1
|
Song Z, Yang J, Hua Y, Liu G, Yu G, Zhao J, Hu J, Wan X. Characteristics of phosphorus transformation from vivianite mediated by sulphide. J Environ Sci (China) 2025; 154:52-62. [PMID: 40049893 DOI: 10.1016/j.jes.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 05/13/2025]
Abstract
The release of phosphorus (P) from anaerobic sediments becomes the dominant source of P loading with effective control of external P pollution. As a crucial component responsible for binding P, vivianite (Fe3(PO4)2·8H2O) in sediment inevitably impacts the P level and transformation. The release of P from vivianite mediated by sulphide was investigated using simulated overlying water-sediment and chemical reaction systems. The percentage of redox-stable P in the sediments increased with vivianite input in the overlying water-sediment system. Increasing P concentrations in both the overlying water and interstitial water occurred before day 10, accompanied by a decreasing percentage of redox-sensitive P in the sediments driven by sulphide. The continuous release of P from vivianite clarifies the influence of sulphide on promoting vivianite dissolution in a chemical reaction system with vivianite and sulphide solution. Additionally, Mössbauer spectrum and nanoscale secondary ion mass spectrometry (NanoSIMS) images based on the chemical reaction with 57Fe isotope labelling demonstrated the presence of initial vivianite, newly produced vivianite, and FeS2.
Collapse
Affiliation(s)
- Zijun Song
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yumei Hua
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guanglong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanghui Yu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jianwei Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinlong Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqiong Wan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Wang T, Zhang M, Jiang N, Jiang X, Li N, Lobo FL, Chen M, Wang X. Enhanced ammonium oxidation and iron cycle of Feammox under micro-oxygen condition. ENVIRONMENTAL RESEARCH 2025; 275:121443. [PMID: 40118323 DOI: 10.1016/j.envres.2025.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Autotrophic anaerobic ammonium oxidation coupled to Fe(III) reduction (Feammox) is a promising technology for treating low C/N wastewater. However, Feammox still faces bottlenecks of slow ammonium oxidation rate and the continuous supply of Fe(III) source. This study adopts micro-oxygen strategy to overcome these obstacles. Micro-oxygen increased the ammonium oxidation rate up to 5.7 times higher than under anaerobic condition, and drove the iron cycle in the form of vivianite [Fe(II)] and leucophosphite [Fe(III)]. Furthermore, it was confirmed that the ammonium oxidation in Feammox relies on ammonia monooxygenase (AMO), as evidenced by 10 times increase in the relative amo expression and 1.2 times increase in AMO activity under micro-oxygen compared to anaerobic condition. Additionally, this approach enhanced the growth and co-metabolism of functional bacteria. Long-term experiments demonstrated the sustainability of the Feammox system with iron cycle under micro-oxygen condition. These findings provide valuable insights into the practical application of Feammox process.
Collapse
Affiliation(s)
- Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nana Jiang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xinlei Jiang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Fernanda Leite Lobo
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Brazil
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
3
|
Zeng K, Liu L, Zheng N, Yu Y, Xu S, Yao H. Iron at the helm: Steering arsenic speciation through redox processes in soils. ENVIRONMENTAL RESEARCH 2025; 274:121327. [PMID: 40058542 DOI: 10.1016/j.envres.2025.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The toxicity and bioavailability of arsenic (As) in soils are largely determined by its speciation. Iron (Fe) is widely present in soils with a strong affinity for As, and therefore the environmental behaviors of As and Fe oxides (including oxides, hydrates and hydrated oxides) are closely correlated with each other. The redox fluctuations of Fe driven by changes in the environment can significantly affect As speciation and its fate in soils. The interaction between Fe and As has garnered widespread attention, and the adsorption mechanisms of As by Fe oxides have also been well-documented. However, there is still a lack of systematic understanding of how Fe redox dynamics affects As speciation depending on the soil environmental conditions. In this review, we summarize the mechanisms for As speciation transformation and redistribution, as well as the role of environmental factors in the main Fe redox processes in soils. These processes include the biotic Fe oxidation mediated by Fe-oxidizing bacteria, abiotic Fe oxidation by oxygen or manganese oxides, dissimilatory Fe reduction mediated by Fe-reducing bacteria, and Fe(II)-catalyzed transformation of Fe oxides. This review contributes to a deeper understanding of the environmental behaviors of Fe and As in soils, and provides theoretical guidance for the development of remediation strategies for As-contaminated soils.
Collapse
Affiliation(s)
- Keman Zeng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lihu Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
4
|
Kundu BB, Krishnan J, Szubin R, Patel A, Palsson BO, Zielinski DC, Ajo-Franklin CM. Extracellular respiration is a latent energy metabolism in Escherichia coli. Cell 2025; 188:2907-2924.e23. [PMID: 40215961 DOI: 10.1016/j.cell.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/06/2024] [Accepted: 03/07/2025] [Indexed: 06/01/2025]
Abstract
Diverse microbes utilize redox shuttles to exchange electrons with their environment through mediated extracellular electron transfer (EET), supporting anaerobic survival. Although mediated EET has been leveraged for bioelectrocatalysis for decades, fundamental questions remain about how these redox shuttles are reduced within cells and their role in cellular bioenergetics. Here, we integrate genome editing, electrochemistry, and systems biology to investigate the mechanism and bioenergetics of mediated EET in Escherichia coli, elusive for over two decades. In the absence of alternative electron sinks, the redox cycling of 2-hydroxy-1,4-naphthoquinone (HNQ) via the cytoplasmic nitroreductases NfsB and NfsA enables E. coli respiration on an extracellular electrode. E. coli also exhibits rapid genetic adaptation in the outer membrane porin OmpC, enhancing HNQ-mediated EET levels coupled to growth. This work demonstrates that E. coli can grow independently of classic electron transport chains and fermentation, unveiling a potentially widespread new type of anaerobic energy metabolism.
Collapse
Affiliation(s)
- Biki Bapi Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Jayanth Krishnan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Caroline M Ajo-Franklin
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA; Departments of Biosciences, Bioengineering, Chemical and Biomolecular Engineering and The Rice Synthetic Biology Institute, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
5
|
Uchijima T, Kato S, Tanimoto K, Shiraishi F, Hamamura N, Tokunaga K, Makita H, Kondo M, Ohkuma M, Mitsunobu S. Custom-made medium approach for effective enrichment and isolation of chemolithotrophic iron-oxidizing bacteria. FEMS Microbiol Ecol 2025; 101:fiaf051. [PMID: 40328454 PMCID: PMC12089753 DOI: 10.1093/femsec/fiaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/29/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025] Open
Abstract
Chemolithotrophic neutrophilic iron (Fe)-oxidizing bacteria, which mainly belong to the family Gallionellaceae, universally prevail in terrestrial environments changing Fe cycling. However, they are typically recognized as difficult-to-culture microbes. Despite efforts, there are few Fe(II)-oxidizing lithotroph isolates; hence, their physiological and ecological knowledge remains limited. This limitation is largely owing to difficulties in their cultivation, and we hypothesize that the difficulty exists because substrate and mineral concentrations in the cultivation medium are not tuned to a specific environmental condition under which these organisms live. To address this hypothesis, this study proposes a novel custom-made medium approach for chemolithotrophic Fe(II)-oxidizing bacteria; a method that manipulates medium components through diligent analysis of field environment. A new custom-made medium simulating energy substrates and nutrients under the field condition was prepared by modifying both chemical composition and physical setup in the glass-tube medium. In particular, the modification of the physical setup in the tube had a significant effect on adjusting dissolved Fe(II) and O2 concentrations to the field environment. Using the medium, Gallionellaceae members were successfully enriched and a new Gallionellaceae species was isolated from a natural hot spring site. Compared with conventional medium, the custom-made medium has significantly higher ability in enriching Gallionellaceae members.
Collapse
Affiliation(s)
- Tomoki Uchijima
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuya Tanimoto
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Fumito Shiraishi
- Earth and Planetary Systems Science Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Natsuko Hamamura
- Department of Biology, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Tokunaga
- Ningyo-Toge Environmental Engineering Center, Japan Atomic Energy Agency, Okayama 708-0698, Japan
| | - Hiroko Makita
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research, (X-star), Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan
| | - Momoko Kondo
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Satoshi Mitsunobu
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
6
|
Zhang J, Wang X, Chen Z, Yu Q, Zhang Y. Microbial advanced oxidation aroused by bacteria-algae symbiosis induced abiotic methane production in anaerobic digestion. WATER RESEARCH 2025; 282:123776. [PMID: 40334379 DOI: 10.1016/j.watres.2025.123776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
The slow decomposition of recalcitrant substrate limits the conversion efficiency of anaerobic digestion. Microbial advanced oxidation, capable of in-situ generating reactive oxygen species (ROS) with the microbial aerobic/anaerobic respiration, provided a potential way to strengthen the substrate-methane conversion in anaerobic digestion. In this study, microalgae were inoculated in anaerobic system and formed redox oscillation under the intermittent illumination, which ultimately increased the methane production by 27.4 %. With the redox oscillation, •OH, the typical ROS, showed a 6.27-fold increase in production (72.95 ± 9.06 μM vs. 10.03 ± 1.49 μM), facilitating the decomposition of lignocelluloses. Notably, abiotic methanation was observed in anaerobic digestion with the occurrence of microbial advanced oxidation. ROS quenching experiments revealed that abiotic methanation roughly accounted for 17.5 % of the total methane production. Microbial advanced oxidation formed by redox oscillation showed the potential to strengthen anaerobic digestion. Notably, for the first time, it was confirmed that abiotic methanation could be established in anaerobic digestion with the ROS generated by microbial advanced oxidation, which offered a new perspective to understand and improve the performances of natural and engineered ecosystems.
Collapse
Affiliation(s)
- Jinshuo Zhang
- Dalian University of Technology School of Environmental Science and Technology No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning, 116024, China
| | - Xuepeng Wang
- Dalian University of Technology School of Environmental Science and Technology No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning, 116024, China
| | - Zhenglin Chen
- Dalian University of Technology School of Environmental Science and Technology No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning, 116024, China
| | - Qilin Yu
- Dalian University of Technology School of Environmental Science and Technology No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning, 116024, China
| | - Yaobin Zhang
- Dalian University of Technology School of Environmental Science and Technology No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning, 116024, China.
| |
Collapse
|
7
|
Cheng X, Hu L, Liu T, Cheng X, Li J, Xu K, Zheng M. High-level nitrogen removal achieved by Feammox-based autotrophic nitrogen conversion. WATER RESEARCH X 2025; 27:100292. [PMID: 39723189 PMCID: PMC11667699 DOI: 10.1016/j.wroa.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an essential process in the geochemical iron and nitrogen cycling. This study explores Feammox-based nitrogen removal in a continuous laboratory up-flow bioreactor stimulated by intermittently adding 5 mM Fe(OH)3 at intervals of approximately two months. The feed was synthetic wastewater with a relatively low ammonium concentration (∼100 mg N/L), yet without organic carbon in order to test its autotrophic nitrogen removal performance. The operation of this system showed the achievement of high-level ammonium and total nitrogen removal efficiency (∼97% and ∼90% on average, respectively) within four months of operation, along with a relatively practical rate of ∼50 mg N/(L·d). The demand of Fe(Ⅲ) for ammonium removal during the whole bioreactor operation was estimated to be only 0.033, two orders of magnitude less than that calculated based on the Feammox reaction producing nitrogen gas. A series of assays on Fe(II) oxidation with different oxidants (O2, NO2 - and NO3 -) in abiotic and biotic batch tests further revealed an important role of Fe(II) oxidation processes, likely driven by microbial nitrate reduction and chemical oxygen reduction, in assisting the regeneration of Fe(III) for continuous Feammox-based nitrogen removal. This work demonstrates that Feammox-based autotrophic nitrogen conversion is a potential option for future wastewater treatment.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lanlan Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiang Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
8
|
Qiu H, Wang C, Jiang L, Niu H, Wang X, Qin W, Xu F, Hao L. A microbial-driven persulfate activating-cycling system for in-depth oxytetracycline degradation and bacterial antibiotic resistance control. WATER RESEARCH 2025; 275:123151. [PMID: 39904194 DOI: 10.1016/j.watres.2025.123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Insufficient biodegradability of antibiotics (e.g., oxytetracycline, OTC) and the accompanying antibiotic resistance gene (ARG) spreading risk have been a serious concern in wastewater treatment plants. This study developed a microbial-driven persulfate activating-cycling system (MPCS) relying on the iron-reducing capacity of Shewanella oneidensis to sustainably degrade OTC and prevent ARG elevation. In MPCS, a nanosized bio-magnet shell (20-60 nm) was bio-generated and incorporated with S. oneidensis to activate peroxydisulfate and produce free radicals to attack OTC, removed by 98.78 % in 120 min. S. oneidensis metabolism re-generated the bio-magnet and cleared the toxic intermediates. Despite the stress of OTC and free radicals, S. oneidensis sustained (live/death ratio of 74.50 %: 25.50 %) under bio-magnet shell protection, showing a strong energy metabolism and iron-reducing strength. The tight coupling of biodegradation and advanced oxidation process (AOP) greatly improved degrading efficiency (132.65 %-2369.44 % higher than single biodegradation or AOP). MPCS continuously operated 5 cycles efficiently, exhibiting a diverse degrading pathway with less toxic intermediates than the single treatment. Notably, MPCS functioned well without peroxydisulfate, as the S. oneidensis produces low-level hydrogen peroxide as the AOP substrate, achieving favorable OTC elimination. Especially, the expression of sixteen tetracycline-related ARGs dropped by 62.94 %-100 % in MPCS than biodegradation, indicating resistance control advantage under bio-magnet shell protection and the synergism effect of AOP and biodegradation. This study spontaneously recyclably combined biodegradation and AOP to simultaneously eliminate antibiotics and ARGs, which provided a potential approach to control the drug resistance risk.
Collapse
Affiliation(s)
- Hang Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Can Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Liyue Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Huan Niu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Xinyi Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wenqiu Qin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, PR China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, PR China
| |
Collapse
|
9
|
Han R, Wang Z, Lv J, He K, Liu S, Zhu Z, Nriagu J, Teng HH, Zhu YG, Li G. Properties and Reactivity of Iron-Organic Matter-Arsenic Composites and their Influence on Arsenic Behavior in Microbial Reduction and Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6600-6609. [PMID: 40153613 DOI: 10.1021/acs.est.5c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
The biogeochemistry of arsenic in soils is strongly controlled by iron oxides and soil organic matter (SOM). The present study intends to elucidate the behavior of arsenic in Fe-SOM-As composites formed through adsorption or coprecipitation under redox conditions. The X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) showed that crystalline minerals were generated during Fe-HA-As coprecipitation, while other composites exhibited an amorphous structure. In an anoxic environment, iron-reducing bacteria reduced Fe(III) and As(V) to Fe(II) and As(III), respectively, enhancing the mobility of arsenic. The presence of SOM increased the concentrations of dissolved Fe(II) and As(III) through complexation. Notably, elevated As(III) and reduced Fe(II) were observed in the HA-containing coprecipitation group due to the weak adsorption capacity of crystalline minerals, which released As(V) into solution and competed with Fe(III) for electrons. Under oxic conditions, superoxide, hydrogen peroxide, and hydroxyl radical (•OH) were formed through the oxidation of Fe(II) and reduced SOM. As(III) was subsequently oxidized by superoxide and •OH, and the process was dominated by •OH. Substantial •OH in the HA-containing coprecipitation group mainly oxidized dissolved As(III), while limited •OH in other groups contributed greater to adsorbed As(III). These findings contribute substantially to understanding the mechanisms of the coupled transformation of iron and arsenic in soil under fluctuating redox conditions.
Collapse
Affiliation(s)
- Ruixia Han
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe Wang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kaiwen He
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Siyao Liu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, Michigan 48109-2029, United States
| | - H Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yong-Guan Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gang Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
10
|
Li D, Wei W, Xu W, Li C, Yang Y, Chu Z, Zheng B. The interactive application and impacts of iron/nitrogen biogeochemical cycling in distributed ponds for non-point source pollution control in a watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124797. [PMID: 40058038 DOI: 10.1016/j.jenvman.2025.124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
The linkages of distributed ponds are utilized in conjunction with one another to remediate non-point source (NPS) pollution in a water-scarce basin. This study provides an overview of a state-of-the-art thorough evaluation of ponds, which offers insight into the majority of topics covered by the ongoing scientific studies, including their various functions and factors affecting their functioning on the hydrological, physicochemical, and biological processes, such as environmental climate factors and basin-specific landscape configuration parameters, as well as process parameters for design, operation and management aspects. The linkages of ponds provide a variety of sustainable services (6R functions), such as resources, restoration, reduction, reuse, recycling, and recovery. The significance of regional environmental geochemical substrates in the ponds, such as red soil, as a hotspot for microbial reaction is emphasized to demonstrate the significant contribution of the migration and transformation of Fe/N cycles to the pollution removal process. In this review, 178 original research publications were thoroughly analyzed to improve our knowledge of the iron-nitrogen cycle in wetlands. From a molecular biology standpoint, the identification of functional microbe species and genes linked to microbially driven iron-nitrogen cycle activities is delved. Reliable data and homogeneous datasets from 42 studies were collected. The correlation analysis results demonstrated Feammox rates contributed to the N loss amount (r = 0.871; p < 0.01), and they had a positive correlation with Fe(III) concentration (r = 0.965; p < 0.01). The proposal for the treatment of NPS pollution by large-scale linkages of ponds in a basin involves optimizing Fe/N microbial processes to promote iron crystallization and efficient circulation of Fe(II) and Fe(III). The co-benefits of geochemistry, biotechnology, and environmental science should be considered when managing contamination in engineering applications. The linkages framework for integrated ponds, which incorporates macro (watershed management) and micro (biogeochemical cycle mechanism) investigations, provides a systematic approach to the application of integrated ponds and sustainable water management for NPS pollution control.
Collapse
Affiliation(s)
- Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Weiwei Wei
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenyi Xu
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Lennart Hjelms väg 9, 75007, Uppsala, Sweden
| | - Chunhua Li
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhaosheng Chu
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Binghui Zheng
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
11
|
O’Connell DW, Mccammon C, Byrne JM, Jensen MM, Thamdrup B, Bruun Hansen HC, Postma D, Jakobsen R. Isotopic Exchange between Aqueous Fe(II) and Solid Fe(III) in Lake Sediment─A Kinetic Assemblage Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5534-5544. [PMID: 40067284 PMCID: PMC11948465 DOI: 10.1021/acs.est.4c07369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
The catalytic effect of aqueous Fe(II) (Fe2+aq) on the transformation of Fe(oxyhydr)oxides has been extensively studied in the laboratory. It involves the transfer of electrons between Fe2+aq and Fe-(oxyhydr)oxides, rapid atomic exchange of Fe between the two states, and recrystallization of the Fe-oxides into more stable Fe-(oxyhydr)oxides. The potential occurrence of these reactions in natural soils and sediments can have an important impact on biogeochemical cycling of iron, carbon, and phosphorus. We investigated the possible isotopic exchange between Fe2+aq and sedimentary Fe(III) in Fe-Si-C-rich lake sediments. 57Fe Mössbauer spectroscopy was used to evaluate Fe mineral speciation in unaltered lake sediments. Unaltered and oxidized sediment laboratory incubations were coupled with a classical kinetic approach that allows a quantitative description of the reactivity of assemblages of Fe-(oxyhydr)oxides found in sediments. Specifically, unaltered and oxidized sediment samples were separately incubated with an 55Fe2+aq-enriched solution and exchange was observed between 55Fe2+aq and sedimentary Fe(III), highest in the top of the sediment and decreasing with depth with the 55Fe2+aq tracer distributed within the bulk of the sedimentary Fe(III) phase. Our results indicate that atomic exchange between Fe2+aq and sedimentary Fe(III) occurs in natural sediments with electrons transferred from the Fe(III)-particle to Fe(III)-particle via Fe2+aq intermediates.
Collapse
Affiliation(s)
- David W. O’Connell
- Department
of Civil, Structural and Environmental Engineering, Trinity College Dublin, College Green, Museum Building, D02
PN40 Dublin 2, Ireland
- Department
of Plant and Environmental Sciences, University
of Copenhagen, DK-1871 Copenhagen, Denmark
| | - Catherine Mccammon
- Bayerisches
Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
| | - James M. Byrne
- School
of Earth Sciences, University of Bristol, BS8 1RJ Bristol, U.K.
| | - Marlene Mark Jensen
- Department
of Chemical and Biochemical Engineering Bio Conversions, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Bo Thamdrup
- Nordic Center
for Earth Evolution, Institute of Biology, University of Southern Denmark, DK 5230 Odense M, Denmark
| | | | - Dieke Postma
- GEUS,
Geological Survey of Denmark and Greenland, DK-1350 Copenhagen, Denmark
| | - Rasmus Jakobsen
- GEUS,
Geological Survey of Denmark and Greenland, DK-1350 Copenhagen, Denmark
| |
Collapse
|
12
|
Xia Q, Qiu Q, Cheng J, Huang W, Yi X, Yang F, Huang W. Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances. BIORESOURCE TECHNOLOGY 2025; 419:132041. [PMID: 39765277 DOI: 10.1016/j.biortech.2025.132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined. This review is expected to give new insights into the development of economic and environmentally friendly iron-based wastewater treatment procedures.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Qingzhen Qiu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
13
|
Xu X, Mansor M, Li G, Chiu TH, Haderlein SB, Kappler A, Joshi P. Size-Dependent Reduction Kinetics of Iron Oxides in Single and Mixed Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2519-2530. [PMID: 39878302 PMCID: PMC11823449 DOI: 10.1021/acs.est.4c08032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite. We found that small particles were preferentially reduced relative to their large counterparts in single and mixed mineral systems regardless of microbial or electrochemical treatments, which is attributed to the combined effect of higher thermodynamic favorability and greater surface availability. In mixed mineral systems, small particles were reduced slightly faster, whereas large particles were reduced notably slower and less extensively than solely predicted from single mineral systems. Specifically, when reduced alone, small particles showed Fe(III) reduction rate constants that were 1.5- to 3.6-fold higher than large particles, while when reduced together, the reduction rate constants for small particles were 6- to 21-fold higher than the rate constants for large particles. These collective findings provide new insights into the pivotal role of nanoparticulate iron (oxyhydr)oxides in environmental redox reactions.
Collapse
Affiliation(s)
- Xiyang Xu
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Muammar Mansor
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Guoxiang Li
- Environmental
Chemistry and Mineralogy, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Tsz Ho Chiu
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Stefan B. Haderlein
- Environmental
Chemistry and Mineralogy, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence: EXC 2124: Controlling Microbes to Fight Infection, 72076 Tübingen, Germany
| | - Prachi Joshi
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Yang RS, Li C, Henriquez L, Wang H, Panchal J, Zhong W, Schuessler H. Impact of citrate on mitigating iron mediated polysorbate 80 degradation in biotherapeutic formulation placebos. J Pharm Sci 2025; 114:857-865. [PMID: 39547649 DOI: 10.1016/j.xphs.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Polysorbate 80 (PS80), a widely used polymeric surfactant in biotherapeutic formulation, possesses a unique structural composition that effectively prevents protein aggregation in highly concentrated protein drug formulations. However, PS80 is susceptible to hydrolysis, due to the presence of fatty acid esters that can be enzymatically hydrolyzed, The unsaturated bonds in the fatty acids are prone to oxidative degradation when exposed to air, especially in the presence of transition metals such as iron and copper, which may be introduced during production and purification processes or from contamination in raw materials used in drug formulation. The degradation of PS80, particularly through metal-mediated oxidative degradation, poses a significant challenge for the industry. Among the identified trace metals, iron plays a crucial role as the redox reaction between ferrous ion (Fe(II)) and ferric ion (Fe(III)) generates radicals that initiate the degradation process. In order to investigate the impact of iron on PS80 degradation and understand the mechanism of iron-catalyzed oxidation, we utilized charge-reduction mass spectrometry and two-dimensional ion density mapping technologies to characterize the degradation of PS80. This method has proven to be a convenient and effective tool for the quick and detailed profiling of PS80, allowing for visual monitoring and examination of the changes that reflect the difficult-to-identify and easy-to-miss oxidized species of PS80. Additionally, a high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry method was developed for the separation and measurement of Fe(II) and Fe(III). Through this investigation, we determined that the involvement of Fe(II)/Fe(III) in PS80 degradation is a temperature dependent process. Furthermore, we found citrate not only promotes the conversion of Fe(II) to Fe(III), but it also chelates Fe(III) and prevents its reduction to Fe(II), thus inhibiting the initiation of the PS80 degradation. Therefore, the addition of citrate can be a crucial ingredient for controlling the degradation of PS80 in biologic drug substances and products. Overall, this investigation has provided valuable insights to enhance product stability, optimize processes, and ensure the quality of formulations containing PS80.
Collapse
Affiliation(s)
- Rong-Sheng Yang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| | - Chengbei Li
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| | - Liliana Henriquez
- Sterile and Specialty Products, Biologics Development and Biopharmaceutics, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Hongxia Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Jainik Panchal
- Sterile and Specialty Products, Biologics Development and Biopharmaceutics, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Wendy Zhong
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Hillary Schuessler
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| |
Collapse
|
15
|
Hu S, Zhang A, Wu H, Peng W, Li P, Su W. Analysis of Volatile Compounds in Citri grandis from Different Regions in South China and the Response of Volatile Compounds to Ecological Factors. Molecules 2025; 30:622. [PMID: 39942726 PMCID: PMC11821023 DOI: 10.3390/molecules30030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Citri grandis Exocarpium (Chinese name Huajuhong, HJH) is a traditional Chinese medicinal herb widely used in traditional medicines and foods in China due to its efficacy in treating coughs and excessive phlegm. This study employed HS-SPME-GC-MS to analyze the volatile compounds in HJH samples from different regions, with the aim of distinguishing samples from Huazhou from those of other origins and exploring their potential relationship with ecological factors. A multidimensional strategy was utilized to analyze the relationships between volatile oils, climatic factors, and soil elements, examining how volatile compounds responded to ecological factors. From 47 batches of HJH samples across various regions, eight significantly different volatile compounds were identified, serving as chemical markers for HJH from Huazhou. The findings elucidate the impact of ecological factors on the volatile compounds of HJH, highlighting environmental factors relating to the authenticity of HJH from Huazhou. The results indicate that the authenticity of HJH is shaped by the unique climatic and soil environments of Huazhou.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Grimm H, Lorenz J, Straub D, Joshi P, Shuster J, Zarfl C, Muehe EM, Kappler A. Nitrous oxide is the main product during nitrate reduction by a novel lithoautotrophic iron(II)-oxidizing culture from an organic-rich paddy soil. Appl Environ Microbiol 2025; 91:e0126224. [PMID: 39641603 PMCID: PMC11784278 DOI: 10.1128/aem.01262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Microbial nitrate reduction coupled to iron(II) oxidation (NRFeOx) occurs in paddy soils due to high levels of dissolved iron(II) and regular application of nitrogen fertilizer. However, to date, there is no lithoautotrophic NRFeOx isolate or enrichment culture available from this soil environment. Thus, resulting impacts on greenhouse gas emissions during nitrate reduction (i.e., nitrous oxide [N2O]) and on toxic metalloid (i.e., arsenic) mobility can hardly be investigated. We enriched a lithoautotrophic NRFeOx culture, culture HP (Huilongpu paddy, named after its origin), from a paddy soil (Huilongpu Town, China), which was dominated by Gallionella (71%). The culture reduced 0.45 to 0.63 mM nitrate and oxidized 1.76 to 2.31 mM iron(II) within 4 days leading to N2O as the main N-product (62%-88% N2O-N of total reduced NO3--N). Nitrite was present as an intermediate at a maximum of 0.16 ± 0.1 mM. Cells were associated with, but mostly not encrusted by, poorly crystalline iron(III) minerals (ferrihydrite). Culture HP performed best below an iron(II) threshold of 2.5-3.5 mM and in a pH range of 6.50-7.05. In the presence of 100 µM arsenite, only 0%-18% of iron(II) was oxidized. Due to low iron(II) oxidation, arsenite was not immobilized. However, the proportion of N2O-N of total reduced NO3--N decreased from 77% to 30%. Our results indicate that lithoautotrophic NRFeOx occurs even in organic-rich paddy soils, resulting in denitrification and subsequent N2O emissions. The obtained novel enrichment culture allows us to study the impact of lithoautotrophic NRFeOx on arsenic mobility and N2O emissions in paddy soils.IMPORTANCEPaddy soils are naturally rich in iron(II) and regularly experience nitrogen inputs due to fertilization. Nitrogen fertilization increases nitrous oxide emissions as it is an intermediate product during nitrate reduction. Microorganisms can live using nitrate and iron(II) as electron acceptor and donor, respectively, but mostly require an organic co-substrate. By contrast, microorganisms that only rely on nitrate, iron(II), and CO2 could inhabit carbon-limited ecological niches. So far, no isolate or consortium of lithoautotrophic iron(II)-oxidizing, nitrate-reducing microorganisms has been obtained from paddy soil. Here, we describe a lithoautotrophic enrichment culture, dominated by a typical iron(II)-oxidizer (Gallionella), that oxidized iron(II) and reduced nitrate to nitrous oxide, negatively impacting greenhouse gas dynamics. High arsenic concentrations were toxic to the culture but decreased the proportion of nitrous oxide of the total reduced nitrate. Our results suggest that autotrophic nitrate reduction coupled with iron(II) oxidation is a relevant, previously overlooked process in paddy soils.
Collapse
Affiliation(s)
- Hanna Grimm
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Jennifer Lorenz
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Daniel Straub
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Prachi Joshi
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Jeremiah Shuster
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Tübingen Structural Microscopy Core Facility, University of Tübingen, Tübingen, Germany
| | - Christiane Zarfl
- Environmental Systems Analysis, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - E. Marie Muehe
- Plant Biogeochemistry, Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Plant Biogeochemistry, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| |
Collapse
|
17
|
Malas J, Khoury SC, Tanzillo M, Fischer GA, Bogner JE, Meyer-Dombard DR. Impact of antibiotics, iron oxide, and sodium sulfate on microbial community composition in laboratory-built municipal solid waste microcosms. PLoS One 2025; 20:e0318351. [PMID: 39874355 PMCID: PMC11774356 DOI: 10.1371/journal.pone.0318351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics. The addition of Fe(OH)3 altered the overall community composition and increased Shannon diversity and Chao1 richness. The addition of a mixture of seven antibiotics (1000 ng/L each) altered the community composition without affecting diversity metrics. Sulfate addition had little effect on microbial community composition or diversity. These results suggest that the microbial community composition in fresh MSW may be significantly impacted by influxes of iron waste and a single application of antibiotics.
Collapse
Affiliation(s)
- Judy Malas
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sarah C. Khoury
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Michael Tanzillo
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gracie A. Fischer
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jean E. Bogner
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - D’Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
18
|
Rothwell KA, ThomasArrigo LK, Kaegi R, Kretzschmar R. Low molecular weight organic acids stabilise siderite against oxidation and influence the composition of iron (oxyhydr)oxide oxidation products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:133-145. [PMID: 39611820 PMCID: PMC11606451 DOI: 10.1039/d4em00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Siderite (FeCO3) is an important reservoir of mineral-bound ferrous iron in non-sulfidic, reducing soils and sediments. It is redox sensitive, and its oxidation may facilitate the reduction of a range of pollutants, produce reactive oxygen species, or induce the formation of oxidation products with large surface areas for contaminant sorption. However, there is currently a limited understanding of the stability of siderite in complex environments such as soils and sediments. Here, we use a series of batch experiments complemented with thorough characterisation of mineral oxidation products to investigate the oxidation of siderite in the presence and absence of the low molecular weight organic acids (LMWOAs) citrate, tiron, salicylate, and EDTA as analogues for naturally occurring compounds or functional groups of natural organic matter that ubiquitously coexist with siderite. Our results show that siderite alone at pH 7.5 was completely oxidised to form ferrihydrite, nanocrystalline lepidocrocite, and nanocrystalline goethite in less than 6 hours. However, in the presence of LMWOAs, up to 48% of the siderite was preserved for more than 500 hours and the formation of goethite was inhibited in favour of ferrihydrite and lepidocrocite. Using experimental data from electron microscopy and chemical speciation modelling, we hypothesise that the siderite may be preserved through the formation of an Fe(III)-passivation layer at the siderite surface.
Collapse
Affiliation(s)
| | - Laurel K ThomasArrigo
- Environmental Chemistry Group, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Ralf Kaegi
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CHN, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
19
|
Bian L, Chappaz A, Sanei H. Chromium, tungsten and vanadium sediment-porewater geochemistry under oxic and anoxic redox conditions: Implication for their remobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178036. [PMID: 39671940 DOI: 10.1016/j.scitotenv.2024.178036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Global chromium (Cr), tungsten (W), and vanadium (V) cycles are emerging concerns due to their toxicities to ecosystems. However, a comprehensive understanding of their geochemical reactions and controls at the sediment-water interface remains largely unknown. This knowledge gap hinders the assessment of their potential remobilization in Earth's surface environments threatened by hypoxic conditions. We collected pore water and sediment samples from the undisturbed Castle Lake, situated in the Klamath-Siskiyou Mountains of northern California, USA, to investigate the geochemical controls responsible for the fixation and release of Cr, W, and V under redox transitions from oxia to anoxia during early diagenesis. The results show that, under oxic conditions, authigenic Cr, W, and V ratios in porewater account for approximately 4.7 %, <0.1 %, and < 0.1 %, respectively, whereas their ratios display around ten times increase under anoxic conditions with average values of 62.4 % for Cr, 4.1 % for W, and 1.1 % for V. Our combined thermodynamic calculation and diagenetic analyses show that the sequestration and release of Cr, W, and V are intimately associated with Fe cycle under anoxic conditions. In contrast, under oxygenated conditions, only Cr and V geochemical behaviors are significantly affected by Fe cycle, while the adsorption of W to Fe minerals is probably inhibited by dissolved organic matter. Furthermore, we suggest that the Cr, W, and V pollution could become significant in coastal and inland water areas where redox conditions oscillate between oxia and anoxia, with intensified water deoxygenation, acidity, and eutrophication.
Collapse
Affiliation(s)
- Leibo Bian
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China; STARLAB, Dept. of Earth and Atmospheric Sciences, Central Michigan University, MI 48859, USA; Lithospheric Organic Carbon (L.O.C.) Group, Dept. of Geoscience, Aarhus University, Aarhus 8000C, Denmark
| | - Anthony Chappaz
- STARLAB, Dept. of Earth and Atmospheric Sciences, Central Michigan University, MI 48859, USA.
| | - Hamed Sanei
- Lithospheric Organic Carbon (L.O.C.) Group, Dept. of Geoscience, Aarhus University, Aarhus 8000C, Denmark
| |
Collapse
|
20
|
Zhu P, Zhang J, Jin J, Huang X, Zhang X. Valence fixable ferrozine gel rod combined with smartphone for facile determination of redox-active Fe 2+ in environmental water. Talanta 2025; 281:126933. [PMID: 39326112 DOI: 10.1016/j.talanta.2024.126933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Ferrous ion (Fe2+) can indicate the redox situation of water and also plays an important role in maintaining the ecological balance of water bodies. However, due to the redox-active property of Fe2+, it is still a huge challenge to sensitively and accurately determine Fe2+ especially in interstitial water. Herein, we prepared a ferrozine gel rod for valence fixation during sampling and subsequent smartphone-based detection of Fe2+. The electrode potential of the redox pair can be varied through the formation of Fe2+-ligand complexes, and when Ecomplex was higher than [Formula: see text] , the oxidation of Fe2+ by O2 was hindered, thus achieving the valence fixation of Fe2+. Six ligands were screened, and it was found that ferrozine could effectively increase the redox potential after complexing with Fe2+, and also exhibits an obvious color change while fixing the valence of Fe2+. To facilitate Fe2+ detection, a cross-linked porous polymer gel rod prepared by acrylamide and sodium alginate was used to encapsulate the ferrozine molecules. The ferrozine gel rod enabled fixation the valence of Fe2+ longer than 30 days, and the resulted purple-red color was pictured and analyzed by a smartphone. Ultimately, the developed ferrozine gel rod sensing system was able to achieve sensitive and linear detection of Fe2+ in the range of 1-200 μM with the limit of detection as low as 0.33 μM, and it also exhibited excellent selectivity and anti-interference ability. The accuracy and reliability of the method was verified by the determination of Fe2+ in spiked water samples and certified standard reference water samples. Finally, the ferrozine gel rod sensing system was successfully applied to in-situ detection of Fe2+ in interstitial water, overlying water and upper water of lake and river. This facile system that enabled valence fixation and fast detection is promising for detection of Fe2+ in environmental waters.
Collapse
Affiliation(s)
- Peng'an Zhu
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Jiangle Zhang
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Jingjing Jin
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xing Huang
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinfeng Zhang
- State Key Lab of Geohazard Prevention & Geoenvironment Protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
21
|
Guo X, Zhu W, Wang Z, Peng G, Tan L, Ming T, Zhang S, Zhang S. Insight into shortening mechanisms of start-up time for three-dimensional biofilm electrode reactor/pyrite-autotrophic denitrification coupled system. BIORESOURCE TECHNOLOGY 2025; 415:131719. [PMID: 39471904 DOI: 10.1016/j.biortech.2024.131719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
In this study, a three-dimensional biofilm electrode reactor (3D-BER)/pyrite-autotrophic denitrification (PAD) coupled (3D-BER-PAD) system was constructed, aiming at investigating the effect of current on the start-up period of the system. The results showed that increasing current could shorten the system's start-up period and improve nitrate removal efficiency (NRE). When the current was 20 mA, the system could start stabilization after approximately 13 days and maintain a stable NRE (88.2 ± 3.4 %) with low energy consumption (0.05 ± 0.003 kW·h/gNO3--N). Additionally, an appropriate current (10 or 20 mA) promoted the reproduction of denitrifying bacteria (e.g., Thiobacillus and Thermomonas) and the expression of functional genes involved in denitrification and sulfur oxidation. Finally, the denitrification mechanism and electron transfer model in the 3D-BER-PAD system were proposed. This study has reference value for the rapid start-up and the improvement of treatment efficiency in the 3D-BER-PAD system.
Collapse
Affiliation(s)
- Xihui Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Wentao Zhu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Gang Peng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Lin Tan
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China
| | - Tingzhen Ming
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
22
|
Hu J, Li H, Wu X, Su R, Zhao J, Lin S, Wang Y, Jiang Y, Wu Y, Kang J, Hu R. Iron forms regulate methane production and oxidation potentials in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177728. [PMID: 39616909 DOI: 10.1016/j.scitotenv.2024.177728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Paddy fields serve as significant sources of methane (CH4) emissions. The periodic flooding and draining in paddy soils induce alternating redox processes, leading to iron transformations and further influencing the production and oxidation of CH4. However, the relationships between CH4 production/oxidation and the concentrations/forms of iron oxides in rice paddies across different regions are largely unknown. Here we collected 26 paddy soil samples from various regions spanning from North to South China. We show that the CH4 production potential varies from 0.005 to 0.618 mg kg-1 d-1, which exhibits an overall trend of higher values in the south and lower values in the north. Moreover, the CH4 oxidation potential spans from 0.888 to 57.384 mg kg-1 d-1, showing no significant latitudinal trend. Highly weathered soils exhibit higher CH4 production potentials, mainly due to the high content of free iron oxides and the low reactivity of aged iron minerals. This hinders the protection of organic carbon (OC) by iron minerals, therefore increasing substrate availability for methanogenesis. In addition to the direct effect, iron forms also indirectly influence CH4 production and oxidation potentials by affecting soil pH, OC availability, and CH4-related microbial abundances. The coefficients of the indirect effect of iron forms on CH4 production and oxidation potential are 0.44 and 0.26, respectively, which are larger than that of the direct effects. Our research reveals the pivotal role of various iron forms in controlling CH4 production and oxidation processes in paddy soils, helping to expand the understanding of the effect of iron biogeochemistry on CH4 emissions in paddy soils and offering new perspectives for mitigating agricultural greenhouse gas emissions.
Collapse
Affiliation(s)
- Jinli Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huabin Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xian Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ronglin Su
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lin
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanbin Jiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Kang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Ding Y, Sheng A, Li X, Liu Y, Yan M, Takahashi Y, Liu J. Triplet-Excited Riboflavin Promotes Labile Fe(III) Accumulation and Changes Mineralization Pathways in Fe(II)-Catalyzed Ferrihydrite Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22148-22158. [PMID: 39630420 DOI: 10.1021/acs.est.4c08589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Flavins are well-known endogenous electron shuttles that facilitate long-distance extracellular electron transfer in dissimilatory iron reduction (DIR), but the effects of their photosensitivity on DIR and the transformation of metastable iron (oxyhydr)oxides like ferrihydrite (Fh) remain underexplored. This study compared the kinetics, pathways, and products of Fh transformation catalyzed by aqueous Fe(II) (Fe(II)aq) in the presence of oxidized riboflavin (RFox) at pH 7 under both dark and light conditions. While RFox has a negligible impact on Fe(II)-catalyzed Fh transformation in the dark, its photoexcited triplet state (3RF*) can significantly accelerate interfacial electron transfer (IET) from Fe(II)aq to Fh, increasing the reductive dissolution rate of Fh and boosting the accumulation rate of the key intermediate labile Fe(III) (Fe(III)labile) from 14.2 μM·h-1 to 35.6 μM·h-1. The 3RF*-promoted Fe(II)-Fh IET favors the oxolation of Fe(III)labile to lepidocrocite (Lp) over goethite (Gt) formation during Fh transformation and promotes the subsequent conversion of Lp to magnetite (Mt), altering the mineral products from sole Gt to a mixture of Lp (24.1%), Gt (45.4%), and Mt (30.5%). These findings highlight the notable effects of riboflavin as a photosensitizer on Fh biotransformation, with implications for microbial respiration and elemental cycling in natural environments.
Collapse
Affiliation(s)
- Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anxu Sheng
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mingquan Yan
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Zhu N, Yu Q, Tang L, Xie R, Hua L, Wang J, Xing J, Pan X, Rene ER, Wang Y. Aggravation of Cd availability in the plastisphere of paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176948. [PMID: 39414048 DOI: 10.1016/j.scitotenv.2024.176948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/06/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Soil plastisphere has attracted many concerns, however, its influence on cadmium (Cd) availability in paddy soil was still unclear. This study carried out batch microcosmic and bagging experiments to explore the influence of microplastic (MPs) on Cd availability in paddy soil under flooding conditions in the view of plastisphere. Results showed that the presence of MPs could act as plastisphere micro-environment. The bacterial community composition changed dramatically around the plastisphere compared with MPs-contaminated bulk soil and control soil. The relative abundance of Symbiobacteraceae, Rhodocyclaceae and Bryobacteraceae was improved in the plastisphere which contributed to the enhanced the reduction of Fe(III) and sulfate in flooding paddy soil. The higher content of Fe(II) and S content contributed to the enrichment of Cd in the plastisphere which aggravated Cd availability in paddy soil under flooding conditions. The partial least squares structure equation modeling results confirmed the presence of MPs in paddy soil could act as plastisphere which could change the bacterial community composition and improve the content Fe and S that was conductive to gather Cd in plastisphere. This study shed lights on the understanding of the role of plastisphere on Cd availability in paddy field ecosystem under flooding conditions.
Collapse
Affiliation(s)
- Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Quanbo Yu
- Shanghai Engineering Research Center of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| | - Li Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Rongxin Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Li Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jing Wang
- Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 633 Clark Street, Evanston, IL 60208, United States.
| | - Jun Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xia Pan
- College of Optoelectronic Manufacturing, Zhejiang Industry & Trade Vocational College, Wenzhou 325003, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
25
|
Zhu S, Jiang Z, Jiang Y, Dong Y, Li J, Shi L. The successive reduction of iodate to iodide driven by iron redox cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136436. [PMID: 39522150 DOI: 10.1016/j.jhazmat.2024.136436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Ferrous iron (Fe(II)) produced by microbial Fe(III) reduction and reactive oxygen species (ROS) generated from aerobic Fe(II) oxidation can mediate iodate (IO3-) reduction and iodide (I-) oxidation, respectively. Nevertheless, how Fe redox cycling under redox fluctuating conditions drives transformation of iodine species remain unclear. In this study, Shewanella oneidensis MR-1 wildtype (WT) and its mutant △dmsEFAB, which lost the ability to enzymatically reduce IO3-, were chosen to conduct ferrihydrite/goethite/nontronite culture experiments under consecutive cycles of anoxic reduction of Fe(III) and re-oxidation of Fe(II) by O2 to reveal the role of Fe redox cycling in the transformation of iodine species. The results showed that both surface-adsorbed and mineral structural Fe(II) chemically reduced IO3-. Chemical IO3- reduction by biogenic Fe(II) was slower than enzymatic IO3- reduction by WT. Compared to △dmsEFAB cultures, WT cultures all showed higher Fe(II) concentrations under anoxic conditions but lower cumulative •OH under oxic conditions, which imply the chemical reaction between I- and ROS. I- oxidation by ROS, however, did not lead to a significant production of IO3- compared with I- formed under anoxic conditions. Consequently, Fe redox cycling successively reduced IO3- to I-, which highlights vital roles of Fe(III)-reducing bacteria in I- formation and mobilization in environments.
Collapse
Affiliation(s)
- Siqi Zhu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China.
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan 430074, Hubei, China.
| |
Collapse
|
26
|
Guo C, Hu S, Cheng P, Cheng K, Yang Y, Chen G, Wang Q, Wang Y, Liu T. Speciation and biogeochemical behavior of perfluoroalkyl acids in soils and their environmental implications: A review. ECO-ENVIRONMENT & HEALTH 2024; 3:505-515. [PMID: 39605968 PMCID: PMC11599973 DOI: 10.1016/j.eehl.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 11/29/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging organic pollutants that have attracted significant attention in the fields of environmental chemistry and toxicology. Although PFAAs are pervasive in soils and sediments, there is a paucity of research regarding their environmental forms and driving mechanisms. This review provides an overview of the classification and biotoxicity of per- and polyfluoroalkyl substances (PFAS), organic pollutant forms, PFAS extraction and analytical methods, the prediction of PFAS distribution in soils, and current PFAS remediation strategies. Four predominant PFAA forms have been proposed in soils: (i) aqueous-extracted PFAAs, (ii) organic-solvent extracted PFAAs, (iii) embedded or sequestered PFAAs, and (iv) covalently bound PFAAs. Furthermore, it suggests suitable extraction methods and predictive models for different PFAA forms, which are instrumental in the research on PFAA speciation and prediction in soils. Simultaneously, it was proposed that elemental cycling and microbial activity may affect the speciation of PFAS. Additionally, the categorization of PFAA forms facilitated the analysis of pollution remediation. Understanding the interplay between PFAA speciation, element cycling, and bacterial activity during soil remediation is essential for understanding remediation mechanisms and assessing the long-term stability of remediation methods. Future studies should expand the investigation of varying PFAA forms in different media, consider the potential binding forms of PFAAs to minerals, organic matter, and microbes, and evaluate the possible mechanisms of PFAA speciation variation.
Collapse
Affiliation(s)
| | | | - Pengfei Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
27
|
Ma W, Wang Y, Wang R, Fan X, Ma S, Tang Y, Ai Z, Yao Y, Zhang L, Gao T. Azo-Enhanced Raman Scattering Probing Proton Transfer between Water and Nanoscale Zero-valent Iron. J Am Chem Soc 2024; 146:32785-32794. [PMID: 39541334 DOI: 10.1021/jacs.4c13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The interaction between a solid and water at their interface, especially proton transfer, impacts molecular-scale catalysis, macroscopic environmental science, and geoscience. Although being highly desired, directly probing proton transfer between a solid and water is a great challenge, given the subnanometer to nanometer scale of the interface. The fundamental challenge lies in the lack of a measurement tool to sensitively observe local proton concentration without introducing an exogenous electrode or nanoparticle with a minimum size of tens of nanometers. Here, we demonstrate an azo-enhanced Raman scattering strategy to design a 2 nm long small-molecule pH probe with a chelating group anchoring to the solid surface. Empowered by the intramolecular Raman enhancing sensitivity, the probe directly observes proton transfer between water and nanoscale zero-valent iron (nZVI), a famous environmental material for pollution control. This molecular-scale interfacial probing methodology offers a powerful tool to pave the way for advanced environmental and geochemical discernment and management.
Collapse
Affiliation(s)
- Weiwei Ma
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yuxin Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ruizhao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Fan
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Sicong Ma
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yuchen Tang
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zhihui Ai
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingjuan Gao
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
28
|
Wang Y, Wang K, Liang T, Wang T, Liu J, Chen X, Xu C, Cao W, Fan H. Milk vetch returning combined with lime materials alleviates soil cadmium contamination and improves rice quality in soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175770. [PMID: 39182782 DOI: 10.1016/j.scitotenv.2024.175770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Milk vetch (Astragalus sinicus L.) returning and lime materials is employed as an effective strategy for remediating cadmium (Cd)-contaminated paddy fields. However, the combined effects of them on alleviating Cd pollution and the underlying mechanisms remain poorly explored. Therefore, this study investigated the impact of these combined treatments on soil properties, iron oxides, iron plaque, mineral elements, and amino acids through a field experiment. The following treatments were employed: lime (LM), limestone (LS), milk vetch (MV), MV + LM (MVLM), and MV + LS (MVLS), and a control (CK) group with no materials. Results demonstrated that treatments significantly decreased soil available Cd by 19.40-32.55 %, 10.20-39.58 %, and 25.36-40.66 % at tillering, filling, and maturing stages compared to CK, respectively. Moreover, exchangeable Cd was transformed into more stable fractions. Compared with individual treatments, MVLM and MVLS treatments further decreased available Cd and exchangeable Cd. Overall, Cd in brown rice was reduced by 18.97-77.39 % compared with CK. And the Cd in iron plaque decreased by 14.12-31.14 %, 24.65-61.60 %, 2.6-38.28 % across three stages. Furthermore, soil pH, dissolved organic carbon, and cation exchange capacity increased, along with 0.22-62.09 % and 0.57-10.66 % increases in free and amorphous iron oxide contents at all stages, respectively. Compared with lime alone, the integration of MV returning facilitated increased formation of Fed, Feo and enhanced the antagonistic effect among grain Ca with Cd; Additionally, it increased AAs in brown rice, improving rice quality and potentially reducing Cd transport. Mantel tests and Partial least squares path modeling revealed a significant positive correlation between Cd in IP and rice Cd uptake and a significant negative correlation between available Cd, Fed and Feo. These findings provide valuable insights into the mechanisms involved in mitigating soil Cd bioavailability using integrated approaches with MV returning and lime materials.
Collapse
Affiliation(s)
- Yikun Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ting Liang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianshu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xiaofen Chen
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Changxu Xu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Weidong Cao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongli Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
29
|
Liu H, Liu T, Chen S, Liu X, Li N, Huang T, Ma B, Liu X, Pan S, Zhang H. Biogeochemical cycles of iron: Processes, mechanisms, and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175722. [PMID: 39187081 DOI: 10.1016/j.scitotenv.2024.175722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
The iron (Fe) biogeochemical cycle is critical for abiotic and biological environmental processes that overlap spatially and may compete with each other. The development of modern molecular biology technologies promoted the understanding of the electron transport mechanisms of Fe-cycling-related microorganisms. Recent studies have revealed a novel pathway for microaerophilic ferrous iron (Fe(II))-oxidizers in extracellular Fe(II) oxidation. In addition, OmcS, OmcZ, and OmcE nanowires on the cell surface have been shown to promote electron transfer between microorganisms and their environment. These processes affect the fate of pollutants in directly or indirectly ways, such as greenhouse gas emissions. In this review, these advances and the environmental implications of the Fe cycle process were discussed, with a particular focus on the mechanisms of intracellular or extracellular electron transport in microorganisms.
Collapse
Affiliation(s)
- Huan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
30
|
Xu H, Zhang L, Li Z, Chen Y, Yang B, Zhou Y. Activation of iron oxides through organic matter-induced dissolved oxygen penetration depth dynamics enhances iron-cycling driven ammonium oxidation in microaerobic granular sludge. WATER RESEARCH 2024; 266:122400. [PMID: 39260195 DOI: 10.1016/j.watres.2024.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The iron redox cycle can enhance anammox in treating low-strength ammonia wastewater. However, maintaining an effective iron redox cycle and suppressing nitrite-oxidizing bacteria in a one-stage partial nitritation and anammox (PN/A) process poses challenges during long-term aeration. We proposed a novel and simple strategy to achieve an efficient iron redox cycle in an iron-mediated anoxic-microaerobic (A/O) process by controlling organic matter (OM) at medium-strength levels (30-110 mg COD/L) in microaerobic granular sludge (MGS)-dominated reactor. The developed A/O process consistently achieved >90 % OM removal and >75 % nitrogen removal. Medium-strength OM varied the penetration depths of dissolved oxygen (DO) in MGS, regulating redox conditions and promoting redox reactions across MGS layers, thus activating accumulated inert iron oxides. Ammonia-oxidizing bacteria (Nitrosomonas), iron-reducing bacteria (e.g., Ignavibacterium, Geobacter), and anammox bacteria (Ca. Kuenenia) coexisted harmoniously in MGS. This coexistence ensured high anammox and Feammox rates along with a robust iron redox cycle, thereby mitigating the adverse impacts of fluctuating DO and OM on one-stage PN/A process stability. The identification of iron reduction-associated genes within Ca. Kuenenia, Ignavibacterium, and Geobacter suggests their potential roles in supporting Feammox coupled in one-stage PN/A process. This study introduces an iron-cycle-driven A/O process as an energy-efficient alternative for simultaneous carbon and nitrogen removal from low-strength wastewater.
Collapse
Affiliation(s)
- Hui Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Liang Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yun Chen
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Bo Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Zhou
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
31
|
Lyngsie G, Herzog SD, Hansen HCB, Persson P. Reactions between ferric oxyhydroxide mineral coatings and a dimethoxyhydroquinone: A source of hydroxyl radicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175065. [PMID: 39067593 DOI: 10.1016/j.scitotenv.2024.175065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Quinones are organic molecules that facilitate electron-transfer reactions in terrestrial environments. The reduced forms, hydroquinones, are powerful reductants that can trigger non-enzymatic radical-based decomposition of organic matter and contaminants by simultaneous reduction of iron and oxygen. Iron oxides often occur as coatings on other minerals, thus our study investigated the reactions between the ferric oxyhydroxide (FeO(OH)) surface coatings on gibbsite (Al(OH)3) and 2,6-dimethoxy-1,4-hydroquinone (2,6-DMHQ). The main aim was to investigate the oxidation of 2,6-DMHQ and the generation ∙OH in the presence of O2 at low Fe concentrations in a novel setup that allows local structural characterization. The heterogeneous redox reactions between 2,6-DMHQ and the FeO(OH) coatings were studied at pH 5.0 as a function of the amount of Fe present on the gibbsite surfaces, including the effect of aging of the FeO(OH) coatings. The results showed that reactions between 2,6-DMHQ and FeO(OH) coated gibbsite under ambient conditions can generate substantial amounts of ·OH, comparable with amounts generated on pure ferrihydrite surfaces. The ·OH is the product of two sequential reactions: hydroquinone oxidation by O2 and degradation of the formed H2O2. The calculated rate constant of the former reaction is the same regardless of amount of FeO(OH) coating suggesting a surface catalytic process where 2,6-DMHQ is oxidized by O2 resulting in formation of H2O2. Subsequently, the observed induction period, the low Fe2+ (aq) concentrations in solution and the dependency of FeO(OH) coating amount influencing ·OH formation suggest that the pathway for ∙OH is through H2O2 decomposition by the surface sites on the FeO(OH) coating. Overall, this study shows that co-existence of oxygen, FeO(OH) and organic reductants, possibly secreted by soil microorganisms, creates favorable conditions for generation of ·OH contributing to decomposition of organic matter and organic pollutants in soil environments.
Collapse
Affiliation(s)
- Gry Lyngsie
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark.
| | - Simon D Herzog
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark
| | | | - Per Persson
- Centre for Environmental and Climate Science, Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
32
|
Bi Z, Wang W, Zhao L, Wang X, Xing D, Zhou Y, Lee DJ, Ren N, Chen C. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: A review. ENVIRONMENTAL RESEARCH 2024; 260:119592. [PMID: 39002629 DOI: 10.1016/j.envres.2024.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yanfeng Zhou
- Heilongjiang Agricultural Engineering Vocational College, Harbin, Heilongjiang Province, 150070, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
33
|
Liu F, Ding Y, Liu J, Latif J, Qin J, Tian S, Sun S, Guan B, Zhu K, Jia H. The effect of redox fluctuation on carbon mineralization in riparian soil: An analysis of the hotspot zone of reactive oxygen species production. WATER RESEARCH 2024; 265:122294. [PMID: 39182351 DOI: 10.1016/j.watres.2024.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Riparian zones are important depositional environments at the catchment scale and provide environmental services such as carbon sequestration. This zone is a highly dynamic interface for oxygen and electron exchange, which confers the basis for reactive oxygen species (ROS) production. However, the differences in soil ROS production and their impact on carbon turnover across various redox locations within the riparian zone remain to be fully elucidated. In this study, we investigated the distribution characteristics and generation mechanism of ROS in riparian soil based on soil samples collected in a three-month field monitoring experiment, with additional incubation experiments conducted to examine the effect of hydroxyl radical (•OH) on soil organic carbon (SOC) mineralization. The obtained results demonstrated that the riverine wetland was the hotspot zone for •OH production, with the production flux of 13.05 μmol kg-1 d-1, which was significantly higher than that in floodplain (7.29 μmol kg-1 d-1) and riverbank soils (8.61 μmol kg-1 d-1). Moreover, •OH levels displayed distinct rhythmic fluctuations, with significantly higher concentrations at low water levels compared to those at high water levels, and remained essentially flat over three cycles. The statistic analysis revealed that the ROS production was highly dependent on reduced species and microbial community structure, which function as biogeochemical batteries and electron shuttles under redox fluctuations. Furthermore, the generated •OH involved in the abiotic mineralization of SOC, contributing to 13.1‒21.8 % of total CO2 efflux. Compared to particulate organic carbon (POC), mineral-associated organic carbon (MAOC) fractions of SOC were more susceptible to •OH attacks. The findings provide a novel insight to comprehensively assess the redox process on riparian carbon turnover.
Collapse
Affiliation(s)
- Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yuanyuan Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Junaid Latif
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jianjun Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Suxin Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shiyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Baotong Guan
- College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
34
|
Wang W, Chen C, Huang X, Jiang S, Xiong J, Li J, Hong M, Zhang J, Guan Y, Feng X, Tan W, Liu F, Ding LJ, Yin H. Chromium(VI) Adsorption and Reduction in Soils under Anoxic Conditions: The Relative Roles of Iron (oxyhr)oxides, Iron(II), Organic Matters, and Microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18391-18403. [PMID: 39360895 DOI: 10.1021/acs.est.4c08677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Chromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved. In contrast, EOC (38 ± 1%), microbes (33 ± 1%), and exchangeable and poorly crystalline Fe (oxyhr)oxide-associated Fe(II) (29 ± 3%) contribute to Cr(VI) reduction in paddy soils enriched with ferrihydrite. Additionally, exogenous Fe(II) and microbes significantly enhance Cr(VI) reduction in ferrihydrite- and goethite-rich soils, and Fe(II) greatly promotes but microbes slightly inhibit Cr passivation. Both Fe(II) and microbes, especially the latter, promote OM mineralization and result in the most substantial OM loss in ferrihydrite-rich paddy soils. During the incubation, part of the ferrihydrite converts to goethite but microbes may hinder the transformation. These results provide deep insights into the geochemical fates of redox-sensitive heavy metals mediated by the complicated effects of Fe, OM, and microbes in natural and engineered environments.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Chunmei Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaopeng Huang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shuqi Jiang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430070, China
| | - Juan Xiong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mei Hong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| | - Long-Jun Ding
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Wuhan 430070, China
| |
Collapse
|
35
|
Sun L, Wang T, Li B, Chen M, Wu J, Shang Z, Wu P, Dang Z, Zhu N. Sunlight-Driven Direct/Mediated Electron Transfer for Cr(VI) Reductive Sequestration on Dissolved Black Carbon-Ferrihydrite Coprecipitates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18379-18390. [PMID: 39363618 DOI: 10.1021/acs.est.4c08371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Surface runoff horizontally distributed chromium (Cr) pollution into various surface environments. Sunlight is a vital factor for the Cr cycle in the surface environment, which may be affected by photoactive substances such as ferrihydrite (Fh) and dissolved black carbon (DBC). Herein, sunlight-driven transformation dynamics of Cr species on DBC-Fh coprecipitates were studied. Under sunlight, the removal of aqueous Cr(VI) by DBC-Fh coprecipitates occurred through sunlight-driven reductive sequestration including adsorption, followed by surface reduction (pathway 1) and aqueous reduction, followed by precipitation (pathway 2). Additionally, coprecipitates with a higher DBC content exhibited a more effective reduction of both adsorbed (kapp,S_red) and aqueous Cr(VI) (kapp,A_red). Photoelectrons facilitated Cr(VI) reduction through direct electron transfer; notably, electron donating DBC promoted the production of photoelectrons by consuming photogenerated holes. Photogenerated Fe(II) species (mineral-phase and aqueous Fe(II)) mediated electron transfer for Cr(VI) reduction, which was reinforced via a ligand-to-metal charge transfer (LMCT) process between DBC-organic ligands and mineral Fe(III). Furthermore, ·O2- also mediated Cr(VI) reduction, although this impact was limited. Overall, this study demonstrates that photoelectrons and photogenerated electron mediators play a crucial role in Cr(VI) reductive sequestration on DBC-Fh coprecipitates, providing new insights into the geochemical cycle of Cr pollution in sunlight-influenced surface environments.
Collapse
Affiliation(s)
- Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bo Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Chang J, Liang D, Gao Y, Sun Y, Wang X, Ren NQ, Li N. Nano-magnetite enhances dissimilated iron reduction to vivianite from sewage by structuring an enormous and compact electron transfer network. WATER RESEARCH 2024; 268:122583. [PMID: 39393178 DOI: 10.1016/j.watres.2024.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Acting as both terminal and conductor of extracellular electron transfer (EET), little studies were focused on how nano-magnetite participated in the dissimilated iron reduction (DIR), especially the synthesis of vivianite, which was the typical DIR products from sewage. In this study, nano-magnetite was confirmed to enhance DIR of ferrihydrite and akaganeite for vivianite recovery from sewage. Nano-magnetite incorporation enriched Comamonas and Geobacter in sewage, and microbial protein content was increased by 123 % and 57 % in ferrihydrite and akaganeite batches, respectively. In Geobacter sulfurreducens PCA pure culture, vivianite yield was promoted by 21 % and 37 % in ferrihydrite and akaganeite batches in the presence of nano-magnetite, respectively. Due to its nanoscale size and superior electrical conductivity, nano-magnetite embedded in the gaps formed by the microorganisms and electron acceptor, and architected coherent conductive pathways to promote EET. Simultaneously, the addition of nano-magnetite stimulated the secretion of proteins, polysaccharides, and humic acids in the extracellular polymeric substances. Nano-magnetite addition structured an enormous and compact electron transfer network, thus enhanced DIR and vivianite formation. Our study proposed a new strategy to promote iron-reduction-coupled phosphorus recovery with natural DIR products, and provided theoretical support for clarifying the interaction between minerals and microorganisms.
Collapse
Affiliation(s)
- Jifei Chang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yan Gao
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yitong Sun
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
37
|
Liu YJ, Yang HY, Gao SX, Li ZH, Hu YY, Zheng X, Sheng GP. Molecular fractionation mediates genotoxicity evolution of hydrochar-derived dissolved organic matter at the iron oxyhydroxides-water interface. WATER RESEARCH 2024; 268:122584. [PMID: 39395367 DOI: 10.1016/j.watres.2024.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Adsorption fractionation of dissolved organic matter (DOM) induced by soil minerals is a common geochemical process, which has been widely documented on natural DOM. Hydrochar is a promising functional material in soil remediation but can continuously release abundant endogenic DOM with potential biotoxicity. However, adsorption fractionation at molecular level and its influence on toxicity evolution of hydrochar-derived DOM (HDOM) at genetic level at the soil-water interface remain poorly understood. Herein, we investigated the molecular fractionation of HDOM on three typical soil iron minerals (i.e., ferrihydrite, goethite, and hematite). Results from ultrahigh-resolution mass spectrum showed that HDOM molecules with high molecular weight and high contents of unsaturated oxidized or aromatic structures (e.g., unsaturated phenolic compounds, polyphenols, and organic acids) were preferentially absorbed by iron oxyhydroxides, while aliphatic molecules and poorly oxygenated compounds (e.g., hydrocarbon, phenols, and alcohols) were retained in aqueous phase. Furthermore, we quantitatively evaluated their genotoxicity variation using a toxicogenomics assay using green fluorescence protein-fused whole-cell array, and results showed that oxidative, protein, membrane, and DNA stresses were primary responses upon exposure to original HDOM. Interface fractionation induced by iron oxyhydroxides significantly reduced genotoxicity of HDOM, especially for oxidative, membrane and DNA stresses. Overall, the selective absorption of HDOM molecules by iron oxyhydroxides shifted its biotoxicity, which might change the ecological effects of hydrochar amendment, e.g., microbial community structure, environmental pollutant transformation, and even the ecological function of terrestrial and aquatic ecosystems. These findings would contribute to unraveling the environmental geochemistry process of HDOM in the natural soil-water interface and provide a new insight into the biotoxicity of hydrochar usage to terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Yan-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - He-Yun Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Shu-Xian Gao
- Research Group BioGeoOmics, Department Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig D-04318, Germany
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Yan-Yun Hu
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
38
|
Liu Q, Xu W, Ding Q, Zhang Y, Zhang J, Zhang B, Yu H, Li C, Dai L, Zhong C, Lu W, Liu Z, Li F, Song H. Engineering Shewanella oneidensis-Carbon Felt Biohybrid Electrode Decorated with Bacterial Cellulose Aerogel-Electropolymerized Anthraquinone to Boost Energy and Chemicals Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407599. [PMID: 39159306 PMCID: PMC11497010 DOI: 10.1002/advs.202407599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin-mediated transmembrane electron transfer. Second, outer membrane c-Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted-based transmembrane electron transfer. Third, a S. oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8-fold lower than that of the wild-type (WT) S. oneidensis MR-1. The maximum power density reached 4286.6 ± 202.1 mW m-2, 72.8-fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr6+ reduction, and CO2 reduction. This study showed that enhancing transmembrane and cell-electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.
Collapse
Affiliation(s)
- Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Wenliang Xu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Qinran Ding
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Yan Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Baocai Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei UniversityWuhan430062China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition and Safetykey Laboratory of Industrial Fermentation Microbiology, (ministry of education)Tianjin University of Science and TechnologyTianjin300457China
| | - Wenyu Lu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - ZhanYing Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner MongoliaEngineering Research Center of Inner Mongolia for Green Manufacturing in Bio‐fermentation Industry, and School of Chemical EngineeringInner Mongolia University of TechnologyHohhotInner Mongolia010051China
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
39
|
Xu F, Bao J, Liu Q, He X, Zhou Y, Wang H, Xing J, Zhou L, Yuan J. Simultaneous natural attenuation of Cr(VI) and nitrate in the hyporheic zone sediments from an upstream tributary of the Jinsha River in the Sichuan Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174145. [PMID: 38909795 DOI: 10.1016/j.scitotenv.2024.174145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The coexistence of hexavalent chromium (Cr(VI)) and nitrate (NO3-) in groundwater and surface water presents a considerable challenge for the natural attenuation of these two contaminants because their interactions in nature remain contentious. This study investigated the interplay between Cr(VI) and NO3- in hyporheic zone (HZ) sediments by integrating Cr(VI) reduction kinetics, NO3- transformation, microbial community structure, and a three-rate model. The concurrent natural attenuation of Cr(VI) and NO3- in the sediments was significantly influenced by their initial concentrations and redox conditions. The reduction of low concentrations of Cr(VI) (37.1 and 96.2 μM) was slightly enhanced by NO3-, while inhibitory effects were observed at high concentrations of Cr(VI) (200.0 μM). However, except for an initial low concentration of Cr(VI) (37.1 μM) and NO3- (450 μM), the reduction of NO3- was adversely affected by Cr(VI). The reduction rates and efficiencies of Cr(VI) and NO3- were noticeably lower under aerobic conditions than under anaerobic conditions. This phenomenon can be attributed to the presence of O2, which decreased the selectivity of sediments-associated Fe(II) towards Cr(VI) and NO3- and induced alterations in the microbial community structure, leading to subsequent changes in NO3- transformation. Furthermore, the three-rate model represents a robust approach for elucidating the reduction of Cr(VI) in the presence of co-contaminants, such as NO3- contamination under diverse redox conditions. This study provides further insights into the interaction mechanism between Cr(VI) and NO3- within the HZ, necessitating the consideration of the microbial toxicity of Cr(VI) and electron competition among Cr(VI), NO3-, and O2.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Junqin Bao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Qiang Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Xiaoxia He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yaqian Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Hong Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Jiamin Xing
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Lun Zhou
- Zhongshan Public Water Investment Co., Ltd, Zhongshan 528403, People's Republic of China
| | - Jianfei Yuan
- Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu 610218, People's Republic of China.
| |
Collapse
|
40
|
Karačić S, Suarez C, Hagelia P, Persson F, Modin O, Martins PD, Wilén BM. Microbial acidification by N, S, Fe and Mn oxidation as a key mechanism for deterioration of subsea tunnel sprayed concrete. Sci Rep 2024; 14:22742. [PMID: 39349736 PMCID: PMC11442690 DOI: 10.1038/s41598-024-73911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
The deterioration of fibre-reinforced sprayed concrete was studied in the Oslofjord subsea tunnel (Norway). At sites with intrusion of saline groundwater resulting in biofilm growth, the concrete exhibited significant concrete deterioration and steel fibre corrosion. Using amplicon sequencing and shotgun metagenomics, the microbial taxa and surveyed potential microbial mechanisms of concrete degradation at two sites over five years were identified. The concrete beneath the biofilm was investigated with polarised light microscopy, scanning electron microscopy and X-ray diffraction. The oxic environment in the tunnel favoured aerobic oxidation processes in nitrogen, sulfur and metal biogeochemical cycling as evidenced by large abundances of metagenome-assembled genomes (MAGs) with potential for oxidation of nitrogen, sulfur, manganese and iron, observed mild acidification of the concrete, and the presence of manganese- and iron oxides. These results suggest that autotrophic microbial populations involved in the cycling of several elements contributed to the corrosion of steel fibres and acidification causing concrete deterioration.
Collapse
Affiliation(s)
- Sabina Karačić
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, 221 00, Sweden
- Sweden Water Research AB, Lund, 222 35, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads Administration, Oslo, 0030, Norway
- Müller-Sars Biological Station, Ørje, NO-1871, Norway
| | - Frank Persson
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Oskar Modin
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Paula Dalcin Martins
- Department of Ecosystem and Landscape Dynamics, University of Amsterdam, Amsterdam, 1090 GE, Netherlands
- Microbial Ecology Cluster, GELIFES, University of Groningen, Groningen, 9747 AG, Netherlands
| | - Britt-Marie Wilén
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden.
| |
Collapse
|
41
|
ThomasArrigo LK, Notini L, Vontobel S, Bouchet S, Nydegger T, Kretzschmar R. Emerging investigator series: Coprecipitation with glucuronic acid limits reductive dissolution and transformation of ferrihydrite in an anoxic soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1489-1502. [PMID: 39051944 PMCID: PMC11409838 DOI: 10.1039/d4em00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Ferrihydrite, a poorly crystalline Fe(III)-oxyhydroxide, is abundant in soils and is often found associated with organic matter. Model studies consistently show that in the presence of aqueous Fe(II), organic carbon (OC)-associated ferrihydrite undergoes less transformation than OC-free ferrihydrite. Yet, these findings contrast microbial reductive dissolution studies in which the OC promotes the reductive dissolution of Fe(III) in ferrihydrite and leads to the release of associated OC. To shed light on these complex processes, we quantified the extent of reductive dissolution and transformation of native Fe minerals and added ferrihydrite in anoxic soil incubations where pure 57Fe-ferrihydrite (57Fh), pure 57Fe-ferrihydrite plus dissolved glucuronic acid (57Fh + GluCaq), a 57Fe-ferrihydrite-13C-glucuronic acid coprecipitate (57Fh13GluC), or only dissolved glucuronic acid (13GluCaq) were added. By tracking the transformation of the 57Fe-ferrihydrite in the solid phase with Mössbauer spectroscopy together with analysis of the iron isotope composition of the aqueous phase and chemical extractions with inductively coupled plasma-mass spectrometry, we show that the pure 57Fe-ferrihydrite underwent more reductive dissolution and transformation than the coprecipitated 57Fe-ferrihydrite when identical amounts of glucuronic acid were provided (57Fh + GluCaqversus57Fh13GluC treatments). In the absence of glucuronic acid, the pure 57Fe-ferrihydrite underwent the least reductive dissolution and transformation (57Fh). Comparing all treatments, the overall extent of Fe(III) reduction, including the added and native Fe minerals, determined with X-ray absorption spectroscopy, was highest in the 57Fh + GluCaq treatment. Collectively, our results suggest that the limited bioavailability of the coprecipitated OC restricts not only the reductive dissolution of the coprecipitated mineral, but it also limits the enhanced reduction of native soil Fe(III) minerals.
Collapse
Affiliation(s)
- Laurel K ThomasArrigo
- Environmental Chemistry Group, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000, Neuchâtel, Switzerland.
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - Luiza Notini
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - Sophie Vontobel
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - Sylvain Bouchet
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - Tabea Nydegger
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland
| |
Collapse
|
42
|
Xu H, Wang M, Hei S, Qi X, Zhang X, Liang P, Fu W, Pan B, Huang X. Neglected role of iron redox cycle in direct interspecies electron transfer in anaerobic methanogenesis: Inspired from biogeochemical processes. WATER RESEARCH 2024; 262:122125. [PMID: 39053210 DOI: 10.1016/j.watres.2024.122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Anaerobic digestion is an indispensable technical option towards green and low-carbon wastewater treatment, with interspecies electron transfer (IET) playing a key role in its efficiency and operational stability. The exogenous semiconductive iron oxides have been proven to effectively enhance IET, while the cognition of the physicochemical-biochemical coupling stimulatory mechanism was circumscribed and remains to be elucidated. In this study, semiconductive iron oxides, α-Fe2O3, γ-Fe2O3, α-FeOOH, and γ-FeOOH were found to significantly enhance syntrophic methanogenesis by 76.39, 72.40, 37.33, and 32.64% through redirecting the dominant IET pathway from classical interspecies hydrogen transfer to robust direct interspecies electron transfer (DIET). Their alternative roles as electron shuttles potentially substituting for c-type cytochromes were conjectured to establish an electron transport matrix associated with conductive pili. Distinguished from the conventional electron conductor mechanism of conductive Fe3O4, semiconductive iron oxides facilitated DIET intrinsically through the capacitive Fe(III/II) redox cycles coupled with secondary mineralization. The growth of Aminobacterium, Sedimentibacter, and Methanothrix was enriched and the gene copy numbers of Geobacteraceae 16S ribosomal ribonucleic acid were selectively flourished by 2.0-∼4.5- fold to establish a favorable microflora for DIET pathway. Metabolic pathways of syntrophic acetogenesis from propionate/butyrate and CO2 reduction methanogenesis were correspondingly promoted. The above findings provide new insights into the underlying mechanism of iron minerals enhancing the DIET-oriented pathway and offer paradigms for redox-mediated energy harvesting biological wastewater treatment.
Collapse
Affiliation(s)
- Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Mingwei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
43
|
Ji H, Li J, Gang D, Yu H, Jia H, Hu C, Qu J. Spatiotemporal dynamics of reactive oxygen species and its effect on beta-blockers' degradation in aquatic plants' rhizosphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135146. [PMID: 38991643 DOI: 10.1016/j.jhazmat.2024.135146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The pathway for pollutant degradation involving reactive oxygen species (ROS) in the rhizosphere is poorly understood. Herein, a rootchip system was developed to pinpoint the ROS hotspot along the root tip of Iris tectorum. Through mass balance analysis and quenching experiment, we revealed that ROS contributed significantly to rhizodegradation for beta-blockers, ranging from 22.18 % for betaxolol to 83.83 % for atenolol. The identification of degradation products implicated ROS as an important agent to degrade atenolol into less toxic transformation products during phytoremediation. Moreover, an active production of ROS in rhizosphere was identified by mesocosm experiment. Across three root-associated regions aquatic plants inhabiting the rhizosphere accumulated the highest •OH of ∼1200 nM after 3 consecutive days, followed by rhizoplane (∼230 nM) and bulk environment (∼60 nM). ROS production patterns were driven by rhizosphere chemistry (Fe and humic substances) and microbiome variations in different rhizocompartments. These findings not only deepen understanding of ROS production in aquatic plants rhizosphere but also shed light on advancing phytoremediation strategies.
Collapse
Affiliation(s)
- He Ji
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Diga Gang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Lyons TW, Tino CJ, Fournier GP, Anderson RE, Leavitt WD, Konhauser KO, Stüeken EE. Co-evolution of early Earth environments and microbial life. Nat Rev Microbiol 2024; 22:572-586. [PMID: 38811839 DOI: 10.1038/s41579-024-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/31/2024]
Abstract
Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth's chemical and physical evolution through cause-and-effect relationships.
Collapse
Affiliation(s)
- Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA.
| | - Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rika E Anderson
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- Biology Department, Carleton College, Northfield, MN, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eva E Stüeken
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
45
|
Nakano A. Effect of sand minerals on microbially induced carbonate precipitation by denitrification. CHEMOSPHERE 2024; 363:142890. [PMID: 39025311 DOI: 10.1016/j.chemosphere.2024.142890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Soil improvement techniques utilizing the metabolic functions of microorganisms, including microbially induced carbonate precipitation (MICP), have been extensively researched over the past few decades as part of bio-inspired geotechnical engineering research. Given that metabolic reactions in microorganisms produce carbonate minerals, an enhanced understanding of microbial interaction with soils could improve the effectiveness of MICP as a soil improvement technique. Therefore, this study investigated the effects of sands on MICP by denitrification to employ MICP for geotechnical soil improvement. Under the coexistence of natural sand and artificial silica sand, nitrate-reducing bacteria were cultured in a mixed liquid medium with nitrate, acetate, and calcium ions at 37 °C. Nitrate reduction occurred only in the presence of natural sand. However, the lack of chemical weathering of the composed minerals likely prevented the progress of bacterial growth and nitrate reduction in artificial silica sands. For natural sand, artificial chemical weathering by acid wash and ferrihydrite coating of the sand improved bacterial growth and accelerated nitrate reduction. The calcium carbonate formation induced by denitrification was also influenced by the state of the minerals in the soil and the nitrate reduction rate. The observed MICP enhancement is due to the involvement of coexisting secondary minerals like ferrihydrite with large specific surface areas and surface charges, which may improve the reaction efficiency by serving as adsorbents for bacteria and electron donors and acceptors in the solid phases, thereby promoting the precipitation and crystallization of calcium carbonate on the surfaces. This crystal formation in the minerals provides valuable insights for improving sand solidification via MICP. Considering the interactions between the target soil and microorganisms is essential to improving MICP processes for ground improvement.
Collapse
Affiliation(s)
- Akiko Nakano
- Faculty of Agriculture, Kyushu University, 819-0395, 744 Motooka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
46
|
Li D, He Z, Chen S, Chen J, Ding Z, Luo J, Li Z, Hu Y. Alleviation of cadmium uptake in rice (Oryza sativa L.) by iron plaque on the root surface generated by Providencia manganoxydans via Fe(II) oxidation. Arch Microbiol 2024; 206:387. [PMID: 39196357 DOI: 10.1007/s00203-024-04110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Iron plaque is believed to be effective in reducing the accumulation of heavy metals in rice. In this work, a known soil-derived Mn(II)-oxidizing bacterium, LLDRA6, which represents the type strain of Providencia manganoxydans, was employed to investigate the feasibility of decreasing cadmium (Cd) accumulation in rice by promoting the formation of iron plaque on the root surface. Firstly, the Fe(II) oxidation ability of LLDRA6 was evaluated using various techniques including Fourier Transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, phenanthroline photometry, and FeS gel-stabilized gradient assays. Subsequently, the formation of iron plaque on the root surface by LLDRA6 was investigated under hydroponic and pot conditions. Finally, Cd concentrations were examined in rice with and without iron plaque through pot and paddy-field tests. The results showed that LLDRA6 played an efficient role in the formation of iron plaque on seedling roots under hydroponic conditions, generating 44.87 and 36.72 g kg- 1 of iron plaque on the roots of Huazhan and TP309, respectively. In pot experiments, LLDRA6 produced iron plaque exclusively in the presence of Fe(II). Otherwise, it solely generated biofilm on the root surface. Together with Fe(II), LLDRA6 effectively reduced the concentrations of Cd in Huazhan roots, straws and grains by 25%, 46% and 44%, respectively. This combination also demonstrated a significant decrease in the Cd concentrations of TP309 roots, straws and grains by 20%, 52% and 44%, respectively. The data from the Cd translocation factor indicate that obstruction of Cd translocation by iron plaque predominantly occurred during the root-to-straw stage. In paddy-field tests, the Cd concentrations of grains harvested from the combination treatment of LLDRA6 and Fe(II) exhibited a decline ranging from 40 to 53%, which fell below the maximum acceptable value for Cd in rice grains (0.2 mg kg- 1) as per the China national standard for food security (GB2762-2017). Meanwhile, the relevant phenotypic traits regarding the yield were not adversely affected. These findings have demonstrated that LLDRA6 can impede the uptake of Cd by rice in Cd-contaminated soils through the formation of iron plaque on roots, thus providing a promising safe Cd-barrier for rice production.
Collapse
Affiliation(s)
- Ding Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Zeping He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Sha Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jinyuan Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhexu Ding
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Luo
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zongpei Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000, China.
| |
Collapse
|
47
|
Ma Z, Cheng H. Insights into the Photochemical Mechanism of Goethite: Roles of Different Types of Surface Hydroxyl Groups in Reactive Oxygen Species Generation and Fe(III) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14812-14822. [PMID: 39118219 DOI: 10.1021/acs.est.4c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The surface photochemical activity of goethite, which occurs widely in surface soils and sediments, plays a crucial role in the environmental transformation of various pollutants and natural organic matter. This study systemically investigated the mechanism of different types of surface hydroxyl groups on goethite in generating reactive oxygen species (ROSs) and Fe(III) reduction under sunlight irradiation. Surface hydroxyl groups were found to induce photoreductive dissolution of Fe(III) at the goethite-water interface to produce Fe2+(aq), while promoting the production of ROSs. Substitution of the surface hydroxyl groups on goethite by fluoride significantly inhibited the photochemical activity of goethite, demonstrating their important role in photochemical activation of goethite. The results showed that the surface hydroxyl groups (especially the terminating hydroxyl groups, ≡FeOH) led to the formation of Fe(III)-hydroxyl complexes via ligand-metal charge transfer on the goethite surface upon photoexcitation, facilitating the production of Fe2+(aq) and •OH. The bridging hydroxyl groups (≡Fe2OH) were shown to mainly catalyze the production of H2O2, leading to the subsequent light-driven Fenton reaction to produce •OH. These findings provide important insights into the activation of molecular oxygen on the goethite surface driven by sunlight in the environment, and the corresponding degradation of anthropogenic and natural organic compounds caused by the generated ROSs.
Collapse
Affiliation(s)
- Zhipeng Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
48
|
Xu F, Li P. Biogeochemical mechanisms of iron (Fe) and manganese (Mn) in groundwater and soil profiles in the Zhongning section of the Weining Plain (northwest China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173506. [PMID: 38815819 DOI: 10.1016/j.scitotenv.2024.173506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
High levels of Iron (Fe) and manganese (Mn) in soils may contribute to secondary contamination of groundwater. However, there is limited understanding of the cycling mechanisms of Fe and Mn in groundwater and soil. This study aimed to investigate the biogeochemical processes constituting the Fe and Mn cycle by combining hydrochemistry, sequential extraction and microbiological techniques. The results indicated a similar vertical distribution pattern of Fe and Mn, with lower levels of the effective form (EFC-Fe/Mn) observed at the oxygenated surface, increasing near the groundwater table and decreasing below it. Generally, there was a tendency for accumulation above the water table, with Mn exhibiting a higher release potential compared to Fe. Iron‑manganese oxides (Ox-Fe/Mn) dominated the effective forms, with Fe and Mn in the soil entering groundwater through the reduction dissolution of Ox-Fe/Mn and the oxidative degradation of organic matter or sulfide (OM-Fe/Mn). Correlation analysis revealed that Fe and Mn tend to accumulate in media with fine particles and high organic carbon (TOC) contents. 16S rRNA sequencing analysis disclosed significant variation in the abundance of microorganisms associated with Fe and Mn transformations among unsaturated zone soils, saturated zone media and groundwater, with Fe/Mn content exerting an influence on microbial communities. Furthermore, functional bacterial identification results from the FAPROTAX database show a higher abundance of iron-oxidizing bacteria (9.3 %) in groundwater, while iron and manganese-reducing bacteria are scarce in both groundwater and soil environments. Finally, a conceptual model of Fe and Mn cycling was constructed, elucidating the biogeochemical processes in groundwater and soil environments. This study provides a new perspective for a deeper understanding of the environmental fate of Fe and Mn, which is crucial for mitigating Fe and Mn pollution in groundwater.
Collapse
Affiliation(s)
- Fei Xu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
49
|
Zhang Y, Tong M, Lu Y, Zhao F, Zhang P, Wan Z, Li P, Yuan S, Wang Y, Kappler A. Directional long-distance electron transfer from reduced to oxidized zones in the subsurface. Nat Commun 2024; 15:6576. [PMID: 39097590 PMCID: PMC11297948 DOI: 10.1038/s41467-024-50974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Electron transfer (ET) is the fundamental redox process of life and element cycling. The ET distance is normally as short as nanometers or micrometers in the subsurface. However, the redox gradient in the subsurface is as long as centimeters or even meters. This gap triggers an intriguing question whether directional long-distance ET from reduced to oxidized zones exists along the redox gradient. By using electron-donating capacity variation as a proxy of ET, we show that ET can last over 10 cm along the redox gradient in sediment columns, through a directional long-distance ET chain from reduced to oxidized zones constituted by a series of short-distance electron hopping reactions. Microbial and chemical processes synergistically mediate the long-distance ET chain, with an estimated flux of 6.73 μmol e-/cm2 per day. This directional long-distance ET represents an overlooked but important "remote" source of electrons for local biogeochemical and environmental processes.
Collapse
Affiliation(s)
- Yanting Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yuxi Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Fengyi Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Peng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Zhenchen Wan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Andreas Kappler
- Department of Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| |
Collapse
|
50
|
Yang Z, Li Y, Wang X, Li J, Wang J, Zhang G. Facet-dependent activation of oxalic acid over hematite nanocrystals under the irradiation of visible light for efficient degradation of pollutants. J Environ Sci (China) 2024; 142:204-214. [PMID: 38527885 DOI: 10.1016/j.jes.2023.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 03/27/2024]
Abstract
Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity. However, its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes. Thus, we constructed a photochemical system composed of hematite with {001} facet of high activity facet and low-cost and non-toxic oxalic acid (OA) for the removal of various types of pollutants. The removal rate for the degradation of metronidazole, tetracycline hydrochloride, Rhodamine B, and hexavalent chromium by hematite nanoplate with the exposed {001} facet activating OA under visible light irradiation was 4.75, 2.25, 2.33, and 2.74 times than that by the exposed {110} facet, respectively. Density functional theory (DFT) calculation proved that the OA molecule was more easily adsorbed on the {001} facet of hematite than that on the {110} facet, which would favor the formation of the more Fe(III)-OA complex and reactive species. In addition, the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals, and the possible degradation pathway for metronidazole included carbon chain fracture, hydroxyethyl-cleavage, denitrogenation, and hydroxylation. Thus, this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaotian Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiaming Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiquan Wang
- Hubei Engineering Consulting Co., Ltd., Wuhan 430071, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|