1
|
Qiao S, Wang T, Sun J, Han J, Dai H, Du M, Yang L, Guo CJ, Liu C, Liu SJ, Liu H. Cross-feeding-based rational design of a probiotic combination of Bacterides xylanisolvens and Clostridium butyricum therapy for metabolic diseases. Gut Microbes 2025; 17:2489765. [PMID: 40190016 PMCID: PMC11980479 DOI: 10.1080/19490976.2025.2489765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/13/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
The human gut microbiota has gained interest as an environmental factor that contributes to health or disease. The development of next-generation live biotherapeutic products (LBPs) is a promising strategy to modulate the gut microbiota and improve human health. In this study, we identified a novel cross-feeding interaction between Bacteroides xylanisolvens and Clostridium butyricum and developed their combination into a novel LBP for treating metabolic syndrome. Using in-silico analysis and in vitro experiments, we demonstrated that B. xylanisolvens supported the growth and butyrate production of C. butyricum by supplying folate, while C. butyricum reciprocated by providing pABA for folate biosynthesis. Animal gavage experiments showed that the two-strain combination LBP exhibited superior therapeutic efficacy against metabolic disorders in high-fat diet-induced obese (DIO) mice compared to either single-strain treatment. Further omics-based analyses revealed that the single-strain treatments exhibited distinct taxonomic preferences in modulating the gut microbiota, whereas the combination LBP achieved more balanced modulation to preserve taxonomic diversity to a greater extent, thereby enhancing the stability and resilience of the gut microbiome. Moreover, the two-strain combinations more effectively restored gut microbial functions by reducing disease-associated pathways and opportunistic pathogen abundance. This work demonstrates the development of new LBP therapy for metabolic diseases from cross-feeding microbial pairs which exerted better self-stability and robust efficacy in complex intestinal environments compared to conventional single-strain LBPs.
Collapse
Affiliation(s)
- Shanshan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mengxuan Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Lan Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
2
|
Yamamura R, Okubo R, Ukawa S, Nakamura K, Okada E, Nakagawa T, Imae A, Kimura T, Tamakoshi A. Increased fecal glycocholic acid levels correlate with obesity in conjunction with the depletion of archaea: The Dosanco Health Study. J Nutr Biochem 2025; 139:109846. [PMID: 39863085 DOI: 10.1016/j.jnutbio.2025.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/30/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Recent studies have focused on the relationship between obesity and gut microbiota. This study aims to identify fecal components and gut bacterial species associated with different BMI categories. In this study, 538 participants aged ≥18 years were categorized into underweight, normal, and obese groups based on BMI (cutoffs: 18.5 and 25.0 kg/m²). We compared 30 fecal components among these groups and calculated correlation coefficients between each component and BMI. Participants were then divided into quartiles based on fecal component levels correlated with BMI, and the prevalence ratio (PR) of obesity was calculated, adjusted for confounding factors. We also analyzed the composition and diversity of gut microbiota and bacterial gene expression among the quartiles for each fecal component. Fecal glycocholic acid (GCA) showed a significant positive correlation with BMI. The PR for obesity in the highest quartile of fecal GCA was 3.30 (95% CI, 1.21-9.54), indicating a significantly higher risk of obesity compared to the lowest quartile. Gut microbiota analysis revealed significant differences in the abundance of Ruminococcaceae Incertae Sedis, Faecalibacterium, and Methanobrevibacter, with Methanobrevibacter being absent in the higher quartiles of fecal GCA. Additionally, gene expression for enzymes involved in the deconjugation of conjugated bile acids, including GCA, was downregulated in the highest quartile. Increased fecal GCA levels are positively correlated with obesity, alongside a depletion of archaea.
Collapse
Affiliation(s)
- Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | - Ryo Okubo
- Department of Neuropsychiatry, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Shigekazu Ukawa
- Osaka Metropolitan University Graduate School of Human Life and Ecology, Sumiyoshi, Osaka, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Koshi Nakamura
- Department of Public Health and Epidemiology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Emiko Okada
- The Health Care Science Institute, Minato-ku, Tokyo, Japan; Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Akihiro Imae
- The Hokkaido Centre for Family Medicine, Sapporo, Japan
| | - Takashi Kimura
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Zhao M, Liu Z, Geng Y, Lv X, Xu J, Zhao X, Yu Z, Zhu R, Li M, Han F, Ma X, Gu N. Role of a low-molecular-weight polysaccharide from Boletus edulis Bull: Fr. in modulating gut microbiota and metabolic disorders. Int J Biol Macromol 2025; 309:142789. [PMID: 40210031 DOI: 10.1016/j.ijbiomac.2025.142789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
This study aimed to investigate the effects of Boletus edulis Bull: Fr. polysaccharide (BEP), extracted using a deep eutectic solvent based on l-lactic acid and glycine, on glucose and lipid metabolism in high-fat diet (HFD)-fed mice. The primary mechanism by which BEP improves symptoms of glucose and lipid imbalances involves the modulation of gut microbiota. Key beneficial bacteria, including S24-7, Lachnospiraceae, [Prevotella], and Lactobacillus, were significantly enriched in the intestines of BEP-treated mice, with abundances 2.48-, 1.62-, 6.33- and 2.60-fold higher, respectively, compared to the HFD group. In contrast, the abundance of harmful bacteria, particularly Desulfovibrio, was reduced by 1.81-fold. These microbial shifts contributed to the alleviation of intestinal mucus layer damage and a 50 % reduction in serum lipopolysaccharide (LPS) levels, a key driver of systemic inflammation, compared to the HFD group. As a result, BEP effectively inhibited LPS-induced activation of the hepatic TLR4/Myd88/MAPK signaling pathway, thereby normalizing the expression of proteins related to glucose and lipid metabolism. A fecal microbiota transplantation study further demonstrated that the gut microbiota changes induced by BEP were central to its anti-metabolic syndrome effects. Overall, BEP may serve as a dietary supplement for preventing and treating diet-induced metabolism disorders by targeting the gut microbiota.
Collapse
Affiliation(s)
- Meimei Zhao
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China; Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China
| | - Zhiqi Liu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Yuqi Geng
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Lv
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Jingyi Xu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyi Zhao
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Ziteng Yu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Mengcong Li
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China
| | - Fang Han
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiao Ma
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Ning Gu
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin 150001, China; Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Zheng Zhou 450018, China.
| |
Collapse
|
4
|
Liu T, Zhang M, Xie Q, Gu J, Zeng S, Huang D. Unveiling the Antiobesity Mechanism of Sweet Potato Extract by Microbiome, Transcriptome, and Metabolome Analyses in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7807-7821. [PMID: 39989409 DOI: 10.1021/acs.jafc.4c13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
This study aimed to elucidate the antiobesity mechanisms of sweet potato extract (SPE) through biochemical, gut microbiome, liver transcriptome, and metabolome analyses. Administration of SPE to high-fat-diet-fed mice significantly reduced body weight gain, serum low-density lipoprotein cholesterol, hepatic lipid accumulation, and adipocyte hypertrophy, which were closely linked to gut microbiome composition. SPE notably increased the abundance of Eubacterium_coprostanoligenes_group_unclassified and decreased that of Kineothrix, both of which were strongly associated with short-chain fatty acid (SCFA) production. LC-QTOF-MS analysis identified resin glycoside compounds from SPE with reduced levels in mouse feces, suggesting their utilization in vivo. SPE also promoted dietary fat excretion. Liver transcriptomic and metabolomic profiling revealed that SPE may exert antiobesity effects by modulating the bile-sphingolipid metabolism, which was closely correlated with the reshaped gut microbiomes and SCFAs. These findings provide new insights into the antiobesity effects and mechanisms of SPE.
Collapse
Affiliation(s)
- Tiange Liu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Min Zhang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Qingtong Xie
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Jia Gu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Shunjiang Zeng
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, Jiangsu, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| |
Collapse
|
5
|
Peng W, Jin Z, Liu J, Zhang Q, Liu W. Tangeretin modulates gut microbiota metabolism and macrophage immunity following fecal microbiota transplantation in obesity. J Food Sci 2025; 90:e70171. [PMID: 40183701 DOI: 10.1111/1750-3841.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
Obesity, characterized by excessive body fat, is a leading preventable cause of death globally and represents one of the most critical public health challenges of the 21st century. This study aimed to investigate the action of tangeretin on gut microbiota metabolism and inflammation in high-fat diet (HFD)-induced obese mice. A model of obesity was established using 6-week-old male C57BL/6J mice fed with HFD, which were then used for the treatment with tangeretin (20 mg/kg/mice/day) or antibiotic (Abx). The results showed that the tangeretin intervention alleviated fat deposition and disorder of cellular structural integrity in the model group. The obese mice showed a significant increase in the levels of lipid (glycerol, triglyceride, and total cholesterol), inflammatory factors (IL-6 and TNF-α), and F4/80 expression in both serum and adipose tissues. Following tangeretin treatment, the levels of lipid, inflammatory factors, and the ratio of F4/80 + CD206 + macrophages were decreased in both serum and adipose tissue. 16S rRNA sequencing and LC-MS/MS analysis revealed that tangeretin decreased obesity in HFD-induced obese mice by interacting with gut microbiota, particularly influencing Parabacteroides, Blautia, and Parasutterella, and amino acids such as threonine, isoleucine, leucine, phenylalanine, arginine, glutamine, L-tryptophan, and tyrosine. Abx-mediated clearance of gut microbiota blocked the HFD-induced obesity and abrogated the therapeutic effects of tangeretin in obese mice. Fecal microbiota transplantation (FMT) proved that clearing gut microbiota with Abx blocked the beneficial effects of FMTHFD+Tangeretin intervention. These findings suggested that tangeretin improved HFD-induced obesity by regulating lipid metabolism and modulating F4/80 macrophage activation via gut microbiota.
Collapse
Affiliation(s)
- Weihui Peng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhangliu Jin
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinjin Liu
- Department of Biliopancreatic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qirui Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Hu W, Wang Y, Han J, Zhang W, Chen J, Li X, Wang L. Microfluidic organ-on-a-chip models for the gut-liver axis: from structural mimicry to functional insights. Biomater Sci 2025; 13:1624-1656. [PMID: 40019226 DOI: 10.1039/d4bm01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The gut-liver axis plays a crucial role in maintaining metabolic balance and overall human health. It orchestrates various processes, such as blood flow, nutrient transfer, metabolite processing, and immune cell communication between the two organs. Traditional methods, such as animal models and two-dimensional (2D) cell cultures, are insufficient in fully replicating the intricate functions of the gut-liver axis. The emergence of microfluidic technology has revolutionized this field, facilitating the development of organ-on-a-chip (OOC) systems. These systems are capable of mimicking the complex structures and dynamic environments of the gut and liver in vitro and incorporating sensors for real-time monitoring. In this article, we review the latest progress in gut-on-a-chip (GOC) and liver-on-a-chip (LOC) systems, as well as the integrated gut-liver-on-a-chip (GLOC) models. Our focus lies in the simulation of physiological parameters, three-dimensional (3D) structural mimicry, microbiome integration, and multicellular co-culture. All these aspects are essential for constructing accurate in vitro models of the gut and liver. Furthermore, we explore the current applications of OOC technology in the study of the gut and liver, including its use in disease modeling, toxicity testing, and drug screening. Finally, we discuss the challenges that remain and outline potential future directions for advancing GOC and LOC development in vitro.
Collapse
Affiliation(s)
- Wanlin Hu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Yushen Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
7
|
Ko MJ, Liao CH, Chiu YL, Tsai WC, Yang JY, Pai MF, Tsai PH, Hsu SP, Peng YS, Wu HY. Gut microbial signatures associated with uremic pruritus in hemodialysis patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00072-6. [PMID: 40155303 DOI: 10.1016/j.jmii.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The gut microbiota influences the gut-skin-kidney axis, but its role in uremic pruritus remains poorly understood. This study aimed to explore differences in gut microbial profiles between hemodialysis (HD) patients with and without uremic pruritus and identify potential microbial signatures associated with uremic pruritus. METHODS We conducted a cross-sectional study of HD patients with and without uremic pruritus. Stool samples were collected from all participants, and the gut microbiota composition was analyzed using 16S rRNA gene sequencing. Alpha and beta diversity metrics were calculated to assess microbial diversity. LEfSe analysis was performed to identify differentially abundant taxa associated with uremic pruritus. RESULTS Among 93 HD patients (mean age: 61.9 years, 31.2 % female), uremic pruritus occurred in 61.3 % of patients, with a median visual analog scale (VAS) score of 4.0. While alpha diversity did not differ significantly between groups, beta diversity analysis revealed significant compositional differences (unweighted UniFrac metric, P = 0.004; weighted UniFrac metric, P < 0.001). LEfSe analysis revealed significant enrichment of the order Pasteurellales, family Pasteurellaceae and genus Dialister in patients with uremic pruritus, whereas the order Corynebacteriales was more abundant in patients without pruritus (P < 0.05, LDA score > 3). CONCLUSION In this study, we found significant differences in gut microbiota composition between HD patients with and without uremic pruritus and identified potential microbial biomarkers for uremic pruritus. Further studies are needed to elucidate the underlying mechanisms and explore microbiota-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Mei-Ju Ko
- Department of Dermatology, Taipei City Hospital, Taipei City, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan; University of Taipei, Taipei City, Taiwan
| | - Chun-Hsing Liao
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Ling Chiu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan City, Taiwan; Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Wan-Chuan Tsai
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Center for General Education, Lee-Ming Institute of Technology, New Taipei City, Taiwan
| | - Ju-Yeh Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Center for General Education, Lee-Ming Institute of Technology, New Taipei City, Taiwan
| | - Mei-Fen Pai
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ping-Hsiu Tsai
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shih-Ping Hsu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Yu-Sen Peng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Applied Cosmetology, Lee-Ming Institute of Technology, New Taipei City, Taiwan; Department of Healthcare Administration, Asia Eastern University of Science and Technology, New Taipei City, Taiwan
| | - Hon-Yen Wu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
8
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 PMCID: PMC11894537 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
9
|
Liu Z, Gao T, Chang H, Xu Y, Wang L, Wang X, Lang J, Yu Y, Xiao Y, Peng Y. Hawthorn leaf and its extract alleviate high-fat diet-induced obesity and modulate gut microbiome in mice. Curr Res Food Sci 2025; 10:101025. [PMID: 40161310 PMCID: PMC11951210 DOI: 10.1016/j.crfs.2025.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Obesity has emerged as a global health issue with its prevalence continuously increasing and being associated with multiple comorbidities. Although existing medications are effective, they often come with significant side effects, making dietary therapy an advantageous alternative. Hawthorn leaves and their active component, vitexin, have shown potential in regulating lipid metabolism and improving gut microbiota imbalance. This study utilized a high-fat diet-induced obese mouse model, administering different doses of hawthorn leaves and vitexin for 13 weeks, and employed 16S rRNA sequencing and metabolomics to analyze the composition of gut microbiota and metabolites. The results demonstrated that hawthorn leaves and vitexin significantly slowed body weight gain, improved glucose tolerance, regulated blood lipid levels, and downregulated the expression of obesity-related gene in mice (ppar-α, ppar-γ, fas). Additionally, the treatment groups showed a significant improvement in gut microbiota diversity. Both vitexin and hawthorn leaves increased the abundance of Kineothrix, Paramuribaculum, Lawsonibacter (which belong to the Bacillota phylum) and Olsenella (Actinobacteria phylum), while reducing the abundance of Anaerotignum (Bacillota phylum). Moreover, the hawthorn leaves and vitexin treatments may alleviate obesity-related symptoms by increasing the fecal content of testosterone propionate, formoterol, and isoleucyl-prolyl-proline, and decreasing the content of Trolox. These findings highlight the potential of hawthorn leaves and vitexin as functional foods for obesity management by modulating gut microbiota pathways, offering a promising dietary therapy approach.
Collapse
Affiliation(s)
- Ziqi Liu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Tianrui Gao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Haoyu Chang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Xiangyi Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Jiayin Lang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Yingxing Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, 999078, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, 999078, China
| |
Collapse
|
10
|
Chacon J, Faizuddin F, McKee JC, Sheikh A, Vasquez VM, Gadad SS, Mayer G, Siby S, McCabe M, Dhandayuthapani S. Unlocking the Microbial Symphony: The Interplay of Human Microbiota in Cancer Immunotherapy Response. Cancers (Basel) 2025; 17:813. [PMID: 40075661 PMCID: PMC11899421 DOI: 10.3390/cancers17050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION The emergence of cancer immunotherapy has revolutionized cancer treatment, offering remarkable outcomes for patients across various malignancies. However, the heterogeneous response to immunotherapy underscores the necessity of understanding additional factors influencing treatment efficacy. Among these factors, the human microbiota has garnered significant attention for its potential role in modulating immune response. Body: This review explores the intricate relationship between the human microbiota and cancer immunotherapy, highlighting recent advances and potential mechanisms underlying microbial influence on treatment outcomes. CONCLUSION Insights into the microbiome's impact on immunotherapy response not only deepen our understanding of cancer pathogenesis but also hold promise for personalized therapeutic strategies aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Jessica Chacon
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Farah Faizuddin
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Jack C. McKee
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Aadil Sheikh
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Victor M. Vasquez
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Shrikanth S. Gadad
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ghislaine Mayer
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Sharon Siby
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Molly McCabe
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Subramanian Dhandayuthapani
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
11
|
Wu H, Forslund S, Wang Z, Zhao G. Human Gut Microbiome Researches Over the Last Decade: Current Challenges and Future Directions. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:1-7. [PMID: 40313604 PMCID: PMC12040780 DOI: 10.1007/s43657-023-00131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- Hao Wu
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, 201203 China
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13092 Germany
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 USA
| | - Guoping Zhao
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
12
|
Zhao L. Relational Stability: A New Strategy for Defining the Human Core Microbiome. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:14-17. [PMID: 40313601 PMCID: PMC12040776 DOI: 10.1007/s43657-025-00236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 05/03/2025]
Affiliation(s)
- Liping Zhao
- Department of Biochemistry and Microbiology, Rutgers Center for Microbiome Analysis, Rutgers University, New Brunswick, 08901 USA
| |
Collapse
|
13
|
Sun Y, Kosmas P. Integrating Bayesian Approaches and Expert Knowledge for Forecasting Continuous Glucose Monitoring Values in Type 2 Diabetes Mellitus. IEEE J Biomed Health Inform 2025; 29:1419-1432. [PMID: 39352827 DOI: 10.1109/jbhi.2024.3472077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Precise and timely forecasting of blood glucose levels is essential for effective diabetes management. While extensive research has been conducted on Type 1 diabetes mellitus, Type 2 diabetes mellitus (T2DM) presents unique challenges due to its heterogeneity, underscoring the need for specialized blood glucose forecasting systems. This study introduces a novel blood glucose forecasting system, applied to a dataset of 100 patients from the ShanghaiT2DM study. Our study uniquely integrates knowledge-driven and data-driven approaches, leveraging expert knowledge to validate and interpret the relationships among diabetes-related variables and deploying the data-driven approach to provide accurate forecast blood glucose levels. The Bayesian network approach facilitates the analysis of dependencies among various diabetes-related variables, thus enabling the inference of continuous glucose monitoring (CGM) trajectories in similar individuals with T2DM. By incorporating past CGM data including inference CGM trajectories, dietary records, and individual-specific information, the Bayesian structural time series (BSTS) model effectively forecasts glucose levels across time intervals ranging from 15 to 60 minutes. Forecast results show a mean absolute error of mg/dL, a root mean square error of mg/dL, and a mean absolute percentage error of , for a 15-minute prediction horizon. This study makes the first application of the ShanghaiT2DM dataset for glucose level forecasting, considering the influences of diabetes-related variables. Its findings establish a foundational framework for developing personalized diabetes management strategies, potentially enhancing diabetes care through more accurate and timely interventions.
Collapse
|
14
|
Huang A, Yeum D, Sewaybricker LE, Aleksic S, Thomas M, Melhorn SJ, Earley YF, Schur EA. Update on Hypothalamic Inflammation and Gliosis: Expanding Evidence of Relevance Beyond Obesity. Curr Obes Rep 2025; 14:6. [PMID: 39775194 PMCID: PMC11963668 DOI: 10.1007/s13679-024-00595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW To evaluate the role of hypothalamic inflammation and gliosis in human obesity pathogenesis and other disease processes influenced by obesity. RECENT FINDINGS Recent studies using established and novel magnetic resonance imaging (MRI) techniques to assess alterations in hypothalamic microarchitecture in humans support the presence of hypothalamic inflammation and gliosis in adults and children with obesity. Studies also identify prenatal exposure to maternal obesity or diabetes as a risk factor for hypothalamic inflammation and gliosis and increased obesity risk in offspring. Hypothalamic inflammation and gliosis have been further implicated in reproductive dysfunction (specifically polycystic ovarian syndrome and male hypogonadism), cardiovascular disease namely hypertension, and alterations in the gut microbiome, and may also accelerate neurocognitive aging. The most recent translational studies support the link between hypothalamic inflammation and gliosis and obesity pathogenesis in humans and expand our understanding of its influence on broader aspects of human health.
Collapse
Affiliation(s)
- Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dabin Yeum
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Sandra Aleksic
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melbin Thomas
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yumei Feng Earley
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Mao X, Paerhati G, Wu Y, Cheng LF. Modulation of gut microbiota, up-regulation of ZO-1, and promotion of metabolism as therapeutic mechanisms of indole-3-carbinol against obesity in mice. Front Pharmacol 2025; 15:1499142. [PMID: 39830328 PMCID: PMC11739362 DOI: 10.3389/fphar.2024.1499142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Background Indole-3-carbinol (I3C) is a compound derived from Cruciferous vegetables. We aim to ascertain whether I3C mediates the relations between mouse gut microbiota, intestinal barrier function, and metabolism to treat obesity in mice. Methods The experimental analyses focused on the changes in lipid distribution, inflammatory cytokines, glucose tolerance, gut microbiota composition, and serum metabolomics of 60 C57BL/6N mice. Results The experimental results demonstrated that I3C reduced body weight, hepatic steatosis, and systemic inflammation and improved insulin resistance in mice on a high-fat diet (HFD). Furthermore, I3C remarkably enhanced the enrichment of probiotics Akkermansia and Ligilactobacillus as well as SCFA-producing bacteria (Eubacterium, Lactococcus, and Coprococcus), while reducing the abundance of Eisenbergiella and Rikenellaceae_RC9_gut_group. Also, I3C notably up-regulated the levels of Claudin4, Occludin, and ZO-1 proteins and modulated the metabolism of argininosuccinic acid and galactose. Conclusion The aforementioned findings suggest that I3C exerts a significant anti-obesity effect in mice by regulating abnormal gut microbiome, enhancing intestinal barrier function, and improving metabolic disorders.
Collapse
Affiliation(s)
- XuWen Mao
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| | - Guliruoyi Paerhati
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| | - Yuche Wu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Ürümqi, China
| | - Lu Feng Cheng
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
16
|
Cai C, Song Z, Xu X, Yang X, Wei S, Chen F, Dong X, Zhang X, Zhu Y. The neurotoxicity of acrylamide in ultra-processed foods: interventions of polysaccharides through the microbiota-gut-brain axis. Food Funct 2025; 16:10-23. [PMID: 39611232 DOI: 10.1039/d4fo03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Ultra-processed foods (UPFs) have become popular in recent years, however, the detrimental effects of their excessive consumption have also become evident. Acrylamide (AA), a processing hazard present in UPFs, can further aggravate the harmful effects of UPFs. AA can cause significant damage to both the intestinal barrier and gut microbiota, thereby affecting the nervous system through the microbiota-gut-brain (MGB) axis. Natural polysaccharides have demonstrated the capacity to significantly alleviate the oxidative stress and inflammatory response associated with AA exposure. In addition, they exhibit neuroprotective properties that may be mediated through the MGB axis. This paper reviews literature on the presence of AA in certain UPFs and its potential to inflict serious harm on the human gut microbiota and brain. Moreover, the possibility of utilizing polysaccharides as a preventative measure against AA-induced neurotoxicity was also proposed. These findings provide new insights into the safety risks associated with the overconsumption of UPFs and highlight the potential of polysaccharides to counteract the neurodegeneration induced by AA.
Collapse
Affiliation(s)
- Chen Cai
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xu Dong
- Department of Gynaecology, Beilun People's Hospital, Ningbo 315800, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| |
Collapse
|
17
|
Han YH, Cui XW, Li YX, Chen X, Zhang H, Zhang Y, Wang SS, Li M. Bacterial cellulose is a desirable biological macromolecule that can prevent obesity via modulating lipid metabolism and gut microbiota. Int J Biol Macromol 2024; 283:137522. [PMID: 39537056 DOI: 10.1016/j.ijbiomac.2024.137522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Obesity has attracted great concern because of its undesirable effects on our life quality. Bacterial cellulose (BC) is a biological macromolecule that can improve gut homeostasis and lipid metabolism. However, its potential role in preventing obesity and associated mechanisms is still poorly understood. Herein, a supplement of BC was used to fully evaluate how it prevents obesity based on physio-biochemical and gut microbial analyses. Results showed that BC consumption helped decrease body and liver weight, and fat accumulation in kidney and epididymis. Correspondingly, glucose concentrations, total triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were reversed to the control levels. Consuming BC also improved liver fat metabolism and intestinal function, and alleviated ileum and epididymis inflammation. High-throughput sequencing suggested that a high-fat diet significantly decreased gut microbiota diversity, which could be reversed by consuming BC. A decreased Firmicutes and Proteobacteria and an increased Bacteroidetes following BC consumption were observed. The OTU-based analysis identified that Lachnospiraceae, Desulfovibrio, Lachnoclostridium, Blautia, Anaerotruncus, Bacteroides, Faecalibaculum, Bacteroidales S24-7 group, Prevotellaceae UCG-001 group, and Alloprevotella might be involved in obesity development or prevention. Our data suggest that BC is a good insoluble dietary fiber to prevent obesity via regulating lipid metabolism and gut microbiota.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Xi-Wen Cui
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yi-Xi Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xian Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan-Shan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| | - Min Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
18
|
Song H, Lu J, Chu Q. Polyphenols from Prunus salicina L. alleviate weight gain, obesity-related hyperlipidemia, hepatic steatosis, hyperglycemia, and modulate gut microbiota in mice fed a high-fat diet. Nutr Res 2024; 132:152-163. [PMID: 39580918 DOI: 10.1016/j.nutres.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hyperlipidemia, hepatic steatosis, and hyperglycemia are prevalent metabolic disorders closely linked to obesity. The objective of this research was to examine the potential advantageous impacts of polyphenols extracted from Prunus salicina L. fruit (PSFP) on hyperlipidemia, hepatic steatosis, and hyperglycemia induced by a high-fat diet (HFD), as well as to elucidate the underlying mechanisms involved. Male C57BL/6J mice, free from specific pathogens, were assigned randomly into three groups. These groups were then subjected to a 14-week dietary intervention, including a low-fat diet, an HFD, or an HFD plus with PSFP via intragastric administration. The obesity-related biochemical indexes were evaluated. To assess alterations in gut microbiota resulting from PSFP treatment, 16S rRNA sequencing was performed. UPLC-ESI-MS/MS assay identified 162 distinct polyphenolic compounds in PSFP. The administration of PSFP significantly reduced both body weight gain and hyperlipidemia induced by HFD. In addition, PSFP ameliorated hepatic steatosis induced by HFD and enhanced liver function in mice. PSFP treatment also ameliorated HFD-induced insulin resistance and hyperglycemia, evidenced by the observed decrease in fasting serum concentrations of glucose and insulin, improved insulin sensitivity, and restored glucose tolerance. Moreover, PSFP modulated the composition and abundance of specific microbial genus, including Lachnospiraceae NK4A136 group, Akkermansia, Parabacteroides, Enterococcus, Adlercreutzia, and Roseburia. Correlation analysis indicated significant associations between gut microbiota and physiological indices associated with obesity. These findings suggested that PSFP supplementation ameliorated HFD-induced hyperlipidemia, hepatic steatosis, and hyperglycemia, potentially through modulating the gut microbiota composition and abundance of specific taxa.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, PR China.
| | - Jing Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, PR China
| | - Qiang Chu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
19
|
Hu T, Zhu Y, Zhou X, Ye M, Wang X, Lu C, Wang Y. Baicalein ameliorates SEB-induced acute respiratory distress syndrome in a microbiota-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156049. [PMID: 39326141 DOI: 10.1016/j.phymed.2024.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is characterized by sudden and extensive pulmonary inflammation, with a mortality rate of approximately 40 %. Presently, there is no effective treatment to prevent or reverse its severe consequences. Baicalein (BAI) is a natural vicinal trihydroxyflavone and has been identified as the core quality marker of Scutellariae baicalensis for its effect on lung inflammation. However, its oral bioavailability is limited. The majority of studies that investigate BAI's in vivo mechanisms use injection techniques. Currently, there is no clear understanding of the mechanisms by which low-bioavailable BAI functions orally. PURPOSE This study aimed to evaluate the efficiency of BAI in ARDS mice and its underlying mechanisms. STUDY DESIGN AND METHODS Behavioral experiments, histological analysis, immunofluorescence staining, flow cytometry of immune cells, qRT-PCR, and ELISA analysis were performed to evaluate the efficiency of BAI in ARDS mice. Lung tissues transcriptomic-based analyses were performed to detect the differentially expressed genes and biological pathways. Fecal samples were subjected to microbial 16S rRNA analysis and untargeted metabolomics analysis in order to identify the specific flora and metabolites associated with BAI. Furthermore, antibiotic cocktail treatment and fecal microbiota transplantation were used to elucidate the gut microbiota-mediated effects on ARDS. RESULTS In our study, we first find that oral administration of BAI effectively mitigates staphylococcal enterotoxin B-induced ARDS. BAI can alleviate gut dysbiosis and regulate the Toll-like signaling pathway and amino acid metabolism. The protective effects of BAI against ARDS are gut microbiota dependent. Modulation of gut microbiota increases the production of short-chain fatty acids and enhances lung barrier function, which is consistent with the therapeutic interventions with BAI. Notably, BAI greatly enriches the abundance of Prevotellaceae, a butyrate-producing bacterial family, exhibiting a positive correlation with key differentially expressed genes in the TLR4/MyD88 signaling cascades. CONCLUSION BAI emerges as a potential prebiotic agent to attenuate ARDS, and targeting specific microbial species may offer an innovative therapeutic approach to investigate other flavonoids with limited bioavailability.
Collapse
Affiliation(s)
- Tingting Hu
- Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Ying Zhu
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341001, PR China
| | - Xiang Zhou
- Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Miaoyun Ye
- Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Xuecheng Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Chen Lu
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341001, PR China
| | - Yaqi Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, PR China.
| |
Collapse
|
20
|
Peña-Ocaña BA, Silva-Flores M, Shotaro T, García-Gálvez L, Hernández-Esquivel L, Robledo-Cadena DX, Barrera-Oviedo D, Pérez-Torres I, Tostado-Islas O, Maeda T, Rodríguez-Zavala JS, Marín-Hernández Á, García-Contreras R, Jasso-Chávez R. Transplant of gut microbiota ameliorates metabolic and heart disorders in rats fed with a hypercaloric diet by modulating microbial metabolism and diversity. Biomed Pharmacother 2024; 181:117667. [PMID: 39546851 DOI: 10.1016/j.biopha.2024.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Metabolic syndrome (MS) is a cluster of metabolic disorders which have a tight correlation with dysbiosis of gut microbiota (GM) that have to be treated to avoid higher risks for health. In this work, probiotics obtained from healthy cultured GM were provided to rats with metabolic syndrome (MSR) as therapy in treating MS through the correction of dysbiosis. MSR showed obesity, high blood pressure, abnormal blood chemistry parameters and high heart rate respect to control rats (CNTR). Cultivated GM from feces of MSR in media favoring anaerobic species, showed dysbiosis as judged by differences in the 16S rRNA metabarcoding analysis and by affected intermediary metabolism (methane and SCFA production, nutrients consumption and enzyme activities) compared to CNTR. The metabarcoding analysis of cultured healthy GM identified 211 species, which were further transplanted alive in MSR once a week for 9 weeks. Thereafter, in transplanted MSR the excess of Clostridium and Lactobacillus diminished, while Prevotella, Eubacterium, Faecalibacterium and methanogens, among others increased, leading to the recovery of the microbial metabolic capacity. The presence of butyric acid-producing bacteria in the transplanted GM correlated with increased levels of anti-inflammatory cytokines. Therefore, transplanted MSR recovered the normal levels of weight, blood glucose, triglycerides and cholesterol as well as the heart function. Data suggested that the great diversity of species contained in the GM transplanted restored the microbial metabolism, consuming excessive nutrients and secondary metabolites produced by MS. The use of cultivated GM as probiotics may be a safer alternative for the treatment of different diseases.
Collapse
Affiliation(s)
- Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico.
| | - Mayel Silva-Flores
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Toya Shotaro
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Leslie García-Gálvez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | | | - Diana Barrera-Oviedo
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Israel Pérez-Torres
- Departamento de Medicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Oswaldo Tostado-Islas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
21
|
Chen Z, Chen R, Ma X, Wu W, Huang Q, Ye W, Wu C, Yao B, Xu J, Qian L. A Multi-Enzyme Complex That Mitigates Hepatotoxicity, Improves Egg Production and Quality, and Enhances Gut and Liver Health in Laying Hens Exposed to Trace Aflatoxin B 1. Toxins (Basel) 2024; 16:517. [PMID: 39728775 PMCID: PMC11728630 DOI: 10.3390/toxins16120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Aflatoxin B1 is a prevalent secondary hazardous metabolite generated by fungus present in feed ingredients and the surrounding environment: enzymes are currently being recognized as an efficient and promising approach to reducing the associated risks. The objective of this study was to assess the effects of varying doses of enzyme complexes on several parameters in laying hens that were exposed to aflatoxin. During an 8-week experiment, a total of 288 Yukou Jingfen No.6 laying hens were placed into four groups. These groups included a group treated with toxins (CON group) and groups supplemented with compound enzyme complexes at doses of 250 g/t (E1 group), 500 g/t (E2 group), and 1000 g/t (E3 group). The E2 and E3 groups exhibited a statistically significant 2.6% increase in egg production rate compared to the CON group (p < 0.05). In addition, the E2 group showed significant improvements in both the feed-to-egg ratio and egg weight (p < 0.05). In addition, the E2 and E3 groups showed improved hutch unit and egg white height compared to the control group (p < 0.05). The E2 and E3 groups showed a substantial rise in liver health indicators, namely serum alanine transaminase (ALT) and alkaline phosphatase (ALP) activity. On the other hand, malondialdehyde (MDA) was lowered, and total superoxide dismutase (T-SOD) and total antioxidant capacity (T-AOC) were raised. These findings were statistically significant (p < 0.05). The E2 and E3 groups showed notable enhancements in intestinal morphology, as evidenced by a rise in villus height and a decrease in crypt depth in all segments of the intestine (p < 0.05). Furthermore, analysis of 16S rRNA sequencing revealed that these participants had a higher prevalence and variety of microorganisms in their gut microbiota. More precisely, there was a significant rise in the abundance of Bacteroidota and a decline in Firmicutes at the level of the phylum. In general, the inclusion of the enzyme complex had advantageous impacts on performance, egg quality, intestinal morphology, intestinal barrier function, and intestinal flora in laying hens. Our results indicate that toxin-degrading enzymes, when used as feed additives, play a significant role in mitigating AFB1 contamination in diets and improving the production performance of laying hens.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Rui Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Chulong Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China;
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| |
Collapse
|
22
|
Zeng F, He S, Sun Y, Li X, Chen K, Wang H, Man S, Lu F. Abnormal enterohepatic circulation of bile acids caused by fructooligosaccharide supplementation along with a high-fat diet. Food Funct 2024; 15:11432-11443. [PMID: 39450588 DOI: 10.1039/d4fo03353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fructooligosaccharide (FOS) is a widely used prebiotic and health food ingredient, but few reports have focused on its risk to specific populations. Recently, it has been shown that the intake of inulin, whose main component is FOS, can lead to cholestasis and induce hepatocellular carcinoma in mice fed a high-fat diet (HFD); however, the molecular mechanism behind this is not clear. This study found that FOS supplementation induced abnormal enterohepatic circulation of bile acids in HFD-fed mice, which showed a significant increase in bile acid levels in the blood and liver, especially the secondary bile acids with high cytotoxicity, such as deoxycholic acid. The abundance of Clostridium, Bacteroides, and other bacteria in the gut microbiota also increased significantly. The analysis of the signaling pathway involved in regulating the enterohepatic circulation of bile acids showed that the weakening of the feedback inhibition of FXR-FGF15 and FXR-SHP signalling pathways possibly induced the enhancement of CYP7A1 activity and bile acid reabsorption in the blood and liver and led to an increase in bile acid synthesis and accumulation in the liver, increasing the risk of cholestasis. This study showed the risk of health damage caused by FOS supplementation in HFD-fed mice, which is caused by gut microbiota dysfunction and abnormal enterohepatic circulation of bile acids. Therefore, the application of FOS should be standardized to avoid the health risks of unreasonable FOS use in specific populations.
Collapse
Affiliation(s)
- Fang Zeng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shi He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Ying Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Xue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Kaiyang Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
23
|
Jakubowicz D, Matz Y, Landau Z, Rosenblum RC, Twito O, Wainstein J, Tsameret S. Interaction Between Early Meals (Big-Breakfast Diet), Clock Gene mRNA Expression, and Gut Microbiome to Regulate Weight Loss and Glucose Metabolism in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:12355. [PMID: 39596418 PMCID: PMC11594859 DOI: 10.3390/ijms252212355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian clock gene system plays a pivotal role in coordinating the daily rhythms of most metabolic processes. It is synchronized with the light-dark cycle and the eating-fasting schedule. Notably, the interaction between meal timing and circadian clock genes (CGs) allows for optimizing metabolic processes at specific times of the day. Breakfast has a powerful resetting effect on the CG network. A misaligned meal pattern, such as skipping breakfast, can lead to a discordance between meal timing and the endogenous CGs, and is associated with obesity and T2D. Conversely, concentrating most calories and carbohydrates (CH) in the early hours of the day upregulates metabolic CG expression, thus promoting improved weight loss and glycemic control. Recently, it was revealed that microorganisms in the gastrointestinal tract, known as the gut microbiome (GM), and its derived metabolites display daily oscillation, and play a critical role in energy and glucose metabolism. The timing of meal intake coordinates the oscillation of GM and GM-derived metabolites, which in turn influences CG expression, playing a crucial role in the metabolic response to food intake. An imbalance in the gut microbiota (dysbiosis) can also reciprocally disrupt CG rhythms. Evidence suggests that misaligned meal timing may cause such disruptions and can lead to obesity and hyperglycemia. This manuscript focuses on the reciprocal interaction between meal timing, GM oscillation, and circadian CG rhythms. It will also review studies demonstrating how aligning meal timing with the circadian clock can reset and synchronize CG rhythms and GM oscillations. This synchronization can facilitate weight loss and improve glycemic control in obesity and those with T2D.
Collapse
Affiliation(s)
- Daniela Jakubowicz
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Yael Matz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Zohar Landau
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Rachel Chava Rosenblum
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Orit Twito
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Julio Wainstein
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Shani Tsameret
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
24
|
Huang W, Wang J, Xiao Z, Lin J, Tan Z, Sun G. Lingguizhugan decoction alleviates obesity in rats on a high-fat diet through the regulation of lipid metabolism and intestinal microbiota. Front Microbiol 2024; 15:1462173. [PMID: 39606109 PMCID: PMC11600314 DOI: 10.3389/fmicb.2024.1462173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Individuals with obesity often experience elevated blood lipid levels, leading to a chronic low-grade inflammatory state, exacerbating liver oxidative stress, and increasing the risk of various metabolic diseases. Recent evidence suggests that intestinal microbiota and short-chain fatty acids (SCFAs) play crucial roles in the development and progression of obesity. While the mechanisms by which Lingguizhugan decoction (LGZGD) intervenes in obesity by improving lipid metabolism, enhancing insulin sensitivity, and reducing inflammatory responses are well-documented, its potential in intestinal microbiota and SCFAs remains unclear. This study aims to explore the impact of LGZGD on high-fat diet (HFD) induced obesity in rats and its regulatory effects on intestinal microbiota and SCFAs, providing new insights for obesity prevention and treatment. METHODS Fifty-one male SD rats were randomly divided into groups, with six in the normal control group (NC) receiving a ddH2O treatment and a standard diet. The remaining 45 rats were fed a high-fat diet (HFD) using D12451 feed. After 10 weeks, the rats on the HFD gained 20% more weight than the NC group, confirming the successful modeling of obesity. These rats were then randomly divided into the following groups: ddH2O high-fat diet model group (MC), 20 mg/kg/day Orlistat positive control group (Orlistat), 1.62 g/kg/day low-dose LGZGD group (LGZGL), and 3.24 g/kg/day high-dose LGZGD group (LGZGH) for 8 weeks. We evaluated changes in body weight, serum total cholesterol (TC), total triacylglycerol (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) levels. Fat and liver tissues were collected for pathological analysis. Intestinal contents were aseptically collected for 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) to assess gut microbiota and SCFA levels. RESULTS LGZGD reduces body weight, TC, TG, LDL, and HDL levels, significantly reducing hepatic steatosis. Besides, it restored the richness and diversity of gut microbiota, which was reduced by HFD, altering the overall structure. Specifically, LGZGD significantly promoted the growth of Muribaculaceae and Dubosiella while inhibiting the growth of Christensenellaceae_R_7_group and UCG_005. It also restricts the production of caproic acid. Correlation analysis indicated positive correlations: Muribaculaceae with Butyric acid and Isovaleric acid; UCG_005 with TC, LDL, and HDL; and Christensenellaceae_R_7_group with TC and LDL. CONCLUSION LGZGD increased the abundance of beneficial gut microbiota in HFD-induced obese rats, improved gut microbiota dysbiosis, and inhibited the increase in caproic acid content. These results suggest that LGZGD can mitigate HFD-induced obesity, and its active components warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
25
|
Jin H, Yao L, Chen W, Hou T, Li J, Li B. Konjac glucomannan Inhibits Appetite of Obese Mice by Suppressing Hypothalamic Inflammatory Response and Agrp/ Npy Neuron Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24489-24503. [PMID: 39465542 DOI: 10.1021/acs.jafc.4c05901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Konjac glucomannan (KGM) is used for appetite management. However, KGM's regulation of appetite through hypothalamic neurons and gut microbiota, particularly in nonobese populations, is required to be investigated. This study investigated the differential effects of KGM on appetite and energy metabolism in obese and nonobese mice. In obese mice, KGM inhibited food intake, hypothalamic inflammation, and increased energy expenditure. Conversely, in nonobese mice, KGM maintained food intake and energy expenditure but increased hypothalamic inflammation. KGM downregulated hypothalamic Agrp, Npy, and Orx expression and upregulated Cart in obese mice, while it had no effect on orexigenic genes and downregulated Cart in nonobese mice. Additionally, KGM reshaped gut microbiota and increased Short-chain fatty acids (SCFAs) formation of obese mice, where Alistipes, Bifidobacterium, and Lactobacillus, as well as SCFAs, correlated with suppressed appetite. In nonobese mice, KGM has no significant effect on SCFAs but microbes such as Blautia, Alistipes, and Flavonifractor levels were negatively correlated with hypothalamic inflammation. KGM maintains appetite and was linked to liver-derived phosphatidylcholine, countering increased hypothalamic inflammation. The differential regulation of appetite by KGM between obese and nonobese mice is associated with hypothalamic inflammatory, neuronal, and KGM-induced personalized reshaping of gut microbiota. KGM may regulate energy intake and expenditure through the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Lanlan Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Wenjing Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
26
|
Zhang G, Zhong X, Chen J, Yang C, Liu Y, Li R, Xu B, Yuan H. The gut microbiome and serum metabolome are altered and interrelated in patients with intracranial atherosclerotic stenosis. J Stroke Cerebrovasc Dis 2024; 33:107887. [PMID: 39208915 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To evaluate the relationship among the gut microbiome, serum metabolites and the Intracranial atherosclerosis stenosis. MATERIALS AND METHODS Integrated analysis of 16S rDNA sequencing of fecal samples and untargeted serum metabolomics was applied to identify alterations in the gut microbiome and serum metabolome in 29 Intracranial atherosclerosis stenosis patients and 29 healthy control individuals. RESULTS Compared to healthy control individuals, the abundances of forty-five genera and one hundred seventy-seven metabolites were significantly altered in Intracranial atherosclerosis stenosis patients. At the species level, the Intracranial atherosclerosis stenosis group exhibited higher abundances of Bacteroidetes and lower abundances of Megaphaera and Muribacoccaceae. Microbial functional prediction analysis revealed enhanced activity of bacterial chemotaxis and oxidative phosphorylation within the Intracranial atherosclerosis stenosis group. In terms of metabolomic findings, the levels of dulcitol were significantly increased in the Intracranial atherosclerosis stenosis group. The levels of specific metabolites within the phosphatidylcholine and lysophosphatidylcholine families, such as PC (14:0e/24:4) and LPC 20:5, were increased, while the levels of certain other specific metabolites were decreased. Dysregulation of certain pathways, such as unsaturated fatty acid metabolism, arginine and proline metabolism may be involved in the development of Intracranial atherosclerosis stenosis. Correlation analysis of the gut microbiome and metabolites revealed a positive correlation between Bacteroides and multiple metabolites, such as Acar 12:3 and PC (8:0/22:6). CONCLUSIONS Our analysis revealed that Bacteroides is a key bacterial genus in gut dysbiosis and may be related to the development of Intracranial atherosclerosis stenosis.
Collapse
Affiliation(s)
- Guangyu Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Xiaoling Zhong
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)
| | - Jing Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group).
| | - Chenli Yang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)
| | - Yingbei Liu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)
| | - Ran Li
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group)
| | - Bo Xu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group).
| | - Haicheng Yuan
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group).
| |
Collapse
|
27
|
Lin B, Melnikov V, Guo S, Cao Z, Ye Z, Ye Z, Ji C, Chen J, Wang J, Zhang H, Jiang Y, Shi C, Chen Z, Zhang Q, Ma Z, Qiao N, Chen L, Wang M, Wang Y, Zhang Z, Ye H, Li Y, Zhang Y, Gao R, Yu Y. Concomitant gut dysbiosis and defective gut barrier serve as the bridges between hypercortisolism and chronic systemic inflammation in Cushing's disease. Eur J Endocrinol 2024; 191:509-522. [PMID: 39460431 DOI: 10.1093/ejendo/lvae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the gut microbial signatures and related pathophysiological implications in patients with Cushing's disease (CD). DESIGN AND METHODS Twenty-seven patients with CD and 45 healthy controls were enrolled. Based on obtained metagenomics data, we performed correlation, network study, and genome interaction group (GIG) analysis. Fecal metabolomics and serum enzyme linked immunosorbent assay (ELISA) analysis were conducted in dichotomized CD patients. Caco-2 cells were incubated with gradient concentrations of cortisol for subsequent transepithelial electrical resistance (TEER) measurement, FITC-dextran transwell permeability assay, qPCR, and western blot analysis. RESULTS Gut microbial composition in patients with CD was notably different from that in healthy controls. Network analysis revealed that Eubacterium siraeum might serve as the core specie in the gut microbial system of CD patients. Subsequent GIG analysis identified the positive correlations between GIG9 and UFC. Further serum ELISA and fecal metabolomics uncovered that CD patients with elevated UFC levels were characterized with increased lipopolysaccharide binding protein (LBP). Moreover, remarkable positive association was found between LBP level and relative abundance of E. siraeum. TEER and FITC-dextran transwell assays demonstrated that hypercortisolism induced increased gut permeability. Further qPCR and western blot analysis suggested that dysregulated AhR/Claudin 2 axis might be involved in the development of hypercortisolism-induced defective gut barrier function. CONCLUSIONS Disease activity associated dysbiosis and defective gut barrier might jointly facilitate the development of systemic inflammation in patients with CD.
Collapse
Affiliation(s)
- Ben Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Vladimir Melnikov
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sichen Guo
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhan Cao
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Institute of Gut Microbiota Research and Engineering Development, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Ye
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chenxing Ji
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiajun Chen
- Department of Nursery, Huashan Hospital West Campus, Jingguang Road No. 958, Shanghai 201104, China
| | - Jianxin Wang
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hanwen Zhang
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiming Jiang
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chengzhang Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhengyuan Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zengyi Ma
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Nidan Qiao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Long Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201104, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 201104, China
- Neurosurgical Institute of Fudan University, Fudan University, Shanghai 201104, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 201104, China
| | - Renyuan Gao
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yifei Yu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Jin Z, Liu M, Zhao H, Xie J, Yin W, Zheng M, Cai D, Liu H, Liu J. Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:3388. [PMID: 39517172 PMCID: PMC11544810 DOI: 10.3390/foods13213388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Obesity-induced insulin resistance (IR) can precipitate metabolic disorders such as diabetes. Zeaxanthin, a crucial member of the carotenoid family, has been found to mitigate the damage caused by obesity. However, reports on the effects of zeaxanthin on obesity-induced IR are lacking. Our objective was to examine the metabolic regulatory impacts of zeaxanthin on mice subjected to a high-fat diet (HFD) that triggered IR and to explore their influence on gut microbiota regulation. This study constructed a mouse model of metabolic dysfunction caused by lipid-rich nutritional patterns to investigate physiological and biochemical indices, liver pathway expression, and the intestinal microbiota. The mechanisms by which zeaxanthin improved both IR and glucose metabolic disorders were elucidated. The results demonstrate that zeaxanthin effectively suppressed obesity. The fasting blood glucose, area under curve of oral glucose tolerance test and insulin tolerance test, and homeostatic model assessment-insulin resistance (HOMA-IR) indices in the HFDZEA group decreased by 14.9%, 25.2%, 28.9%, and 29.8%. Additionally, zeaxanthin improved the lipid metabolism and alleviated damage to the liver and pancreas while also activating the PI3K/Akt pathway, regulating hepatic gluconeogenesis and the glycogen metabolism. The number of OTUs in the HFDZEA group increased by 29.04%. Zeaxanthin improved the structure and profile of the gastrointestinal microbiome and enhanced its diversity, increasing probiotics abundance, decreasing pathogen abundance, and thereby ameliorating the dysbiosis of enteric microbial communities in rodents with obesity resulting from excessive fat consumption. The outcomes of our analysis provide a rational basis for advancing zeaxanthin-based nutritional products.
Collapse
Affiliation(s)
- Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Hongyu Zhao
- Key Laboratory of TCM Pharmacology, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China;
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
| | - Jingsheng Liu
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
29
|
Peng YL, Wang SH, Zhang YL, Chen MY, He K, Li Q, Huang WH, Zhang W. Effects of bile acids on the growth, composition and metabolism of gut bacteria. NPJ Biofilms Microbiomes 2024; 10:112. [PMID: 39438471 PMCID: PMC11496524 DOI: 10.1038/s41522-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Bile acids (BAs) exert a profound influence on the body's pathophysiology by intricately shaping the composition of gut bacteria. However, the complex interplay between BAs and gut microbiota has impeded a systematic exploration of their impact on intestinal bacteria. Initially, we investigated the effects of 21 BAs on the growth of 65 gut bacterial strains in vitro. Subsequently, we examined the impact of BAs on the overall composition of intestinal bacteria, both in vivo and in vitro. The results unveiled distinct effects of various BAs on different intestinal strains and their diverse impacts on the composition of gut bacteria. Mechanistically, the inhibition of intestinal strains by BAs occurs through the accumulation of these acids within the strains. The intracellular accumulation of deoxycholic acid (DCA) significantly influenced the growth of intestinal bacteria by impacting ribosome transcription and amino-acid metabolism. The metabolomic analysis underscores the pronounced impact of DCA on amino-acid profiles in both in vivo and in vitro settings. This study not only elucidates the effects of BAs on a diverse range of bacterial strains and their role in shaping the gut microbiota but also reveals underlying mechanisms essential for understanding and maintaining a healthy gut microbiota.
Collapse
Affiliation(s)
- Yi-Lei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Si-Han Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yu-Long Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Kang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
30
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
31
|
Zhao M, Huang Y, Zhu L, Zhang Y, Xu Y, Lu Y, Li K, Li CM. A Moderately High-Fat Diet with Proper Nutrient Quality Improves Glucose Homeostasis, Linked to Downregulation of Intestinal CD36 Mediated by the Loss of Desulfovibrio. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [DOI: 10.1021/acs.jafc.4c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Mengyao Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunfei Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yawei Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
32
|
Gurung M, Mulakala BK, Schlegel BT, Rajasundaram D, Shankar K, Bode L, Ruebel ML, Sims C, Martinez A, Andres A, Yeruva L. Maternal immune cell gene expression associates with maternal gut microbiome, milk composition and infant gut microbiome. Clin Nutr ESPEN 2024; 63:903-918. [PMID: 39209027 DOI: 10.1016/j.clnesp.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Pre-pregnancy overweight and obesity promote deleterious health impacts on both mothers during pregnancy and the offspring. Significant changes in the maternal peripheral blood mononuclear cells (PBMCs) gene expression due to obesity are well-known. However, the impact of pre-pregnancy overweight on immune cell gene expression during pregnancy and its association with maternal and infant outcomes is not well explored. METHODS Blood samples were collected from healthy normal weight (NW, pre-pregnancy BMI 18.5-24.9) or overweight (OW, pre-pregnancy BMI 25-29.9) 2nd parity pregnant women at 12, 24 and 36 weeks of pregnancy. PBMCs were isolated from the blood and subjected to mRNA sequencing. Maternal and infant microbiota were analyzed by 16S rRNA gene sequencing. Integrative multi-omics data analysis was performed to evaluate the association of gene expression with maternal diet, gut microbiota, milk composition, and infant gut microbiota. RESULTS Gene expression analysis revealed that 453 genes were differentially expressed in the OW women compared to NW women at 12 weeks of pregnancy, out of which 354 were upregulated and 99 were downregulated. Several up-regulated genes in the OW group were enriched in inflammatory, chemokine-mediated signaling and regulation of interleukin-8 production-related pathways. At 36 weeks of pregnancy healthy eating index score was positively associated with several genes that include, DTD1, ELOC, GALNT8, ITGA6-AS1, KRT17P2, NPW, POT1-AS1 and RPL26. In addition, at 36 weeks of pregnancy, genes involved in adipocyte functions, such as NG2 and SMTNL1, were negatively correlated to human milk 2'FL and total fucosylated oligosaccharides content collected at 1 month postnatally. Furthermore, infant Akkermansia was positively associated with maternal PBMC anti-inflammatory genes that include CPS1 and RAB7B, at 12 and 36 weeks of pregnancy. CONCLUSIONS These findings suggest that prepregnancy overweight impacts the immune cell gene expression profile, particularly at 12 weeks of pregnancy. Furthermore, deciphering the complex association of PBMC's gene expression levels with maternal gut microbiome and milk composition and infant gut microbiome may aid in developing strategies to mitigate obesity-mediated effects.
Collapse
Affiliation(s)
- Manoj Gurung
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Bharath Kumar Mulakala
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, Little Rock, AR, USA; Texas A & M, IHA, College Station, TX, USA
| | - Brent Thomas Schlegel
- University of Pittsburgh Medical Center (UPMC), Children's Hospital of Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- University of Pittsburgh Medical Center (UPMC), Children's Hospital of Pittsburgh, PA, USA
| | - Kartik Shankar
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Meghan L Ruebel
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Clark Sims
- Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, USA
| | - Audrey Martinez
- Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, USA
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit (MMRU), Southeast Area, USDA-ARS, Arkansas Children's Nutrition Center, Little Rock, AR, USA.
| |
Collapse
|
33
|
Lin B, Ye Z, Cao Z, Ye Z, Yu Y, Jiang W, Guo S, Melnikov V, Zhou P, Ji C, Shi C, Wu Z, Chen Z, Xu Y, Zhang Q, Ma Z, Qiao N, Chen L, Shou X, Cao X, Zhou X, Zhang L, He M, Wang Y, Ye H, Li Y, Zhang Z, Wang M, Gao R, Zhang Y. Integrated Microbiome and Metabolome Analysis Reveals Hypothalamic-Comorbidities Related Signatures in Craniopharyngioma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400684. [PMID: 39225628 PMCID: PMC11497089 DOI: 10.1002/advs.202400684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Craniopharyngioma (CP) is an intracranial tumor with high mortality and morbidity. Though biologically benign, CP will damage the hypothalamus, inducing comorbidities such as obesity, metabolic syndrome, and cognitive impairments. The roles of gut microbiome and serum metabolome in CP-associated hypothalamic comorbidities are aimed to be explored. Patients with CP are characterized by increased Shannon diversity, Eubacterium, Clostridium, and Roseburia, alongside decreased Alistipes and Bacteroides. CP-enriched taxa are positively correlated with dyslipidemia and cognitive decline, while CP-depleted taxa are negatively associated with fatty liver. Subsequent serum metabolomics identified notably up-regulated purine metabolism, and integrative analysis indicated an association between altered microbiota and elevated hypoxanthine. Phenotypic study and multi-omics analysis in the Rax-CreERT2::BrafV600E/+::PtenFlox/+ mouse model validated potential involvement of increased Clostridium and dysregulated purine metabolism in hypothalamic comorbidities. To further consolidate this, intervention experiments are performed and it is found that hypoxanthine co-variated with the severity of hypothalamic comorbidities and abundance of Clostridium, and induced dysregulated purine metabolism along with redox imbalance in target organs (liver and brain cortex). Overall, the study demonstrated the potential of increased Clostridium and up-regulated purine metabolism as signatures of CP-associated hypothalamic-comorbidities, and unveiled that elevated Clostridium, dysregulated purine metabolism, and redox imbalance may mediate the development and progression of CP-associated hypothalamic-comorbidities.
Collapse
|
34
|
Mootane ME, Mafuna T, Ramantswana TM, Malatji DP. Microbial community profiling in intestinal tract of indigenous chickens from different villages. Sci Rep 2024; 14:21218. [PMID: 39261629 PMCID: PMC11391056 DOI: 10.1038/s41598-024-72389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
Village chickens (Gallus gallus domesticus) are commonly reared in rural households of South Africa and other developing countries. They play a vital role as a primary source of protein through the provision of meat and eggs. The chicken gut microbiota plays an important role in chicken's immune system, its health, physiological development of the gut, digestion of food, nutrient absorption and productivity. Thus, it is imperative to critically investigate the chicken microbial composition in order to develop effective disease control measures and increase production. In this present study, microbial DNA was isolated from 34 non-descript mixed gender matured village chickens' intestinal contents followed by high throughput Illumina sequencing targeting 16S rRNA gene. Senwamokgope village had the largest microbiota composition as compared to Itieleni and Thakgalang villages. Overall, Firmicutes (74%) was the most abundant phylum observed, followed by Proteobacteria (8%), Actinobateria (5%), and Bacteroidota (3%). At the genus level, Lactobacillus was the dominant bacteria. Other genera found included Sphingomonas (7%), Cutibacterium (4%), and Clostridium_sensu_stricto_1 (2%). The richness of female intestinal microbiota was higher compared to the male microbiota. The findings of this study provide baseline information that can assist to better understand the chicken gut microbiota and its interaction with diseases and parasites.
Collapse
Affiliation(s)
- Mokoma Eunice Mootane
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, 1710, South Africa
| | - Thendo Mafuna
- Department of Biochemistry, Faculty of Sciences, University of Johannesburg, Johannesburg, 2006, South Africa
| | | | - Dikeledi Petunia Malatji
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, 1710, South Africa.
| |
Collapse
|
35
|
Batitucci G, Almeida OG, De Martinis ECP, Solar I, Cintra DE, de Freitas EC. Intermittent fasting and high-intensity interval training do not alter gut microbiota composition in adult women with obesity. Am J Physiol Endocrinol Metab 2024; 327:E241-E257. [PMID: 38922577 DOI: 10.1152/ajpendo.00310.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Obesity is advancing at an accelerated pace, and yet its treatment is still an emerging field. Although studies have demonstrated the role of the microbiota in the pathogenesis of obesity, this is the first study to show the effects of intermittent fasting (IF), combined or not with exercise, and high-intensity interval training (HIIT) on the gut microbiota composition in women with obesity. Our hypothesis is that IF combined with HIIT can promote the remodeling of the composition and function of the gut microbiota. Thirty-six women with obesity, aged between 18 and 40 yr, participated in the study. They were randomly divided into three groups: 1) IF associated with HIIT group [IF + exercise group (EX), n = 15]; 2) HIIT group (EX, n = 11); and 3) IF group (IF, n = 10). Interventions took place over 8 wk, and all assessments were performed preintervention and postintervention. The HIIT circuit was performed 3 times/wk, for 25 min/session. The IF protocol was a 5:2 (2 times/wk). Multiplex analysis of inflammatory cytokines, sequencing of the 16S rRNA gene, and gas chromatography to measure fecal concentrations of short-chain fatty acids (SCFAs) were performed. This study was registered on ClinicalTrials.gov (NCT05237154). Exercise increased fecal acetate concentrations (P = 0.04), but no changes were observed in the composition and functional profile of the microbiota. The interventions did not change the composition of the microbiota, but exercise may play a modulatory role in the production of acetate. This investigation provides clinical insights into the use of IF and HIIT for women with obesity.NEW & NOTEWORTHY This is the first investigation about alternate-day fasting combined with HITT on the gut microbiota of obese women. The study contributes to the advancement of human science involving IF and HIIT, popular strategies for managing obesity. Previous evidence has explored IF in modulating the microbiota in animal models or specific populations and clinical conditions. Despite the subtle outcomes, this study has relevance and originality in the field of gut microbiota knowledge.
Collapse
Affiliation(s)
- Gabriela Batitucci
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
| | - Otávio G Almeida
- Ribeirão Preto School of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Elaine C P De Martinis
- Ribeirão Preto School of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Isabela Solar
- Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Dennys E Cintra
- Nutritional Genomics Laboratory and Nutrigenomics and Lipids Center, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Ellen Cristini de Freitas
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
36
|
Safdar M, Ullah M, Hamayun S, Wahab A, Khan SU, Abdikakhorovich SA, Haq ZU, Mehreen A, Naeem M, Mustopa AZ, Hasan N. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol 2024; 49:102686. [PMID: 38830479 DOI: 10.1016/j.cpcardiol.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | | | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research, and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
37
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
38
|
Guo H, Han J, Xiao M, Chen H. Functional alterations in overweight/obesity: focusing on the reward and executive control network. Rev Neurosci 2024; 35:697-707. [PMID: 38738975 DOI: 10.1515/revneuro-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.
Collapse
Affiliation(s)
- Haoyu Guo
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Jinfeng Han
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Mingyue Xiao
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
- Research Center of Psychology and Social Development, 26463 Southwest University , Chongqing 400715, China
| |
Collapse
|
39
|
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. SUMOylation at the crossroads of gut health: insights into physiology and pathology. Cell Commun Signal 2024; 22:404. [PMID: 39160548 PMCID: PMC11331756 DOI: 10.1186/s12964-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.
Collapse
Affiliation(s)
- Xue-Ni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Mu-Yang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Guo-Qing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Li-Na Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - De-Kui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
40
|
Zeng C, Wan SR, Guo M, Tan XZ, Zeng Y, Wu Q, Xie JJ, Yan P, Long Y, Zheng L, Jiang ZZ, Teng FY, Xu Y. Fecal virome transplantation: A promising strategy for the treatment of metabolic diseases. Biomed Pharmacother 2024; 177:117065. [PMID: 38971010 DOI: 10.1016/j.biopha.2024.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.
Collapse
Affiliation(s)
- Chen Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Zhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Qi Wu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia-Jie Xie
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Yang Long
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lemin Zheng
- Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fang-Yuan Teng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
41
|
Zhao N, Wu G, Zhao L. H 2S as a metabolic saboteur. Nat Metab 2024; 6:1431-1432. [PMID: 39030388 DOI: 10.1038/s42255-024-01086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Affiliation(s)
- Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| | - Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
42
|
Huang M, Bai J, Buccato DG, Zhang J, He Y, Zhu Y, Yang Z, Xiao X, Daglia M. Cereal-Derived Water-Unextractable Arabinoxylans: Structure Feature, Effects on Baking Products and Human Health. Foods 2024; 13:2369. [PMID: 39123560 PMCID: PMC11311280 DOI: 10.3390/foods13152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation.
Collapse
Affiliation(s)
- Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
43
|
Gao R, Wu T, Stock AM. A conserved inhibitory interdomain interaction regulates DNA-binding activities of hybrid two-component systems in Bacteroides. mBio 2024; 15:e0122024. [PMID: 38842315 PMCID: PMC11253607 DOI: 10.1128/mbio.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
44
|
Cao N, Zhao F, Kwok LY, Wang H, Sun Z. Impact of probiotics on weight loss, glucose and lipid metabolism in overweight or obese women: A meta-analysis of randomized controlled trials. Curr Res Food Sci 2024; 9:100810. [PMID: 39114432 PMCID: PMC11305212 DOI: 10.1016/j.crfs.2024.100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Our meta-analysis aimed to assess the effectiveness of probiotics in weight loss and glucose and lipid metabolism in overweight or obese women. PubMed, EMBASE, Cochrane Library, and Web of Science were used from inception until March 2024 to identify randomized controlled trials (RCT's) literature. Finally, 11 RCTs were included. Following critical appraisal, a meta-analysis was conducted using the fixed effects model and the random effects model found that probiotic consumption significantly decreased waist circumference (WC) (SMD = -0.39 cm, 95% CI: -0.60, -0.18 cm, P < 0.00001, I2 = 33%), insulin (SMD = -0.45 mcU/ml; 95% CI: -0.72, -0.18 mcU/ml; P = 0.04, I2 = 40%) and low-density lipoprotein cholesterol (LDL-C) levels (SMD = -0.51 mmol/L; 95% CI: -0.92, -0.11 mmol/L; P = 0.02, I2 = 75%) in overweight or obese women. Moreover, subgroup analyses revealed that the effects of probiotic supplementation were significantly influenced by the intervention duration and diet and/or exercise intervention. This meta-analysis suggested that probiotic supplementation has a moderate and statistically significant effect on weight loss and glucose and lipid metabolism in overweight and obese women.
Collapse
Affiliation(s)
- Ning Cao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Huan Wang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia 010110, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
45
|
Qu C, Lu J, Chen Y, Li J, Xu X, Li F. Unravelling the role of gut microbiota in acute pancreatitis: integrating Mendelian randomization with a nested case-control study. Front Microbiol 2024; 15:1401056. [PMID: 39021624 PMCID: PMC11253135 DOI: 10.3389/fmicb.2024.1401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Background Gut microbiota may influence the development of acute pancreatitis (AP), a serious gastrointestinal disease with high morbidity and mortality. This study aimed to identify a causal link by investigating the relationship between gut microbiota and AP. Methods Mendelian randomization (MR) and a nested case-control study were used to explore associations between gut microbiota composition and AP. 16S rRNA sequencing, random forest modelling (RF), support vector machine (SVM), and Kaplan-Meier survival analysis was applied to identify significant gut microbiota and their correlation with hospitalization duration in AP patients. Results Bidirectional MR results confirmed a causal link between specific gut microbiota and AP (15 and 8 microbial taxa identified via forward and reverse MR, respectively). The 16S rRNA sequencing analysis demonstrated a pronounced difference in gut microbiota composition between cases and controls. Notably, after a comprehensive evaluation of the results of RF and SVM, Bacteroides plebeius (B. plebeius) was found to play a significant role in influencing the hospital status. Using a receiver operating characteristic (ROC) curve, the predictive power (0.757) of B. plebeius. Kaplan-Meier survival analysis offered further insight that patients with an elevated abundance of B. plebeius experienced prolonged hospital stays. Conclusion Combining MR with nested case-control studies provided a detailed characterization of interactions between gut microbiota and AP. B. plebeius was identified as a significant contributor, suggesting its role as both a precursor and consequence of AP dynamics. The findings highlight the multifactorial nature of AP and its complex relationship with the gut microbiota. This study lays the groundwork for future therapeutic interventions targeting microbial dynamics in AP treatment.
Collapse
Affiliation(s)
- Chang Qu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongyan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoqing Xu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Wang T, Liao H, Lin J, Zhang M, Chen B, Yin R, Sun J, Dai H, Liu H. Antidiabetic action of the Chinese formula Shouhuitongbian and the underlying mechanism associated with alteration of gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155575. [PMID: 38636179 DOI: 10.1016/j.phymed.2024.155575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The prevalence and incidence of type 2 diabetes mellitus (T2DM) have dramatically increased. The intestinal flora and its derived metabolites are demonstrated to play vital roles in the etiology and onset of T2DM. Shouhuitongbian (SHTB) is a traditional Chinese formula to treat constipation. SHTB is composed of seven herbs and components of Colla corii asini (CCA) that are obtained from the hide of Equus asinus L.. Some of herbs in SHTB such as Aloe vera (L.) Burm.f., Cassia obtusifolia L., fruits of Lycium barbarum L., and Citrus aurantium L. have shown to improve insulin resistance (IR) and T2DM in early reports. We hypothesized that SHTB composed of these herbs has antidiabetic effects. The antidiabetic efficacy and mechanism of action of SHTB have not been previously reported. HYPOTHESIS/PURPOSE To demonstrate the antidiabetic effect and elucidate the underlying mechanisms of SHTB from the perspective of gut microbiota. STUDY DESIGN The main compounds were identified and quantified by high-performance liquid chromatography (HPLC)-mass spectrometry analysis. High fat diet (HFD)-fed mice and db/db mice were used to assess the antidiabetic effects and the mechanism of SHTB. The underlying mechanisms were evaluated by enzyme-linked immunosorbent assay (ELISA), western blot analysis, quantitative real time polymerase chain reaction (qPCR) analysis, 16S rRNA high-throughput sequencing, and targeted metabolome analysis. METHODS HFD-fed mice and db/db mice were orally treated with the standard positive drug metformin (100 mg/kg/d) and with SHTB (200 and 100 mg/kg/d), which was chemically characterized according to the European Medicine Agency (EMA) guidelines. The beneficial effects of SHTB were studied by homeostasis model assessment of insulin resistance (HOMA-IR) index, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), total cholesterol (T-CHO), triglyceride (TG), and inflammation. Subsequently, 16S rDNA-based high-throughput pyrosequencing and GC-MS-based targeted metabolomics profiling were performed to analyze the gut microbiota composition and metabolites profile in the gut, respectively. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) / insulin receptor substrate 1 (IRS-1) / phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) pathway was evaluated via qPCR and western blot. RESULTS Chemically characterized SHTB, in which six markers were quantified, effectively alleviated glucose intolerance and IR, ameliorated lipid metabolism dysfunction, and reduced inflammation. In addition, 16S rDNA sequencing found that SHTB reshaped the composition of intestinal flora, as indicated by the enrichment of Akkermansia and Parabacteroides in both HFD-fed and db/db mice. Moreover, SHTB enhanced the intestinal production of short-chain fatty acids (SCFAs) and branched short-chain fatty acids (BSCFAs), and reduced the levels of the fecal and circulating branched-chain amino acids (BCAAs). The IRS-1/PI3K/AKT signaling pathway was upregulated after treatment with SHTB. CONCLUSION Orally administration of SHTB effectively improved IR and reduced hyperglycemia in mice. Treatment with SHTB regulated the gut BCAAs-mTORC1/IRS-1/PI3K/AKT axis by enhancing the BCAAs catabolism in the gut, which attenuated the deleterious effect of BCAAs on the IRS-1 signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huan Liao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinghan Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Mingkai Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
47
|
Xu Q, Sun L, Chen Q, Jiao C, Wang Y, Li H, Xie J, Zhu F, Wang J, Zhang W, Xie L, Wu H, Zuo Z, Chen X. Gut microbiota dysbiosis contributes to depression-like behaviors via hippocampal NLRP3-mediated neuroinflammation in a postpartum depression mouse model. Brain Behav Immun 2024; 119:220-235. [PMID: 38599497 DOI: 10.1016/j.bbi.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024] Open
Abstract
Postpartum depression (PPD) is a severe mental disorder that affects approximately 10---20% of women after childbirth. The precise mechanism underlying PPD pathogenesis remains elusive, thus limiting the development of therapeutics. Gut microbiota dysbiosis is considered to contribute to major depressive disorder. However, the associations between gut microbiota and PPD remain unanswered. Here, we established a mouse PPD model by sudden ovarian steroid withdrawal after hormone-simulated pseudopregnancy-human (HSP-H) in ovariectomy (OVX) mouse. Ovarian hormone withdrawal induced depression-like and anxiety-like behaviors and an altered gut microbiota composition. Fecal microbiota transplantation (FMT) from PPD mice to antibiotic cocktail-treated mice induced depression-like and anxiety-like behaviors and neuropathological changes in the hippocampus of the recipient mice. FMT from healthy mice to PPD mice attenuated the depression-like and anxiety-like behaviors as well as the inflammation mediated by the NOD-like receptor protein (NLRP)-3/caspase-1 signaling pathway both in the gut and the hippocampus, increased fecal short-chain fatty acids (SCFAs) levels and alleviated gut dysbiosis with increased SCFA-producing bacteria and reduced Akkermansia in the PPD mice. Also, downregulation of NLRP3 in the hippocampus mitigated depression-like behaviors in PPD mice and overexpression of NLRP3 in the hippocampal dentate gyrus induced depression-like behaviors in naïve female mice. Intriguingly, FMT from healthy mice failed to alleviate depression-like behaviors in PPD mice with NLRP3 overexpression in the hippocampus. Our results highlighted the NLRP3 inflammasome as a key component within the microbiota-gut-brain axis, suggesting that targeting the gut microbiota may be a therapeutic strategy for PPD.
Collapse
Affiliation(s)
- Qi Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lihong Sun
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yuan Wang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jiaqian Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Fangfang Zhu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jiangling Wang
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wen Zhang
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
48
|
Pourafshar S, Sharma B, Allen J, Hoang M, Lee H, Dressman H, Tyson CC, Mallawaarachchi I, Kumar P, Ma JZ, Lin PH, Scialla JJ. Longitudinal Pilot Evaluation of the Gut Microbiota Comparing Patients With and Without Chronic Kidney Disease. J Ren Nutr 2024; 34:302-312. [PMID: 38286361 DOI: 10.1053/j.jrn.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE The gut microbiota contributes to metabolic diseases, such as diabetes and hypertension, but is poorly characterized in chronic kidney disease (CKD). DESIGN AND METHODS We enrolled 24 adults within household pairs, in which at least one member had self-reported kidney disease, diabetes, or hypertension. CKD was classified based on estimated glomerular filtration rate < 60 mL/min/1.73 m2 or urine-albumin-to-creatinine ratio of ≥ 30 mg/g. Participants collected stool and dietary recalls seasonally over a year. Gut microbiota was characterized using 16s rRNA and metagenomic sequencing. RESULTS Ten participants had CKD (42%) with a median (interquartile range) estimated glomerular filtration rate of 49 (44, 54) mL/min/1.73 m2. By 16s rRNA sequencing, there was moderate to high intraclass correlation (ICC = 0.63) for seasonal alpha diversity (Shannon index) within individuals and modest differences by season (P < .01). ICC was lower with metagenomics, which has resolution at the species level (ICC = 0.26). There were no differences in alpha or beta diversity by CKD with either method. Among 79 genera, Frisingicoccus, Tuzzerella, Faecalitalea, and Lachnoclostridium had lower abundance in CKD, while Collinsella, Lachnospiraceae_ND3007, Veillonella, and Erysipelotrichaceae_UCG_003 were more abundant in CKD (each nominal P < .05) using 16s rRNA sequencing. Higher Collinsella and Veillonella and lower Lachnoclostridium in CKD were also identified by metagenomics. By metagenomics, Coprococcus catus and Bacteroides stercoris were more and less abundant in CKD, respectively, at false discovery rate corrected P = .02. CONCLUSIONS We identified candidate taxa in the gut microbiota associated with CKD. High ICC in individuals with modest seasonal impacts implies that follow-up studies may use less frequent sampling.
Collapse
Affiliation(s)
- Shirin Pourafshar
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Binu Sharma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jenifer Allen
- Duke Clinical & Translational Science Institute, TransPop Group, Kannapolis, North Carolina
| | - Madeleine Hoang
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, Virginia
| | - Hannah Lee
- College of Arts and Sciences, University of Virginia, Charlottesville, Virginia
| | - Holly Dressman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Crystal C Tyson
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Indika Mallawaarachchi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pankaj Kumar
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pao-Hwa Lin
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Julia J Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
49
|
Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: A review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med 2024; 12:20503121241257486. [PMID: 38826830 PMCID: PMC11143861 DOI: 10.1177/20503121241257486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
The human microbiome, particularly the gut microbiome, has emerged as a central determinant of health and disease. Dysbiosis, an imbalance in the microbial composition of the gut, is associated with a variety of metabolic and other diseases, highlighting the potential for microbiota-targeted treatments. Fecal microbiota transplantation has received considerable attention as a promising therapy to modulate the gut microbiome and restore microbial homeostasis. However, challenges remain, including standardization, safety, and long-term efficacy. This review summarizes current knowledge on fecal microbiota transplantation and describes the next generation therapies targeting microbiome. This review looked at the mechanistic understanding of fecal microbiota transplantation and alternative strategies, elucidating their potential role in improving dysbiosis-associated metabolic disorders, such as obesity, and type 2 diabetes and others. Additionally, this review discussed the growing application of therapies targeting the gut microbiome. Insights from clinical trials, preclinical studies, and emerging technologies provide a comprehensive overview of the evolving landscape of microbiome-based interventions. Through a critical assessment of current advances and prospects, this review aims to highlight the therapeutic potential of targeting gut microbiome and pave the way for innovative approaches in precision medicine and personalized treatments.
Collapse
Affiliation(s)
- Zenawork Sahle
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Getabalew Engidaye
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Demissew Shenkute Gebreyes
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Behailu Adenew
- Department of Medical Laboratory Science, Debre Berhan Compressive Specialized Hospital, Debre Berhan, Ethiopia
| | - Tsegahun Asfaw Abebe
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
50
|
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson JA, Hu Y, Zhao H, Wong FS, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat Commun 2024; 15:4232. [PMID: 38762479 PMCID: PMC11102548 DOI: 10.1038/s41467-024-48611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.
Collapse
Affiliation(s)
- Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Xin Yang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Sha Sha
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|