170 non-canonical nucleotides. In this review, we discuss potential roles of these non-canonical nucleotides in the processes of molecular prebiotic evolution, such as the emergence of canonical RNA nucleotides and catalytic RNAs, as well as the origin of template synthesis of RNA and proteins.
Collapse
Affiliation(s)
- Alexey S Ruzov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Alexander S Ermakov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
26
|
Fan J, Xiao Z, Dong Y, Ye F, Qiu Y, Zhang C, Yin X, Li Y, Wang T. Nanocarrier-Mediated RNA Delivery Platform as a Frontier Strategy for Hepatic Disease Treatment: Challenges and Opportunities. Adv Healthc Mater 2025; 14:e2402933. [PMID: 39723654 DOI: 10.1002/adhm.202402933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Hepatic diseases cause serious public health problems worldwide, and there is an urgent need to develop effective therapeutic agents. In recent years, significant progress is made in RNA therapy, and RNA molecules, such as mRNAs, siRNAs, miRNAs, and RNA aptamers, are shown to provide significant advantages in the treatment of hepatic diseases. However, the drawbacks of RNAs, such as their poor biological stability, easy degradation by nucleases in vivo, low bioavailability, and low concentrations in target tissues, significantly limit the clinical application of RNA-based drugs. Therefore, exploring and developing effective nanoscale delivery platforms for RNA therapeutics are of immense value. This review focuses on the different types of hepatic diseases and RNA therapeutics, summarizing various nanoscale delivery platforms and their strengths and weaknesses. Finally, the current status and future prospects of nanoscale delivery systems for RNA therapy are discussed.
Collapse
Affiliation(s)
- Jinhui Fan
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Zhicheng Xiao
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Fei Ye
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Chuan Zhang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Xiaolan Yin
- Cancer center, Shanghai 411 hospital, China RongTong Medical Healthcare Group Co. Ltd./411 Hospital, Shanghai University, Shanghai, 200081, China
| | - Yi Li
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
27
|
Sharma D, Bharadaj SK, Bharadaj S, Chakraborty S. MicroRNA-regulated suppression of some overexpressed genes in schizophrenia and their evolutionary significance. Schizophr Res 2025; 276:143-156. [PMID: 39892248 DOI: 10.1016/j.schres.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Impaired formation of the brain or nervous system is the root cause of neurodevelopmental disorders which appear in pregnancy or soon after birth. One such neurodevelopmental disorder is Schizophrenia. Among the most serious forms of psychosis, Schizophrenia (SCZ) affects 1 % of the general population. MiRNA targeting sites and codon usage of nine overexpressed genes in Schizophrenia were investigated in this study. The neutrality plot demonstrated the importance of natural selection over mutational pressure in the evolution of these genes. The analysis of COSM revealed that the miRNA target regions of the genes were encoded by non-optimal codons, resulting in low translational efficiency, whereas the GC content revealed that the miRNA-mRNA binding was strong. From this study it was concluded that each overexpressed gene was targeted by several human miRNAs for putative suppression. These identified miRNAs could have therapeutic potential in Schizophrenia therapy.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | | | - Stella Bharadaj
- Silchar Medical College and Hospital, Silchar 788014, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
28
|
Paget‐Bailly P, Helpiquet A, Decourcelle M, Bories R, Bravo IG. Translation of the downstream ORF from bicistronic mRNAs by human cells: Impact of codon usage and splicing in the upstream ORF. Protein Sci 2025; 34:e70036. [PMID: 39840808 PMCID: PMC11751868 DOI: 10.1002/pro.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Biochemistry textbooks describe eukaryotic mRNAs as monocistronic. However, increasing evidence reveals the widespread presence and translation of upstream open reading frames preceding the "main" ORF. DNA and RNA viruses infecting eukaryotes often produce polycistronic mRNAs and viruses have evolved multiple ways of manipulating the host's translation machinery. Here, we introduce an experimental model to study gene expression regulation from virus-like bicistronic mRNAs in human cells. The model consists of a short upstream ORF and a reporter downstream ORF encoding a fluorescent protein. We have engineered synonymous variants of the upstream ORF to explore large parameter space, including codon usage preferences, mRNA folding features, and splicing propensity. We show that human translation machinery can translate the downstream ORF from bicistronic mRNAs, albeit reporter protein levels are thousand times lower than those from the upstream ORF. Furthermore, synonymous recoding of the upstream ORF exclusively during elongation significantly influences its own translation efficiency, reveals cryptic splice signals, and modulates the probability of downstream ORF translation. Our results are consistent with a leaky scanning mechanism facilitating downstream ORF translation from bicistronic mRNAs in human cells, offering new insights into the role of upstream ORFs in translation regulation.
Collapse
Affiliation(s)
- Philippe Paget‐Bailly
- Laboratory MIVEGEC (Univ. Montpellier, CNRS, IRD)French National Center for Scientific Research (CNRS)MontpellierFrance
| | - Alexandre Helpiquet
- Laboratory MIVEGEC (Univ. Montpellier, CNRS, IRD)French National Center for Scientific Research (CNRS)MontpellierFrance
| | - Mathilde Decourcelle
- Functional Proteomics PlatformBioCampus Montpellier (University of Montpellier, CNRS, INSERM)MontpellierFrance
| | - Roxane Bories
- Laboratory MIVEGEC (Univ. Montpellier, CNRS, IRD)French National Center for Scientific Research (CNRS)MontpellierFrance
| | - Ignacio G. Bravo
- Laboratory MIVEGEC (Univ. Montpellier, CNRS, IRD)French National Center for Scientific Research (CNRS)MontpellierFrance
| |
Collapse
|
29
|
Yu M, Wu G, Chang Y, Cai J, Wang C, Zhang D, Xu C. Comparative Transcriptomic Analysis Provides Insight into Spatiotemporal Expression Patterns of Pivotal Genes During Critical Growth Stages in Min Pig Breed. Biomolecules 2025; 15:180. [PMID: 40001483 PMCID: PMC11853420 DOI: 10.3390/biom15020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The growth and development of animals are dynamic processes characterized by fluctuations. Min pigs, a local breed renowned for their superior meat quality, present an intriguing yet poorly understood relationship between this quality and their growth and development patterns. To elucidate this relationship, we employed a multi-faceted approach that included comparative transcriptomics, quantitative real-time PCR (qRT-PCR), selection pressure analysis of key genes, and three-dimensional protein structure simulations. Our findings revealed that 150 days (150 d) of age represented a pivotal turning point in the growth and development of Min pigs. Thirteen key genes exhibiting significant differential expression between early and late growth stages were identified. Notably, the CDK2 gene demonstrated specific high expression in the hind limb muscles and adipose tissues during the later growth stages. Comparative analysis with the African warthog revealed that while the CDK2 protein structure remained conserved, base mutations in upstream and downstream non-coding regions resulted in strong positive selection pressure on the CDK2 gene. These results suggest that CDK2 plays a crucial role in defining the spatiotemporal characteristics of meat development during the domestication of Min pigs. This study provides critical insights into the growth and development patterns of domestic pigs and offers a robust scientific foundation for improving meat quality traits through domestication.
Collapse
Affiliation(s)
- Miao Yu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Guandong Wu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Yang Chang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Jiancheng Cai
- China Lanxi Breeding Farm, Lanxi 151500, China; (J.C.); (C.W.)
| | - Chunan Wang
- China Lanxi Breeding Farm, Lanxi 151500, China; (J.C.); (C.W.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chunzhu Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| |
Collapse
|
30
|
Arora P, Kumar S, Mukhopadhyay CS, Kaur S. Codon usage analysis in selected virulence genes of Staphylococcal species. Curr Genet 2025; 71:5. [PMID: 39853506 DOI: 10.1007/s00294-025-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S. saprophyticus, each implicated in a range of infections. This study investigates the codon usage patterns in key virulence genes, including Autolysin (alt), Elastin Binding protein (EbpS), Lipase, Thermonuclease, Intercellular Adhesion Protein (IcaR), and V8 Protease, across four Staphylococcus species. Using metrics such as the Effective Number of Codons (ENc), Relative Synonymous Codon Usage (RSCU), Codon Adaptation Index (CAI), alongside neutrality and parity plots, we explored the codon preferences and nucleotide composition biases. Our findings revealed a pronounced AT-rich codon preference, with AT-rich genomes likely aiding in energy-efficient translation and bacterial survival in host environments. These insights provide a deeper understanding of the evolutionary adaptations and translational efficiency mechanisms that contribute to the pathogenicity of Staphylococcus species. This knowledge could pave the way for novel therapeutic interventions targeting codon usage to disrupt virulence gene expression.
Collapse
Affiliation(s)
- Pinky Arora
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional, University, Jalandhar- G.T. Road, Phagwara, Punjab, 144411, India
| | - Chandra Shekhar Mukhopadhyay
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ferozepur G.T. Road, Ludhiana, Punjab, 141004, India
| | - Sandeep Kaur
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
31
|
Liao HC, Liu SJ. Advances in nucleic acid-based cancer vaccines. J Biomed Sci 2025; 32:10. [PMID: 39833784 PMCID: PMC11748563 DOI: 10.1186/s12929-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025] Open
Abstract
Nucleic acid vaccines have emerged as crucial advancements in vaccine technology, particularly highlighted by the global response to the COVID-19 pandemic. The widespread administration of mRNA vaccines against COVID-19 to billions globally marks a significant milestone. Furthermore, the approval of an mRNA vaccine for Respiratory Syncytial Virus (RSV) this year underscores the versatility of this technology. In oncology, the combination of mRNA vaccine encoding neoantigens and immune checkpoint inhibitors (ICIs) has shown remarkable efficacy in eliciting protective responses against diseases like melanoma and pancreatic cancer. Although the use of a COVID-19 DNA vaccine has been limited to India, the inherent stability at room temperature and cost-effectiveness of DNA vaccines present a viable option that could benefit developing countries. These advantages may help DNA vaccines address some of the challenges associated with mRNA vaccines. Currently, several trials are exploring the use of DNA-encoded neoantigens in combination with ICIs across various cancer types. These studies highlight the promising role of nucleic acid-based vaccines as the next generation of immunotherapeutic agents in cancer treatment. This review will delve into the recent advancements and current developmental status of both mRNA and DNA-based cancer vaccines.
Collapse
Affiliation(s)
- Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 307378, Taiwan.
| |
Collapse
|
32
|
Imani S, Li X, Chen K, Maghsoudloo M, Jabbarzadeh Kaboli P, Hashemi M, Khoushab S, Li X. Computational biology and artificial intelligence in mRNA vaccine design for cancer immunotherapy. Front Cell Infect Microbiol 2025; 14:1501010. [PMID: 39902185 PMCID: PMC11788159 DOI: 10.3389/fcimb.2024.1501010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Messenger RNA (mRNA) vaccines offer an adaptable and scalable platform for cancer immunotherapy, requiring optimal design to elicit a robust and targeted immune response. Recent advancements in bioinformatics and artificial intelligence (AI) have significantly enhanced the design, prediction, and optimization of mRNA vaccines. This paper reviews technologies that streamline mRNA vaccine development, from genomic sequencing to lipid nanoparticle (LNP) formulation. We discuss how accurate predictions of neoantigen structures guide the design of mRNA sequences that effectively target immune and cancer cells. Furthermore, we examine AI-driven approaches that optimize mRNA-LNP formulations, enhancing delivery and stability. These technological innovations not only improve vaccine design but also enhance pharmacokinetics and pharmacodynamics, offering promising avenues for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xiaoyan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Zheng D, Persyn L, Wang J, Liu Y, Montoya FU, Cenik C, Agarwal V. Predicting the translation efficiency of messenger RNA in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.11.607362. [PMID: 39149337 PMCID: PMC11326250 DOI: 10.1101/2024.08.11.607362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The degree to which translational control is specified by mRNA sequence is poorly understood in mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing >140 human and mouse cell types. We subsequently developed RiboNN, a multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While the majority of earlier models solely considered 5' UTR sequence1, RiboNN integrates contributions from the full-length mRNA sequence, learning that the 5' UTR, CDS, and 3' UTR respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- and tri-nucleotide features (i.e., including codons) largely explain model performance, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN is predictive of the translational behavior of base-modified therapeutic RNA, and can explain evolutionary selection pressures in human 5' UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability, and localization in mammalian organisms.
Collapse
Affiliation(s)
- Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Logan Persyn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Wang
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| | - Yue Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA
| |
Collapse
|
34
|
McGrath JJC, Park J, Troxell CA, Chervin JC, Li L, Kent JR, Changrob S, Fu Y, Huang M, Zheng NY, Wilbanks GD, Nelson SA, Sun J, Inghirami G, Madariaga MLL, Georgiou G, Wilson PC. Mutability and hypermutation antagonize immunoglobulin codon optimality. Mol Cell 2025; 85:430-444.e6. [PMID: 39708804 PMCID: PMC12063209 DOI: 10.1016/j.molcel.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/17/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
The efficacy of antibody responses is inherently linked to paratope diversity, as generated through V(D)J recombination and somatic hypermutation. Despite this, it is unclear how genetic diversification mechanisms evolved alongside codon optimality and affect antibody expression. Here, we analyze germline immunoglobulin (IG) genes, natural V(D)J repertoires, serum IgG, and monoclonal antibody (mAb) expression through the lens of codon optimality. Germline variable genes (IGVs) exhibit diverse optimality that is inversely related to mutability. Hypermutation deoptimizes heavy-chain (IGH) VDJ repertoires within human tonsils, bone marrow, lymph nodes (including SARS-CoV-2-specific clones), blood (HIV-1-specific clones), mice, and zebrafish. Analyses of mutation-affected codons show that targeting to complementarity-determining regions constrains deoptimization. Germline IGHV optimality correlates with serum variable fragment (VH) usage after influenza vaccination, while synonymous deoptimization attenuated mAb yield. These findings provide unanticipated insights into an antagonistic relationship between diversification mechanisms and codon optimality. Ultimately, the need for diversity takes precedence over that for the most optimal codon usage.
Collapse
Affiliation(s)
- Joshua J C McGrath
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Juyeon Park
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Chloe A Troxell
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Jordan C Chervin
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lei Li
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Siriruk Changrob
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yanbin Fu
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Min Huang
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Nai-Ying Zheng
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - G Dewey Wilbanks
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Sean A Nelson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Jiayi Sun
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA; Department of Oncology, The University of Texas at Austin, Austin, TX, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Ando D, Rashad S, Begley TJ, Endo H, Aoki M, Dedon PC, Niizuma K. Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation. Int J Mol Sci 2025; 26:706. [PMID: 39859422 PMCID: PMC11766445 DOI: 10.3390/ijms26020706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues. Our analysis revealed distinct enrichment patterns of tRNA modifications in different tissues. Queuosine (Q) tRNA modification was most enriched in the brain compared to other tissues, while mitochondrial tRNA modifications and tRNA expression were highest in the heart. Using this observation, we synthesized, and delivered in vivo, codon-mutated EGFP for Q-codons, where the C-ending Q-codons were replaced with U-ending codons. The protein levels of mutant EGFP were downregulated in liver, which is poor in Q, while in brain EGFP, levels did not change. These data show that understanding tRNA modification enrichments across tissues is not only essential for understanding codon decoding and bias but can also be utilized for optimizing gene and mRNA therapeutics to be more tissue-, cell-, or condition-specific.
Collapse
Affiliation(s)
- Daisuke Ando
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (D.A.); (M.A.)
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Thomas J. Begley
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA;
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (D.A.); (M.A.)
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
36
|
Eisen TJ, Ghaffari-Kashani S, Hung CL, Groves JT, Weiss A, Kuriyan J. Conditional requirement for dimerization of the membrane-binding module for BTK signaling in lymphocyte cell lines. Sci Signal 2025; 18:eado1252. [PMID: 39808693 PMCID: PMC11970436 DOI: 10.1126/scisignal.ado1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/28/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro. Here, we investigated whether BTK dimerizes in cells using the PH-TH module and whether this dimerization is necessary for signaling. To address this question, we developed high-throughput mutagenesis assays for BTK function in Ramos B cells and Jurkat T cells. We measured the fitness costs for thousands of point mutations in the PH-TH module and kinase domain to assess whether dimerization of the PH-TH module and BTK kinase activity were necessary for function. In Ramos cells, we found that neither PH-TH dimerization nor kinase activity was required for BTK signaling. Instead, in Ramos cells, BTK signaling was enhanced by PH-TH module mutations that increased membrane adsorption, even at the cost of reduced PH-TH dimerization. In contrast, in Jurkat cells, we found that BTK signaling depended on both PH-TH dimerization and kinase activity. Evolutionary analysis indicated that BTK proteins in organisms that evolved before the divergence of ray-finned fishes lacked PH-TH dimerization but had active kinase domains, similar to other Tec family kinases. Thus, PH-TH dimerization is a distinct feature of BTK that evolved to exert stricter regulatory control on kinase activity as adaptive immune systems gained increased complexity.
Collapse
Affiliation(s)
- Timothy J. Eisen
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
| | - Sam Ghaffari-Kashani
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
| | - Chien-Lun Hung
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville,
TN, USA
| | - Jay T. Groves
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
| | - Arthur Weiss
- Department of Microbiology and Immunology, University of
California, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine,
University of California, San Francisco, CA, United States
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville,
TN, USA
| |
Collapse
|
37
|
Bachiller M, Barceló-Genestar N, Rodriguez-Garcia A, Alserawan L, Dobaño-López C, Giménez-Alejandre M, Castellsagué J, Colell S, Otero-Mateo M, Antoñana-Vildosola A, Español-Rego M, Ferruz N, Pascal M, Martín-Antonio B, Anguela XM, Fillat C, Olesti E, Calvo G, Juan M, Delgado J, Pérez-Galán P, Urbano-Ispizua Á, Guedan S. ARI0003: Co-transduced CD19/BCMA dual-targeting CAR-T cells for the treatment of non-Hodgkin lymphoma. Mol Ther 2025; 33:317-335. [PMID: 39563035 PMCID: PMC11764334 DOI: 10.1016/j.ymthe.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
CD19 CAR-T therapy has achieved remarkable responses in relapsed/refractory non-Hodgkin lymphoma (NHL). However, challenges persist, with refractory responses or relapses after CAR-T administration linked to CD19 loss or downregulation. Given the co-expression of CD19 and BCMA in NHL, we hypothesized that dual targeting could enhance long-term efficacy. We optimized different dual-targeting approaches, including co-transduction of two lentiviral vectors, bicistronic, tandem, and loop and pool strategies, based on our academic anti-CD19 (ARI0001) and anti-BCMA (ARI0002h) CAR-T cells. Comparison with anti-CD19/CD20 or anti-CD19/CD22 dual targeting was also performed. We demonstrate that anti-CD19/BCMA CAR-T cells can be effectively generated through the co-transduction of two lentiviral vectors after optimization to minimize competition for cellular resources. Co-transduced T cells, called ARI0003, effectively targeted NHL tumor cells with high avidity, outperforming anti-CD19 CAR-T cells and other dual-targeting approaches both in vitro and in vivo, particularly in low CD19 antigen density models. ARI0003 maintained effectiveness post-CD19 CAR-T treatment in xenograft models and in spheroids from relapsed CART-treated patients. ARI0003 CAR-T cells were effectively manufactured under Good Manufacturing Practice conditions, with a reduced risk of genotoxicity compared to other dual-targeting approaches. A first-in-human phase 1 clinical trial (CARTD-BG-01; this study was registered at ClinicalTrials.gov [NCT06097455]) has been initiated to evaluate the safety and efficacy of ARI0003 in NHL.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Cell Line, Tumor
- Clinical Trials, Phase I as Topic
- Disease Models, Animal
- Genetic Vectors/genetics
- Genetic Vectors/administration & dosage
- Immunotherapy, Adoptive/methods
- Lentivirus/genetics
- Lymphoma, Non-Hodgkin/therapy
- Lymphoma, Non-Hodgkin/genetics
- Randomized Controlled Trials as Topic
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
- Xenograft Model Antitumor Assays
- Male
- Female
Collapse
Affiliation(s)
- Mireia Bachiller
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - Nina Barceló-Genestar
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - Alba Rodriguez-Garcia
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | | | - Cèlia Dobaño-López
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - Marta Giménez-Alejandre
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - Joan Castellsagué
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - Salut Colell
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - Marc Otero-Mateo
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - Asier Antoñana-Vildosola
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - Marta Español-Rego
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; Department of Immunology, Hospital Clínic, 08036 Barcelona, Spain
| | - Noelia Ferruz
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Mariona Pascal
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; Department of Immunology, Hospital Clínic, 08036 Barcelona, Spain; University of Barcelona, 08034 Barcelona, Spain
| | - Beatriz Martín-Antonio
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Cristina Fillat
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación en Red-Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Eulàlia Olesti
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; University of Barcelona, 08034 Barcelona, Spain; Department of Clinical Pharmacology, Hospital Clínic, 08036 Barcelona, Spain
| | - Gonzalo Calvo
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; University of Barcelona, 08034 Barcelona, Spain; Department of Clinical Pharmacology, Hospital Clínic, 08036 Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; Department of Immunology, Hospital Clínic, 08036 Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain; University of Barcelona, 08034 Barcelona, Spain; Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain
| | - Patricia Pérez-Galán
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - Álvaro Urbano-Ispizua
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain; University of Barcelona, 08034 Barcelona, Spain; Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain
| | - Sonia Guedan
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
38
|
Sidi T, Bahiri-Elitzur S, Tuller T, Kolodny R. Predicting gene sequences with AI to study codon usage patterns. Proc Natl Acad Sci U S A 2025; 122:e2410003121. [PMID: 39739812 PMCID: PMC11725940 DOI: 10.1073/pnas.2410003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Selective pressure acts on the codon use, optimizing multiple, overlapping signals that are only partially understood. We trained AI models to predict codons given their amino acid sequence in the eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe and the bacteria Escherichia coli and Bacillus subtilis to study the extent to which we can learn patterns in naturally occurring codons to improve predictions. We trained our models on a subset of the proteins and evaluated their predictions on large, separate sets of proteins of varying lengths and expression levels. Our models significantly outperformed naïve frequency-based approaches, demonstrating that there are learnable dependencies in evolutionary-selected codon usage. The prediction accuracy advantage of our models is greater for highly expressed genes and is greater in bacteria than eukaryotes, supporting the hypothesis that there is a monotonic relationship between selective pressure for complex codon patterns and effective population size. In S. cerevisiae and bacteria, our models were more accurate for longer proteins, suggesting that the learned patterns may be related to cotranslational folding. Gene functionality and conservation were also important determinants that affect the performance of our models. Finally, we showed that using information encoded in homologous proteins has only a minor effect on prediction accuracy, perhaps due to complex codon-usage codes in genes undergoing rapid evolution. Our study employing contemporary AI methods offers a unique perspective and a deep-learning-based prediction tool for evolutionary-selected codons. We hope that these can be useful to optimize codon usage in endogenous and heterologous proteins.
Collapse
Affiliation(s)
- Tomer Sidi
- Department of Computer Science, University of Haifa, Haifa3303221, Israel
| | - Shir Bahiri-Elitzur
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv6139001, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv6139001, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv6139001, Israel
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa3303221, Israel
| |
Collapse
|
39
|
He K, Chanfreau GF. Detection of Nuclear RNA Decay Intermediates Using a Modified Oxford Nanopore RNA Sequencing Strategy. Methods Mol Biol 2025; 2863:339-358. [PMID: 39535719 DOI: 10.1007/978-1-0716-4176-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The nuclear RNA exosome complex is crucial for noncoding RNA processing and RNA quality control in the nucleus. Identifying substrates and intermediates of RNA decay pathways, such as those mediated by the exosome complex using Oxford Nanopore sequencing can be difficult in part because a simple method to detect them has been lacking and also because some of these RNAs lack abundant poly(A) tails which are required for Oxford Nanopore-based sequencing. Here we describe an Oxford nanopore-based approach which can be used to identify long reads corresponding to precursors and products of nuclear exosome processing. We are able to observe accumulation of unprocessed snoRNAs, cleavage products of the yeast nuclear RNase III endonuclease Rnt1p when the nuclear exosome component Rrp6p is inactivated.
Collapse
Affiliation(s)
- Kevin He
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Zhou Y, Rashad S, Ando D, Kobayashi Y, Tominaga T, Niizuma K. Dynamic mRNA Stability Buffer Transcriptional Activation During Neuronal Differentiation and Is Regulated by SAMD4A. J Cell Physiol 2025; 240:e31477. [PMID: 39513231 PMCID: PMC11747957 DOI: 10.1002/jcp.31477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Neurons are exceptionally sensitive to oxidative stress, which is the basis for many neurodegenerative disease pathophysiologies. The posttranscriptional basis for neuronal differentiation and behavior is not well characterized. The steady-state levels of mRNA are outcomes of an interplay between RNA transcription and decay. However, the correlation between mRNA transcription, translation, and stability remains elusive. We utilized a SH-SY5Y-based neural differentiation model that is widely used to study neurodegenerative diseases. After neuronal differentiation, we observed enhanced sensitivity of mature neurons to mitochondrial stresses and ferroptosis induction. We employed a newly developed simplified mRNA stability profiling technique to explore the role of mRNA stability in SH-SY5Y neuronal differentiation model. Transcriptome-wide mRNA stability analysis revealed neural-specific RNA stability kinetics. Our analysis revealed that mRNA stability could either exert the buffering effect on gene products or change in the same direction as transcription. Importantly, we observed that changes in mRNA stability corrected over or under transcription of mRNAs to maintain mRNA translation dynamics. Furthermore, we conducted integrative analysis of our mRNA stability data set, and a published CRISPR-i screen focused on neuronal oxidative stress responses. Our analysis unveiled novel neuronal stress response genes that were not evident at the transcriptional or translational levels. SEPHS2 emerged as an important neuronal stress regulator based on this integrative analysis. Motif analysis unveiled SAMD4A as a major regulator of the dynamic changes in mRNA stability observed during differentiation. Knockdown of SAMD4A impaired neuronal differentiation and influenced the response to oxidative stress. Mechanistically, SAMD4A was found to alter the stability of several mRNAs. The novel insights into the interplay between mRNA stability and cellular behaviors provide a foundation for understanding neurodevelopmental processes and neurodegenerative disorders and highlight dynamic mRNA stability as an important layer of gene expression.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yuki Kobayashi
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Teiji Tominaga
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
41
|
Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother 2024; 20:2307187. [PMID: 38282471 PMCID: PMC10826636 DOI: 10.1080/21645515.2024.2307187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The research and development of messenger RNA (mRNA) cancer vaccines have gradually overcome numerous challenges through the application of personalized cancer antigens, structural optimization of mRNA, and the development of alternative RNA-based vectors and efficient targeted delivery vectors. Clinical trials are currently underway for various cancer vaccines that encode tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), or immunomodulators. In this paper, we summarize the optimization of mRNA and the emergence of RNA-based expression vectors in cancer vaccines. We begin by reviewing the advancement and utilization of state-of-the-art targeted lipid nanoparticles (LNPs), followed by presenting the primary classifications and clinical applications of mRNA cancer vaccines. Collectively, mRNA vaccines are emerging as a central focus in cancer immunotherapy, offering the potential to address multiple challenges in cancer treatment, either as standalone therapies or in combination with current cancer treatments.
Collapse
Affiliation(s)
- Ruhui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
42
|
Bargoti T, Nain DP, Kumar R, Awasthi AK, Singh D, Nain V. Scaled codon usage similarity index: A comprehensive resource for crop plants. J Genet Eng Biotechnol 2024; 22:100441. [PMID: 39674652 PMCID: PMC11600778 DOI: 10.1016/j.jgeb.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024]
Abstract
Over the past three decades species-specific codon usage bias has been used to optimize heterologous gene expression in the target host. However, synthesizing codon optimized gene for multiple species is not achievable due to the prohibitive expense of DNA synthesis. To address this challenge, grouping species with similar codon usage can reduce the need for species-specific codon optimised gene synthesis. We introduced Scaled Codon Usage Similarity (SCUS) index to standardize species similarity assessments based on codon usage profiles. By analysing the SCUS index of 77 plant nuclear genomes from 13 families, we identified codon usage patterns and similarities. We developed an online SCUS index database and a Consensus Relative Synonymous Codon Usage (CRSCU) calculator, available at https://pcud.plantcodon.info. The CRSCU calculator helps determine the most suitable codon usage pattern among two or more species. The SCUS index and CRSCU calculator will facilitate the development of multi-species expression systems, enabling the efficient expression of a single synthetic gene across various crop species. This innovation paves the way for cost-effective and efficient heterologous gene expression across diverse crop species.
Collapse
Affiliation(s)
- Taniya Bargoti
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Divya Pratap Nain
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Rajesh Kumar
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Amit Kumar Awasthi
- University School of Vocational Studies and Applied Sciences, Department of Mathematical Science, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Deepali Singh
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India
| | - Vikrant Nain
- University School of Biotechnology, Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh (201312), India.
| |
Collapse
|
43
|
Zheng C, Ma L, Song F, Tian L, Cai W, Li H, Duan Y. Comparative genomic analyses reveal evidence for adaptive A-to-I RNA editing in insect Adar gene. Epigenetics 2024; 19:2333665. [PMID: 38525798 DOI: 10.1080/15592294.2024.2333665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
Although A-to-I RNA editing leads to similar effects to A-to-G DNA mutation, nonsynonymous RNA editing (recoding) is believed to confer its adaptiveness by 'epigenetically' regulating proteomic diversity in a temporospatial manner, avoiding the pleiotropic effect of genomic mutations. Recent discoveries on the evolutionary trajectory of Ser>Gly auto-editing site in insect Adar gene demonstrated a selective advantage to having an editable codon compared to uneditable ones. However, apart from pure observations, quantitative approaches for justifying the adaptiveness of individual RNA editing sites are still lacking. We performed a comparative genomic analysis on 113 Diptera species, focusing on the Adar Ser>Gly auto-recoding site in Drosophila. We only found one species having a derived Gly at the corresponding site, and this occurrence was significantly lower than genome-wide random expectation. This suggests that the Adar Ser>Gly site is unlikely to be genomically replaced with G during evolution, and thus indicating the advantage of editable status over hardwired genomic alleles. Similar trends were observed for the conserved Ile>Met recoding in gene Syt1. In the light of evolution, we established a comparative genomic approach for quantitatively justifying the adaptiveness of individual editing sites. Priority should be given to such adaptive editing sites in future functional studies.
Collapse
Affiliation(s)
- Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Bultelle M, Casas A, Kitney R. Engineering biology and automation-Replicability as a design principle. ENGINEERING BIOLOGY 2024; 8:53-68. [PMID: 39734660 PMCID: PMC11681252 DOI: 10.1049/enb2.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 12/31/2024] Open
Abstract
Applications in engineering biology increasingly share the need to run operations on very large numbers of biological samples. This is a direct consequence of the application of good engineering practices, the limited predictive power of current computational models and the desire to investigate very large design spaces in order to solve the hard, important problems the discipline promises to solve. Automation has been proposed as a key component for running large numbers of operations on biological samples. This is because it is strongly associated with higher throughput, and with higher replicability (thanks to the reduction of human input). The authors focus on replicability and make the point that, far from being an additional burden for automation efforts, replicability should be considered central to the design of the automated pipelines processing biological samples at scale-as trialled in biofoundries. There cannot be successful automation without effective error control. Design principles for an IT infrastructure that supports replicability are presented. Finally, the authors conclude with some perspectives regarding the evolution of automation in engineering biology. In particular, they speculate that the integration of hardware and software will show rapid progress, and offer users a degree of control and abstraction of the robotic infrastructure on a level significantly greater than experienced today.
Collapse
Affiliation(s)
| | - Alexis Casas
- Department of BioengineeringImperial College LondonLondonUK
| | - Richard Kitney
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
45
|
Solyga M, Majumdar A, Besse F. Regulating translation in aging: from global to gene-specific mechanisms. EMBO Rep 2024; 25:5265-5276. [PMID: 39562712 PMCID: PMC11624266 DOI: 10.1038/s44319-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Aging is characterized by a decline in various biological functions that is associated with changes in gene expression programs. Recent transcriptome-wide integrative studies in diverse organisms and tissues have revealed a gradual uncoupling between RNA and protein levels with aging, which highlights the importance of post-transcriptional regulatory processes. Here, we provide an overview of multi-omics analyses that show the progressive uncorrelation of transcriptomes and proteomes during the course of healthy aging. We then describe the molecular changes leading to global downregulation of protein synthesis with age and review recent work dissecting the mechanisms involved in gene-specific translational regulation in complementary model organisms. These mechanisms include the recognition of regulated mRNAs by trans-acting factors such as miRNA and RNA-binding proteins, the condensation of mRNAs into repressive cytoplasmic RNP granules, and the pausing of ribosomes at specific residues. Lastly, we mention future challenges of this emerging field, possible buffering functions as well as potential links with disease.
Collapse
Affiliation(s)
- Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, Maharashtra, India
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
46
|
Seephetdee C, Kiss DL. Codon optimality modulates cellular stress and innate immune responses triggered by exogenous RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625518. [PMID: 39651201 PMCID: PMC11623643 DOI: 10.1101/2024.11.26.625518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The COVID-19 mRNA vaccines demonstrated the power of mRNA medicines. Despite advancements in sequence design, evidence regarding the preferential use of synonymous codons on cellular stress and innate immune responses is lacking. To this end, we developed a proprietary codon optimality matrix to re-engineer the coding sequences of three luciferase reporters. We demonstrate that optimal mRNAs elicited dramatic increases in luciferase activities compared to non-optimal sequences. Notably, transfecting an optimal RNA affects the translation of other RNAs in the cell including control transcripts in dual luciferase assays. This held true in multiple cell lines and for an unrelated reporter. Further, non-optimal mRNAs preferentially activated innate immune pathways and the phosphorylation of the translation initiation factor eIF2α, a central event of the integrated stress response. Using nucleoside-modified or circular RNAs partially or fully abrogated these responses. Finally, we show that circularizing RNAs enhances both RNA lifespan and durability of protein expression. Our results show that RNA sequence, composition, and structure all govern RNA translatability. However, we also show that RNA sequences with poor codon optimality are immunogenic and induce cellular stress. Hence, RNA sequence engineering, chemical, and topological modifications must all be combined to elicit favorable therapeutic outcomes.
Collapse
|
47
|
Zhu X, Cruz VE, Zhang H, Erzberger JP, Mendell JT. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes. Science 2024; 386:eadq8587. [PMID: 39571015 PMCID: PMC11583848 DOI: 10.1126/science.adq8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 11/24/2024]
Abstract
The CCR4-NOT complex is a major regulator of eukaryotic messenger RNA (mRNA) stability. Slow decoding during translation promotes association of CCR4-NOT with ribosomes, accelerating mRNA degradation. We applied selective ribosome profiling to further investigate the determinants of CCR4-NOT recruitment to ribosomes in mammalian cells. This revealed that specific arginine codons in the P-site are strong signals for ribosomal recruitment of human CNOT3, a CCR4-NOT subunit. Cryo-electron microscopy and transfer RNA (tRNA) mutagenesis demonstrated that the D-arms of select arginine tRNAs interact with CNOT3 and promote its recruitment whereas other tRNA D-arms sterically clash with CNOT3. These effects link codon content to mRNA stability. Thus, in addition to their canonical decoding function, tRNAs directly engage regulatory complexes during translation, a mechanism we term P-site tRNA-mediated mRNA decay.
Collapse
MESH Headings
- Humans
- Arginine/metabolism
- Codon
- Cryoelectron Microscopy
- HEK293 Cells
- Protein Biosynthesis
- Ribosomes/metabolism
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- Transcription Factors/metabolism
- Jurkat Cells
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor Emmanuel Cruz
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan P. Erzberger
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
48
|
Wu H, Yu H, Zhang Y, Yang B, Sun W, Ren L, Li Y, Li Q, Liu B, Ding Y, Zhang H. Unveiling RNA structure-mediated regulations of RNA stability in wheat. Nat Commun 2024; 15:10042. [PMID: 39567481 PMCID: PMC11579497 DOI: 10.1038/s41467-024-54172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Despite the critical role of mRNA stability in post-transcriptional gene regulation, research on this topic in wheat, a vital agricultural crop, remains unclear. Our study investigated the mRNA decay landscape of durum wheat (Triticum turgidum L. ssp. durum, BBAA), revealing subgenomic asymmetry in mRNA stability and its impact on steady-state mRNA abundance. Our findings indicate that the 3' UTR structure and homoeolog preference for RNA structural motifs can influence mRNA stability, leading to subgenomic RNA decay imbalance. Furthermore, single-nucleotide variations (SNVs) selected for RNA structural motifs during domestication can cause variations in subgenomic mRNA stability and subsequent changes in steady-state expression levels. Our research on the transcriptome stability of polyploid wheat highlights the regulatory role of non-coding region structures in mRNA stability, and how domestication shaped RNA structure, altering subgenomic mRNA stability. These results illustrate the importance of RNA structure-mediated post-transcriptional gene regulation in wheat and pave the way for its potential use in crop improvement.
Collapse
Affiliation(s)
- Haidan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Haopeng Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yueying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lanying Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yuchen Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Qianqian Li
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
49
|
Rosa-Mercado NA, Buskirk AR, Green R. Translation elongation inhibitors stabilize select short-lived transcripts. RNA (NEW YORK, N.Y.) 2024; 30:1572-1585. [PMID: 39293933 PMCID: PMC11571809 DOI: 10.1261/rna.080138.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Translation elongation inhibitors are commonly used to study different cellular processes. Yet, their specific impact on transcription and mRNA decay has not been thoroughly assessed. Here, we use TimeLapse sequencing to investigate how translational stress impacts mRNA dynamics in human cells. Our results reveal that a distinct group of transcripts is stabilized in response to the translation elongation inhibitor emetine. These stabilized mRNAs are short-lived at steady state, and many of them encode C2H2 zinc finger proteins. The codon usage of these stabilized transcripts is suboptimal compared to other expressed transcripts, including other short-lived mRNAs that are not stabilized after emetine treatment. Finally, we show that stabilization of these transcripts is independent of ribosome quality control factors and signaling pathways activated by ribosome collisions. Our data describe a group of short-lived transcripts whose degradation is particularly sensitive to the inhibition of translation elongation.
Collapse
Affiliation(s)
- Nicolle A Rosa-Mercado
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
| | - Allen R Buskirk
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
50
|
Sinha K, Jana S, Pramanik P, Bera B. Selection on synonymous codon usage in soybean (Glycine max) WRKY genes. Sci Rep 2024; 14:26530. [PMID: 39489740 PMCID: PMC11532498 DOI: 10.1038/s41598-024-77156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
The WRKY transcription factor gene family in soybean [Glycine max (L.) Merr.] (GmWRKY) is critical for the plant's development and stress responses. This study examines the evolutionary dynamics of the GmWRKY gene family, focusing on its synonymous codon usage bias (CUB) in a comprehensive set of 179 coding sequences. CUB was analyzed using various indices, revealing a preference for A/T-ending codons and relatively low codon bias. Codon adaptation index (CAI) analysis suggested that these genes are optimized for efficient translation despite relatively low bias, reflecting a balance between codon diversity and translation efficiency. Neutrality and NC plots indicated that selective forces dominate over mutational forces in shaping codon usage, while selection signature analysis showed purifying selection being prevalent across the gene family. However, episodic positive selection was also detected in certain clades, highlighting potential adaptive diversification in response to environmental stress. Additionally, promoter binding site analysis uncovered correlations between codon usage and transcriptional regulation, indicating a context-dependent relationship between CUB and gene expression. Phylogenetic analysis identified 11 well-supported clades in the modern GmWRKY gene family and ancestral sequence reconstruction revealed more relaxed codon preferences and reduced selection constraints in modern GmWRKY genes, potentially linked to neofunctionalization and adaptation to environmental changes. These findings provide a framework for optimizing gene expression in transgenic soybean crops with resilience. Further functional validation of positively selected genes is recommended to elucidate their role in stress responses.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Sourav Jana
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Payel Pramanik
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Bithika Bera
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| |
Collapse
|