1
|
Bhagwat A, Haldar T, Kanojiya P, Saroj SD. Bacterial metabolism in the host and its association with virulence. Virulence 2025; 16:2459336. [PMID: 39890585 PMCID: PMC11792850 DOI: 10.1080/21505594.2025.2459336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
The host restricted pathogens are competently dependent on their respective host for nutritional requirements. The bacterial metabolic pathways are surprisingly varied and remarkably flexible that in turn help them to successfully overcome competition and colonise their host. The metabolic adaptation plays pivotal role in bacterial pathogenesis. The understanding of host-pathogen metabolic crosstalk needs to be prioritized to decipher host-pathogen interactions. The review focuses on various aspects of host pathogen interactions that majorly involves adaptation of bacterial metabolism to counteract immune mechanisms by rectifying metabolic cues that provides pathogen the idea of different anatomical sites and the local physiology of the host. The key set of metabolites that are recognized as centre of competition between host and its pathogens are also briefly discussed. The factors that control the timely expression of virulence of bacterial pathogens is poorly understood. The perspective presented herein will facilitate us with a broader view of molecular mechanisms that modulates the expression of virulence factors in bacterial pathogens. The knowledge of crosslinked metabolic pathways of bacteria and their host will serve to develop novel potential therapeutics.
Collapse
Affiliation(s)
- Amrita Bhagwat
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Tiyasa Haldar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
2
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
3
|
Arcan SKC, Yatip P, Munyoo B, Maningas MBB, Soowannayan C, Guzman JPMD. Attenuating Vibrio harveyi Virulence Through Quorum Sensing Interference Using Piperine: An In Vitro and In Silico Approach. JOURNAL OF FISH DISEASES 2025; 48:e14094. [PMID: 39907168 DOI: 10.1111/jfd.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Aquaculture diseases caused by pathogens such as Vibrio spp., amplified by the emergence of antibiotic resistance, threaten the aquaculture industry. Due to its critical role in regulating the expression of genes related to antibiotic resistance and virulence, quorum sensing (QS) was proved to be an ideal target in disease control. In this study, we investigated the effects of the alkaloid piperine on the QS system of a fish pathogenic Vibrio harveyi strain. In vitro assays showed that piperine inhibits biofilm formation of V. harveyi without affecting their growth. Moreover, piperine specifically reduced QS activity in V. harveyi, as evident in the inhibition of biofilm and bioluminescence, likely through the AI-2 pathway. Molecular docking simulations showed significant binding energies between piperine and QS proteins-LuxP, LuxQ, LuxR and LuxS-revealing competitive inhibitory effects against LuxP, LuxR, and LuxS, and non-competitive interactions with LuxQ. This study demonstrated the effects of piperine against V. harveyi and elucidated its mechanism of action against V. harveyi QS, implying its potential application in aquaculture systems.
Collapse
Affiliation(s)
- Stephen Kyle C Arcan
- Environment and Biotechnology Division, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines
| | - Pattanan Yatip
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX SHRIMP), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Bamroong Munyoo
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mary Beth B Maningas
- Laboratory of Aquatic Molecular Biology and Biotechnology, Research Center for Natural and Applied Sciences (RCNAS), University of Santo Tomas, Manila, Philippines
| | - Chumporn Soowannayan
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX SHRIMP), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - John Paul Matthew D Guzman
- Environment and Biotechnology Division, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX SHRIMP), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Narla AV, Hwa T, Murugan A. Dynamic coexistence driven by physiological transitions in microbial communities. Proc Natl Acad Sci U S A 2025; 122:e2405527122. [PMID: 40244660 DOI: 10.1073/pnas.2405527122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes in exponential growth often modify their environments so strongly that they are forced out of the growth state into stressed, nongrowing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State Model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states during cyclic succession. Our model specifies the growth preference of each species along a global ecological coordinate, taken to be the biomass density of the community, but is otherwise agnostic to specific interactions (e.g., nutrient starvation, stress, aggregation), in order to focus on self-consistency conditions on combinations of physiological states, "community states," in a stable ecosystem. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: enhanced community stability through staggered dominance of different species in different community states, increased tolerance of community diversity to fast growing species dominating distinct community states, and increased requirement of growth dominance by late-growing species. These features, derived explicitly for simplified models, are proposed here as principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on fixed, idealized interspecies interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.
Collapse
Affiliation(s)
- Avaneesh V Narla
- Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319
| | - Terence Hwa
- Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
5
|
Liu M, Blattman SB, Takahashi M, Mandayam N, Jiang W, Oikonomou P, Tavazoie SF, Tavazoie S. Conserved genetic basis for microbial colonization of the gut. Cell 2025:S0092-8674(25)00283-1. [PMID: 40187346 DOI: 10.1016/j.cell.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Despite the fundamental importance of gut microbes, the genetic basis of their colonization remains largely unexplored. Here, by applying cross-species genotype-habitat association at the tree-of-life scale, we identify conserved microbial gene modules associated with gut colonization. Across thousands of species, we discovered 79 taxonomically diverse putative colonization factors organized into operonic and non-operonic modules. They include previously characterized colonization pathways such as autoinducer-2 biosynthesis and novel processes including tRNA modification and translation. In vivo functional validation revealed YigZ (IMPACT family) and tRNA hydroxylation protein-P (TrhP) are required for E. coli intestinal colonization. Overexpressing YigZ alone is sufficient to enhance colonization of the poorly colonizing MG1655 E. coli by >100-fold. Moreover, natural allelic variations in YigZ impact inter-strain colonization efficiency. Our findings highlight the power of large-scale comparative genomics in revealing the genetic basis of microbial adaptations. These broadly conserved colonization factors may prove critical for understanding gastrointestinal (GI) dysbiosis and developing therapeutics.
Collapse
Affiliation(s)
- Menghan Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sydney B Blattman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Mai Takahashi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nandan Mandayam
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenyan Jiang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Sung JY, Deng Z, Kim SW. Antibiotics and Opportunities of Their Alternatives in Pig Production: Mechanisms Through Modulating Intestinal Microbiota on Intestinal Health and Growth. Antibiotics (Basel) 2025; 14:301. [PMID: 40149111 PMCID: PMC11939794 DOI: 10.3390/antibiotics14030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Antibiotics at subtherapeutic levels have been used in pig diets as antimicrobial growth promoters. However, concerns about antibiotic resistance have increased the demand for alternatives to these antimicrobial growth promoters. This review paper explores the mechanisms through which antimicrobial growth promoters and their alternatives exert their antimicrobial effects. Additionally, this systemic review also covers how modulation of intestinal microbiota by antimicrobial growth promoters or their alternatives affects intestinal health and, subsequently, growth of pigs. The mechanisms and effects of antimicrobial growth promoters and their alternatives on intestinal microbiota, intestinal health, and growth are diverse and inconsistent. Therefore, pig producers should carefully assess which alternative is the most effective for optimizing both profitability and the health status of pigs in their production system.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (J.Y.S.); (Z.D.)
| |
Collapse
|
7
|
Subramani T, Saravanan H, David H, Solanke J, Rajaramon S, Dandela R, Solomon AP. Bioorganic compounds in quorum sensing disruption: strategies, Mechanisms, and future prospects. Bioorg Chem 2025; 156:108192. [PMID: 39874908 DOI: 10.1016/j.bioorg.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Recent research has shed light on the complex world of bacterial communication through quorum sensing. This sophisticated intercellular signalling mechanism, driven by auto-inducers, regulates crucial bacterial community behaviours such as biofilm formation, expression of virulence factors, and resistance mechanisms. The increasing threat of antibiotic resistance, coupled with quorum sensing mediated response, necessitates alternative strategies to combat bacterial infections. Quorum quenching has emerged as a promising approach, utilizing quorum quenching enzymes and quorum sensing inhibitors to disrupt quorum sensing signalling pathways, thus reducing virulence and biofilm formation. This review focuses on natural and synthetic bioorganic compounds that act as quorum-sensing inhibitors, providing insights into their mechanisms, structure-activity relationships, and potential as anti-virulence agents. The review also explores the communication languages of bacteria, including AHLs in gram-negative bacteria, oligopeptides in gram-positive bacteria, and LuxS, a universal microbial language. By highlighting recent advancements and prospects in bioorganic QSIs, this article underscores their crucial role in developing effective anti-virulence therapies and combating the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Tarunkarthick Subramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Harish Saravanan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Jayshree Solanke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| |
Collapse
|
8
|
Groon LA, Bruns S, Dlugosch L, Wilkes H, Wienhausen G. Effects of vitamin B 12 supply on cellular processes of the facultative vitamin B 12 consumer Vibrio campbellii. Appl Environ Microbiol 2025; 91:e0142224. [PMID: 39840980 PMCID: PMC11837498 DOI: 10.1128/aem.01422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/08/2024] [Indexed: 01/23/2025] Open
Abstract
Vitamin B12 (cobalamin, herein B12) is a key cofactor for most organisms being involved in essential metabolic processes. In microbial communities, B12 is often scarce, largely because only few prokaryotes can synthesize B12 de novo and are thus considered B12-prototrophs. B12-auxotrophy is mostly manifested by the absence of the B12-independent methionine synthase, MetE. Here, we focus on bacteria that we classified as facultative B12 consumers as they encode both B12-independent and -dependent (MetH) methionine synthases yet largely cannot synthesize B12 de novo. The genus Vibrio belongs to this group, and our work shows that upon B12 supply growth of Vibrio campbellii is accelerated and autoinducer-2 (AI-2) concentrations are enhanced. We speculate that methionine synthesis efficiency, dependent on B12 availability, is linked to AI-2 synthesis. The precursor for AI-2 synthesis is S-adenosyl-L-homocysteine (SAH), which in turn requires methionine as a precursor. In almost all Vibrio species studied, btuF (B12-binding protein), which is required for B12 uptake, and cobD (Adenosylcobinamide-phosphate synthase), which enables remodeling of B12-like compounds, are encoded on the same operon as pfs (or mtnN, Adenosylhomocysteine nucleosidase), the first enzyme in the two-step AI-2 synthesis reaction. Transcriptomic analyses show that virulence factors, such as toxin synthesis, fimbriae formation, and activation of the type-6 secretion system, which have been shown to be regulated by quorum sensing via AI-2, are significantly upregulated in V. campbellii when B12 is available. Our results demonstrate that V. campbellii is a facultative B12 consumer and indicate that B12 availability affects AI-2 levels and thus potentially virulence factor regulation.IMPORTANCEMetabolites play a key role in microbial metabolism and communication. While vitamin B12 is an essential cofactor for important enzymatic reactions, autoinducer-2 mediates interspecies signaling and can regulate the expression of genes that are crucial for virulence and survival. In our study, we hypothesize and present findings how these two important metabolites are linked in Vibrio species. Vibrio campbellii grows without B12 but at an accelerated rate when B12 is present, and we detect higher AI-2 values in cultures with B12 amendment. Transcriptome analyses show how vitamin B12 availability significantly upregulates gene expression of virulence factors such as toxin synthesis, fimbrial formation, and activation of the type-6 secretion system in V. campbellii.
Collapse
Affiliation(s)
- Luna-Agrippina Groon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Lydick VN, Mass S, Pepin R, Podicheti R, Klempic E, Rusch DB, Ushijima B, Brown LC, Salomon D, van Kessel JC. Quorum sensing regulates virulence factors in the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol 2025; 91:e0114324. [PMID: 39812412 PMCID: PMC11837519 DOI: 10.1128/aem.01143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
The bacterial pathogen Vibrio coralliilyticus causes disease in coral species worldwide. The mechanisms of V. coralliilyticus coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model Vibrio species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS). Comparative genomics indicated that V. coralliilyticus genomes share high sequence identity for most of the QS signaling and regulatory components identified in other Vibrio species. Here, we identify an active QS signaling pathway in two V. coralliilyticus strains with distinct infection etiologies: type strain BAA-450 and coral isolate OCN008. In V. coralliilyticus, the inter-species AI-2 autoinducer signaling pathway in both strains controls expression of the master QS transcription factor and LuxR/HapR homolog VcpR to regulate >300 genes, including protease production, biofilm formation, and two conserved type VI secretion systems (T6SSs). Activation of T6SS1 by QS results in the secretion of effectors and enables interbacterial competition and killing of prey bacteria. We conclude that the QS system in V. coralliilyticus is functional and controls the expression of genes involved in relevant bacterial behaviors typically associated with host infection.IMPORTANCEVibrio coralliilyticus infects many marine organisms, including multiple species of corals, and is a primary causative agent of tissue loss diseases and bacterial-induced bleaching. Here, we investigated a common cell-cell communication mechanism called quorum sensing, which is known to be intimately connected to virulence in other Vibrio species. Our genetic and chemical studies of V. coralliilyticus quorum sensing uncovered an active pathway that directly regulates the following key virulence factors: proteases, biofilms, and secretion systems. These findings connect bacterial signaling in communities to the infection of corals, which may lead to novel treatments and earlier diagnoses of coral diseases in reefs.
Collapse
Affiliation(s)
| | - Shir Mass
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Robert Pepin
- Mass Spectrometry Facility, Indiana University, Bloomington, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Emra Klempic
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Laura C. Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
10
|
Giuliano S, Angelini J, Campanile F, Conti P, Flammini S, Pagotto A, Sbrana F, Martini L, D'Elia D, Abdul-Aziz MH, Cotta MO, Roberts JA, Bonomo RA, Tascini C. Evaluation of ampicillin plus ceftobiprole combination therapy in treating Enterococcus faecalis infective endocarditis and bloodstream infection. Sci Rep 2025; 15:3519. [PMID: 39875507 PMCID: PMC11775251 DOI: 10.1038/s41598-025-87512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Enterococcus faecalis is responsible for numerous serious infections, and treatment options often include ampicillin combined with an aminoglycoside or dual beta-lactam therapy with ampicillin and a third-generation cephalosporin. The mechanism of dual beta-lactam therapy relies on the saturation of penicillin-binding proteins (PBPs). Ceftobiprole exhibits high affinity binding to nearly all E. faecalis PBPs, thus suggesting its potential utility in the treatment of severe E. faecalis infections. The availability of therapeutic drug monitoring (TDM) for ampicillin and ceftobiprole has prompted the use of this drug combination in our hospital. Due to the time-dependent antimicrobial properties of these antibiotics, an infusion administration longer than indicated was chosen. From January to December 2020, twenty-one patients were admitted to our hospital for severe E. faecalis infections and were treated with this approach. We retrospectively analyzed their clinical characteristics and pharmacological data. Most patients achieved an aggressive PK/PD target (T > 4-8 minimum inhibitory concentration, MIC) when this alternative drug combination regimen was used. Our analysis included the study of E. faecalis biofilm production, as well as the kinetics of bacterial killing of ceftobiprole alone or in combination with ampicillin. Time-kill experiments revealed strong bactericidal activity of ceftobiprole alone at concentrations four times higher than the MIC for some enterococcal strains. In cases where a bactericidal effect of ceftobiprole alone was not evident, synergism with ampicillin and bactericidal activity were demonstrated instead. The prolonged infusion of ceftobiprole, either alone or with ampicillin, emerges as a valuable option for the treatment of severe invasive E. faecalis infections.
Collapse
Affiliation(s)
- Simone Giuliano
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy.
| | - Jacopo Angelini
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Pharmacology Institute, University Hospital Friuli Centrale ASUFC, 33100, Udine, Italy
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123, Catania, Italy
| | - Paola Conti
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123, Catania, Italy
| | - Sarah Flammini
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Alberto Pagotto
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Francesco Sbrana
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Luca Martini
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Denise D'Elia
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Mohd H Abdul-Aziz
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, Australia
| | - Menino O Cotta
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, Australia
- Herston Infectious Diseases Institute, Herston, QLD, 4029, Australia
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, Australia
- Herston Infectious Diseases Institute, Herston, QLD, 4029, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 34095, Nîmes, France
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Carlo Tascini
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
- Department of Medicine (DMED), University of Udine, Udine, Italy
| |
Collapse
|
11
|
Ruddell B, Hassall A, Sahin O, Plummer PJ, Zhang Q, Kreuder AJ. Small RNA CjNC110 regulates the activated methyl cycle to enable optimal chicken colonization by Campylobacter jejuni. mSphere 2025; 10:e0083224. [PMID: 39772717 PMCID: PMC11774046 DOI: 10.1128/msphere.00832-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Post-transcriptional gene regulation by non-coding small RNAs (sRNAs) is critical for colonization and survival of enteric pathogens, including the zoonotic pathogen Campylobacter jejuni. In this study, we utilized C. jejuni IA3902 (a representative isolate of the sheep abortion clone) and C. jejuni W7 (a highly motile variant of NCTC 11168, a human gastroenteritis strain) to further investigate regulation by sRNA CjNC110. Both motility and autoagglutination ability were confirmed to be phenotypes of conserved regulation by CjNC110. However, we demonstrated that W7∆CjNC110 does not change chicken colonization levels compared to W7 wild type, directly contrasting IA3902∆CjNC110, which had decreased colonization ability. Subsequently, we determined strain-specific phenotype variation between W7∆CjNC110 and IA3902∆CjNC110 when examining intracellular L-methionine (L-met) levels controlled by the activated methyl cycle (AMC). We hypothesized that the presence of a secondary system for L-met production conferred by MetAB in W7 but not IA3902 might explain the difference in both chicken colonization and L-met availability. Insertion of metAB within IA3902∆CjNC110 (naturally absent) restored intracellular L-met levels in IA3902∆CjNC110::metAB and overcame the colonization defect that resulted from mutagenesis of CjNC110 in IA3902. Deletion of metAB in W7∆CjNC110 (naturally present) led to a decrease in L-met in W7∆CjNC110∆metAB and a colonization defect which was otherwise masked in W7∆CjNC110. Our results indicate that regulation of the AMC leading to altered L-met availability is a conserved regulatory function of CjNC110 in C. jejuni and confirm that L-met generation via the AMC as activated by CjNC110 is critical for optimal host colonization.IMPORTANCEDuring this study, the regulatory action and conservation of function of CjNC110 between two different zoonotically important Campylobacter jejuni strains were examined. Critically, this work for the first time reveals regulation of L-methionine (L-met) production within the activated methyl cycle (AMC) by small RNA (sRNA) CjNC110 as a key factor driving C. jejuni optimal chicken colonization. As a growing body of evidence suggests that maintenance of L-met homeostasis appears to be critical for C. jejuni colonization, interventions targeting the AMC could provide a critical control point for therapeutic drug options to combat this zoonotic pathogen. Our results also indicate that even for conserved sRNAs such as CjNC110, strain-specific differences in phenotypes regulated by sRNAs may exist, independent of conserved regulatory action. Depending on the strain examined and accessory genomic content present, conserved regulatory actions might be masked, thus investigation in multiple strains may be warranted.
Collapse
Affiliation(s)
- Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Alan Hassall
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Orhan Sahin
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| |
Collapse
|
12
|
Yang C, Rodriguez y Baena A, Manso BA, Hu S, Lopez-Magaña R, Ohanyan M, Ottemann KM. Helicobacter pylori luxS mutants cause hyperinflammatory responses during chronic infection. Microbiol Spectr 2025; 13:e0107324. [PMID: 39641542 PMCID: PMC11705807 DOI: 10.1128/spectrum.01073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/30/2024] [Indexed: 12/07/2024] Open
Abstract
Helicobacter pylori infects roughly half the world's population, causing gastritis, peptic ulcers, and gastric cancer in a subset. These pathologies occur in response to a chronic inflammatory state, but it is not fully understood how H. pylori controls this process. We characterized the inflammatory response of H. pylori mutants that cannot produce the quorum sensing molecule autoinducer 2 (AI-2) by deleting the gene for the AI-2 synthase, luxS. Our work shows that H. pylori luxS mutants colonize the stomach normally but recruit high numbers of CD4+ T cells to the stomach during chronic infection. This increase in the number of CD4+ T cells correlated with elevated expression of CXCL9, a chemokine important for T cell recruitment. Together, our results suggest that H. pylori may utilize AI-2 signaling to modulate the inflammatory response during chronic infection. IMPORTANCE Many bacteria signal to each other using quorum sensing signals. One type of signal is called autoinducer 2 (AI-2), which is produced and sensed by the LuxS enzyme found in many bacteria, including the gastric pathogen Helicobacter pylori. H. pylori establishes chronic infections that last for decades and lead to serious disease outcomes. How AI-2 signaling and LuxS contribute to chronic H. pylori infection has not been studied. In this work, we analyzed how loss of H. pylori-created AI-2, via mutation of luxS, affects H. pylori chronic infection. luxS mutants did not have significant colonization defects, similar to their reported phenotype during early infection, but they did have high stomach levels of effector and regulatory T cells and T-cell-recruiting chemokines. These results suggest that H. pylori LuxS may play more of a role in modulating the immune response versus colonization.
Collapse
Affiliation(s)
- Christina Yang
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Bryce A. Manso
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Raymondo Lopez-Magaña
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Mané Ohanyan
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
13
|
Zhao N, Liu Z, Chen X, Yu T, Yan F. Microbial biofilms: a comprehensive review of their properties, beneficial roles and applications. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39579053 DOI: 10.1080/10408398.2024.2432474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Biofilms are microbial communities nested in self-secreted extracellular polymeric substances that can provide microorganisms with strong tolerance and a favorable living environment. Deepening the understanding and research on positive effects of microbial biofilms is consequently necessary, since most researches focuses on how to control biofilms formation to reduce food safety issues. This paper highlights beneficial roles of biofilms including the formation mechanism, influencing factors, health benefits, strategies to improve its film-forming efficiency, as well as applications especially in fields of food industry, agriculture and husbandry, and environmental management. Beneficial biofilms can be affected by multiple factors such as strain characteristics, media composition, signal molecules, and carrier materials. The biofilm barrier composed of beneficial bacteria provides a more favorable microecological environment, keeping bacteria survival longer, and its derived metabolites are better conducive to health. However, in the practical application of biofilms, there are still significant challenges, especially in terms of film-forming efficiency, stability, and safety assessment. Continuous research is needed to discover innovative methods of utilizing biofilms for sustainable food development in the future, in order to fully unleash its potential and promote its application in the food industry.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Xiong Q, Zhang H, Shu X, Sun X, Feng H, Xu Z, Kovács ÁT, Zhang R, Liu Y. Autoinducer-2 relieves soil stress-induced dormancy of Bacillus velezensis by modulating sporulation signaling. NPJ Biofilms Microbiomes 2024; 10:117. [PMID: 39489748 PMCID: PMC11532509 DOI: 10.1038/s41522-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
The collective behavior of bacteria is regulated by quorum sensing (QS). Autoinducer-2 (AI-2) is a common QS signal that regulates the behavior of both Gram-positive and Gram-negative bacteria. Despite the plethora of processes described to be influenced by AI-2 in diverse Gram-negative bacteria, the AI-2-regulated processes in Bacilli are relatively unexplored. Here, we describe a novel function for AI-2 in Bacillus velezensis SQR9 related to the sporulation. AI-2 inhibited the initiation of sporulation through the phosphatase RapC and the DNA binding regulator ComA. Using biochemistry experiments, we demonstrated that AI-2 interacts with RapC to stimulate its binding to ComA, which leads to an inactive ComA and subsequently a sporulation inhibition. The AI-2 molecule could be shared across species for inhibiting Bacillus sporulation and it also plays the same role in different soil conditions. Our study revealed a novel function and regulatory mechanism of AI-2 in inhibiting sporulation in Bacilli.
Collapse
Affiliation(s)
- Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, PR China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Gznzhou, PR China
| | - Huihui Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
| | - Xiting Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
| | - Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ákos T Kovács
- Faculty of Science - Institute of Biology, Leiden University, Sylviusweg 73, 2333BE, Leiden, Netherlands
- DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
| |
Collapse
|
15
|
Hsu JE, Matsen FA, Whitson AJ, Waalkes A, Almazan J, Bourassa LA, Salipante SJ, Long DR. 2023 Neer Award for Basic Science: Genetics of Cutibacterium acnes in revision shoulder arthroplasty: a large-scale bacterial whole-genome sequencing study. J Shoulder Elbow Surg 2024; 33:2400-2410. [PMID: 38604398 PMCID: PMC11663454 DOI: 10.1016/j.jse.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/24/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Cutibacterium acnes is the bacterium most commonly responsible for shoulder periprosthetic joint infection (PJI) and is often cultured from samples obtained at the time of revision for failed shoulder arthroplasty. We sought to determine whether these bacteria originate from the patient or from exogenous sources. We also sought to identify which C. acnes genetic traits were associated with the development of shoulder PJI. METHODS We performed bacterial whole-genome sequencing of C. acnes from a single-institution repository of cultures obtained before or during primary and revision shoulder arthroplasty and correlated the molecular epidemiology and genetic content of strains with clinical features of infection. RESULTS A total of 341 isolates collected over a 4-year period from 88 patients were sequenced. C. acnes cultured from surgical specimens demonstrated significant similarity to the strains colonizing the skin of the same patient (P < .001). Infrequently, there was evidence of strains shared across unrelated patients, suggesting that exogenous sources of C. acnes culture-positivity were uncommon. Phylotypes IB and II were modestly associated with clinical features of PJI, but all phylotypes appeared inherently capable of causing disease. Chronic shoulder PJI was associated with the absence of common C. acnes genes involved in bacterial quorum-sensing (luxS, tqsA). CONCLUSION C. acnes strains cultured from deep intraoperative sources during revision shoulder arthroplasty demonstrate strong genetic similarity to the strains colonizing a patient's skin. Some phylotypes of C. acnes commonly colonizing human skin are modestly more virulent than others, but all phylotypes have a capacity for PJI. C. acnes cultured from cases of PJI commonly demonstrated genetic hallmarks associated with adaptation from acute to chronic phases of infection. This is the strongest evidence to date supporting the role of the patient's own, cutaneous C. acnes strains in the pathogenesis of shoulder arthroplasty infection. Our findings support the importance of further research focused on perioperative decolonization and management of endogenous bacteria that are likely to be introduced into the arthroplasty wound at the time of skin incision.
Collapse
Affiliation(s)
- Jason E Hsu
- Department of Orthopaedics and Sports Medicine, University of Washington Medical Center, Seattle, WA, USA.
| | - Frederick A Matsen
- Department of Orthopaedics and Sports Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Anastasia J Whitson
- Department of Orthopaedics and Sports Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Adam Waalkes
- Department of Laboratory Medicine & Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Jared Almazan
- Department of Laboratory Medicine & Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Lori A Bourassa
- Department of Laboratory Medicine & Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine & Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Dustin R Long
- Department of Anesthesiology & Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
16
|
Simpson CA, Celentano ZR, Haas NW, McKinlay JB, Nadell CD, van Kessel JC. Quorum sensing in Vibrio controls carbon metabolism to optimize growth in changing environmental conditions. PLoS Biol 2024; 22:e3002891. [PMID: 39527643 PMCID: PMC11581408 DOI: 10.1371/journal.pbio.3002891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). The evolution of QS and its maintenance or loss in mixed bacterial communities is highly relevant to understanding how cell-cell signaling impacts bacterial fitness and competition, particularly under varying environmental conditions such as nutrient availability. We uncovered a phenomenon in which Vibrio cells grown in minimal medium optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically "locked" at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). In mixed cultures, QS mutant strains initially coexist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links nutrient availability and cell density, preventing accumulation of QS-defective mutants.
Collapse
Affiliation(s)
- Chelsea A. Simpson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Zach R. Celentano
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Nicholas W. Haas
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - James B. McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Julia C. van Kessel
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
17
|
Milli G, Pellegrini A, Listro R, Fasolini M, Pagano K, Ragona L, Pietrocola G, Linciano P, Collina S. New LsrK Ligands as AI-2 Quorum Sensing Interfering Compounds against Biofilm Formation. J Med Chem 2024; 67:18139-18156. [PMID: 39384180 PMCID: PMC11513922 DOI: 10.1021/acs.jmedchem.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Antimicrobial resistance (AMR) represents a critical global health crisis. An innovative strategy to deal with AMR is to interfere with biofilm formation and bacterial quorum sensing (QS). In this study, newly designed autoinducer-2 (AI-2)-inspired compounds in targeting biofilm-associated infections were evaluated for their ability to inhibit biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa. The most effective compounds, 5d, 5e, and 7b, exhibited potent antibiofilm activity with minimal inhibitory concentrations in the low microgram per mL range. Detailed biological assays confirmed that the antibiofilm activity was primarily driven through AI-2 QS inhibition rather than direct antimicrobial effects. The combination of different spectroscopic techniques, such as differential scanning fluorimetry, intrinsic tryptophan fluorescence, circular dichroism, and nuclear magnetic resonance, elucidated the binding between the compounds and the LsrK enzyme, a key player in AI-2 mediated QS. Our findings highlight the potential of these novel QS inhibitors as promising therapeutic agents against biofilm-associated infections.
Collapse
Affiliation(s)
- Giorgio Milli
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Angelica Pellegrini
- Department
of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marina Fasolini
- Nerviano
Medical Sciences s.r.l., Viale Pasteur 10, Nerviano, Milano 20014, Italy
| | - Katiuscia Pagano
- NMR
Laboratory, Istituto di Scienze e Tecnologie Chimiche “Giulio
Natta”, CNR, via Alfonso Corti, 12, Milano 20133, Italy
| | - Laura Ragona
- NMR
Laboratory, Istituto di Scienze e Tecnologie Chimiche “Giulio
Natta”, CNR, via Alfonso Corti, 12, Milano 20133, Italy
| | - Giampiero Pietrocola
- Department
of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
18
|
Badilla Lobo A, Soutourina O, Peltier J. The current riboswitch landscape in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001508. [PMID: 39405103 PMCID: PMC11477304 DOI: 10.1099/mic.0.001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
Collapse
Affiliation(s)
- Adriana Badilla Lobo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Erol Z, Polat Z, Soyuçok A, Yalçın H, Taşçı F. Antimicrobial resistance and prevalence of Listeria species from raw milk and dairy products in Burdur, Turkey. Vet Med Sci 2024; 10:e1551. [PMID: 39049700 PMCID: PMC11269888 DOI: 10.1002/vms3.1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Worldwide, but especially in emerging nations, concerns about food safety pose a serious obstacle to societal and economic progress. This research aimed to examine the prevalence of Listeria spp. in raw milk and dairy products in Burdur, as well as the presence of genes associated with biofilm formation and antibiotic resistance in the isolates. METHODS A total of 185 samples, including raw milk, curd, cream, butter, yogurt and cheese, were randomly collected in Burdur. The enrichment and isolation methods specified by the United States Department of Agriculture was used to identify Listeria species in milk and dairy product samples. Culture-positive strains were identified as Listeria genus and as species by PCR. Antibiotic susceptibility of the isolates was evaluated against 14 antibiotics using the disc diffusion technique (EUCAST). RESULTS Of them, 2.2% (4/185) were positive for Listeria spp. Listeria species were isolated from cheese and yogurt samples. Two of them were Listeria innocua 1.1% (2/185), one was Listeria ivanovii 0.5% (1/185) and the other was Listeria welshimeri 0.5% (1/185). As a result of multiplex PCR of the biofilm genotypic marker luxS and flaA genes, the flaA gene was detected in three of four isolates, the luxS gene was detected in one isolate, and these two genes were not found in one isolate. Although all isolates were resistant to gentamicin and rifampicin, they also showed multidrug resistance. CONCLUSION This study revealed that the diversity of prevalence of Listeria spp. in Burdur requires microbial risk assessment in the milk and dairy products value chain and the need to focus on the problem of multiple antibiotic resistance.
Collapse
Affiliation(s)
- Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineNecmettin Erbakan UniversityEreğli, KonyaTurkey
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Zübeyde Polat
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Ali Soyuçok
- Department of Food Processing, Burdur Food Agriculture and Livestock Vocational SchoolBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Halil Yalçın
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| |
Collapse
|
20
|
Li D, Huo C, Li G, Zhu M, Xu F, Qiao J, Sun H. The absence of luxS reduces the invasion of Avibacterium paragallinarum but is not essential for virulence. Front Vet Sci 2024; 11:1427966. [PMID: 39263678 PMCID: PMC11390136 DOI: 10.3389/fvets.2024.1427966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
The contagious respiratory pathogen, Avibacterium paragallinarum, contributes to infectious coryza in poultry. However, commercial vaccines have not shown perfect protection against infectious coryza. To search for an alternative approach, this research aimed to investigate whether the quorum-sensing system of pathogens plays a crucial role in their survival and pathogenicity. The LuxS/AI-2 quorum-sensing system in many Gram-negative and Gram-positive bacteria senses environmental changes to regulate physiological traits and virulent properties, and the role of the luxS gene in Av. paragallinarum remains unclear. To investigate the effect of the luxS gene in the quorum-sensing system of Av. paragallinarum, we constructed a luxS mutant. Bioluminescence analysis indicated that the luxS gene plays a vital role in the LuxS/AI-2 quorum-sensing system. The analysis of the LuxS/AI-2 system-related genes showed the level of pfs mRNA to be significantly increased in the mutant strain; however, lsrR, lsrK, and lsrB mRNA levels were not significantly different compared with the wild type. The ability of the luxS mutant strain to invade HD11 and DF-1 cells was significantly decreased compared with the wild-type strain. In addition, all chickens challenged with various doses of the luxS mutant strain developed infections and symptoms, and those challenged with the lowest dose exhibited only minor differences compared to chickens challenged with the wild-type strain. Thus, the deletion of the luxS gene reduces the invasion, but the luxS gene does not play an essential role in the pathogenesis of A. paragallinarum.
Collapse
Affiliation(s)
- Donghai Li
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Caiyun Huo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guiping Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Menghan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huiling Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
21
|
Lubis AR, Sumon MAA, Dinh-Hung N, Dhar AK, Delamare-Deboutteville J, Kim DH, Shinn AP, Kanjanasopa D, Permpoonpattana P, Doan HV, Linh NV, Brown CL. Review of quorum-quenching probiotics: A promising non-antibiotic-based strategy for sustainable aquaculture. JOURNAL OF FISH DISEASES 2024; 47:e13941. [PMID: 38523339 DOI: 10.1111/jfd.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | | | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | | | - Duangkhaetita Kanjanasopa
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher L Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| |
Collapse
|
22
|
Li X, Song S, Kong X, Chen X, Zhao Z, Lin Z, Jia Y, Zhang Y, Luo HB, Wang QP, Zhang LH, Qian W, Deng Y. Regulation of Burkholderia cenocepacia virulence by the fatty acyl-CoA ligase DsfR as a response regulator of quorum sensing signal. Cell Rep 2024; 43:114223. [PMID: 38748879 DOI: 10.1016/j.celrep.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhuoxian Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zizi Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yantao Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
23
|
de la Fuente I, Manzano-Morales S, Sanz D, Prieto A, Barriuso J. Quorum sensing in bacteria: in silico protein analysis, ecophysiology, and reconstruction of their evolutionary history. BMC Genomics 2024; 25:441. [PMID: 38702600 PMCID: PMC11069264 DOI: 10.1186/s12864-024-10355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) is a sophisticated cell-to-cell signalling mechanism that allows the coordination of important processes in microbial populations. The AI-1 and AI-2 autoinducer systems are among the best characterized bacterial QS systems at the genetic level. RESULTS In this study, we present data derived from in silico screening of QS proteins from bacterial genomes available in public databases. Sequence analyses allowed identifying candidate sequences of known QS systems that were used to build phylogenetic trees. Eight categories were established according to the number of genes from the two major QS systems present in each genome, revealing a correlation with specific taxa, lifestyles or metabolic traits. Many species had incomplete QS systems, encoding the receptor protein but not the biosynthesis of the quorum sensing molecule (QSMs). Reconstruction of the evolutionary history of the LuxR family and prediction of the 3D structure of the ancestral protein suggested their monomeric configuration in the absence of the signal molecule and the presence of a cavity for its binding. CONCLUSIONS Here we correlate the taxonomic affiliation and lifestyle of bacteria from different genera with the QS systems encoded in their genomes. Moreover, we present the first ancestral reconstruction of the LuxR QS receptors, providing further insight in their evolutionary history.
Collapse
Affiliation(s)
- Iñigo de la Fuente
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Saioa Manzano-Morales
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - David Sanz
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas (CIB Margarita Salas), Department of Microbial and Plant Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
24
|
Gager C, Flores-Mireles AL. Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. mSphere 2024; 9:e0064223. [PMID: 38511958 PMCID: PMC11036814 DOI: 10.1128/msphere.00642-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.
Collapse
Affiliation(s)
- Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
25
|
Chen X, Li J, Liao R, Shi X, Xing Y, Xu X, Xiao H, Xiao D. Bibliometric analysis and visualization of quorum sensing research over the last two decade. Front Microbiol 2024; 15:1366760. [PMID: 38646636 PMCID: PMC11026600 DOI: 10.3389/fmicb.2024.1366760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Background Quorum sensing (QS) research stands as a pivotal and multifaceted domain within microbiology, holding profound implications across various scientific disciplines. This bibliometric analysis seeks to offer an extensive overview of QS research, covering the period from 2004 to 2023. It aims to elucidate the hotspots, trends, and the evolving dynamics within this research domain. Methods We conducted an exhaustive review of the literature, employing meticulous data curation from the Science Citation Index Extension (SCI-E) within the Web of Science (WOS) database. Subsequently, our survey delves into evolving publication trends, the constellation of influential authors and institutions, key journals shaping the discourse, global collaborative networks, and thematic hotspots that define the QS research field. Results The findings demonstrate a consistent and growing interest in QS research throughout the years, encompassing a substantial dataset of 4,849 analyzed articles. Journals such as Frontiers in Microbiology have emerged as significant contributor to the QS literature, highlighting the increasing recognition of QS's importance across various research fields. Influential research in the realm of QS often centers on microbial communication, biofilm formation, and the development of QS inhibitors. Notably, leading countries engaged in QS research include the United States, China, and India. Moreover, the analysis identifies research focal points spanning diverse domains, including pharmacological properties, genetics and metabolic pathways, as well as physiological and signal transduction mechanisms, reaffirming the multidisciplinary character of QS research. Conclusion This bibliometric exploration provides a panoramic overview of the current state of QS research. The data portrays a consistent trend of expansion and advancement within this domain, signaling numerous prospects for forthcoming research and development. Scholars and stakeholders engaged in the QS field can harness these findings to navigate the evolving terrain with precision and speed, thereby enhancing our comprehension and utilization of QS in various scientific and clinical domains.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruohan Liao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Xing
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
26
|
Li E, Liu K, Yang S, Li L, Ran K, Sun X, Qu J, Zhao L, Xin Y, Zhu F, Ma J, Song F, Li Z. Analysis of the complete genome sequence of Paenibacillus sp. lzh-N1 reveals its antagonistic ability. BMC Genomics 2024; 25:276. [PMID: 38481158 PMCID: PMC10938842 DOI: 10.1186/s12864-024-10206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Plant diseases caused by pathogenic fungi are devastating. However, commonly used fungicides are harmful to the environment, and some are becoming ineffective due to fungal resistance. Therefore, eco-friendly biological methods to control pathogenic fungi are urgently needed. RESULTS In this study, a strain, Paenibacillus sp. lzh-N1, that could inhibit the growth of the pathogenic fungus Mycosphaerella sentina (Fr) Schrorter was isolated from the rhizosphere soil of pear trees, and the complete genome sequence of the strain was obtained, annotated, and analyzed to reveal the genetic foundation of its antagonistic ability. The entire genome of this strain contained a circular chromosome of 5,641,488 bp with a GC content of 45.50%. The results of species identification show that the strain belongs to the same species as P. polymyxa Sb3-1 and P. polymyxa CJX518. Sixteen secondary metabolic biosynthetic gene clusters were predicted by antiSMASH, including those of the antifungal peptides fusaricidin B and paenilarvins. In addition, biofilm formation-related genes containing two potential gene clusters for cyclic lactone autoinducer, a gene encoding S-ribosylhomocysteine lyase (LuxS), and three genes encoding exopolysaccharide biosynthesis protein were identified. CONCLUSIONS Antifungal peptides and glucanase biosynthesized by Paenibacillus sp. lzh-N1 may be responsible for its antagonistic effect. Moreover, quorum sensing systems may influence the biocontrol activity of this strain directly or indirectly.
Collapse
Affiliation(s)
- Ee Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China
| | - Kaiquan Liu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 250353, Jinan, P. R. China
| | - Shuhan Yang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China
| | - Ling Li
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 250353, Jinan, P. R. China
| | - Kun Ran
- Shandong Institute of Pomology, 271000, Taian, P. R. China
| | - Xiaoli Sun
- Shandong Institute of Pomology, 271000, Taian, P. R. China
| | - Jie Qu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China
| | - Yuxiu Xin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China
| | - Feng Zhu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China
| | - Jingfang Ma
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China.
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China.
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, 253023, Dezhou, P. R. China.
- Shandong Engineering Laboratory of Swine Herd Health Big Data and Intelligent Monitoring, Dezhou University, 253023, Dezhou, P.R. China.
| |
Collapse
|
27
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
28
|
Hara T, Sakanaka A, Lamont RJ, Amano A, Kuboniwa M. Interspecies metabolite transfer fuels the methionine metabolism of Fusobacterium nucleatum to stimulate volatile methyl mercaptan production. mSystems 2024; 9:e0076423. [PMID: 38289043 PMCID: PMC10878106 DOI: 10.1128/msystems.00764-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.
Collapse
Affiliation(s)
- Takeshi Hara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
| | - Akito Sakanaka
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Atsuo Amano
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
29
|
Narla AV, Hwa T, Murugan A. Dynamic coexistence driven by physiological transitions in microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575059. [PMID: 38260536 PMCID: PMC10802591 DOI: 10.1101/2024.01.10.575059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.
Collapse
Affiliation(s)
| | - Terence Hwa
- Department of Physics, University of California, San Diego
| | | |
Collapse
|
30
|
Mejía L, Espinosa-Mata E, Freire AL, Zapata S, González-Candelas F. Listeria monocytogenes, a silent foodborne pathogen in Ecuador. Front Microbiol 2023; 14:1278860. [PMID: 38179446 PMCID: PMC10764610 DOI: 10.3389/fmicb.2023.1278860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can produce serious, even fatal, infections. Among other foods, it can be found in unpasteurized dairy and ready-to-eat products. Surveillance of L. monocytogenes is of great interest since sources of infection are difficult to determine due to the long incubation period, and because the symptoms of listeriosis are similar to other diseases. We performed a genomic study of L. monocytogenes isolated from fresh cheeses and clinical samples from Ecuador. Sixty-five isolates were evaluated and sequenced, 14 isolates from cheese samples and 20 from clinical listeriosis cases from the National Institute of National Institute of Public Health Research, and 31 isolates from artisanal cheese samples from 8 provinces. All isolates exhibited heterogeneous patterns of the presence of pathogenicity islands. All isolates exhibited at least 4 genes from LIPI-1, but all references (26 L. monocytogenes closed genomes available in the NCBI database) showed the complete island, which encompasses 5 genes but is present in only two Ecuadorian isolates. Most isolates lacked gene actA. Genes from LIPI-2 were absent in all isolates. LIPI-3 and LIPI-4 were present in only a few references and isolates. With respect to the stress survival islets, our samples either presented SSI-1 or SSI-F2365, except for one isolate that presented SSI-F2365 and also one gene from SSI-1. None of the samples presented SSI-2. The predominant ST (sequence type) was ST2 (84.62% 55/65), and the only ST found in food (93.33% 42/45) and clinical samples (65% 13/20). Isolates were not grouped according to their sampling origin, date, or place in a phylogenetic tree obtained from the core alignment. The presence of ST2 in food and clinical samples, with high genomic similarity, suggests a foodborne infection risk linked to the consumption of fresh cheeses in Ecuador.
Collapse
Affiliation(s)
- Lorena Mejía
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
| | - Estefanía Espinosa-Mata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Lucía Freire
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sonia Zapata
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO-University of Valencia, Valencia, Spain
- CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|
31
|
Li X, Wang G, Guo Q, Cui B, Wang M, Song S, Yang L, Deng Y. Membrane-enclosed Pseudomonas quinolone signal attenuates bacterial virulence by interfering with quorum sensing. Appl Environ Microbiol 2023; 89:e0118423. [PMID: 37796010 PMCID: PMC10617430 DOI: 10.1128/aem.01184-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 10/06/2023] Open
Abstract
Outer membrane vesicle (OMV)-delivered Pseudomonas quinolone signal (PQS) plays a critical role in cell-cell communication in Pseudomonas aeruginosa. However, the functions and mechanisms of membrane-enclosed PQS in interspecies communication in microbial communities are not clear. Here, we demonstrate that PQS delivered by both OMVs from P. aeruginosa and liposome reduces the competitiveness of Burkholderia cenocepacia, which usually shares the same niche in the lungs of cystic fibrosis patients, by interfering with quorum sensing (QS) in B. cenocepacia through the LysR-type regulator ShvR. Intriguingly, we found that ShvR regulates the production of the QS signals cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) by directly binding to the promoters of signal synthase-encoding genes. Perception of PQS influences the regulatory activity of ShvR and thus ultimately reduces QS signal production and virulence in B. cenocepacia. Our findings provide insights into the interspecies communication mediated by the membrane-enclosed QS signal among bacterial species residing in the same microbial community.IMPORTANCEQuorum sensing (QS) is a ubiquitous cell-to-cell communication mechanism. Previous studies showed that Burkholderia cenocepacia mainly employs cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) QS systems to regulate biological functions and virulence. Here, we demonstrate that Pseudomonas quinolone signal (PQS) delivered by outer membrane vesicles from Pseudomonas aeruginosa or liposome attenuates B. cenocepacia virulence by targeting the LysR-type regulator ShvR, which regulates the production of the QS signals BDSF and AHL in B. cenocepacia. Our results not only suggest the important roles of membrane-enclosed PQS in interspecies and interkingdom communications but also provide a new perspective on the use of functional nanocarriers loaded with QS inhibitors for treating pathogen infections.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Gerun Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
32
|
Kim U, Lee SY, Oh SW. A review of mechanism analysis methods in multi-species biofilm of foodborne pathogens. Food Sci Biotechnol 2023; 32:1665-1677. [PMID: 37780597 PMCID: PMC10533759 DOI: 10.1007/s10068-023-01317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are an aggregation of microorganisms that have high resistance to antimicrobial agents. In the food industry, it has been widely studied that foodborne pathogens on both food surfaces and food-contact surfaces can form biofilms thereby threatening the safety of the food. In the natural environment, multi-species biofilms formed by more than two different microorganisms are abundant. In addition, the resistance of multi-species biofilms to antimicrobial agents is higher than that of mono-species biofilms. Therefore, studies to elucidate the mechanisms of multi-species biofilms formed by foodborne pathogens are still required in the food industry. In this review paper, we summarized the novel analytical methods studied to evaluate the mechanisms of multi-species biofilms formed by foodborne pathogens by dividing them into four categories: spatial distribution, bacterial interaction, extracellular polymeric substance production and quorum sensing analytical methods.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| |
Collapse
|
33
|
Rajan PP, Kumar P, Mini M, Jayakumar D, Vaikkathillam P, Asha S, Mohan A, S M. Antibiofilm potential of gallic acid against Klebsiella pneumoniae and Enterobacter hormaechei: in-vitro and in-silico analysis. BIOFOULING 2023; 39:948-961. [PMID: 37975308 DOI: 10.1080/08927014.2023.2279996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Biofilm refers to a community of microorganisms that adhere to a substrate and play a crucial role in microbial pathogenesis and developing infections associated with medical devices. Enterobacter hormaechei and Klebsiella pneumoniae are classified as significant nosocomial pathogens within the ESKAPE category and cause diverse infections. In addition to their reputation as prolific biofilm formers, these pathogens are increasingly becoming drug-resistant and pose a substantial threat to the healthcare setting. Due to the inherent resistance of biofilms to conventional therapies, novel strategies are imperative for effectively controlling E. hormaechei and K. pneumoniae biofilms. This study aimed to assess the anti-biofilm activity of gallic acid (GA) against E. hormaechei and K. pneumoniae. The results of biofilm quantification assays demonstrated that GA exhibited significant antibiofilm activity against E. hormaechei and K. pneumoniae at concentrations of 4 mg mL-1, 2 mg mL-1, 1 mg mL-1, and 0.5 mg mL-1. Similarly, GA exhibited a dose-dependent reduction in violacein production, a QS-regulated purple pigment, indicating its ability to suppress violacein production and disrupt QS mechanisms in Chromobacterium violaceum. Additionally, computational tools were utilized to identify the potential target involved in the biofilm formation pathway. The computational analysis further indicated the strong binding affinity of GA to essential biofilm regulators, MrkH and LuxS, suggesting its potential in targeting the c-di-GMP and quorum sensing (QS) pathways to hinder biofilm formation in K. pneumoniae. These compelling findings strongly advocate GA as a promising drug candidate against biofilm-associated infections caused by E. hormaechei and K. pneumoniae.
Collapse
Affiliation(s)
- Pooja P Rajan
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Minsa Mini
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Devi Jayakumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | | | - Sneha Asha
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Aparna Mohan
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Manjusree S
- Department of Microbiology, Government Medical College, Thiruvananthapuram, Kerala, India
| |
Collapse
|
34
|
Cao Q, Dong Y, Guo C, Ji S, Nie M, Liu G, Wan X, Lu C, Liu Y. luxS contributes to intramacrophage survival of Streptococcus agalactiae by positively affecting the expression of fruRKI operon. Vet Res 2023; 54:83. [PMID: 37759250 PMCID: PMC10536698 DOI: 10.1186/s13567-023-01210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The LuxS quorum sensing system is a widespread system employed by many bacteria for cell-to-cell communication. The luxS gene has been demonstrated to play a crucial role in intramacrophage survival of piscine Streptococcus agalactiae, but the underlying mechanism remains largely unknown. In this study, transcriptome analysis, followed by the luxS gene deletion and subsequent functional studies, confirmed that impaired bacterial survival inside macrophages due to the inactivation of luxS was associated with reduced transcription of the fruRKI operon, encoding the fructose-specific phosphotransferase system. Further, luxS was determined not to enhance the transcription of fruRKI operon by binding its promoter, but to upregulate the expression of this operon via affecting the binding ability of catabolite control protein A (CcpA) to the catabolite responsive element (cre) in the promoter of fruRKI. Collectively, our study identifies a novel and previously unappreciated role for luxS in bacterial intracellular survival, which may give a more thorough understanding of the immune evasion mechanism in S. agalactiae.
Collapse
Affiliation(s)
- Qing Cao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Changming Guo
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Shuting Ji
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Nie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangjin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
35
|
Fine DH, Schreiner H. Oral microbial interactions from an ecological perspective: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1229118. [PMID: 37771470 PMCID: PMC10527376 DOI: 10.3389/froh.2023.1229118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Landscape ecology is a relatively new field of study within the sub-specialty of ecology that considers time and space in addition to structure and function. Landscape ecology contends that both the configuration (spatial pattern) and the composition (organisms both at the macro and or micro level) of an ecology can change over time. The oral cavity is an ideal place to study landscape ecology because of the variety of landscapes, the dynamic nature of plaque biofilm development, and the easy access to biofilm material. This review is intended to provide some specific clinical examples of how landscape ecology can influence the understanding of oral diseases and act as a supplement to diagnosis and treatment. The purpose of this review is two-fold; (1) to illustrate how landscape ecology can be used to clarify the two most prominent microbiologically induced infections in the oral cavity, and (2) how studies of oral microbiology can be used to enhance the understanding of landscape ecology. The review will distinguish between "habitat" and "niche" in a landscape and extend the concept that a "patch", is the demarcating unit of a habitat within a landscape. The review will describe how; (1) an individual patch, defined by its shape, edges and internal components can have an influence on species within the patch, (2) spatial dynamics over time within a patch can lead to variations or diversities of species within that patch space, and (3) an unwelcoming environment can promote species extinction or departure/dispersion into a more favorable habitat. Understanding this dynamic in relationship to caries and periodontal disease is the focus of this review.
Collapse
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | | |
Collapse
|
36
|
Huening KA, Groves JT, Wildenthal JA, Tabita FR, North JA. Utilization of 5'-deoxy-nucleosides as Growth Substrates by Extraintestinal Pathogenic E. coli via the Dihydroxyacetone Phosphate Shunt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552779. [PMID: 37609188 PMCID: PMC10441430 DOI: 10.1101/2023.08.10.552779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for methylation of biological molecules, synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine (SAH), 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). One of the most prevalent pathways found in bacteria for the metabolism of MTA and 5dAdo is the DHAP shunt, which converts these compounds into dihydroxyacetone phosphate (DHAP) and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Here we show that in Extraintestinal Pathogenic E. coil (ExPEC), the DHAP shunt serves none of these roles in any significant capacity, but rather physiologically functions as an assimilation pathway for use of MTA and 5dAdo as growth substrates. This is further supported by the observation that when MTA is the substrate for the ExPEC DHAP shunt, the sulfur components is not significantly recycled back to methionine, but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. While the pathway is active both aerobically and anaerobically, it only supports aerobic ExPEC growth, suggesting that it primarily functions in oxygenic extraintestinal environments like blood and urine versus the predominantly anoxic gut. This reveals a heretofore overlooked role of the DHAP shunt in carbon assimilation and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt.
Collapse
Affiliation(s)
| | - Joshua T. Groves
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - John A. Wildenthal
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - F. Robert Tabita
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - Justin A. North
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| |
Collapse
|
37
|
Liu F, Wang F, Yuan Y, Li X, Zhong X, Yang M. Quorum sensing signal synthases enhance Vibrio parahaemolyticus swarming motility. Mol Microbiol 2023; 120:241-257. [PMID: 37330634 DOI: 10.1111/mmi.15113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Vibrio parahaemolyticus is a significant food-borne pathogen that is found in diverse aquatic habitats. Quorum sensing (QS), a signaling system for cell-cell communication, plays an important role in V. parahaemolyticus persistence. We characterized the function of three V. parahaemolyticus QS signal synthases, CqsAvp , LuxMvp , and LuxSvp , and show that they are essential to activate QS and regulate swarming. We found that CqsAvp , LuxMvp , and LuxSvp activate a QS bioluminescence reporter through OpaR. However, V. parahaemolyticus exhibits swarming defects in the absence of CqsAvp , LuxMvp , and LuxSvp , but not OpaR. The swarming defect of this synthase mutant (termed Δ3AI) was recovered by overexpressing either LuxOvp D47A , a mimic of dephosphorylated LuxOvp mutant, or the scrABC operon. CqsAvp , LuxMvp , and LuxSvp inhibit lateral flagellar (laf) gene expression by inhibiting the phosphorylation of LuxOvp and the expression of scrABC. Phosphorylated LuxOvp enhances laf gene expression in a mechanism that involves modulating c-di-GMP levels. However, enhancing swarming requires phosphorylated and dephosphorylated LuxOvp which is regulated by the QS signals that are synthesized by CqsAvp , LuxMvp , and LuxSvp . The data presented here suggest an important strategy of swarming regulation by the integration of QS and c-di-GMP signaling pathways in V. parahaemolyticus.
Collapse
Affiliation(s)
- Fuwen Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Fei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Yixuan Yuan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Xiaoran Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Xiaojun Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
38
|
Lin F, Yuan S, Ji P, Xu W. Regulation of Bacterial Biofilm Formation by Ultrasound: Role of Autoinducer-2 and Finite-Element Analysis of Acoustic Streaming. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00210-7. [PMID: 37438162 DOI: 10.1016/j.ultrasmedbio.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE The formation of bacterial biofilm regulated by quorum sensing (QS) is a critical factor that contributes to infections of indwelling medical devices. Autoinducer-2 (AI-2), as a signal molecule in QS, plays a crucial role in mediating bacterial signaling and regulating their biological behavior. This study investigated the impact of ultrasonic vibration at varying frequencies on biofilm formation in a mixture of Staphylococcus aureus and Escherichia coli. METHODS By exciting ultrasound at different frequencies (20, 100 and 200 kHz), a vibration with an amplitude of 100 nm was generated on the material surface located at the bottom of the petri dish containing mixed bacteria. We measured the content of AI-2 and bacteria in the mixed bacterial solution and bioburden on material surfaces at different time points during culture. In addition, the relationships among AI-2 content, bacterial concentration and distribution were assessed through finite-element analysis of acoustic streaming under ultrasonic vibration. RESULTS The AI-2 gradient is influenced by the diversity of acoustic streaming patterns on the material surface and in the mixed bacterial solution caused by ultrasonic vibration at different frequencies, thereby regulating biofilm formation. The experimental results showed that the optimal inhibition effect on AI-2 and minimal bacterial adhesion degree was achieved when applying an ultrasonic frequency of 100 kHz with a power intensity of 46.1 mW/cm2 under an amplitude of 100 nm. CONCLUSION Ultrasound can affect the QS system of bacteria, leading to alterations in their biological behavior. Different species of bacteria exhibit varying degrees of chemotaxis toward different frequencies.
Collapse
Affiliation(s)
- Fangfei Lin
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China; Ningbo Institute of Technology, Beihang University, Ningbo, China
| | - Songmei Yuan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China; Ningbo Institute of Technology, Beihang University, Ningbo, China.
| | - Pengzhen Ji
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China; Ningbo Institute of Technology, Beihang University, Ningbo, China
| | - Weixian Xu
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
39
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
40
|
Wang M, Zeng J, Zhu Y, Chen X, Guo Q, Tan H, Cui B, Song S, Deng Y. A 4-Hydroxybenzoic Acid-Mediated Signaling System Controls the Physiology and Virulence of Shigella sonnei. Microbiol Spectr 2023; 11:e0483522. [PMID: 37036340 PMCID: PMC10269604 DOI: 10.1128/spectrum.04835-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Many bacteria use small molecules, such as quorum sensing (QS) signals, to perform intraspecies signaling and interspecies or interkingdom communication. Previous studies demonstrated that some bacteria regulate their physiology and pathogenicity by employing 4-hydroxybenzoic acid (4-HBA). Here, we report that 4-HBA controls biological functions, virulence, and anthranilic acid production in Shigella sonnei. The biosynthesis of 4-HBA is performed by UbiC (SSON_4219), which is a chorismate pyruvate-lyase that catalyzes the conversion of chorismate to 4-HBA. Deletion of ubiC caused S. sonnei to exhibit impaired phenotypes, including impaired biofilm formation, extracellular polysaccharide (EPS) production, and virulence. In addition, we found that 4-HBA controls the physiology and virulence of S. sonnei through the response regulator AaeR (SSON_3385), which contains a helix-turn-helix (HTH) domain and a LysR substrate-binding (LysR_substrate) domain. The same biological functions are controlled by AaeR and the 4-HBA signal, and 4-HBA-deficient mutant phenotypes were rescued by in trans expression of AaeR. We found that 4-HBA binds to AaeR and then enhances the binding of AaeR to the promoter DNA regions in target genes. Moreover, we revealed that 4-HBA from S. sonnei reduces the competitive fitness of Candida albicans by interfering with morphological transition. Together, our results suggested that the 4-HBA signaling system plays crucial roles in bacterial physiology and interkingdom communication. IMPORTANCE Shigella sonnei is an important pathogen in human intestines. Following previous findings that some bacteria employ 4-HBA as a QS signal to regulate biological functions, we demonstrate that 4-HBA controls the physiology and virulence of S. sonnei. This study is significant because it identifies both the signal synthase UbiC and receptor AaeR and unveils the signaling pathway of 4-HBA in S. sonnei. In addition, this study also supports the important role of 4-HBA in microbial cross talk, as 4-HBA strongly inhibits hyphal formation by Candida albicans. Together, our findings describe the dual roles of 4-HBA in both intraspecies signaling and interkingdom communication.
Collapse
Affiliation(s)
- Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jia Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yu Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Huihui Tan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
41
|
Shah SM, Joshi D, Chbib C, Roni MA, Uddin MN. The Autoinducer N-Octanoyl-L-Homoserine Lactone (C8-HSL) as a Potential Adjuvant in Vaccine Formulations. Pharmaceuticals (Basel) 2023; 16:ph16050713. [PMID: 37242496 DOI: 10.3390/ph16050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Autoinducers AI-1 and AI-2 play an important role in bacterial quorum sensing (QS), a form of chemical communication between bacteria. The autoinducer N-octanoyl-L-Homoserinehomoserine lactone (C8-HSL) serves as a major inter- and intraspecies communicator or 'signal', mainly for Gram-negative bacteria. C8-HSL is proposed to have immunogenic properties. The aim of this project is to evaluate C8-HSL as a potential vaccine adjuvant. For this purpose, a microparticulate formulation was developed. The C8-HSL microparticles (MPs) were formulated by a water/oil/water (W/O/W) double-emulsion solvent evaporation method using PLGA (poly (lactic-co-glycolic acid)) polymer. We tested C8-HSL MPs with two spray-dried bovine serum albumin (BSA)-encapsulated bacterial antigens: colonization factor antigen I (CFA/I) from Escherichia coli (E. coli.) and the inactive protective antigen (PA) from Bacillus anthracis (B. anthracis). We formulated and tested C8-HSL MP to determine its immunogenicity potential and its ability to serve as an adjuvant with particulate vaccine formulations. An in vitro immunogenicity assessment was performed using Griess's assay, which indirectly measures the nitric oxide radical (NOˑ) released by dendritic cells (DCs). The C8-HSL MP adjuvant was compared with FDA-approved adjuvants to determine its immunogenicity potential. C8-HSL MP was combined with particulate vaccines for measles, Zika and the marketed influenza vaccine. The cytotoxicity study showed that MPs were non-cytotoxic toward DCs. Griess's assay showed a comparable release of NOˑ from DCs when exposed to CFA and PA bacterial antigens. Nitric oxide radical (NOˑ) release was significantly higher when C8-HSL MPs were combined with particulate vaccines for measles and Zika. C8-HSL MPs showed immunostimulatory potential when combined with the influenza vaccine. The results showed that C8-HSL MPs were as immunogenic as FDA-approved adjuvants such as alum, MF59, and CpG. This proof-of-concept study showed that C8-HSL MP displayed adjuvant potential when combined with several particulate vaccines, indicating that C8-HSL MPs can increase the immunogenicity of both bacterial and viral vaccines.
Collapse
Affiliation(s)
- Sarthak M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Devyani Joshi
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Christiane Chbib
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| | - Monzurul A Roni
- Department of Health Sciences Education and Pathology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Mohammad N Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
42
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
43
|
Fatima M, Amin A, Alharbi M, Ishtiaq S, Sajjad W, Ahmad F, Ahmad S, Hanif F, Faheem M, Khalil AAK. Quorum Quenchers from Reynoutria japonica in the Battle against Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2023; 28:molecules28062635. [PMID: 36985607 PMCID: PMC10056526 DOI: 10.3390/molecules28062635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Over the past decade, methicillin-resistant Staphylococcus aureus (MRSA) has become a major source of biofilm formation and a major contributor to antimicrobial resistance. The genes that govern biofilm formation are regulated by a signaling mechanism called the quorum-sensing system. There is a need for new molecules to treat the infections caused by dangerous pathogens like MRSA. The current study focused on an alternative approach using juglone derivatives from Reynoutria japonica as quorum quenchers. Ten bioactive compounds from this plant, i.e., 2-methoxy-6-acetyl-7-methyljuglone, emodin, emodin 8-o-b glucoside, polydatin, resveratrol, physcion, citreorosein, quercetin, hyperoside, and coumarin were taken as ligands and docked with accessory gene regulator proteins A, B, and C and the signal transduction protein TRAP. The best ligand was selected based on docking score, ADMET properties, and the Lipinski rule. Considering all these parameters, resveratrol displayed all required drug-like properties with a docking score of −8.9 against accessory gene regulator protein C. To further assess the effectiveness of resveratrol, it was compared with the commercially available antibiotic drug penicillin. A comparison of all drug-like characteristics showed that resveratrol was superior to penicillin in many aspects. Penicillin showed a binding affinity of −6.7 while resveratrol had a score of −8.9 during docking. This was followed by molecular dynamic simulations wherein inhibitors in complexes with target proteins showed stability inside the active site during the 100 ns simulations. Structural changes due to ligand movement inside the cavity were measured in the protein targets, but they remained static due to hydrogen bonds. The results showed acceptable pharmacokinetic properties for resveratrol as compared to penicillin. Thus, we concluded that resveratrol has protective effects against Staphylococcus aureus infections and that it suppresses the quorum-sensing ability of this bacterium by targeting its infectious proteins.
Collapse
Affiliation(s)
- Maliha Fatima
- Department of Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Arshia Amin
- Department of Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sundas Ishtiaq
- Department of Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
- Correspondence: ; Tel.: +92-51-927-0677
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Faisal Hanif
- Department of Microbiology Military Hospital, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Atif Ali Khan Khalil
- Department of Pharmacognosy, Institute of Pharmacy, Lahore College for Women University, Lahore 54000, Pakistan
| |
Collapse
|
44
|
Jin J, Mangal U, Seo JY, Kim JY, Ryu JH, Lee YH, Lugtu C, Hwang G, Cha JY, Lee KJ, Yu HS, Kim KM, Jang S, Kwon JS, Choi SH. Cerium oxide nanozymes confer a cytoprotective and bio-friendly surface micro-environment to methacrylate based oro-facial prostheses. Biomaterials 2023; 296:122063. [PMID: 36848780 DOI: 10.1016/j.biomaterials.2023.122063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Poly-(methyl methacrylate) (PMMA) is the preferred biomaterial for orofacial prostheses used for the rehabilitation of naso-palatal defects. However, conventional PMMA has limitations determined by the complexity of the local microbiota and the friability of oral mucosa adjacent to these defects. Our purpose was to develop a new type of PMMA, i-PMMA, with good biocompatibility and better biological effects such as higher resistance to microbial adhesion of multiple species and enhanced antioxidant effect. The addition of cerium oxide nanoparticles to PMMA using a mesoporous nano-silica carrier and polybetaine conditioning, resulted in an increased release of cerium ions and enzyme mimetic activity, without tangible loss of mechanical properties. Ex vivo experiments confirmed these observations. In stressed human gingival fibroblasts, i-PMMA reduced the levels of reactive oxygen species and increased the expression of homeostasis-related proteins (PPARg, ATG5, LCI/III). Furthermore, i-PMMA increased the levels of expression of superoxide dismutase and mitogen-activated protein kinases (ERK and Akt), and cellular migration. Lastly, we demonstrated the biosafety of i-PMMA using two in vivo models: skin sensitization assay and oral mucosa irritation test, respectively. Therefore, i-PMMA offers a cytoprotective interface that prevents microbial adhesion and attenuates oxidative stress, thus supporting physiological recovery of the oral mucosa.
Collapse
Affiliation(s)
- Jie Jin
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea
| | - Cerjay Lugtu
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea.
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
45
|
Stephens K, Bentley WE. Quorum Sensing from Two Engineers’ Perspectives. Isr J Chem 2023. [DOI: 10.1002/ijch.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kristina Stephens
- Thayer School of Engineering Dartmouth College Hanover NH USA
- Center for Bioenergy Innovation Oak Ridge National Laboratory Oak Ridge TN USA
| | - William E. Bentley
- Fischell Department of Bioengineering University of Maryland College Park MD USA
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD USA [e]Robert E. Fischell Institute for Biomedical Devices University of Maryland College Park MD USA
| |
Collapse
|
46
|
Agnew HN, Atack JM, Fernando AR, Waters SN, van der Linden M, Smith E, Abell AD, Brazel EB, Paton JC, Trappetti C. Uncovering the link between the SpnIII restriction modification system and LuxS in Streptococcus pneumoniae meningitis isolates. Front Cell Infect Microbiol 2023; 13:1177857. [PMID: 37197203 PMCID: PMC10184825 DOI: 10.3389/fcimb.2023.1177857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Streptococcus pneumoniae is capable of randomly switching their genomic DNA methylation pattern between six distinct bacterial subpopulations (A-F) via recombination of a type 1 restriction-modification locus, spnIII. These pneumococcal subpopulations exhibit phenotypic changes which favor carriage or invasive disease. In particular, the spnIIIB allele has been associated with increased nasopharyngeal carriage and the downregulation of the luxS gene. The LuxS/AI-2 QS system represent a universal language for bacteria and has been linked to virulence and biofilm formation in S. pneumoniae. In this work, we have explored the link between spnIII alleles, the luxS gene and virulence in two clinical pneumococcal isolates from the blood and cerebrospinal fluid (CSF) of one pediatric meningitis patient. The blood and CSF strains showed different virulence profiles in mice. Analysis of the spnIII system of these strains recovered from the murine nasopharynx showed that the system switched to different alleles commensurate with the initial source of the isolate. Of note, the blood strain showed high expression of spnIIIB allele, previously linked with less LuxS protein production. Importantly, strains with deleted luxS displayed different phenotypic profiles compared to the wildtype, but similar to the strains recovered from the nasopharynx of infected mice. This study used clinically relevant S. pneumoniae strains to demonstrate that the regulatory network between luxS and the type 1 restriction-modification system play a key role in infections and may support different adaptation to specific host niches.
Collapse
Affiliation(s)
- Hannah N. Agnew
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Environment and Science, Griffith University, Gold Coast, QLD, Australia
| | - Ann R.D. Fernando
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Sophie N. Waters
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Mark van der Linden
- German National Reference Center for Streptococci, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Erin Smith
- School of Physical Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA, Australia
| | - Andrew D. Abell
- School of Physical Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA, Australia
| | - Erin B. Brazel
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| |
Collapse
|
47
|
Lu H, Sun Y, Wang X, Lu Z, Zhu J. Transcriptomics reveal the antibiofilm mechanism of NaCl combined with citral against Vibrio parahaemolyticus. Appl Microbiol Biotechnol 2022; 107:313-326. [DOI: 10.1007/s00253-022-12286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
|
48
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
49
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
50
|
Liu Q, Zhu J, Liu N, Sun W, Yu B, Niu H, Liu D, Ouyang P, Ying H, Chen Y, Zhao G, Chen T. Type I fimbriae subunit fimA enhances Escherichia coli biofilm formation but affects L-threonine carbon distribution. Front Bioeng Biotechnol 2022; 10:904636. [PMID: 36338119 PMCID: PMC9633679 DOI: 10.3389/fbioe.2022.904636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
The biofilm (BF) provides favorable growth conditions to cells, which has been exploited in the field of industrial biotechnology. Based on our previous research works on type I fimbriae for the biosynthesis of L-threonine (LT) in Escherichia coli, in this study, a fimA-overexpressing strain was engineered, which improved BF formation under industrial fermentation conditions. The morphological observation and characterization of BF formation were conducted to verify the function of the subunit FimA. However, it was not suitable for repeated-batch immobilized fermentation as the LT titer was not elevated significantly. The underlying molecular mechanisms of BF formation and the LT carbon flux were explored by transcriptomic analysis. The results showed that fimA regulated E. coli BF formation but affected LT carbon distribution. This study will stimulate thoughts about how the fimbriae gene regulated biofilms and amino acid excretion and will bring some consideration and provide a reference for the development of BF-based biomanufacturing processes in E. coli.
Collapse
Affiliation(s)
- Qingguo Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Nanjing Hi-Tech Biological Technology Research Institute Co., Ltd., Nanjing, China
| | - Jiaqing Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Na Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bin Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Gulin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Tianpeng Chen, ; Gulin Zhao,
| | - Tianpeng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Tianpeng Chen, ; Gulin Zhao,
| |
Collapse
|