1
|
Wang Y, Li Z, Li Z, Song Y, Li J, Yuan L, Wang C, Lai F, Yan R, Xiao W, Wang J. Zebrafish fkbp5 attenuates antiviral innate immunity by autophagic degradation of transcription factor irf7. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf089. [PMID: 40391431 DOI: 10.1093/jimmun/vkaf089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/25/2025] [Indexed: 05/21/2025]
Abstract
Activation of the type I interferon (IFN-I) signaling pathway is crucial for protecting host cells against viral infections. IFN-I production requires the transcription factors IFN regulatory factor 3 (IRF3) and IRF7, and its regulation must be finely tuned to both combat infection effectively and prevent excessive immunopathology. Here, we report that selective autophagy mediated by zebrafish FK506-binding protein 5 (Fkbp5), a PPIase (peptidyl-prolyl isomerase) promotes the degradation of Irf7 and Irf3, thereby inhibiting virus-induced type I IFN production. Quantitative real-time reverse-transcription polymerase chain reaction experiments indicate that zebrafish fkbp5 is induced by viral infection. Moreover, disrupting fkbp5 in AB-line zebrafish using CRISPR/Cas9 enhances survival rates and reduces viral messenger RNA levels compared with wild-type zebrafish. In cell culture, using promoter analysis and quantitative real-time reverse-transcription polymerase chain reaction, we found fkbp5 overexpression significantly attenuates cellular antiviral capacity and facilitates viral proliferation. Mechanistically, we found that fkbp5 inhibits Irf3/7-induced IFN activation, which depends on the binding of Fkbp5 to the Irf3 or IRF association domain of Irf7 via co-immunoprecipitation and Western blot assays. Furthermore, Fkbp5 induces the autophagic degradation of Irf3 and Irf7 independent of its PPIase activity. Blocking autophagy in vivo and in vitro restores the regulation of the RLR (RIG-I-like receptor) pathway by fkbp5. These findings reveal a critical role for zebrafish fkbp5 in suppressing the activation of Irf7 and Irf3 for IFN signaling and antiviral immune responses.
Collapse
Affiliation(s)
- Yanyi Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ziyi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yanan Song
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Le Yuan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunling Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Fuxiang Lai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Runkun Yan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jing Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
2
|
You E, Patel BK, Rojas AS, Sun S, Danaher P, Ho NI, Phillips IE, Raabe MJ, Song Y, Xu KH, Kocher JR, Richieri PM, Shin P, Taylor MS, Nieman LT, Greenbaum BD, Ting DT. LINE-1 ORF1p Mimics Viral Innate Immune Evasion Mechanisms in Pancreatic Ductal Adenocarcinoma. Cancer Discov 2025; 15:1063-1082. [PMID: 39919290 PMCID: PMC12046326 DOI: 10.1158/2159-8290.cd-24-1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 02/09/2025]
Abstract
SIGNIFICANCE This study uncovers PDAC-specific mechanisms that dampen immune responses to viral-repeat RNA via long interspersed nuclear element 1 ORF1p. Suppression of ORF1p activates antiviral responses, reducing tumor growth and epithelial-mesenchymal transition. High ORF1p expression correlates with poor prognosis, highlighting its potential as a therapeutic target for PDAC.
Collapse
Affiliation(s)
- Eunae You
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Bidish K. Patel
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Alexandra S. Rojas
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Siyu Sun
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Natalie I. Ho
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Ildiko E. Phillips
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Michael J. Raabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Yuhui Song
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Katherine H. Xu
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Joshua R. Kocher
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Peter M. Richieri
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Phoebe Shin
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Martin S. Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Linda T. Nieman
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, New York
| | - David T. Ting
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Li JX, Zhang J, Li CH, Li YF, Chen HM, Li T, Zhang Q, Kong BH, Wang PH. Human papillomavirus E1 proteins inhibit RIG-I/MDA5-MAVS, TLR3-TRIF, cGAS-STING, and JAK-STAT signaling pathways to evade innate antiviral immunity. Front Immunol 2025; 16:1549766. [PMID: 40330484 PMCID: PMC12052760 DOI: 10.3389/fimmu.2025.1549766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Human papillomavirus (HPV) is a major etiological agent of both malignant and benign lesions, with high-risk types, such as HPV16 and HPV18, being strongly linked to cervical cancer, while low-risk types like HPV11 are associated with benign conditions. While viral proteins such as E6 and E7 are well-established regulators of immune evasion, the role of E1 in modulating the host antiviral responses remains insufficiently characterized. This study investigates the immunomodulatory functions of HPV16 and HPV11 E1 in suppressing innate antiviral immune signaling pathways. Through a combination of RT-qPCR and luciferase reporter assays, we demonstrate that E1 suppresses the production of interferons and interferon-stimulated genes triggered by viral infections and the activation of RIG-I/MDA5-MAVS, TLR3-TRIF, cGAS-STING, and JAK-STAT pathways. Co-immunoprecipitation assays reveal that E1 interacts directly with key signaling molecules within these pathways. E1 also impairs TBK1 and IRF3 phosphorylation and obstructs the nuclear translocation of IRF3, thereby broadly suppressing IFN responses. Additionally, E1 disrupts the JAK-STAT pathway by binding STAT1, which prevents the assembly and nuclear localization of the ISGF3 complex containing STAT1, STAT2, and IRF9, thereby further diminishing antiviral response. These findings establish E1 as a pivotal regulator of immune evasion and suggest its potential as a novel therapeutic target to enhance antiviral immunity in HPV-associated diseases.
Collapse
MESH Headings
- Humans
- Immunity, Innate
- Signal Transduction/immunology
- Interferon-Induced Helicase, IFIH1/metabolism
- Interferon-Induced Helicase, IFIH1/immunology
- DEAD Box Protein 58/metabolism
- DEAD Box Protein 58/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/immunology
- Nucleotidyltransferases/metabolism
- Nucleotidyltransferases/immunology
- Toll-Like Receptor 3/metabolism
- Toll-Like Receptor 3/immunology
- Immune Evasion
- Papillomavirus Infections/immunology
- Papillomavirus Infections/virology
- Human papillomavirus 16/immunology
- Receptors, Immunologic
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/metabolism
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/immunology
- Human papillomavirus 11/immunology
- HEK293 Cells
- STAT Transcription Factors/metabolism
- Interferon Regulatory Factor-3
- Human Papillomavirus Viruses
Collapse
Affiliation(s)
- Jin-Xin Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Zhang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheng-Hao Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yun-Fang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui-Min Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Bei-Hua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Pei-Hui Wang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Andino R, Darling D. Now you see me, now you don't: What and how viral RNAs are detected by cytoplasmic pattern-recognition receptors. Mol Cell 2025; 85:1482-1483. [PMID: 40250409 DOI: 10.1016/j.molcel.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
In a recent issue of Molecular Cell, Genoyer et al.1 show that during West Nile virus infection, escaped, cytoplasmic, anti-genomic negative-sense viral RNA triggers an antiviral response via RIG-I activation. Flaviviruses typically hide -vRNA in replication compartments to avoid detection, but some -vRNA leaks, possibly aided by viral capsid proteins.
Collapse
Affiliation(s)
- Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94122-2280, USA.
| | - Daniel Darling
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94122-2280, USA
| |
Collapse
|
5
|
Chen H, Huang M, Hou B, Liu Z, Tan R, Cui L, Wang T, Wang Z. The structural protein VP3 of enterovirus D68 interacts with MAVS to inhibit the NF-κB signaling pathway. J Virol 2025; 99:e0016325. [PMID: 40042308 PMCID: PMC11998529 DOI: 10.1128/jvi.00163-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen causing severe respiratory infections, and the immune evasion mediated by EV-D68 structural protein has been under discussion for several years. Our early research has identified that EV-D68 structural protein VP3 targets specifically the interferon regulatory factor 7 to inhibit type I interferon signaling, but not interferon regulatory factor 3, which is indispensable for mitochondrial antiviral signaling protein (MAVS)-activated type I interferon signaling. Interestingly, in this study, we found that VP3 co-localizes and interacts with MAVS. Furthermore, VP3 acts as a negative regulator of MAVS/Sendai virus-activated NF-κB signaling pathway. Overexpression of VP3 can promote EV-D68 replication and reverse MAVS-mediated inhibition of virus replication. The mechanism of the interaction between VP3 and MAVS may be that VP3 not only disrupts the mitochondrial membrane potential but also leads to the release of MAVS from mitochondria. Moreover, VP3 binds to the transmembrane domain of MAVS with mitochondrial membrane localization function, which provides support for the mechanism of action. Finally, in our study, we found that VP3 interaction with MAVS to inhibit NF-κB activation is a mechanism that is prevalent in enteroviruses. Overall, our data demonstrate that the interaction between VP3 and MAVS can be used by enteroviruses to evade host innate immunity as a broad-spectrum strategy.IMPORTANCEEnterovirus D68 (EV-D68), as an emerging pathogen, has resulted in a rising number of pediatric infections worldwide since its initial outbreak in the United States in 2014. This virus can cause severe respiratory illnesses and is linked to acute flaccid myelitis. In this article, we report that the structural protein VP3 of EV-D68 inhibits the activation of the NF-κB signaling pathway by targeting mitochondrial antiviral signaling protein (MAVS). Further studies demonstrate that VP3 can induce mitochondrial damage, resulting in the loss of MAVS localization in mitochondria. These findings suggest that the interaction between VP3 and MAVS may represent a mechanism by which EV-D68 suppresses the activation of the NF-κB signaling pathway, facilitating immune evasion and promoting viral replication. Our study suggests potential therapeutic strategies for enterovirus-related viral diseases and the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Honghua Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Bei Hou
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zixiang Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruyang Tan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Luna Cui
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| |
Collapse
|
6
|
Li Y, Ma H, Zhang Y, He T, Li B, Ren H, Feng J, Sheng J, Li K, Qian Y, Wang Y, Zhao H, He J, Li H, Wu H, Yao Y, Shi M. PGLYRP2 drives hepatocyte-intrinsic innate immunity by trapping and clearing hepatitis B virus. J Clin Invest 2025; 135:e188083. [PMID: 39946201 PMCID: PMC11996887 DOI: 10.1172/jci188083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/11/2025] [Indexed: 04/16/2025] Open
Abstract
Spontaneous clearance of hepatitis B virus (HBV) is frequent in adults (95%) but rare in infants (5%), emphasizing the critical role of age-related hepatic immunocompetence. However, the underlying mechanisms of hepatocyte-specific immunosurveillance and age-dependent HBV clearance remain unclear. Here, we identified PGLYRP2 as a hepatocyte-specific pattern recognition receptor with age-dependent expression, and demonstrated that phase separation of PGLYRP2 was a critical driver of spontaneous HBV clearance in hepatocytes. Mechanistically, PGLYRP2 recognized and potentially eliminated covalently closed circular DNA via phase separation, coordinated by its intrinsically disordered region and HBV DNA-binding domain (PGLYRP2IDR/209-377) in the nucleus. Additionally, PGLYRP2 suppressed HBV capsid assembly by directly interacting with the viral capsid, mediated by its PGRP domain. This interaction promoted the nucleocytoplasmic translocation of PGLYRP2 and subsequent secretion of the PGLYRP2/HBV capsid complex, thereby bolstering the hepatic antiviral response. Pathogenic variants or deletions in PGLYRP2 impaired its ability to inhibit HBV replication, highlighting its essential role in hepatocyte-intrinsic immunity. These findings suggest that targeting the PGLYRP2-mediated host-virus interaction may offer a potential therapeutic strategy for the development of anti-HBV treatments, representing a promising avenue for achieving a functional cure for HBV infection.
Collapse
Affiliation(s)
- Ying Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- International Research Center for Regenerative Medicine, Boao International Hospital, Qionghai, China
| | - Huihui Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Biomedical Postgraduate Workstation of Heilongjiang Province, Harbin, China
| | - Yongjian Zhang
- Department of Surgery Oncology, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Surgery Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tinghui He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Binyang Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Biomedical Postgraduate Workstation of Heilongjiang Province, Harbin, China
| | - Haoran Ren
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Biomedical Postgraduate Workstation of Heilongjiang Province, Harbin, China
| | - Jia Feng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Sheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Yu Qian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yunfeng Wang
- Department of Surgery Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haoran Zhao
- Department of Surgery Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jie He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huicheng Li
- Biomedical Postgraduate Workstation of Heilongjiang Province, Harbin, China
- Harbin Pharmaceutical Group Bioengineering Company, Harbin, China
| | - Hongjin Wu
- International Research Center for Regenerative Medicine, Boao International Hospital, Qionghai, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yuanfei Yao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Biomedical Postgraduate Workstation of Heilongjiang Province, Harbin, China
| |
Collapse
|
7
|
Jiao B, An C, Du H, Tran M, Yang D, Zhao Y, Wang P, Hu Z, Zhou D, Wang Y. Genetic deficiency or pharmacological inhibition of cGAS-STING signalling suppresses kidney inflammation and fibrosis. Br J Pharmacol 2025; 182:1741-1762. [PMID: 39833988 DOI: 10.1111/bph.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Chronic kidney disease (CKD) is characterised by inflammation, which can lead to tubular atrophy and fibrosis. The molecular mechanisms are not well understood. In this study, we investigated the functional role of the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signalling in renal inflammation and fibrosis. EXPERIMENTAL APPROACH Mice with global cGAS deficiency or global or myeloid cell-specific STING deficiency or wild-type mice treated with RU.521, a selective cGAS inhibitor, were used to examine the role of cGAS-STING signalling in renal inflammation and fibrosis in a preclinical model of obstructive nephropathy in vivo. Bone marrow-derived macrophages were used to determine whether tubular epithelial cell-derived DNA can activate cGAS-STING signalling in vitro. KEY RESULTS Following obstructive injury, cGAS-STING signalling was activated in the kidneys during the development of renal fibrosis. Mice with deficiency of cGAS or STING exhibited significantly less macrophage proinflammatory activation, myofibroblast formation, total collagen deposition, and extracellular matrix (ECM) protein production in the kidneys following obstructive injury. Pharmacological inhibition of cGAS with RU.521 reduced macrophage proinflammatory activation, suppressed myofibroblast formation, and attenuated kidney fibrosis following obstructive injury. Mechanistically, cGAS-STING signalling in macrophages is activated by double-stranded DNA released from damaged tubular epithelial cells, which induces inflammatory responses. CONCLUSIONS AND IMPLICATIONS Our study identifies the cGAS-STING signalling pathway as a critical regulator of macrophage proinflammatory activation during the development of renal fibrosis. Therefore, inhibition of cGAS-STING signalling may represent a novel therapeutic strategy for CKD.
Collapse
Affiliation(s)
- Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Duomeng Yang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yuqi Zhao
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, California, USA
| | - Penghua Wang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Zhaoyong Hu
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA
- Renal Section, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
8
|
Ledwith MP, Nipper T, Davis KA, Uresin D, Komarova AV, Mehle A. Influenza virus antagonizes self sensing by RIG-I to enhance viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642847. [PMID: 40161615 PMCID: PMC11952396 DOI: 10.1101/2025.03.12.642847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Innate immune sensors must finely distinguish pathogens from the host to mount a response only during infection. RIG-I is cytoplasmic sensor that surveils for foreign RNAs. When activated, RIG-I triggers a broad antiviral response that is a major regulator of RNA virus infection. Here were show that RIG-I not only bound viral RNAs, but was activated by host RNAs to amplify the antiviral state. These were primarily non-coding RNAs transcribed by RNA polymerase III. They were benign under normal conditions but became immunogenic during influenza virus infection where they signaled via RIG-I to suppress viral replication. This same class of RNAs was bound by influenza virus nucleoprotein (NP), which normally functions to encapsidate the viral genome. NP interacted with RIG-I and antagonized sensing of self RNAs to counter innate immune responses. Overall, these results demonstrate that self sensing is strategically deployed by the cell to amplify the antiviral response and reveal a newly identified viral countermeasure that disrupts RIG-I activation by host RNAs.
Collapse
Affiliation(s)
- Mitchell P. Ledwith
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Thomas Nipper
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Kaitlin A. Davis
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Deniz Uresin
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity laboratory, F- 75015 Paris, France
| | - Anastassia V. Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity laboratory, F- 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Molecular Genetics of RNA Viruses, CNRS UMR- 3569, F-75015 Paris, France
- Institut Pasteur, Pasteur-Oncovita Joint Laboratory, F-75015 Paris, France
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
- Lead contact
| |
Collapse
|
9
|
Wang X, Wang Q, Zheng C, Wang L. MAVS: The next STING in cancers and other diseases. Crit Rev Oncol Hematol 2025; 207:104610. [PMID: 39746492 DOI: 10.1016/j.critrevonc.2024.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025] Open
Abstract
The mitochondrial antiviral signaling protein (MAVS) is a pivotal adaptor in the antiviral innate immune signaling pathway and plays a crucial role in the activation of antiviral defences. This comprehensive review delves into the multifaceted functions of MAVS, spanning from its integral role in the RIG-I-like receptor (RLR) pathway to its emerging roles in tumor biology and autoimmune diseases. We discuss the structural and functional aspects of MAVS, its activation mechanisms, and the intricate regulatory networks that govern its activity. The potential of MAVS as a therapeutic target has been explored, highlighting its promise in personalized cancer therapy and developing combination treatment strategies. Additionally, we compare it with the STING signaling pathway and discuss the synergistic potential of targeting both pathways in immunotherapy. Our review underscores the importance of MAVS in maintaining immune homeostasis and its implications for a broad spectrum of diseases, offering new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xichen Wang
- The Second People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Qingwen Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Leisheng Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Rex EA, Seo D, Embry A, Arulanandam R, Spinelli MM, Diallo JS, Gammon DB. Activation and Evasion of the FEAR Pathway by RNA Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.22.609092. [PMID: 40060670 PMCID: PMC11888236 DOI: 10.1101/2024.08.22.609092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
We recently identified the FACT-ETS-1 Antiviral Response (FEAR) pathway as an interferon-independent innate immune response that restricts DNA virus replication and is countered by poxvirus-encoded A51R proteins (Rex et al., 2024, Nature Microbiology). The human FEAR pathway is mediated by the FACT complex, consisting of hSpt16 and SSRP1 subunits, that remodels chromatin to activate expression of the antiviral transcription factor, ETS-1. To counter this pathway, poxvirus A51R proteins tether SUMOylated hSpt16 subunits to microtubules to prevent ETS-1 expression. While these observations indicate a role for the FEAR pathway in DNA virus restriction, it was unclear if RNA viruses interact with this pathway. Here, we show that RNA viruses are also restricted by the FEAR pathway, yet encode mechanisms distinct from poxviruses to counter this response. We show vesicular stomatitis virus (VSV), a rhabdovirus, utilizes its matrix (M) protein to promote proteasome-dependent degradation of SUMOylated hSpt16 and to block ETS-1 nuclear import. Strains encoding mutant M proteins that cannot antagonize the FEAR pathway exhibit replication defects in human cells that can be rescued by hSpt16 or ETS-1 depletion. Moreover, FACT inhibitor treatment enhanced the replication of oncolytic VSV strains encoding defective M proteins in restrictive cancer cells, suggesting FEAR pathway inhibition may improve oncolytic virotherapy. Strikingly, we provide evidence that the inability of VSV M to degrade SUMOylated Spt16 in lepidopteran insect cells results in abortive infection, suggesting VSV-Spt16 interactions influence virus host range. Lastly, we show that human and murine paramyxovirus target SUMOylated Spt16 proteins for degradation in human and murine cells utilizing a conserved N-terminal motif in their accessory "C" proteins. Collectively, our study illustrates that DNA and RNA viruses have independently evolved diverse mechanisms to antagonize SUMOylated host Spt16 proteins, underscoring the physiological importance of the FEAR pathway to antiviral immunity.
Collapse
Affiliation(s)
- Emily A Rex
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dahee Seo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rozanne Arulanandam
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Marcus M Spinelli
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
11
|
Schmidt HM, Horner SM. Towards a Universal Translator: Decoding the PTMs That Regulate Orthoflavivirus Infection. Viruses 2025; 17:287. [PMID: 40007042 PMCID: PMC11861903 DOI: 10.3390/v17020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Post-translational modifications (PTMs) serve as critical regulators of protein function across biological systems, including during viral infection. For orthoflaviviruses, including human pathogens like dengue, Zika, and West Nile viruses, PTMs on viral proteins regulate multiple aspects of the viral lifecycle and pathogenesis. Here, we review the mechanisms by which PTMs regulate orthoflavivirus infection in both vertebrate and arthropod hosts. We examine how ubiquitination and glycosylation on the viral envelope proteins facilitate viral entry and how phosphorylation, SUMOylation, and acetylation on non-structural proteins modulate viral RNA replication. Additionally, we describe how PTMs on viral structural proteins dynamically regulate viral assembly and egress. We also describe how PTMs can influence tissue tropism and host-specific pathogenesis, with some modifications showing divergent functions between arthropod vectors and vertebrate hosts, and how the host antiviral response can trigger specific PTMs on viral proteins to restrict infection, highlighting PTMs as key mediators of host-pathogen interactions. While significant progress has been made in identifying PTMs on viral proteins, many questions remain about their temporal dynamics, mechanisms of action, and conservation across the orthoflavivirus genus. Understanding how PTMs regulate orthoflavivirus infection may reveal new therapeutic strategies, particularly given recent advances in targeting specific protein modifications for disease treatment.
Collapse
Affiliation(s)
- Hannah M. Schmidt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Zeng X, Xu J, Liu J, Liu Y, Yang S, Huang J, Fan C, Guo M, Sun G. DYRK4 upregulates antiviral innate immunity by promoting IRF3 activation. EMBO Rep 2025; 26:690-719. [PMID: 39702801 PMCID: PMC11811199 DOI: 10.1038/s44319-024-00352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Viral infection activates the transcription factors IRF3 and NF-κB, which induce type I interferon (IFN) and antiviral innate immune responses. Here, we identify dual-specific tyrosine phosphorylation-regulated kinase 4 (DYRK4) as an important regulator of virus-triggered IFN-β induction and antiviral innate immunity. Overexpression of DYRK4 enhances virus-triggered activation of IRF3 and type I IFN induction, whereas knockdown or knockout of DYRK4 impairs virus-induced activation of IRF3 and NF-κB. Moreover, Dyrk4-knockout mice are more susceptible to viral infection. The underlying mechanism involves DYRK4 acting as a scaffold protein to recruit TRIM71 and LUBAC to IRF3, increasing IRF3 linear ubiquitination, maintaining IRF3 stability and activation during viral infection, and promoting the IRF3-mediated antiviral response. Our findings provide new insights into the molecular mechanisms underlying viral infection-triggered IRF3 stabilization and activation.
Collapse
Affiliation(s)
- Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Jiaqi Xu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Jiaqi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Yang Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Siqi Yang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Junsong Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Chengpeng Fan
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.
- School of Ecology and Environment, Tibet University, 850000, Lhasa, Xizang, China.
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, 430071, Wuhan, China.
| |
Collapse
|
13
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
14
|
Schmidt HM, Sorensen GC, Lanahan MR, Grabowski J, Park M, Horner SM. UFMylation promotes orthoflavivirus infectious particle production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632082. [PMID: 39829754 PMCID: PMC11741389 DOI: 10.1101/2025.01.09.632082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Post-translational modifications play crucial roles in viral infections, yet many potential modifications remain unexplored in orthoflavivirus biology. Here we demonstrate that the UFMylation system, a post-translational modification system that catalyzes the transfer of UFM1 onto proteins, promotes infection by multiple orthoflaviviruses including dengue virus, Zika virus, West Nile virus, and yellow fever virus. We found that depletion of the UFMylation E3 ligase complex proteins UFL1 and UFBP1, as well as other UFMylation machinery components (UBA5, UFC1, and UFM1), significantly reduces infectious virion production for orthoflaviviruses but not the hepacivirus, hepatitis C. Mechanistically, UFMylation does not regulate viral RNA translation or RNA replication but instead affects a later stage of the viral lifecycle. We identified novel interactions between UFL1, and several viral proteins involved in orthoflavivirus virion assembly, including NS2A, NS2B-NS3, and Capsid. These findings establish UFMylation as a previously unrecognized post-translational modification system that promotes orthoflavivirus infection, likely through modulation of viral assembly. This work expands our understanding of the post-translational modifications that control orthoflavivirus infection and identifies new potential therapeutic targets.
Collapse
Affiliation(s)
- Hannah M Schmidt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Grace C Sorensen
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew R Lanahan
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jenna Grabowski
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Moonhee Park
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Libera L, Vanoli A, Sahnane N, Adnan M, Guerini C, Arpa G, Bianchi PI, Lenti MV, Corazza GR, La Rosa S, Di Sabatino A, Furlan D. LINE-1 hypomethylation characterizes the inflammatory response in coeliac disease associated-intestinal mucosa and small bowel adenocarcinomas. J Pathol 2025; 265:99-109. [PMID: 39601242 PMCID: PMC11638666 DOI: 10.1002/path.6371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
Long interspersed nuclear elements 1 (LINE-1) are the most abundant and the only autonomous mobile elements in the human genome. When their epigenetic repression is removed, it can lead to disease, such as autoimmune diseases and cancer. Coeliac disease (CeD) is an immune-mediated disease triggered by an abnormal T-cell response to dietary gluten and a predisposing condition of small bowel adenocarcinoma (SBA), frequently characterized by epigenetic alterations. The aim of this work was to assess LINE-1 methylation by bisulphite pyrosequencing and NanoString® gene transcription analysis in 38 CeD-SBAs compared with 25 SBAs associated with Crohn's disease (CrD-SBAs) and 25 sporadic SBAs (S-SBA). Both analyses were also performed in duodenal mucosae from 12 untreated CeD patients (UCD) and 19 treated CeD patients (TCD), and in 11 samples of normal intestinal mucosa to better investigate the role of LINE-1 deregulation in CeD and in CeD-SBA. A significant loss of LINE-1 methylation was observed in CeD-SBAs and in mucosae from UCD patients (with very similar methylation levels) compared with controls. By contrast, a restoration of normal LINE-1 methylation levels was found in TCD mucosae after a strict gluten-free diet. LINE-1 hypomethylation does not lead to expression of ORF1 and ORF2, with the only exception being for one CeD-SBA. The expression analysis of enzymes modulating DNA methylation and inflammatory genes confirmed that CeD-SBA shared a very similar expression profile of UCD mucosae showing a strong upregulation of genes involved in inflammation, immune response, and T-cell activity compared with TCD mucosae. For the first time, this work demonstrates that loss of DNA methylation is an intrinsic epigenetic feature of CeD, accompanying the immune response as a reversible mechanism in patients following a strict gluten-free diet, and suggests the possible role of LINE-1 hypomethylation in promoting cell adaptability during the gliadin-related inflammatory process. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Laura Libera
- Unit of Pathology, Department of Medicine and Technological InnovationUniversity of InsubriaVareseItaly
- Hereditary Cancer Research Centre, Department of Medicine and Technological InnovationUniversity of InsubriaVareseItaly
| | - Alessandro Vanoli
- Department of Molecular Medicine, Unit of Anatomic PathologyUniversity of PaviaPaviaItaly
- Unit of Anatomic PathologyFondazione IRCCS San Matteo HospitalPaviaItaly
| | - Nora Sahnane
- Hereditary Cancer Research Centre, Department of Medicine and Technological InnovationUniversity of InsubriaVareseItaly
- Unit of Anatomic PathologyAzienda Socio Sanitaria Territoriale (ASST) dei Sette LaghiVareseItaly
| | - Muhammad Adnan
- Unit of Pathology, Department of Medicine and Technological InnovationUniversity of InsubriaVareseItaly
| | - Camilla Guerini
- Department of Molecular Medicine, Unit of Anatomic PathologyUniversity of PaviaPaviaItaly
| | - Giovanni Arpa
- Department of Molecular Medicine, Unit of Anatomic PathologyUniversity of PaviaPaviaItaly
| | - Paola Ilaria Bianchi
- First Department of Internal MedicineFondazione IRCCS San Matteo HospitalPaviaItaly
| | - Marco Vincenzo Lenti
- First Department of Internal MedicineFondazione IRCCS San Matteo HospitalPaviaItaly
- Department of Internal Medicine and Medical TherapeuticsUniversity of PaviaPaviaItaly
| | - Gino Roberto Corazza
- Department of Internal Medicine and Medical TherapeuticsUniversity of PaviaPaviaItaly
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological InnovationUniversity of InsubriaVareseItaly
- Hereditary Cancer Research Centre, Department of Medicine and Technological InnovationUniversity of InsubriaVareseItaly
- Unit of Anatomic PathologyAzienda Socio Sanitaria Territoriale (ASST) dei Sette LaghiVareseItaly
| | - Antonio Di Sabatino
- First Department of Internal MedicineFondazione IRCCS San Matteo HospitalPaviaItaly
- Department of Internal Medicine and Medical TherapeuticsUniversity of PaviaPaviaItaly
| | - Daniela Furlan
- Unit of Pathology, Department of Medicine and Technological InnovationUniversity of InsubriaVareseItaly
- Hereditary Cancer Research Centre, Department of Medicine and Technological InnovationUniversity of InsubriaVareseItaly
- Unit of Anatomic PathologyAzienda Socio Sanitaria Territoriale (ASST) dei Sette LaghiVareseItaly
| |
Collapse
|
16
|
Li X, Zhou F, Niu K, Wang Y, Shi Y, Li Y, Gao X, Zhao W, Chen T, Zhang Y. Emerging discoveries on the role of TRIM14: from diseases to immune regulation. Cell Death Discov 2024; 10:513. [PMID: 39719450 DOI: 10.1038/s41420-024-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
TRIM14 is an important member of the TRIM family and is widely expressed in a variety of tissues. Like other members of the TRIM family, TRIM14 is also involved in ubiquitination modifications. TRIM14 was initially reported as an interferon-stimulated gene (ISG). In recent years, many studies have focused on the regulatory role of TRIM14 in signaling pathways such as the PI3K/Akt, NF-κB, and cGAS/STING pathways and revealed its mechanism of action in a variety of pathophysiological processes, and the regulation of TRIM14 has attracted the interest of many researchers as a new direction for the treatment of various diseases. However, there are no reviews on the role of TRIM14 in diseases. In this paper, we will describe the structure of TRIM14, review its role in cancer, cardiovascular disease, cervical spondylosis, inflammation and antiviral immunity, and provide an outlook on future research directions.
Collapse
Affiliation(s)
- Xinhao Li
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feilong Zhou
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yunxin Li
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Gao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weijie Zhao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianyi Chen
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Vind AC, Zhong FL, Bekker-Jensen S. Death by ribosome. Trends Cell Biol 2024:S0962-8924(24)00230-7. [PMID: 39665883 DOI: 10.1016/j.tcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Next to their essential role as protein production factories, ribosomes serve as molecular sensors of cell stress. Stalled and collided ribosomes trigger specific stress signaling, including the ribotoxic stress response (RSR). The RSR is initiated by the mitogen-activated protein (MAP)-3 kinase ZAKα in response to a plethora of translational aberrations, leading to activation of the stress-activated MAP kinases p38 and jun N-terminal kinase (JNK). Recent insights have highlighted an important role for the RSR pathway in triggering programmed cell death processes, including apoptosis and pyroptosis, in a broad range of physiologically relevant conditions. In this review, we summarize recent work on known links between programmed and accidental ribosome toxicity, RSR signaling, and cell death.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore; Skin Research Institute of Singapore (SRIS), A*STAR, Singapore #17-01 Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
18
|
Kroemer G, Montégut L, Kepp O, Zitvogel L. The danger theory of immunity revisited. Nat Rev Immunol 2024; 24:912-928. [PMID: 39511426 DOI: 10.1038/s41577-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Léa Montégut
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France.
- INSERM UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Université Paris-Saclay, Ile-de-France, Paris, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| |
Collapse
|
19
|
Guo Y, Li P, Guo X, Yao C, Yang D. Synthetic Nanoassemblies for Regulating Organelles: From Molecular Design to Precision Therapeutics. ACS NANO 2024; 18:30224-30246. [PMID: 39441007 DOI: 10.1021/acsnano.4c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.
Collapse
Affiliation(s)
- Yanfei Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Peiran Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaocui Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
20
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
21
|
Hofmann N, Bartkuhn M, Becker S, Biedenkopf N, Böttcher-Friebertshäuser E, Brinkrolf K, Dietzel E, Fehling SK, Goesmann A, Heindl MR, Hoffmann S, Karl N, Maisner A, Mostafa A, Kornecki L, Müller-Kräuter H, Müller-Ruttloff C, Nist A, Pleschka S, Sauerhering L, Stiewe T, Strecker T, Wilhelm J, Wuerth JD, Ziebuhr J, Weber F, Schmitz ML. Distinct negative-sense RNA viruses induce a common set of transcripts encoding proteins forming an extensive network. J Virol 2024; 98:e0093524. [PMID: 39283124 PMCID: PMC11494938 DOI: 10.1128/jvi.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 10/23/2024] Open
Abstract
The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.
Collapse
Affiliation(s)
- Nina Hofmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Simone Hoffmann
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Nadja Karl
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Kornecki
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Christin Müller-Ruttloff
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Jennifer D. Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Lee SH, Bonifacio F, Prudente AS, Choi YI, Roh J, Adjafre BL, Park CK, Jung SJ, Cunha TM, Berta T. STING recognition of viral dsDNA by nociceptors mediates pain in mice. Brain Behav Immun 2024; 121:29-42. [PMID: 39025416 DOI: 10.1016/j.bbi.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Pain is often one of the initial indicators of a viral infection, yet our understanding of how viruses induce pain is limited. Immune cells typically recognize viral nucleic acids, which activate viral receptors and signaling, leading to immunity. Interestingly, these viral receptors and signals are also present in nociceptors and are associated with pain. Here, we investigate the response of nociceptors to nucleic acids during viral infections, specifically focusing on the role of the viral signal, Stimulator of Interferon Genes (STING). Our research shows that cytosolic double-stranded DNA (dsDNA) from viruses, like herpes simplex virus 1 (HSV-1), triggers pain responses through STING expression in nociceptors. In addition, STING agonists alone can elicit pain responses. Notably, these responses involve the direct activation of STING in nociceptors through TRPV1. We also provided a proof-of-concept showing that STING and TRPV1 significantly contribute to the mechanical hypersensitivity induced by HSV-1 infection. These findings suggest that STING could be a potential therapeutic target for relieving pain during viral infections.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Fabio Bonifacio
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Y I Choi
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Beatriz Lima Adjafre
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung Jun Jung
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
23
|
Rhamadianti AF, Abe T, Tanaka T, Ono C, Katayama H, Makino Y, Deng L, Matsui C, Moriishi K, Shima F, Matsuura Y, Shoji I. SARS-CoV-2 papain-like protease inhibits ISGylation of the viral nucleocapsid protein to evade host anti-viral immunity. J Virol 2024; 98:e0085524. [PMID: 39120134 PMCID: PMC11406913 DOI: 10.1128/jvi.00855-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes mild-to-severe respiratory symptoms, including acute respiratory distress. Despite remarkable efforts to investigate the virological and pathological impacts of SARS-CoV-2, many of the characteristics of SARS-CoV-2 infection still remain unknown. The interferon-inducible ubiquitin-like protein ISG15 is covalently conjugated to several viral proteins to suppress their functions. It was reported that SARS-CoV-2 utilizes its papain-like protease (PLpro) to impede ISG15 conjugation, ISGylation. However, the role of ISGylation in SARS-CoV-2 infection remains unclear. We aimed to elucidate the role of ISGylation in SARS-CoV-2 replication. We observed that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation in cultured cells. Site-directed mutagenesis reveals that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation, alongside conserved lysine residue in MERS-CoV (K372) and SARS-CoV (K375). We also observed that the nucleocapsid-ISGylation results in the disruption of nucleocapsid oligomerization, thereby inhibiting viral replication. Knockdown of ISG15 mRNA enhanced SARS-CoV-2 replication in the SARS-CoV-2 reporter replicon cells, while exogenous expression of ISGylation components partially hampered SARS-CoV-2 replication. Taken together, these results suggest that SARS-CoV-2 PLpro inhibits ISGylation of the nucleocapsid protein to promote viral replication by evading ISGylation-mediated disruption of the nucleocapsid oligomerization.IMPORTANCEISG15 is an interferon-inducible ubiquitin-like protein that is covalently conjugated to the viral protein via specific Lys residues and suppresses viral functions and viral propagation in many viruses. However, the role of ISGylation in SARS-CoV-2 infection remains largely unclear. Here, we demonstrated that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation. We also found that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation. We obtained evidence suggesting that nucleocapsid-ISGylation results in the disruption of nucleocapsid-oligomerization, thereby suppressing SARS-CoV-2 replication. We discovered that SARS-CoV-2 papain-like protease inhibits ISG15 conjugation of nucleocapsid protein via its de-conjugating enzyme activity. The present study may contribute to gaining new insight into the roles of ISGylation-mediated anti-viral function in SARS-CoV-2 infection and may lead to the development of more potent and selective inhibitors targeted to SARS-CoV-2 nucleocapsid protein.
Collapse
Affiliation(s)
- Aulia Fitri Rhamadianti
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Chikako Ono
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hisashi Katayama
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiteru Makino
- Drug Discovery Science, Division of Advanced Medical Science, Department of Science, Technology and Innovation, Graduate School of Science, Kobe University, Kobe, Japan
- Center for Cell Signaling and Medical Innovation, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Fumi Shima
- Drug Discovery Science, Division of Advanced Medical Science, Department of Science, Technology and Innovation, Graduate School of Science, Kobe University, Kobe, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
24
|
Landman SL, Ressing ME, Gram AM, Tjokrodirijo RTN, van Veelen PA, Neefjes J, Hoeben RC, van der Veen AG, Berlin I. Epstein-Barr virus nuclear antigen EBNA3A modulates IRF3-dependent IFNβ expression. J Biol Chem 2024; 300:107645. [PMID: 39127175 PMCID: PMC11403517 DOI: 10.1016/j.jbc.2024.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNβ induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNβ transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor interferon regulatory factor 3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits the binding of interferon regulatory factor 3 to the IFNβ promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.
Collapse
Affiliation(s)
- Sanne L Landman
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Anna M Gram
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | | | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
25
|
Greig JA, Martins KM, Breton C, Lamontagne RJ, Zhu Y, He Z, White J, Zhu JX, Chichester JA, Zheng Q, Zhang Z, Bell P, Wang L, Wilson JM. Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nat Biotechnol 2024; 42:1232-1242. [PMID: 37932420 PMCID: PMC11324525 DOI: 10.1038/s41587-023-01974-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/29/2023] [Indexed: 11/08/2023]
Abstract
The development of liver-based adeno-associated virus (AAV) gene therapies is facing concerns about limited efficiency and durability of transgene expression. We evaluated nonhuman primates following intravenous dosing of AAV8 and AAVrh10 vectors for over 2 years to better define the mechanism(s) of transduction that affect performance. High transduction of non-immunogenic transgenes was achieved, although expression declined over the first 90 days to reach a lower but stable steady state. More than 10% of hepatocytes contained single nuclear domains of vector DNA that persisted despite the loss of transgene expression. Greater reductions in vector DNA and RNA were observed with immunogenic transgenes. Genomic integration of vector sequences, including complex concatemeric structures, were detected in 1 out of 100 cells at broadly distributed loci that were not in proximity to genes associated with hepatocellular carcinoma. Our studies suggest that AAV-mediated transgene expression in primate hepatocytes occurs in two phases: high but short-lived expression from episomal genomes, followed by much lower but stable expression, likely from integrated vectors.
Collapse
Affiliation(s)
- Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly M Martins
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camilo Breton
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jason Lamontagne
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanqing Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenning He
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John White
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing-Xu Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi Zheng
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Wang Y, Liu S, Wang W, Liu L, Zhao Y, Qin Q, Huang X, Huang Y. SGIV VP82 inhibits the interferon response by degradation of IRF3 and IRF7. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109611. [PMID: 38734119 DOI: 10.1016/j.fsi.2024.109611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.
Collapse
Affiliation(s)
- Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shanxing Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yin Zhao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
27
|
Kozlovski I, Jaimes-Becerra A, Sharoni T, Lewandowska M, Karmi O, Moran Y. Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals. PLoS Pathog 2024; 20:e1012320. [PMID: 39012849 PMCID: PMC11251625 DOI: 10.1371/journal.ppat.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
Collapse
Affiliation(s)
- Itamar Kozlovski
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ola Karmi
- Research Infrastructure Facility, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Seurre C, Roca Suarez AA, Testoni B, Zoulim F, Grigorov B. After the Storm: Persistent Molecular Alterations Following HCV Cure. Int J Mol Sci 2024; 25:7073. [PMID: 39000179 PMCID: PMC11241208 DOI: 10.3390/ijms25137073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The development of direct-acting antivirals (DAAs) against hepatitis C virus (HCV) has revolutionized the management of this pathology, as their use allows viral elimination in a large majority of patients. Nonetheless, HCV remains a major public health problem due to the multiple challenges associated with its diagnosis, treatment availability and development of a prophylactic vaccine. Moreover, HCV-cured patients still present an increased risk of developing hepatic complications such as hepatocellular carcinoma. In the present review, we aim to summarize the impact that HCV infection has on a wide variety of peripheral and intrahepatic cell populations, the alterations that remain following DAA treatment and the potential molecular mechanisms implicated in their long-term persistence. Finally, we consider how recent developments in single-cell multiomics could refine our understanding of this disease in each specific intrahepatic cell population and drive the field to explore new directions for the development of chemo-preventive strategies.
Collapse
Affiliation(s)
- Coline Seurre
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Armando Andres Roca Suarez
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, 69002 Lyon, France
| | - Boyan Grigorov
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
29
|
Bonhomme D, Poirier EZ. Early signaling pathways in virus-infected cells. Curr Opin Virol 2024; 66:101411. [PMID: 38718574 DOI: 10.1016/j.coviro.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 06/07/2024]
Abstract
Virus infection activates specific pattern recognition receptors and immune signal transduction, resulting in pro-inflammatory cytokine production and activation of innate immunity. We describe here the molecular organization of early signaling pathways downstream of viral recognition, including conformational changes, post-translational modifications, formation of oligomers, and generation of small-molecule second messengers. Such molecular organization allows tight regulation of immune signal transduction, characterized by swift but transient responses, nonlinearity, and signal amplification. Pathologies of early immune signaling caused by genomic mutations illustrate the fine regulation of the immune transduction cascade.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France
| | - Enzo Z Poirier
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
30
|
Zhong X, Zhou Z, Yang G. The Functions of N-methyladenosine (m6A) Modification on HIV-1 mRNA. Cell Biochem Biophys 2024; 82:561-574. [PMID: 38753251 DOI: 10.1007/s12013-024-01280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 08/25/2024]
Abstract
In recent years, there has been a growing interest in the study of RNA modifications, with some researchers focusing specifically on the connection between these modifications and viruses, as well as the impact they have on viral mRNA and its functionality. The most common type of RNA chemical modification is m6A, which involves the addition of a methyl group covalently to the N6 position of adenosine. It is a widely observed and evolutionarily conserved RNA modification. The regulation of m6A modification primarily involves methyltransferases (writers) and demethylases (erasers) and is mediated by m6A-binding proteins (readers). In HIV-1, m6A sites are predominantly located in the 5' untranslated region (5'UTR) and 3' untranslated region (3'UTR). Additionally, m6A modifications are also present in the RRE RNA of HIV-1. This review provides a detailed account of the effects of these m6A modifications on HIV-1 functionality.
Collapse
Affiliation(s)
- XinYu Zhong
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310013, China
| | - ZhuJiao Zhou
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310013, China
| | - Geng Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310013, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310013, China.
| |
Collapse
|
31
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
32
|
Huang Y, Chen J, Chen S, Huang C, Li B, Li J, Jin Z, Zhang Q, Pan P, Du W, Liu L, Liu Z. Molecular characterization of SARS-CoV-2 nucleocapsid protein. Front Cell Infect Microbiol 2024; 14:1415885. [PMID: 38846351 PMCID: PMC11153676 DOI: 10.3389/fcimb.2024.1415885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a highly prevalent and potent infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Until now, the world is still endeavoring to develop new ways to diagnose and treat COVID-19. At present, the clinical prevention and treatment of COVID-19 mainly targets the spike protein on the surface of SRAS-CoV-2. However, with the continuous emergence of SARS-CoV-2 Variants of concern (VOC), targeting the spike protein therapy shows a high degree of limitation. The Nucleocapsid Protein (N protein) of SARS-CoV-2 is highly conserved in virus evolution and is involved in the key process of viral infection and assembly. It is the most expressed viral structural protein after SARS-CoV-2 infection in humans and has high immunogenicity. Therefore, N protein as the key factor of virus infection and replication in basic research and clinical application has great potential research value. This article reviews the research progress on the structure and biological function of SARS-CoV-2 N protein, the diagnosis and drug research of targeting N protein, in order to promote researchers' further understanding of SARS-CoV-2 N protein, and lay a theoretical foundation for the possible outbreak of new and sudden coronavirus infectious diseases in the future.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Junkai Chen
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Siwei Chen
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Bei Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zhixiong Jin
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Zhang
- Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Weixing Du
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Long Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
33
|
Li Z, Li J, Li Z, Song Y, Wang Y, Wang C, Yuan L, Xiao W, Wang J. Zebrafish mylipb attenuates antiviral innate immunity through two synergistic mechanisms targeting transcription factor irf3. PLoS Pathog 2024; 20:e1012227. [PMID: 38739631 PMCID: PMC11115282 DOI: 10.1371/journal.ppat.1012227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
IFN regulatory factor 3 (IRF3) is the transcription factor crucial for the production of type I IFN in viral defence and inflammatory responses. The activity of IRF3 is strictly modulated by post-translational modifications (PTMs) to effectively protect the host from infection while avoiding excessive immunopathology. Here, we report that zebrafish myosin-regulated light chain interacting protein b (mylipb) inhibits virus-induced type I IFN production via two synergistic mechanisms: induction of autophagic degradation of irf3 and reduction of irf3 phosphorylation. In vivo, mylipb-null zebrafish exhibit reduced lethality and viral mRNA levels compared to controls. At the cellular level, overexpression of mylipb significantly reduces cellular antiviral capacity, and promotes viral proliferation. Mechanistically, mylipb associates with irf3 and targets Lys 352 to increase K6-linked polyubiquitination, dependent on its E3 ubiquitin ligase activity, leading to autophagic degradation of irf3. Meanwhile, mylipb acts as a decoy substrate for the phosphokinase tbk1 to attenuate irf3 phosphorylation and cellular antiviral responses independent of its enzymatic activity. These findings support a critical role for zebrafish mylipb in the limitation of antiviral innate immunity through two synergistic mechanisms targeting irf3.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunling Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Le Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
34
|
Li M. Innate immune response against vector-borne bunyavirus infection and viral countermeasures. Front Cell Infect Microbiol 2024; 14:1365221. [PMID: 38711929 PMCID: PMC11070517 DOI: 10.3389/fcimb.2024.1365221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
35
|
Zhang R, Karijolich J. RNA recognition by PKR during DNA virus infection. J Med Virol 2024; 96:e29424. [PMID: 38285432 PMCID: PMC10832991 DOI: 10.1002/jmv.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Protein kinase R (PKR) is a double-stranded RNA (dsRNA) binding protein that plays a crucial role in innate immunity during viral infection and can restrict both DNA and RNA viruses. The potency of its antiviral function is further reflected by the large number of viral-encoded PKR antagonists. However, much about the regulation of dsRNA accumulation and PKR activation during viral infection remains unknown. Since DNA viruses do not have an RNA genome or RNA replication intermediates like RNA viruses do, PKR-mediated dsRNA detection in the context of DNA virus infection is particularly intriguing. Here, we review the current state of knowledge regarding the regulation of PKR activation and its antagonism during infection with DNA viruses.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| |
Collapse
|
36
|
Huang S, Huang Y, Su T, Huang R, Su L, Wu Y, Weng S, He J, Xie J. Orange-spotted grouper nervous necrosis virus-encoded protein A induces interferon expression via RIG-I/MDA5-MAVS-TBK1-IRF3 signaling in fish cells. Microbiol Spectr 2024; 12:e0453222. [PMID: 38095472 PMCID: PMC10783131 DOI: 10.1128/spectrum.04532-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE As a major pathogen, nervous necrosis virus (NNV) infects more than 120 fish species worldwide and is virulent to larvae and juvenile fish, hampering the development of the fish fry industry. Understanding virus-host interaction and underlying mechanisms is an important but largely unknown issue in fish virus studies. Here, using channel catfish ovary and fathead minnow cells as models for the study of innate immunity signaling, we found that NNV-encoded ProA activated interferon signaling via the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) pathway which was still suppressed by the infection of wild-type NNV. This finding has important implications for the comprehension of NNV protein function and the immune response from different cells. First, RIG-I is the key node for anti-NNV innate immunity. Second, the response intensity of RLR signaling determines the degree of NNV proliferation. This study expands our knowledge regarding the overview of signal pathways affected by NNV-encoded protein and also highlights potential directions for the control of aquatic viruses.
Collapse
Affiliation(s)
- Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Yi Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Taowen Su
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Runqing Huang
- School of Life Science, Huizhou University, Huizhou, China
| | - Lianpan Su
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Yujia Wu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
38
|
Yang B, Pei J, Lu C, Wang Y, Shen M, Qin X, Huang Y, Yang X, Zhao X, Ma S, Song Z, Liang Y, Wang H, Wang J. RNF144A promotes antiviral responses by modulating STING ubiquitination. EMBO Rep 2023; 24:e57528. [PMID: 37955227 PMCID: PMC10702816 DOI: 10.15252/embr.202357528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Stimulator of interferon (IFN) genes (STING, also named MITA, ERIS, MPYS, or TMEM173) plays an essential role in DNA virus- or cytosolic DNA-triggered innate immune responses. Here, we demonstrate that the RING-in-between RING (RBR) E3 ubiquitin ligase family member RING-finger protein (RNF) 144A interacts with STING and promotes its K6-linked ubiquitination at K236, thereby enhancing STING translocation from the ER to the Golgi and downstream signaling pathways. The K236R mutant of STING displays reduced activity in promoting innate immune signal transduction. Overexpression of RNF144A upregulates HSV-1- or cytosolic DNA-induced immune responses, while knockdown of RNF144A expression has the opposite effect. In addition, Rnf144a-deficient cells exhibit impaired DNA virus- or cytosolic DNA-triggered signaling, and RNF144A protects mice from DNA virus infection. In contrast, RNF144A does not affect RNA virus- or cytosolic RNA-triggered innate immune responses. Taken together, our findings identify a new positive regulator of DNA virus- or cytosolic DNA-triggered signaling pathways and a critical ubiquitination site important for fully functional STING during antiviral responses.
Collapse
Affiliation(s)
- Bo Yang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Jinyong Pei
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Chen Lu
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yi Wang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Mengyang Shen
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xiao Qin
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yulu Huang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xi Yang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xin Zhao
- Department of Laboratory MedicineThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Shujun Ma
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Zhishan Song
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
- Ping Yuan LaboratoryXinxiangChina
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Jie Wang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
39
|
He S, Gou H, Zhou Y, Wu C, Ren X, Wu X, Guan G, Jin B, Huang J, Jin Z, Zhao T. The SARS-CoV-2 nucleocapsid protein suppresses innate immunity by remodeling stress granules to atypical foci. FASEB J 2023; 37:e23269. [PMID: 37889852 DOI: 10.1096/fj.202201973rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Viruses deploy multiple strategies to suppress the host innate immune response to facilitate viral replication and pathogenesis. Typical G3BP1+ stress granules (SGs) are usually formed in host cells after virus infection to restrain viral translation and to stimulate innate immunity. Thus, viruses have evolved various mechanisms to inhibit SGs or to repurpose SG components such as G3BP1. Previous studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inhibited host immunity during the early stage of COVID-19. However, the precise mechanism is not yet well understood. Here we showed that the SARS-CoV-2 nucleocapsid (SARS2-N) protein suppressed the double-stranded RNA (dsRNA)-induced innate immune response, concomitant with inhibition of SGs and the induction of atypical SARS2-N+ /G3BP1+ foci (N+ foci). The SARS2-N protein-induced formation of N+ foci was dependent on the ability of its ITFG motif to hijack G3BP1, which contributed to suppress the innate immune response. Importantly, SARS2-N protein facilitated viral replication by inducing the formation of N+ foci. Viral mutations within SARS2-N protein that impair the formation of N+ foci are associated with the inability of the SARS2-N protein to suppress the immune response. Taken together, our study has revealed a novel mechanism by which SARS-CoV-2 suppresses the innate immune response via induction of atypical N+ foci. We think that this is a critical strategy for viral pathogenesis and has potential therapeutic implications.
Collapse
Affiliation(s)
- Su He
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hongwei Gou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yulin Zhou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Chunxiu Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xinxin Ren
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xiajunpeng Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Guanwen Guan
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Boxing Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jinhua Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Tiejun Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Froechlich G, Finizio A, Napolano A, Amiranda S, De Chiara A, Pagano P, Mallardo M, Leoni G, Zambrano N, Sasso E. The common H232 STING allele shows impaired activities in DNA sensing, susceptibility to viral infection, and in monocyte cell function, while the HAQ variant possesses wild-type properties. Sci Rep 2023; 13:19541. [PMID: 37945588 PMCID: PMC10636114 DOI: 10.1038/s41598-023-46830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Different innate immune pathways converge to Stimulator of interferon genes (STING) and trigger type I interferon responses after recognition of abnormal nucleic acids in the cells. This non-redundant function renders STING a major player in immunosurveillance, and an emerging target for cancer and infectious diseases therapeutics. Beyond somatic mutations that often occur in cancer, the human gene encoding STING protein, TMEM173 (STING1), holds great genetic heterogeneity; R232, HAQ (R71H-G230A-R293Q) and H232 are the most common alleles. Although some of these alleles are likely to be hypomorphic, their function is still debated, due to the available functional assessments, which have been performed in biased biological systems. Here, by using genetic background-matched models, we report on the functional evaluation of R232, HAQ and H232 variants on STING function, and on how these genotypes affect the susceptibility to clinically relevant viruses, thus supporting a potential contributing cause to differences in inter-individual responses to infections. Our findings also demonstrate a novel toll-like receptor-independent role of STING in modulating monocytic cell function and differentiation into macrophages. We further supported the interplay of STING1 variants and human biology by demonstrating how monocytes bearing the H232 allele were impaired in M1/M2 differentiation, interferon response and antigen presentation. Finally, we assessed the response to PD-1 inhibitor in a small cohort of melanoma patients stratified according to STING genotype. Given the contribution of the STING protein in sensing DNA viruses, bacterial pathogens and misplaced cancer DNA, these data may support the development of novel therapeutic options for infectious diseases and cancer.
Collapse
Affiliation(s)
- Guendalina Froechlich
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Arianna Finizio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Alessandra Napolano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Sara Amiranda
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Arianna De Chiara
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Pasqualina Pagano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Mallardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
| | | | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- ImGen-T Srl, Viale del Parco Carelli, Napoli, NA, Italy.
| |
Collapse
|
41
|
Zeng X, Liu C, Fan J, Zou J, Guo M, Sun G. RNF138 Downregulates Antiviral Innate Immunity by Inhibiting IRF3 Activation. Int J Mol Sci 2023; 24:16110. [PMID: 38003298 PMCID: PMC10671598 DOI: 10.3390/ijms242216110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
A viral infection activates the transcription factors IRF3 and NF-κB, which synergistically induces type I interferons (IFNs). Here, we identify the E3 ubiquitin ligase RNF138 as an important negative regulator of virus-triggered IRF3 activation and IFN-β induction. The overexpression of RNF138 inhibited the virus-induced activation of IRF3 and the transcription of the IFNB1 gene, whereas the knockout of RNF138 promoted the virus-induced activation of IRF3 and transcription of the IFNB1 gene. We further found that RNF138 promotes the ubiquitination of PTEN and subsequently inhibits PTEN interactions with IRF3, which is essential for the PTEN-mediated nuclear translocation of IRF3, thereby inhibiting IRF3 import into the nucleus. Our findings suggest that RNF138 negatively regulates virus-triggered signaling by inhibiting the interaction of PTEN with IRF3, and these data provide new insights into the molecular mechanisms of cellular antiviral responses.
Collapse
Affiliation(s)
- Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (X.Z.); (J.Z.)
| | - Chaozhi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Jinhao Fan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China;
| | - Jiabin Zou
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (X.Z.); (J.Z.)
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- School of Ecology and Environment, Tibet University, Lhasa 850000, China;
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (X.Z.); (J.Z.)
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| |
Collapse
|
42
|
Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 2023; 55:2320-2331. [PMID: 37945923 PMCID: PMC10689850 DOI: 10.1038/s12276-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy. Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This study provides insights for the application of nucleic acid sensing in therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
- Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
43
|
Cao Y, Wu J, Hu Y, Chai Y, Song J, Duan J, Zhang S, Xu X. Virus-induced lncRNA-BTX allows viral replication by regulating intracellular translocation of DHX9 and ILF3 to induce innate escape. Cell Rep 2023; 42:113262. [PMID: 37864796 DOI: 10.1016/j.celrep.2023.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023] Open
Abstract
The roles of long noncoding RNA (lncRNA) and RNA-binding proteins (RBPs) in antiviral innate response warrant further investigation. Here, we identify an lncRNA, termed lncRNA-BTX (between Tbk1 and Xpot), which is upregulated upon viral infection via an IRF3-type I interferon-independent pathway, promoting viral innate immune escape. Deletion of lncRNA-BTX in cells or mice significantly reduces viral load in vitro or in vivo, respectively. Mechanistically, lncRNA-BTX strengthens the interactions between DHX9 or ILF3 (two RBPs that have opposite functions in regulating the replication of RNA virus) and their respective partner, JMJD6 or ILF2, which regulates intracellular translocations of DHX9 and ILF3 from the nucleus to the cytoplasm. Put simply, lncRNA-BTX facilitates DHX9's return to the cytoplasm and retains ILF3 within the nucleus, promoting viral replication. This work unveils a strategy developed by the virus to bypass host innate immunity, thus providing a potential target for antiviral therapeutics.
Collapse
Affiliation(s)
- Yang Cao
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiacheng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ye Hu
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yangyang Chai
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jiaying Song
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jiaqi Duan
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Song Zhang
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoqing Xu
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
44
|
Lv X, Zheng W, Geng S, Cui Y, Tao Y, Xu T. circCBL and its host gene CBL collaboratively enhance the antiviral immunity and antibacterial immunity by targeting MITA in fish. J Virol 2023; 97:e0104623. [PMID: 37800946 PMCID: PMC10617576 DOI: 10.1128/jvi.01046-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Increasing evidence indicates that circular RNAs exert crucial functions in regulating gene expression in mammals. However, the function of circRNAs in lower vertebrates still needs further exploration. Our research results demonstrated that circRNA, namely circCBL, is involved in modulating antiviral and antibacterial immune responses in lower vertebrates. In addition, our study also found that circCBL can serve as a competing endogenous RNA to facilitate MITA expression, thereby modulating MITA-mediated innate immunity. Further research has proved that the host gene CBL also promotes the expression of MITA, enhancing antiviral and antibacterial immune responses. Our study not only elucidated the underlying biological mechanism of the circRNA-miRNA-mRNA axis in the innate immune response of lower vertebrates but also unveiled the synergistic antibacterial and antiviral mechanisms between circRNA and its host gene in lower vertebrates.
Collapse
Affiliation(s)
- Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanqiu Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yaqi Tao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
45
|
Yadav A, Patil R, Dutta S. Advanced Self-Powered Biofuel Cells with Capacitor and Nanogenerator for Biomarker Sensing. ACS APPLIED BIO MATERIALS 2023; 6:4060-4080. [PMID: 37787456 DOI: 10.1021/acsabm.3c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-powered biofuel cells (BFCs) have evolved for highly sensitive detection of biomarkers such as noncodon micro ribonucleic acids (miRNAs) in the presence of interfering substrates. Self-charging supercapacitive BFCs for in vivo and in vitro cellular microenvironments represent the most prevalent sensing mechanism for diagnosis. Therefore, self-powered biosensing (SPB) with a capacitor and contact separation with a triboelectric nanogenerator (TENG) offers electrochemical and colorimetric dual-mode detection via improved electrical signal intensity. In this review, we discuss three major components: stretchable self-powered BFC design, miRNA sensing, and impedance spectroscopy. A specific focus is given to 1) assembling of sensors for biomarkers, 2) electrical output signal intensification, and 3) role of supercapacitors and nanogenerators in SPBs. We outline the key features of stretchable SPBs and the sequence of miRNA sensing by SPBs. We have emphasized the need of a supercapacitor and nanogenerator for SPBs in the context of advanced assembly of the sensing unit. Finally, we outline the role of impedance spectroscopy in the detection and estimation of biomarkers. We highlight key challenges in SPBs for biomarker sensing, which needs improved sensing accuracy, integration strategies of electrochemical biosensing for in vitro and in vivo microenvironments, and the impact of miRNA sensing on cancer diagnostics. This article attempts a specific focus on the accuracy and limitations of sensing unit for miRNA biomarkers and associated tool for boosting electrical signal intensity for a potential big step further.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
46
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
47
|
Broekema N, Mertens ME, Angelova M, Orzalli MH, Oh HS, Knipe DM. Herpes simplex virus infected cell protein 8 is required for viral inhibition of the cGAS pathway. Virology 2023; 585:34-41. [PMID: 37271042 PMCID: PMC10526635 DOI: 10.1016/j.virol.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023]
Abstract
DNA virus infection triggers an antiviral type I interferon (IFN) response in cells that suppresses infection of surrounding cells. Consequently, viruses have evolved mechanisms to inhibit the IFN response for efficient replication. The cellular cGAS protein binds to double-stranded DNA and synthesizes the small molecule cGAMP to initiate DNA-dependent type I IFN production. We showed previously that cGAMP production is relatively low during HSV-1 infection compared to plasmid DNA transfection. Therefore, we hypothesized that HSV-1 produces antagonists of the cGAS DNA sensing pathway. In this study, we found that the HSV-1 ICP8 protein is required for viral inhibition of the cGAS pathway by reducing cGAMP levels stimulated by double-stranded DNA transfection. ICP8 alone inhibited the cGAMP response and may inhibit cGAS action by direct interaction with DNA, cGAS, or other infected cell proteins. Our results reveal another cGAS antiviral pathway inhibitor and highlight the importance of countering IFN for efficient viral replication.
Collapse
Affiliation(s)
- Nicole Broekema
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Max E Mertens
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Magdalena Angelova
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Megan H Orzalli
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hyung S Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Broquetas T, Carrión JA. Past, present, and future of long-term treatment for hepatitis B virus. World J Gastroenterol 2023; 29:3964-3983. [PMID: 37476586 PMCID: PMC10354584 DOI: 10.3748/wjg.v29.i25.3964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The estimated world prevalence of hepatitis B virus (HBV) infection is 316 million. HBV infection was identified in 1963 and nowadays is a major cause of cirrhosis and hepatocellular carcinoma (HCC) despite universal vaccination programs, and effective antiviral therapy. Long-term administration of nucleos(t)ide analogues (NA) has been the treatment of choice for chronic hepatitis B during the last decades. The NA has shown a good safety profile and high efficacy in controlling viral replication, improving histology, and decreasing the HCC incidence, decompensation, and mortality. However, the low probability of HBV surface antigen seroclearance made necessary an indefinite treatment. The knowledge, in recent years, about the different phases of the viral cycle, and the new insights into the role of the immune system have yielded an increase in new therapeutic approaches. Consequently, several clinical trials evaluating combinations of new drugs with different mechanisms of action are ongoing with promising results. This integrative literature review aims to assess the knowledge and major advances from the past of hepatitis B, the present of NA treatment and withdrawal, and the future perspectives with combined molecules to achieve a functional cure.
Collapse
Affiliation(s)
- Teresa Broquetas
- Liver Section, Gastroenterology Department, Hospital del Mar, Barcelona 08003, Spain
- Institut Hospital del Mar D’Investigacions Mèdiques, PSMAR, Barcelona 08003, Spain
| | - José A Carrión
- Liver Section, Gastroenterology Department, Hospital del Mar, Barcelona 08003, Spain
- Institut Hospital del Mar D’Investigacions Mèdiques, PSMAR, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Facultat de Ciències de la Salut i de la Vida, Barcelona 08003, Spain
| |
Collapse
|
49
|
Beltrami S, Rizzo S, Schiuma G, Speltri G, Di Luca D, Rizzo R, Bortolotti D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023; 11:1637. [PMID: 37512810 PMCID: PMC10383666 DOI: 10.3390/microorganisms11071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Viral infections in pregnancy are major causes of maternal and fetal morbidity and mortality. Infections can develop in the neonate transplacentally, perinatally, or postnatally (from breast milk or other sources) and lead to different clinical manifestations, depending on the viral agent and the gestational age at exposure. Viewing the peculiar tolerogenic status which characterizes pregnancy, viruses could exploit this peculiar immunological status to spread or affect the maternal immune system, adopting several evasion strategies. In fact, both DNA and RNA virus might have a deep impact on both innate and acquired immune systems. For this reason, investigating the interaction with these pathogens and the host's immune system during pregnancy is crucial not only for the development of most effective therapies and diagnosis but mostly for prevention. In this review, we will analyze some of the most important DNA and RNA viruses related to gestational infections.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
50
|
Abstract
Re-emerging and new viral pathogens have caused significant morbidity and mortality around the world, as evidenced by the recent monkeypox, Ebola and Zika virus outbreaks and the ongoing COVID-19 pandemic. Successful viral infection relies on tactical viral strategies to derail or antagonize host innate immune defenses, in particular the production of type I interferons (IFNs) by infected cells. Viruses can thwart intracellular sensing systems that elicit IFN gene expression (that is, RIG-I-like receptors and the cGAS-STING axis) or obstruct signaling elicited by IFNs. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge about the major mechanisms employed by viruses to inhibit the activity of intracellular pattern-recognition receptors and their downstream signaling cascades leading to IFN-based antiviral host defenses. Advancing our understanding of viral immune evasion might spur unprecedented opportunities to develop new antiviral compounds or vaccines to prevent viral infectious diseases.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|