1
|
Ma L, Hung MH, Rashidi Mehrabadi F, Wang L, Li Q, Forgues M, Wang KC, Budhu A, Candia J, Chaisaingmongkol J, Rabibhadana S, Pupacdi B, Ruchirawat M, Wang XW. Beneficial infections of the enterovirus genus in patients with liver cancer. Gut 2025:gutjnl-2024-334681. [PMID: 40345802 DOI: 10.1136/gutjnl-2024-334681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a significant global cancer burden, with rising incidence and lacking a unified prevention strategy due to complex aetiologies. Viral exposures may shape host immunity via specific reactive viral antigens that could induce immune responses against hepatocarcinogenesis. OBJECTIVE We aimed to characterise viral exposure differences between HCC patients and healthy individuals and identify potentially protective viral antigens against HCC. DESIGN We profiled pan-viral serological antibody repertoires using a microbial phage library among 2647 study subjects and examined the biological activities of selective viral antigens on blood-derived immune cells from both healthy individuals and HCC patients. RESULT We identified 153 viral antigens with a significantly reduced serological response in HCC patients compared with healthy individuals. We also observed that a higher serological response to 153 viral antigens is associated with better clinical outcomes of patients with chronic liver diseases and HCC. These findings are consistent across different populations across sex, ethnicity and aetiology. We identified a common epitope (CE1) shared among 39% of reactive viral antigens that belong to the rhinovirus and enterovirus families. We demonstrated that CE1 could induce both CD4+ and CD8+ T-cell activation and CD8+ T-cell-mediated HCC cell killing. CONCLUSIONS Our results suggest that past exposures to members of the Enterovirus genus may be advantageous for cancer patients, highlighting the potential for a viral peptide-based HCC vaccine.
Collapse
Affiliation(s)
- Lichun Ma
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Man Hsin Hung
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Farid Rashidi Mehrabadi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Qin Li
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathy Cheng Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Jittiporn Chaisaingmongkol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Siritida Rabibhadana
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Benjarath Pupacdi
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
2
|
Yuan R, Zhang J, Zhou J, Cong Q. Recent progress and future challenges in structure-based protein-protein interaction prediction. Mol Ther 2025; 33:2252-2268. [PMID: 40195117 DOI: 10.1016/j.ymthe.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Protein-protein interactions (PPIs) play a fundamental role in cellular processes, and understanding these interactions is crucial for advances in both basic biological science and biomedical applications. This review presents an overview of recent progress in computational methods for modeling protein complexes and predicting PPIs based on 3D structures, focusing on the transformative role of artificial intelligence-based approaches. We further discuss the expanding biomedical applications of PPI research, including the elucidation of disease mechanisms, drug discovery, and therapeutic design. Despite these advances, significant challenges remain in predicting host-pathogen interactions, interactions between intrinsically disordered regions, and interactions related to immune responses. These challenges are worthwhile for future explorations and represent the frontier of research in this field.
Collapse
Affiliation(s)
- Rongqing Yuan
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Koyanagi N, Hengphasatporn K, Kato A, Nobe M, Takeshima K, Maruzuru Y, Maenaka K, Shigeta Y, Kawaguchi Y. Regulatory mimicry of cyclin-dependent kinases by a conserved herpesvirus protein kinase. Proc Natl Acad Sci U S A 2025; 122:e2500264122. [PMID: 40238458 PMCID: PMC12037052 DOI: 10.1073/pnas.2500264122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Herpesviruses encode conserved protein kinases (CHPKs) that target cellular cyclin-dependent kinase (CDK) phosphorylation sites; thus, they are termed viral CDK-like kinases. Tyrosine 15 in the GxGxxG motifs of CDK1 and CDK2, whose phosphorylation down-regulates their catalytic activities, is conserved in the corresponding motifs of CHPKs. We found that CHPK UL13, the corresponding Tyr-162 in herpes simplex virus 2 (HSV-2), was phosphorylated in HSV-2-infected cells. Mutational analyses of HSV-2 UL13 Tyr-162 suggested that phosphorylation of UL13 Tyr-162 reduced the phosphorylation of all UL13 substrates tested in HSV-2-infected cells. These findings suggested that HSV-2 UL13 mimicked the regulatory mechanism of CDKs and that this CHPK has regulatory and functional mimicry with CDKs. Furthermore, phosphorylation of HSV-2 UL13 Tyr-162 was suggested to be required for the downregulation of viral replication and pathogenicity, specifically in the brains of mice, and for efficient viral recurrence in guinea pigs. These findings highlight the dual impact of the regulatory mimicry of CDKs by CHPK on the fine-tuned regulation of lytic and latent HSV-2 infections in vivo.
Collapse
Grants
- JP20wm0125002 Japan Agency for Medical Research and Development (AMED)
- JP22fk0108640 Japan Agency for Medical Research and Development (AMED)
- JP22gm1610008 Japan Agency for Medical Research and Development (AMED)
- JP223fa627001 Japan Agency for Medical Research and Development (AMED)
- JP23wm0225031 Japan Agency for Medical Research and Development (AMED)
- JP23wm0225035 Japan Agency for Medical Research and Development (AMED)
- 20H05692 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H00338 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H04803 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H00417 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05584 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJPR22R5 MEXT | Japan Science and Technology Agency (JST)
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, Tsukuba305-8577, Ibaraki, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Moeka Nobe
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Kosuke Takeshima
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku060-0812, Sapporo, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku060-0812, Sapporo, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba305-8577, Ibaraki, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Minato-ku 108-8639, Tokyo, Japan
| |
Collapse
|
4
|
Szymanik KH, Rex EA, Pothireddy VR, Gammon DB, Hancks DC, Sullivan CS. Viral piracy of host RNA phosphatase DUSP11 by avipoxviruses. PLoS Pathog 2025; 21:e1013101. [PMID: 40258008 PMCID: PMC12058148 DOI: 10.1371/journal.ppat.1013101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 05/07/2025] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'ppp generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how experimentally altered DUSP11 activity can impact immune activation, prompting further exploration into natural contexts of altered DUSP11 activity. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of host DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a context where DUSP11 activity has been co-opted by viruses to alter RNA metabolism and influence the outcome of infection.
Collapse
Affiliation(s)
- Kayla H. Szymanik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Emily A. Rex
- Department of Microbiology, UT. Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vamshikrishna R. Pothireddy
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Don B. Gammon
- Department of Microbiology, UT. Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dustin C. Hancks
- Department of Immunology, UT. Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher S. Sullivan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
5
|
Su WC, Xia Y. Virus targeting as a dominant driver of interfacial evolution in the structurally resolved human-virus protein-protein interaction network. Cell Syst 2025; 16:101202. [PMID: 40023148 DOI: 10.1016/j.cels.2025.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Regions on a host protein that interact with virus proteins (exogenous interfaces) frequently overlap with those that interact with other host proteins (endogenous interfaces), resulting in competition between hosts and viruses for these shared interfaces (mimic-targeted interfaces). Yet, the evolutionary consequences of this competitive relationship on the host are not well understood. Here, we integrate experimentally determined structures and homology-based templates of protein complexes with protein-protein interaction networks to construct a high-resolution human-virus structural interaction network. We perform site-specific evolutionary rate analyses on this structural interaction network and find that exogenous-specific interfaces evolve faster than endogenous-specific interfaces. Mimic-targeted interfaces evolve as fast as exogenous-specific interfaces, despite being targeted by both human and virus proteins. Our findings suggest that virus targeting plays a dominant role in host interfacial evolution within the context of domain-domain interactions and that mimic-targeted interfaces on human proteins are the key battleground for a mammalian-specific host-virus evolutionary arms race.
Collapse
Affiliation(s)
- Wan-Chun Su
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Yu Xia
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada.
| |
Collapse
|
6
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
7
|
Solomon RN, Pittner NA, McCoy JR, Warwick PA, McBride JW. Cell signaling in Ehrlichia infection and cancer: Parallels in pathogenesis. Front Cell Infect Microbiol 2025; 15:1539847. [PMID: 40028182 PMCID: PMC11868041 DOI: 10.3389/fcimb.2025.1539847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) has recently emerged as an intracellular bacterial pathogen with sophisticated survival mechanisms that include repurposing evolutionarily conserved eukaryotic cell signaling pathways for immune evasion. E. chaffeensis exploits four major developmental signaling pathways (Wnt, Notch, Hedgehog, and Hippo) using short linear motif (SLiM) ligand mimicry to initiate signaling cascades. Dysregulation of these major signaling pathways leading to unchecked cell survival is implicated in various diseases, most notably cancer. E. chaffeensis exploits Wnt, Notch, Hedgehog and Hippo signaling pathways to inhibit apoptosis and co-opt other cellular functions to promote infection. This review will explore the signaling pathways exploited during Ehrlichia infection and the new discoveries that have illuminated this interesting example of the cell signaling convergence in cellular infection and cancer biology.
Collapse
Affiliation(s)
- Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jaclyn R. McCoy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Paityn A. Warwick
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
8
|
Russell SL, Penunuri G, Condon C. Diverse genetic conflicts mediated by molecular mimicry and computational approaches to detect them. Semin Cell Dev Biol 2025; 165:1-12. [PMID: 39079455 DOI: 10.1016/j.semcdb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 09/07/2024]
Abstract
In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations. Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.
Collapse
Affiliation(s)
- Shelbi L Russell
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Gabriel Penunuri
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Christopher Condon
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
9
|
Lin SY, Futeran H, Levine MT. Adaptive protein coevolution preserves telomere integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623029. [PMID: 39605578 PMCID: PMC11601235 DOI: 10.1101/2024.11.11.623029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Many essential conserved functions depend, paradoxically, on proteins that evolve rapidly under positive selection. How such adaptively evolving proteins promote biological innovation while preserving conserved, essential functions remains unclear. Here, we experimentally test the hypothesis that adaptive protein-protein coevolution within an essential multi-protein complex mitigates the deleterious incidental byproducts of innovation under pressure from selfish genetic elements. We swapped a single, adaptively evolving subunit of a telomere protection complex from Drosophila yakuba into its close relative, D. melanogaster. The heterologous subunit uncovered a catastrophic interspecies incompatibility that caused lethal telomere fusions. Restoring six adaptively evolving sites on the protein-protein interaction surface, or introducing the D. yakuba interaction partner, rescued telomere integrity and viability. Our in vivo, evolution-guided manipulations illuminate how adaptive protein-protein coevolution preserves essential functions threatened by an evolutionary pressure to innovate.
Collapse
Affiliation(s)
- Sung-Ya Lin
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Hannah Futeran
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| | - Mia T. Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Xiao Y, Yuan S, Qiu Y, Ge XY. Virome-wide analysis of histone modification mimicry motifs carried by viral proteins. Virol Sin 2024; 39:793-801. [PMID: 39293541 PMCID: PMC11738798 DOI: 10.1016/j.virs.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Histone mimicry (HM) refers to the presence of short linear motifs in viral proteins that mimic critical regions of host histone proteins. These motifs have the potential to interfere with host cell epigenome and counteract antiviral response. Recent research shows that HM is critical for the pathogenesis and transmissibility of influenza virus and coronavirus. However, the distribution, characteristics, and functions of HM in eukaryotic viruses remain obscure. Herein, we developed a bioinformatic pipeline, Histone Motif Scan (HiScan), to identify HM motifs in viral proteins and predict their functions in silico. By analyzing 592,643 viral proteins using HiScan, we found that putative HM motifs were widely distributed in most viral proteins. Among animal viruses, the ratio of HM motifs between DNA viruses and RNA viruses was approximately 1.9:1, and viruses with smaller genomes had a higher density of HM motifs. Notably, coronaviruses exhibited an uneven distribution of HM motifs, with betacoronaviruses (including most human pathogenic coronaviruses) harboring more HM motifs than other coronaviruses, primarily in the NSP3, S, and N proteins. In summary, our virome-wide screening of HM motifs using HiScan revealed extensive but uneven distribution of HM motifs in most viral proteins, with a preference in DNA viruses. Viral HM may play an important role in modulating viral pathogenicity and virus-host interactions, making it an attractive area of research in virology and antiviral medication.
Collapse
Affiliation(s)
- Yang Xiao
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410012, China
| | - Shuofeng Yuan
- Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
11
|
Szymanik KH, Hancks DC, Sullivan CS. Viral piracy of host RNA phosphatase DUSP11 by avipoxviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606876. [PMID: 39211142 PMCID: PMC11361023 DOI: 10.1101/2024.08.06.606876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'pppRNA generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how artificially altered DUSP11 can impact immune activation, prompting further exploration into natural contexts of altered DUSP11. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of endogenous DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a virus-relevant context where DUSP11 activity has been co-opted to alter RNA metabolism and influence the outcome of infection.
Collapse
|
12
|
Kalita E, Panda M, Rao A, Pandey RK, Prajapati VK. Viral mimicry and endocrine system: Divulging the importance in host-microbial crosstalk. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:421-436. [PMID: 39059993 DOI: 10.1016/bs.apcsb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Host-pathogen interactions are complex associations which evolve over long co-evolutionary histories. Pathogens exhibit different mechanisms to gain advantage over their host. Mimicry of host factors is an influential tool in subverting host mechanisms to ensure pathogenesis. This chapter discusses such molecular mimicry exhibited during viral infections. Understanding the evolutionary relationships, shared identity and functional impact of the virus encoded mimics is critical. With a particular emphasis on viral mimics and their association with cancer and autoimmune diseases, this chapter highlights the importance of molecular mimicry in virus biology.
Collapse
Affiliation(s)
- Elora Kalita
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Mamta Panda
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf Martinistraße, Hamburg, Germany
| | - Abhishek Rao
- Department of Biochemistry, Central University of Rajasthan, Rajasthan, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
13
|
Domma AJ, Henderson LA, Nurdin JA, Kamil JP. Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints? Adv Virus Res 2024; 119:63-110. [PMID: 38897709 PMCID: PMC11192240 DOI: 10.1016/bs.aivir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.
Collapse
Affiliation(s)
- Anthony J Domma
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Jeffery A Nurdin
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jeremy P Kamil
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
14
|
Guo E, Chou SZ, Lara-Tejero M, Galan JE. Cryo-EM structure of the bacterial effector protein SipA bound to F-actin reveals a unique mechanism for filament stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572903. [PMID: 38187563 PMCID: PMC10769390 DOI: 10.1101/2023.12.21.572903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The bacterial pathogen Salmonella spp. modulates cellular processes by delivering effector proteins through its type III secretion systems. Among these effectors, SipA facilitates bacterial invasion and promotes intestinal inflammation. The mechanisms by which this effector carries out these functions are incompletely understood although SipA's ability to modulate actin dynamics is central to some of these activities. Here we report the cryo-EM structure of SipA bound to filamentous actin. We show that this effector stabilizes actin filaments through unique interactions of its carboxy terminal domain with four actin subunits. Furthermore, our structure-function studies revealed that SipA's actin-binding activity is independent from its ability to stimulate intestinal inflammation. Overall, these studies illuminate critical aspects of Salmonella pathogenesis, and provide unique insight into the mechanisms by which a bacterial effector modulates actin dynamics.
Collapse
|
15
|
Company C, Schmitt MJ, Dramaretska Y, Serresi M, Kertalli S, Jiang B, Yin JA, Aguzzi A, Barozzi I, Gargiulo G. Logical design of synthetic cis-regulatory DNA for genetic tracing of cell identities and state changes. Nat Commun 2024; 15:897. [PMID: 38316783 PMCID: PMC10844330 DOI: 10.1038/s41467-024-45069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Descriptive data are rapidly expanding in biomedical research. Instead, functional validation methods with sufficient complexity remain underdeveloped. Transcriptional reporters allow experimental characterization and manipulation of developmental and disease cell states, but their design lacks flexibility. Here, we report logical design of synthetic cis-regulatory DNA (LSD), a computational framework leveraging phenotypic biomarkers and trans-regulatory networks as input to design reporters marking the activity of selected cellular states and pathways. LSD uses bulk or single-cell biomarkers and a reference genome or custom cis-regulatory DNA datasets with user-defined boundary regions. By benchmarking validated reporters, we integrate LSD with a computational ranking of phenotypic specificity of putative cis-regulatory DNA. Experimentally, LSD-designed reporters targeting a wide range of cell states are functional without minimal promoters. Applied to broadly expressed genes from human and mouse tissues, LSD generates functional housekeeper-like sLCRs compatible with size constraints of AAV vectors for gene therapy applications. A mesenchymal glioblastoma reporter designed by LSD outperforms previously validated ones and canonical cell surface markers. In genome-scale CRISPRa screens, LSD facilitates the discovery of known and novel bona fide cell-state drivers. Thus, LSD captures core principles of cis-regulation and is broadly applicable to studying complex cell states and mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Carlos Company
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Sonia Kertalli
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ben Jiang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Jiang-An Yin
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany.
| |
Collapse
|
16
|
Correa Marrero M, Capdevielle S, Huang W, Al-Subhi AM, Busscher M, Busscher-Lange J, van der Wal F, de Ridder D, van Dijk ADJ, Hogenhout SA, Immink RGH. Protein interaction mapping reveals widespread targeting of development-related host transcription factors by phytoplasma effectors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1281-1297. [PMID: 37965720 DOI: 10.1111/tpj.16546] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Phytoplasmas are pathogenic bacteria that reprogram plant host development for their own benefit. Previous studies have characterized a few different phytoplasma effector proteins that destabilize specific plant transcription factors. However, these are only a small fraction of the potential effectors used by phytoplasmas; therefore, the molecular mechanisms through which phytoplasmas modulate their hosts require further investigation. To obtain further insights into the phytoplasma infection mechanisms, we generated a protein-protein interaction network between a broad set of phytoplasma effectors and a large, unbiased collection of Arabidopsis thaliana transcription factors and transcriptional regulators. We found widespread, but specific, interactions between phytoplasma effectors and host transcription factors, especially those related to host developmental processes. In particular, many unrelated effectors target specific sets of TCP transcription factors, which regulate plant development and immunity. Comparison with other host-pathogen protein interaction networks shows that phytoplasma effectors have unusual targets, indicating that phytoplasmas have evolved a unique and unusual infection strategy. This study contributes a rich and solid data source that guides further investigations of the functions of individual effectors, as demonstrated for some herein. Moreover, the dataset provides insights into the underlying molecular mechanisms of phytoplasma infection.
Collapse
Affiliation(s)
- Miguel Correa Marrero
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sylvain Capdevielle
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Ali M Al-Subhi
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, 11 Al Khod 123, al-Seeb, Oman
| | - Marco Busscher
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Froukje van der Wal
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
17
|
He JH, Shen W, Han D, Yan M, Luo M, Deng H, Weng S, He J, Xu X. Molecular mechanism of the interaction between Megalocytivirus-induced virus-mock basement membrane (VMBM) and lymphatic endothelial cells. J Virol 2023; 97:e0048023. [PMID: 37877715 PMCID: PMC10688346 DOI: 10.1128/jvi.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.
Collapse
Affiliation(s)
- Jian-hui He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Deyu Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Muting Yan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Mengting Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Tayal S, Bhatnagar S. Role of molecular mimicry in the SARS-CoV-2-human interactome for pathogenesis of cardiovascular diseases: An update to ImitateDB. Comput Biol Chem 2023; 106:107919. [PMID: 37463554 DOI: 10.1016/j.compbiolchem.2023.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Mimicry of host proteins is a strategy employed by pathogens to hijack host functions. Domain and motif mimicry was explored in the experimental and predicted SARS-CoV-2-human interactome. The host first interactor proteins were also added to capture the continuum of the interactions. The domains and motifs of the proteins were annotated using NCBI CD Search and ScanProsite, respectively. Host and pathogen proteins with a common host interactor and similar domain/motif constitute a mimicry pair indicating global structural similarity (domain mimicry pair; DMP) or local sequence similarity (motif mimicry pair; MMP). 593 DMPs and 7,02,472 MMPs were determined. AAA, DEXDc and Macro domains were frequent among DMPs whereas glycosylation, myristoylation and RGD motifs were abundant among MMP. The proteins involved in mimicry were visualised as a SARS-CoV-2 mimicry interaction network. The host proteins were enriched in multiple CVD pathways indicating the role of mimicry in COVID-19 associated CVDs. Bridging nodes were identified as potential drug targets. Approved antihypertensive and anti-inflammatory drugs are proposed for repurposing against COVID-19 associated CVDs. The SARS-CoV-2 mimicry data has been updated in ImitateDB (http://imitatedb.sblab-nsit.net/SARSCoV2Mimicry). Determination of key mechanisms, proteins, pathways, drug targets and repurposing candidates is critical for developing therapeutics for SARS CoV-2 associated CVDs.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi 110078, India.
| |
Collapse
|
19
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
20
|
Martins YC, Jurberg AD, Daniel-Ribeiro CT. Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms 2023; 11:1472. [PMID: 37374974 DOI: 10.3390/microorganisms11061472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
The concept of molecular mimicry describes situations in which antigen sharing between parasites and hosts could benefit pathogen evasion from host immune responses. However, antigen sharing can generate host responses to parasite-derived self-like peptides, triggering autoimmunity. Since its conception, molecular mimicry and the consequent potential cross-reactivity following infections have been repeatedly described in humans, raising increasing interest among immunologists. Here, we reviewed this concept focusing on the challenge of maintaining host immune tolerance to self-components in parasitic diseases. We focused on the studies that used genomics and bioinformatics to estimate the extent of antigen sharing between proteomes of different organisms. In addition, we comparatively analyzed human and murine proteomes for peptide sharing with proteomes of pathogenic and non-pathogenic organisms. We conclude that, although the amount of antigenic sharing between hosts and both pathogenic and non-pathogenic parasites and bacteria is massive, the degree of this antigen sharing is not related to pathogenicity or virulence. In addition, because the development of autoimmunity in response to infections by microorganisms endowed with cross-reacting antigens is rare, we conclude that molecular mimicry by itself is not a sufficient factor to disrupt intact self-tolerance mechanisms.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Department of Anesthesiology, Saint Louis University School of Medicine, St. Louis, MO 63110, USA
| | - Arnon Dias Jurberg
- Instituto de Educação Médica, Campus Vista Carioca, Universidade Estácio de Sá, Rio de Janeiro 20071-004, RJ, Brazil
- Laboratório de Animais Transgênicos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
21
|
Wang G, Zhang D, Orchard RC, Hancks DC, Reese TA. Norovirus MLKL-like protein initiates cell death to induce viral egress. Nature 2023; 616:152-158. [PMID: 36991121 PMCID: PMC10348409 DOI: 10.1038/s41586-023-05851-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/15/2023] [Indexed: 03/30/2023]
Abstract
Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis1-3. Here we identify a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase NS3 contains an N-terminal four-helix bundle domain homologous to the membrane-disruption domain of the pseudokinase mixed lineage kinase domain-like (MLKL). NS3 has a mitochondrial localization signal and thus induces cell death by targeting mitochondria. Full-length NS3 and an N-terminal fragment of the protein bound the mitochondrial membrane lipid cardiolipin, permeabilized the mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NS3 were essential for cell death, viral egress from cells and viral replication in mice. These findings suggest that noroviruses have acquired a host MLKL-like pore-forming domain to facilitate viral egress by inducing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Di Zhang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Wang G, Zhang D, Orchard R, Hancks DC, Reese TA. Norovirus MLKL-like pore forming protein initiates programed cell death for viral egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533118. [PMID: 36993770 PMCID: PMC10055165 DOI: 10.1101/2023.03.17.533118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but a mechanism of norovirus-infection triggered cell death and lysis are unknown. Here we have identified a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase contains a N-terminal four helix bundle domain homologous to the pore forming domain of the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL). Norovirus NTPase acquired a mitochondrial localization signal, thereby inducing cell death by targeting mitochondria. NTPase full length (NTPase-FL) and N-terminal fragment (NTPase-NT) bound mitochondrial membrane lipid cardiolipin, permeabilized mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NTPase were essential for cell death, virus egress from cells and virus replication in mice. These findings suggest that noroviruses stole a MLKL-like pore forming domain and co-opted it to facilitate viral egress by inducing mitochondrial dysfunction.
Collapse
|
23
|
Agrahari AK, Srivastava M, Singh M, Asthana S. SARS-CoV-2 envelope protein attain K ac mediated dynamical interaction network to adopt 'histone mimic' at BRD4 interface. J Biomol Struct Dyn 2023; 41:15305-15319. [PMID: 36907648 DOI: 10.1080/07391102.2023.2188430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Interface mimicry, achieved by recognition of host-pathogen interactions, is the basis by which pathogen proteins can hijack the host machinery. The envelope (E) protein of SARS-CoV-2 is reported to mimic the histones at the BRD4 surface via establishing the structural mimicry; however, the underlying mechanism of E protein mimicking the histones is still elusive. To explore the mimics at dynamic and structural residual network level an extensive docking, and MD simulations were carried out in a comparative manner between complexes of H3-, H4-, E-, and apo-BRD4. We identified that E peptide is able to attain an 'interaction network mimicry', as its acetylated lysine (Kac) achieves orientation and residual fingerprint similar to histones, including water-mediated interactions for both the Kac positions. We identified Y59 of E, playing an anchor role to escort lysine positioning inside the binding site. Furthermore, the binding site analysis confirms that E peptide needs a higher volume, similar to the H4-BRD4 where both the lysine's (Kac5 and Kac8) can accommodate nicely, however, the position of Kac8 is mimicked by two additional water molecules other than four water-mediated bridging's, strengthening the possibility that E peptide could hijack host BRD4 surface. These molecular insights seem pivotal for mechanistic understanding and BRD4-specific therapeutic intervention. KEY POINTSMolecular mimicry is reported in hijacking and then outcompeting the host counterparts so that pathogens can rewire their cellular function by overcoming the host defense mechanism.The molecular recognition process is the basis of molecular mimicry. The E peptide of SARS-CoV-2 is reported to mimic host histone at the BRD4 surface by utilizing its C-terminally placed acetylated lysine (Kac63) to mimic the N-terminally placed acetylated lysine Kac5GGKac8 histone (H4) by interaction network mimicry identified through microsecond molecular dynamics (MD) simulations and post-processing extensive analysis.There are two steps to mimic: firstly, tyrosine residues help E to anchor at the BRD4 surface to position Kac and increase the volume of the pocket. Secondary, after positioning of Kac, a common durable interaction network N140:Kac5; Kac5:W1; W1:Y97; W1:W2; W2:W3; W3:W4; W4:P82 is established between Kac5, with key residues P82, Y97, N140, and four water molecules through water mediate bridge. Furthermore, the second acetylated lysine Kac8 position and its interaction as polar contact with Kac5 were also mimicked by E peptide through interaction network P82:W5; W5:Kac63; W5:W6; W6:Kac63.The binding event at BRD4/BD1 seems an induced-fit mechanism as a bigger binding site volume was identified at H4-BRD4 on which E peptide attains its better stability than H3-BRD4.We identified the tyrosine residue Y59 of E that acts like an anchor on the BRD4 surface to position Kac inside the pocket and attain the interaction network by using aromatic residues of the BRD4 surface.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| |
Collapse
|
24
|
Geng S, Li Q, Zhou X, Zheng J, Liu H, Zeng J, Yang R, Fu H, Hao F, Feng Q, Qi B. Gut commensal E. coli outer membrane proteins activate the host food digestive system through neural-immune communication. Cell Host Microbe 2022; 30:1401-1416.e8. [PMID: 36057258 DOI: 10.1016/j.chom.2022.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract facilitates food digestion, with the gut microbiota playing pivotal roles in nutrient breakdown and absorption. However, the microbial molecules and downstream signaling pathways that activate food digestion remain unexplored. Here, by establishing a food digestion system in C. elegans, we discover that food breakdown is regulated by the interaction between bacterial outer membrane proteins (OMPs) and a neural-immune pathway. E. coli OmpF/A activate digestion by increasing the neuropeptide NLP-12 that acts on the receptor CCKR. NLP-12 is homologous to mammalian cholecystokinin, known to stimulate dopamine, and we found that loss of dopamine receptors or addition of a dopamine antagonist inhibited OMP-mediated digestion. Dopamine and NLP-12-CKR-1 converge to inhibit PMK-1/p38 innate immune signaling. Moreover, directly inhibiting PMK-1/p38 boosts food digestion. This study uncovers a role of bacterial OMPs in regulating animal nutrient uptake and supports a key role for innate immunity in digestion.
Collapse
Affiliation(s)
- Shengya Geng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Qian Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Xue Zhou
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Junkang Zheng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Huimin Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Jie Zeng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Ruizhi Yang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Herui Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Fanrui Hao
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Qianxu Feng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Bin Qi
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China.
| |
Collapse
|
25
|
Alqassim SS. Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins. Int J Mol Sci 2022; 23:ijms231911606. [PMID: 36232907 PMCID: PMC9569871 DOI: 10.3390/ijms231911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The actin cytoskeleton lies at the heart of many essential cellular processes. There are hundreds of proteins that cells use to control the size and shape of actin cytoskeletal networks. As such, various pathogens utilize different strategies to hijack the infected eukaryotic host actin dynamics for their benefit. These include the control of upstream signaling pathways that lead to actin assembly, control of eukaryotic actin assembly factors, encoding toxins that distort regular actin dynamics, or by encoding effectors that directly interact with and assemble actin filaments. The latter class of effectors is unique in that, quite often, they assemble actin in a straightforward manner using novel sequences, folds, and molecular mechanisms. The study of these mechanisms promises to provide major insights into the fundamental determinants of actin assembly, as well as a deeper understanding of host-pathogen interactions in general, and contribute to therapeutic development efforts targeting their respective pathogens. This review discusses mechanisms and highlights shared and unique features of actin assembly by pathogen effectors that directly bind and assemble actin, focusing on eukaryotic actin nucleator functional mimics Rickettsia Sca2 (formin mimic), Burkholderia BimA (Ena/VASP mimic), and Vibrio VopL (tandem WH2-motif mimic).
Collapse
Affiliation(s)
- Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Health Care City, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
26
|
Kee J, Thudium S, Renner DM, Glastad K, Palozola K, Zhang Z, Li Y, Lan Y, Cesare J, Poleshko A, Kiseleva AA, Truitt R, Cardenas-Diaz FL, Zhang X, Xie X, Kotton DN, Alysandratos KD, Epstein JA, Shi PY, Yang W, Morrisey E, Garcia BA, Berger SL, Weiss SR, Korb E. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 2022; 610:381-388. [PMID: 36198800 PMCID: PMC9533993 DOI: 10.1038/s41586-022-05282-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.
Collapse
Affiliation(s)
- John Kee
- Department of Genetics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Thudium
- Department of Genetics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David M Renner
- Department of Microbiology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Karl Glastad
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine Palozola
- Department of Genetics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zhen Zhang
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yize Li
- Department of Microbiology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Cesare
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anna A Kiseleva
- Department of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Truitt
- Department of Medicine at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Fabian L Cardenas-Diaz
- Department of Medicine at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Konstantinos D Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenli Yang
- Department of Medicine at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Morrisey
- Department of Medicine at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan R Weiss
- Department of Microbiology at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Fixsen SM, Cone KR, Goldstein SA, Sasani TA, Quinlan AR, Rothenburg S, Elde NC. Poxviruses capture host genes by LINE-1 retrotransposition. eLife 2022; 11:e63332. [PMID: 36069526 PMCID: PMC9578705 DOI: 10.7554/elife.63332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Horizontal gene transfer (HGT) provides a major source of genetic variation. Many viruses, including poxviruses, encode genes with crucial functions directly gained by gene transfer from hosts. The mechanism of transfer to poxvirus genomes is unknown. Using genome analysis and experimental screens of infected cells, we discovered a central role for Long Interspersed Nuclear Element-1 retrotransposition in HGT to virus genomes. The process recapitulates processed pseudogene generation, but with host messenger RNA directed into virus genomes. Intriguingly, hallmark features of retrotransposition appear to favor virus adaption through rapid duplication of captured host genes on arrival. Our study reveals a previously unrecognized conduit of genetic traffic with fundamental implications for the evolution of many virus classes and their hosts.
Collapse
Affiliation(s)
- Sarah M Fixsen
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Kelsey R Cone
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | | | - Thomas A Sasani
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Aaron R Quinlan
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, University of California, DavisDavisUnited States
| | - Nels C Elde
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
28
|
Martyn JE, Gomez-Valero L, Buchrieser C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol Rev 2022; 46:6529235. [DOI: 10.1093/femsre/fuac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Intracellular pathogens that are able to thrive in different environments, such as Legionella spp. which preferentially live in protozoa in aquatic environments or environmental Chlamydiae which replicate either within protozoa or a range of animals, possess a plethora of cellular biology tools to influence their eukaryotic host. The host manipulation tools that evolved in the interaction with protozoa, confer these bacteria the capacity to also infect phylogenetically distinct eukaryotic cells, such as macrophages and thus they can also be human pathogens. To manipulate the host cell, bacteria use protein secretion systems and molecular effectors. Although these molecular effectors are encoded in bacteria, they are expressed and function in a eukaryotic context often mimicking or inhibiting eukaryotic proteins. Indeed, many of these effectors have eukaryotic-like domains. In this review we propose that the main pathways environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodelling, ubiquitination signalling, and modulation of protein-protein interactions via tandem repeat domains. We then provide mechanistic insight into how these proteins might have evolved as molecular weapons. Finally, we highlight that in environmental intracellular bacteria the number of eukaryotic-like domains and proteins is considerably higher than in intracellular bacteria specialised to an isolated niche, such as obligate intracellular human pathogens. As mimics of eukaryotic proteins are critical components of host pathogen interactions, this distribution of eukaryotic-like domains suggests that the environment has selected them.
Collapse
Affiliation(s)
- Jessica E Martyn
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| |
Collapse
|
29
|
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30:357-372.e11. [PMID: 35182467 PMCID: PMC8912257 DOI: 10.1016/j.chom.2022.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
Collapse
Affiliation(s)
- Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - John P Shannon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Marcus T Au
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
30
|
A case of convergent evolution: Several viral and bacterial pathogens hijack RSK kinases through a common linear motif. Proc Natl Acad Sci U S A 2022; 119:2114647119. [PMID: 35091472 PMCID: PMC8812568 DOI: 10.1073/pnas.2114647119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.
Collapse
|
31
|
Koonin EV, Krupovic M. A life LINE for large viruses. eLife 2022; 11:83488. [PMID: 36282171 PMCID: PMC9596153 DOI: 10.7554/elife.83488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As long suspected, poxviruses capture host genes through a reverse-transcription process now shown to be mediated by retrotransposons.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of HealthBethesdaUnited States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology UnitParisFrance
| |
Collapse
|
32
|
Tsu BV, Fay EJ, Nguyen KT, Corley MR, Hosuru B, Dominguez VA, Daugherty MD. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol 2021; 12:769543. [PMID: 34790204 PMCID: PMC8591160 DOI: 10.3389/fimmu.2021.769543] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew D. Daugherty
- Division of Biological Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
33
|
Viana F, Peringathara SS, Rizvi A, Schroeder GN. Host manipulation by bacterial type III and type IV secretion system effector proteases. Cell Microbiol 2021; 23:e13384. [PMID: 34392594 PMCID: PMC11475232 DOI: 10.1111/cmi.13384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Proteases are powerful enzymes, which cleave peptide bonds, leading most of the time to irreversible fragmentation or degradation of their substrates. Therefore they control many critical cell fate decisions in eukaryotes. Bacterial pathogens exploit this power and deliver protease effectors through specialised secretion systems into host cells. Research over the past years revealed that the functions of protease effectors during infection are diverse, reflecting the lifestyles and adaptations to specific hosts; however, only a small number of peptidase families seem to have given rise to most of these protease virulence factors by the evolution of different substrate-binding specificities, intracellular activation and subcellular targeting mechanisms. Here, we review our current knowledge about the enzymology and function of protease effectors, which Gram-negative bacterial pathogens translocate via type III and IV secretion systems to irreversibly manipulate host processes. We highlight emerging concepts such as signalling by protease cleavage products and effector-triggered immunity, which host cells employ to detect and defend themselves against a protease attack. TAKE AWAY: Proteases irreversibly cleave proteins to control critical cell fate decisions. Gram-negative bacteria use type III and IV secretion systems to inject effectors. Protease effectors are integral weapons for the manipulation of host processes. Effectors evolved from few peptidase families to target diverse substrates. Effector-triggered immunity upon proteolytic attack emerges as host defence.
Collapse
Affiliation(s)
- Flávia Viana
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Shruthi Sachidanandan Peringathara
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Arshad Rizvi
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Gunnar N. Schroeder
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| |
Collapse
|
34
|
Gao M, He Y, Yin X, Zhong X, Yan B, Wu Y, Chen J, Li X, Zhai K, Huang Y, Gong X, Chang H, Xie S, Liu J, Yue J, Xu J, Zhang G, Deng Y, Wang E, Tharreau D, Wang GL, Yang W, He Z. Ca 2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 2021; 184:5391-5404.e17. [PMID: 34597584 DOI: 10.1016/j.cell.2021.09.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.
Collapse
Affiliation(s)
- Mingjun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbin Zhong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Bingxiao Yan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yue Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jin Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyuan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yifeng Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiangyu Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huizhong Chang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shenghan Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiaxing Yue
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jianlong Xu
- Insititute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guiquan Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Didier Tharreau
- PHIM, CIRAD, INRAE, IRD, Montpellier SupAgro, MUSE, Montpellier Cedex 05, France
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, OH 43210, USA
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
35
|
Rheinemann L, Downhour DM, Bredbenner K, Mercenne G, Davenport KA, Schmitt PT, Necessary CR, McCullough J, Schmitt AP, Simon SM, Sundquist WI, Elde NC. RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis. Cell 2021; 184:5419-5431.e16. [PMID: 34597582 PMCID: PMC8929533 DOI: 10.1016/j.cell.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Diane Miller Downhour
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kate Bredbenner
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Gaelle Mercenne
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kristen A Davenport
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Phuong Tieu Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christina R Necessary
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Anthony P Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10065, USA.
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
Girdhar K, Powis A, Raisingani A, Chrudinová M, Huang R, Tran T, Sevgi K, Dogus Dogru Y, Altindis E. Viruses and Metabolism: The Effects of Viral Infections and Viral Insulins on Host Metabolism. Annu Rev Virol 2021; 8:373-391. [PMID: 34586876 PMCID: PMC9175272 DOI: 10.1146/annurev-virology-091919-102416] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decades, there have been tremendous efforts to understand the cross-talk between viruses and host metabolism. Several studies have elucidated the mechanisms through which viral infections manipulate metabolic pathways including glucose, fatty acid, protein, and nucleotide metabolism. These pathways are evolutionarily conserved across the tree of life and extremely important for the host's nutrient utilization and energy production. In this review, we focus on host glucose, glutamine, and fatty acid metabolism and highlight the pathways manipulated by the different classes of viruses to increase their replication. We also explore a new system of viral hormones in which viruses mimic host hormones to manipulate the host endocrine system. We discuss viral insulin/IGF-1-like peptides and their potential effects on host metabolism. Together, these pathogenesis mechanisms targeting cellular signaling pathways create a multidimensional network of interactions between host and viral proteins. Defining and better understanding these mechanisms will help us to develop new therapeutic tools to prevent and treat viral infections.
Collapse
Affiliation(s)
- Khyati Girdhar
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Amaya Powis
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Amol Raisingani
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Martina Chrudinová
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Ruixu Huang
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Tu Tran
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Kaan Sevgi
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Yusuf Dogus Dogru
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Emrah Altindis
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| |
Collapse
|
37
|
Armijos-Jaramillo V, Mosquera A, Rojas B, Tejera E. The search for molecular mimicry in proteins carried by extracellular vesicles secreted by cells infected with Plasmodium falciparum. Commun Integr Biol 2021; 14:212-220. [PMID: 34527168 PMCID: PMC8437455 DOI: 10.1080/19420889.2021.1972523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Red blood cells infected with Plasmodium falciparum secrete extracellular vesicles in order to facilitate the survival and infection of human cells. Various researchers have studied the composition of these extracellular vesicles and identified the proteins contained inside. In this work, we used that information to detect potential P. falciparum molecules that could be imitating host proteins. We carried out several searches to detect sequences and structural similarities between the parasite and host. Additionally, the possibility of functional mimicry was explored in line with the potential role that each candidate can perform for the parasite inside the host. Lastly, we determined a set of eight sequences (mainly moonlighting proteins) with a remarkable resemblance to human proteins. Due to the resemblance observed, this study proposes the possibility that certain P. falciparum molecules carried by extracellular vesicles could be imitating human proteins to manipulate the host cell's physiology.
Collapse
Affiliation(s)
- Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Andrea Mosquera
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Brian Rojas
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Eduardo Tejera
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
38
|
Abstract
Valencia-Sánchez et al. (2021) and Liu et al. (2021) provide structural and biological insights about the existence and importance of a nucleosome-like particle in a family of giant viruses.
Collapse
Affiliation(s)
- Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK; Fondazione Human Technopole, Structural Biology Research Centre, 20157, Milan, Italy.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
39
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
40
|
Beaudoin CA, Jamasb AR, Alsulami AF, Copoiu L, van Tonder AJ, Hala S, Bannerman BP, Thomas SE, Vedithi SC, Torres PH, Blundell TL. Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Comput Struct Biotechnol J 2021; 19:3938-3953. [PMID: 34234921 PMCID: PMC8249111 DOI: 10.1016/j.csbj.2021.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/19/2022] Open
Abstract
Potential coronavirus spike protein mimicry revealed by structural comparison. Human and non-human protein potential interactions with virus identified. Predicted structural mimicry corroborated by protein–protein docking. Epitope-based alignments may help guide vaccine efforts.
Viruses often encode proteins that mimic host proteins in order to facilitate infection. Little work has been done to understand the potential mimicry of the SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins, particularly the receptor-binding motifs, which could be important in determining tropism and druggability of the virus. Peptide and epitope motifs have been detected on coronavirus spike proteins using sequence homology approaches; however, comparing the three-dimensional shape of the protein has been shown as more informative in predicting mimicry than sequence-based comparisons. Here, we use structural bioinformatics software to characterize potential mimicry of the three coronavirus spike protein receptor-binding motifs. We utilize sequence-independent alignment tools to compare structurally known protein models with the receptor-binding motifs and verify potential mimicked interactions with protein docking simulations. Both human and non-human proteins were returned for all three receptor-binding motifs. For example, all three were similar to several proteins containing EGF-like domains: some of which are endogenous to humans, such as thrombomodulin, and others exogenous, such as Plasmodium falciparum MSP-1. Similarity to human proteins may reveal which pathways the spike protein is co-opting, while analogous non-human proteins may indicate shared host interaction partners and overlapping antibody cross-reactivity. These findings can help guide experimental efforts to further understand potential interactions between human and coronavirus proteins.
Collapse
Affiliation(s)
- Christopher A. Beaudoin
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Corresponding authors.
| | - Arian R. Jamasb
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Department of Computer Science & Technology, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0FD, United Kingdom
| | - Ali F. Alsulami
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Liviu Copoiu
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, United Kingdom
| | - Sharif Hala
- King Abdullah International Medical Research Centre – Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Bridget P. Bannerman
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Sherine E. Thomas
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Sundeep Chaitanya Vedithi
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Pedro H.M. Torres
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tom L. Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Corresponding authors.
| |
Collapse
|
41
|
Armijos-Jaramillo V, Espinosa N, Vizcaíno K, Santander-Gordón D. A Novel In Silico Method for Molecular Mimicry Detection Finds a Formin with the Potential to Manipulate the Maize Cell Cytoskeleton. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:815-825. [PMID: 33755496 DOI: 10.1094/mpmi-11-20-0332-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular mimicry is one of the evolutionary strategies that parasites use to manipulate the host metabolism and perform an effective infection. This phenomenon has been observed in several animal and plant pathosystems. Despite the relevance of this mechanism in pathogenesis, little is known about it in fungus-plant interactions. For that reason, we performed an in silico method to select plausible mimicry candidates for the Ustilago maydis-maize interaction. Our methodology used a tripartite sequence comparison between the parasite, the host, and nonparasitic organisms' genomes. Furthermore, we used RNA sequencing information to identify gene coexpression, and we determined subcellular localization to detect potential cases of colocalization in the imitator-imitated pairs. With these approximations, we found a putative extracellular formin in U. maydis with the potential to rearrange the host cell cytoskeleton. In parallel, we detected at least two maize genes involved in the cytoskeleton rearrangement differentially expressed under U. maydis infection; thus, this find increases the expectation for the potential mimicry role of the fungal protein. The use of several sources of data led us to develop a strict and replicable in silico methodology to detect molecular mimicry in pathosystems with enough information available. Furthermore, this is the first time that a genomewide search has been performed to detect molecular mimicry in a U. maydis-maize system. Additionally, to allow the reproducibility of this experiment and the use of this pipeline, we created a Web server called Molecular Mimicry Finder.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Vinicio Armijos-Jaramillo
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Nicole Espinosa
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Karla Vizcaíno
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Daniela Santander-Gordón
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
42
|
Oyler-Yaniv J, Oyler-Yaniv A, Maltz E, Wollman R. TNF controls a speed-accuracy tradeoff in the cell death decision to restrict viral spread. Nat Commun 2021; 12:2992. [PMID: 34016976 PMCID: PMC8137918 DOI: 10.1038/s41467-021-23195-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rapid death of infected cells is an important antiviral strategy. However, fast decisions that are based on limited evidence can be erroneous and cause unnecessary cell death and subsequent tissue damage. How cells optimize their death decision making strategy to maximize both speed and accuracy is unclear. Here, we show that exposure to TNF, which is secreted by macrophages during viral infection, causes cells to change their decision strategy from "slow and accurate" to "fast and error-prone". Mathematical modeling combined with experiments in cell culture and whole organ culture show that the regulation of the cell death decision strategy is critical to prevent HSV-1 spread. These findings demonstrate that immune regulation of cellular cognitive processes dynamically changes a tissues' tolerance for self-damage, which is required to protect against viral spread.
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Alon Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Evan Maltz
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, University of California UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California UCLA, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Yapici-Eser H, Koroglu YE, Oztop-Cakmak O, Keskin O, Gursoy A, Gursoy-Ozdemir Y. Neuropsychiatric Symptoms of COVID-19 Explained by SARS-CoV-2 Proteins' Mimicry of Human Protein Interactions. Front Hum Neurosci 2021; 15:656313. [PMID: 33833673 PMCID: PMC8021734 DOI: 10.3389/fnhum.2021.656313] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
The first clinical symptoms focused on the presentation of coronavirus disease 2019 (COVID-19) have been respiratory failure, however, accumulating evidence also points to its presentation with neuropsychiatric symptoms, the exact mechanisms of which are not well known. By using a computational methodology, we aimed to explain the molecular paths of COVID-19 associated neuropsychiatric symptoms, based on the mimicry of the human protein interactions with SARS-CoV-2 proteins. Methods: Available 11 of the 29 SARS-CoV-2 proteins' structures have been extracted from Protein Data Bank. HMI-PRED (Host-Microbe Interaction PREDiction), a recently developed web server for structural PREDiction of protein-protein interactions (PPIs) between host and any microbial species, was used to find the "interface mimicry" through which the microbial proteins hijack host binding surfaces. Classification of the found interactions was conducted using the PANTHER Classification System. Results: Predicted Human-SARS-CoV-2 protein interactions have been extensively compared with the literature. Based on the analysis of the molecular functions, cellular localizations and pathways related to human proteins, SARS-CoV-2 proteins are found to possibly interact with human proteins linked to synaptic vesicle trafficking, endocytosis, axonal transport, neurotransmission, growth factors, mitochondrial and blood-brain barrier elements, in addition to its peripheral interactions with proteins linked to thrombosis, inflammation and metabolic control. Conclusion: SARS-CoV-2-human protein interactions may lead to the development of delirium, psychosis, seizures, encephalitis, stroke, sensory impairments, peripheral nerve diseases, and autoimmune disorders. Our findings are also supported by the previous in vivo and in vitro studies from other viruses. Further in vivo and in vitro studies using the proteins that are pointed here, could pave new targets both for avoiding and reversing neuropsychiatric presentations.
Collapse
Affiliation(s)
- Hale Yapici-Eser
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Yunus Emre Koroglu
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Graduate School of Sciences and Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Ozgur Oztop-Cakmak
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- College of Engineering, Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
44
|
Parhad SS, Yu T, Zhang G, Rice NP, Weng Z, Theurkauf WE. Adaptive Evolution Targets a piRNA Precursor Transcription Network. Cell Rep 2021; 30:2672-2685.e5. [PMID: 32101744 PMCID: PMC7061269 DOI: 10.1016/j.celrep.2020.01.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
In Drosophila, transposon-silencing piRNAs are derived from heterochromatic clusters and a subset of euchromatic transposon insertions, which are bound by the Rhino-Deadlock-Cutoff complex. The HP1 homolog Rhino binds to Deadlock, which recruits TRF2 to promote non-canonical transcription from both genomic strands. Cuff function is less well understood, but this Rai1 homolog shows hallmarks of adaptive evolution, which can remodel functional interactions within host defense systems. Supporting this hypothesis, Drosophila simulans Cutoff is a dominant-negative allele when expressed in Drosophila melanogaster, in which it traps Deadlock, TRF2, and the conserved transcriptional co-repressor CtBP in stable complexes. Cutoff functions with Rhino and Deadlock to drive non-canonical transcription. In contrast, CtBP suppresses canonical transcription of transposons and promoters flanking the major germline clusters, and canonical transcription interferes with downstream non-canonical transcription and piRNA production. Adaptive evolution thus targets interactions among Cutoff, TRF2, and CtBP that balance canonical and non-canonical piRNA precursor transcription.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Gen Zhang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas P Rice
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
45
|
Lian X, Yang X, Yang S, Zhang Z. Current status and future perspectives of computational studies on human-virus protein-protein interactions. Brief Bioinform 2021; 22:6161422. [PMID: 33693490 DOI: 10.1093/bib/bbab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.
Collapse
Affiliation(s)
- Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
46
|
Cugini C, Ramasubbu N, Tsiagbe VK, Fine DH. Dysbiosis From a Microbial and Host Perspective Relative to Oral Health and Disease. Front Microbiol 2021; 12:617485. [PMID: 33763040 PMCID: PMC7982844 DOI: 10.3389/fmicb.2021.617485] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The significance of microbiology and immunology with regard to caries and periodontal disease gained substantial clinical or research consideration in the mid 1960's. This enhanced emphasis related to several simple but elegant experiments illustrating the relevance of bacteria to oral infections. Since that point, the understanding of oral diseases has become increasingly sophisticated and many of the original hypotheses related to disease causality have either been abandoned or amplified. The COVID pandemic has reminded us of the importance of history relative to infectious diseases and in the words of Churchill "those who fail to learn from history are condemned to repeat it." This review is designed to present an overview of broad general directions of research over the last 60 years in oral microbiology and immunology, reviewing significant contributions, indicating emerging foci of interest, and proposing future directions based on technical advances and new understandings. Our goal is to review this rich history (standard microbiology and immunology) and point to potential directions in the future (omics) that can lead to a better understanding of disease. Over the years, research scientists have moved from a position of downplaying the role of bacteria in oral disease to one implicating bacteria as true pathogens that cause disease. More recently it has been proposed that bacteria form the ecological first line of defense against "foreign" invaders and also serve to train the immune system as an acquired host defensive stimulus. While early immunological research was focused on immunological exposure as a modulator of disease, the "hygiene hypothesis," and now the "old friends hypothesis" suggest that the immune response could be trained by bacteria for long-term health. Advanced "omics" technologies are currently being used to address changes that occur in the host and the microbiome in oral disease. The "omics" methodologies have shaped the detection of quantifiable biomarkers to define human physiology and pathologies. In summary, this review will emphasize the role that commensals and pathobionts play in their interaction with the immune status of the host, with a prediction that current "omic" technologies will allow researchers to better understand disease in the future.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | | | | | | |
Collapse
|
47
|
Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD. Diverse viral proteases activate the NLRP1 inflammasome. eLife 2021; 10:60609. [PMID: 33410748 PMCID: PMC7857732 DOI: 10.7554/elife.60609] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
The NLRP1 inflammasome is a multiprotein complex that is a potent activator of inflammation. Mouse NLRP1B can be activated through proteolytic cleavage by the bacterial Lethal Toxin (LeTx) protease, resulting in degradation of the N-terminal domains of NLRP1B and liberation of the bioactive C-terminal domain, which includes the caspase activation and recruitment domain (CARD). However, natural pathogen-derived effectors that can activate human NLRP1 have remained unknown. Here, we use an evolutionary model to identify several proteases from diverse picornaviruses that cleave human NLRP1 within a rapidly evolving region of the protein, leading to host-specific and virus-specific activation of the NLRP1 inflammasome. Our work demonstrates that NLRP1 acts as a 'tripwire' to recognize the enzymatic function of a wide range of viral proteases and suggests that host mimicry of viral polyprotein cleavage sites can be an evolutionary strategy to activate a robust inflammatory immune response. The immune system recognizes disease-causing microbes, such as bacteria and viruses, and removes them from the body before they can cause harm. When the immune system first detects these foreign invaders, a multi-part structure known as the inflammasome launches an inflammatory response to help fight the microbes off. Several sensor proteins can activate the inflammasome, including one in mice called NLRP1B. This protein has evolved a specialized site that can be cut by a bacterial toxin. Once cleaved, this region acts like a biological tripwire and sparks NLRP1B into action, allowing the sensor to activate the inflammasome system. Humans have a similar protein called NLRP1, but it is unclear whether this protein has also evolved a tripwire region that can sense microbial proteins. To answer this question, Tsu, Beierschmitt et al. set out to find whether NLRP1 can be activated by viruses in the Picornaviridae family, which are responsible for diseases like polio, hepatitis A, and the common cold. This revealed that NLRP1 contains a cleavage site for enzymes produced by some, but not all, of the viruses in the picornavirus family. Further experiments confirmed that when a picornavirus enzyme cuts through this region during a viral infection, it triggers NLRP1 to activate the inflammasome and initiate an immune response. The enzymes from different viruses were also found to cleave human NLRP1 at different sites, and the protein’s susceptibility to cleavage varied between different animal species. For instance, Tsu, Beierschmitt et al. discovered that NLRP1B in mice is also able to sense picornaviruses, and that different enzymes activate and cleave NLRP1B and NLRP1 to varying degrees: this affected how well the two proteins are expected to be able to sense specific viral infections. This variation suggests that there is an ongoing evolutionary arms-race between viral proteins and the immune system: as viral proteins change and new ones emerge, NLRP1 rapidly evolves new tripwire sites that allow it to sense the infection and launch an inflammatory response. What happens when NLRP1B activates the inflammasome during a viral infection is still an open question. The discovery that mouse NLRP1B shares features with human NLRP1 could allow the development of animal models to study the role of the tripwire in antiviral defenses and the overactive inflammation associated with some viral infections. Understanding the types of viruses that activate the NLRP1 inflammasome, and the outcomes of the resulting immune response, may have implications for future treatments of viral infections.
Collapse
Affiliation(s)
- Brian V Tsu
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| | | | - Andrew P Ryan
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| | - Rimjhim Agarwal
- Division of Immunology & Pathogenesis, University of California Berkeley, Berkeley, United States
| | - Patrick S Mitchell
- Division of Immunology & Pathogenesis, University of California Berkeley, Berkeley, United States.,Department of Microbiology, University of Washington, Seattle, United States
| | - Matthew D Daugherty
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| |
Collapse
|
48
|
Sorouri M, Chang T, Jesudhasan P, Pinkham C, Elde NC, Hancks DC. Signatures of host-pathogen evolutionary conflict reveal MISTR-A conserved MItochondrial STress Response network. PLoS Biol 2020; 18:e3001045. [PMID: 33370271 PMCID: PMC7793259 DOI: 10.1371/journal.pbio.3001045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/08/2021] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Host-pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. Using these "molecular scars" as a guide to discover gene functions, we discovered a vertebrate-specific MItochondrial STress Response (MISTR) circuit. MISTR proteins are associated with electron transport chain (ETC) factors and activated by stress signals such as interferon gamma (IFNγ) and hypoxia. Upon stress, ultraconserved microRNAs (miRNAs) down-regulate MISTR1(NDUFA4) followed by replacement with paralogs MItochondrial STress Response AntiViral (MISTRAV) and/or MItochondrial STress Response Hypoxia (MISTRH). While cells lacking MISTR1(NDUFA4) are more sensitive to chemical and viral apoptotic triggers, cells lacking MISTRAV or expressing the squirrelpox virus-encoded vMISTRAV exhibit resistance to the same insults. Rapid evolution signatures across primate genomes for MISTR1(NDUFA4) and MISTRAV indicate recent and ongoing conflicts with pathogens. MISTR homologs are also found in plants, yeasts, a fish virus, and an algal virus indicating ancient origins and suggesting diverse means of altering mitochondrial function under stress. The discovery of MISTR circuitry highlights the use of evolution-guided studies to reveal fundamental biological processes.
Collapse
Affiliation(s)
- Mahsa Sorouri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Genetics, Development, and Disease PhD Program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Palmy Jesudhasan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chelsea Pinkham
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nels C. Elde
- Eccles Institute of Human Genetics, The University of Utah Medical School, Utah, United States of America
- * E-mail: (NCE); (DCH)
| | - Dustin C. Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (NCE); (DCH)
| |
Collapse
|
49
|
de Groot NS, Torrent Burgas M. Bacteria use structural imperfect mimicry to hijack the host interactome. PLoS Comput Biol 2020; 16:e1008395. [PMID: 33275611 PMCID: PMC7744059 DOI: 10.1371/journal.pcbi.1008395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Bacteria use protein-protein interactions to infect their hosts and hijack fundamental pathways, which ensures their survival and proliferation. Hence, the infectious capacity of the pathogen is closely related to its ability to interact with host proteins. Here, we show that hubs in the host-pathogen interactome are isolated in the pathogen network by adapting the geometry of the interacting interfaces. An imperfect mimicry of the eukaryotic interfaces allows pathogen proteins to actively bind to the host's target while preventing deleterious effects on the pathogen interactome. Understanding how bacteria recognize eukaryotic proteins may pave the way for the rational design of new antibiotic molecules.
Collapse
Affiliation(s)
- Natalia Sanchez de Groot
- Gene Function and Evolution Lab, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain
- * E-mail: (NSdG); (MTB)
| | - Marc Torrent Burgas
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail: (NSdG); (MTB)
| |
Collapse
|
50
|
Alaidarous M. In silico structural homology modeling and characterization of multiple N-terminal domains of selected bacterial Tcps. PeerJ 2020; 8:e10143. [PMID: 33194392 PMCID: PMC7646307 DOI: 10.7717/peerj.10143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/19/2020] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens produce Toll/interleukin-1 receptor (TIR) domain-containing protein homologs that are important for subverting the Toll-like receptor (TLR) signaling cascades in hosts. Consequently, promoting the persistence and survival of the bacterial pathogens. However, the exact molecular mechanisms elucidating the functional characteristics of these bacterial proteins are not clear. Physicochemical and homology modeling characterization studies have been conducted to predict the conditions suitable for the stability and purification of these proteins and to predict their structural properties. The outcomes of these studies have provided important preliminary data for the drug discovery pipeline projects. Here, using in silico physicochemical and homology modeling tools, we have reported the primary, secondary and tertiary structural characteristics of multiple N-terminal domains of selected bacterial TIR domain-containing proteins (Tcps). The results show variations between the primary amino acid sequences, secondary structural components and three-dimensional models of the proteins, suggesting the role of different molecular mechanisms in the functioning of these proteins in subverting the host immune system. This study could form the basis of future experimental studies advancing our understanding of the molecular basis of the inhibition of the host immune response by the bacterial Tcps.
Collapse
Affiliation(s)
- Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|