1
|
Tian Q, Ngamsombat C, Lee HH, Berger DR, Wu Y, Fan Q, Bilgic B, Li Z, Novikov DS, Fieremans E, Rosen BR, Lichtman JW, Huang SY. Quantifying axonal features of human superficial white matter from three-dimensional multibeam serial electron microscopy data assisted by deep learning. Neuroimage 2025; 313:121212. [PMID: 40222502 DOI: 10.1016/j.neuroimage.2025.121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025] Open
Abstract
Short-range association fibers located in the superficial white matter play an important role in mediating higher-order cognitive function in humans. Detailed morphological characterization of short-range association fibers at the microscopic level promises to yield important insights into the axonal features driving cortico-cortical connectivity in the human brain yet has been difficult to achieve to date due to the challenges of imaging at nanometer-scale resolution over large tissue volumes. This work presents results from multi-beam scanning electron microscopy (EM) data acquired at 4 × 4 × 33 nm3 resolution in a volume of human superficial white matter measuring 200 × 200 × 112 μm3, leveraging automated analysis methods. Myelin and myelinated axons were automatically segmented using deep convolutional neural networks (CNNs), assisted by transfer learning and dropout regularization techniques. A total of 128,285 myelinated axons were segmented, of which 70,321 and 2102 were longer than 10 and 100 μm, respectively. Marked local variations in diameter (i.e., beading) and direction (i.e., undulation) were observed along the length of individual axons. Myelinated axons longer than 10 μm had inner diameters around 0.5 µm, outer diameters around 1 µm, and g-ratios around 0.5. This work fills a gap in knowledge of axonal morphometry in the superficial white matter and provides a large 3D human EM dataset and accurate segmentation results for a variety of future studies in different fields.
Collapse
Affiliation(s)
- Qiyuan Tian
- School of Biomedical Engineering, Tsinghua University, Beijing, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Daniel R Berger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ziyu Li
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Dmitry S Novikov
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, NY, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, NY, NY, USA
| | - Els Fieremans
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, NY, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, NY, NY, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Sell LB, Zabel C, Grønborg SW, Shi Q, Bhat MA. A Novel Mutation in CNTNAP1 Gene Causes Disorganization of Axonal Domains, Hypomyelination and Severe Neurological Deficits. J Neurosci Res 2025; 103:e70040. [PMID: 40265789 PMCID: PMC12037115 DOI: 10.1002/jnr.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
CNTNAP1 encodes the contactin-associated protein 1 (Cntnap1) which localizes to the paranodal region in all myelinated axons and is essential for axonal domain organization and the propagation of action potentials. To date, close to 45 reported human CNTNAP1 variants have been identified that are associated with dysregulation and disorganization of the axonal domains, resulting in various forms of congenital hypomyelinating neuropathies in children. Currently, no treatments are available for neuropathies caused by CNTNAP1 variants, highlighting the importance of fully characterizing these mutations and their impact on Cntnap1 functions. To understand the importance of a novel human CNTNAP1 likely pathogenic variant that changes glycine at position 349 to valine in a child who also carries a CNTNAP1 truncation and displayed severe neurological deficits, we used CRISPR/Cas9 methodology and introduced a single nucleotide substitution in the mouse Cntnap1 gene, resulting in glycine at 350 to valine (Cntnap1G350V). Trans-allelic combination of Cntnap1G350V with a Cntnap1 null allele (Cntnap1G350V/-) mimics human pathologies, recapitulating hypomyelination neuropathies associated with CNTNAP1 mutations as well as loss of paranodal junctions and disorganization of axonal domains in myelinated axons. Expression of the wild type Cntnap1 transgene in Cntnap1G350V/- mice rescued the mutant phenotypes and restored all neurological deficits. Our studies demonstrate that GGT (glycine) to GTT (valine) change in human CNTNAP1 creates a recessive loss of function allele and lays the foundation for potential gene therapy studies aimed at treating CNTNAP1-associated hypomyelinating neuropathies in children.
Collapse
Affiliation(s)
- Lacey B. Sell
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Carson Zabel
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Sabine Weller Grønborg
- Center for Rare Diseases, Department of Pediatrics and Adolescent Medicine and Department of Genetics, University Hospital Copenhagen Rigshospitalet, Blegdamsvej 9, 2100 København, Denmark
| | - Qian Shi
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Manzoor A. Bhat
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Abd Razak NH, Idris J, Hassan NH, Zaini F, Muhamad N, Daud MF. Unveiling the Role of Schwann Cell Plasticity in the Pathogenesis of Diabetic Peripheral Neuropathy. Int J Mol Sci 2024; 25:10785. [PMID: 39409114 PMCID: PMC11476695 DOI: 10.3390/ijms251910785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes that affects a significant proportion of diabetic patients worldwide. Although the pathogenesis of DPN involves axonal atrophy and demyelination, the exact mechanisms remain elusive. Current research has predominantly focused on neuronal damage, overlooking the potential contributions of Schwann cells, which are the predominant glial cells in the peripheral nervous system. Schwann cells play a critical role in neurodevelopment, neurophysiology, and nerve regeneration. This review highlights the emerging understanding of the involvement of Schwann cells in DPN pathogenesis. This review explores the potential role of Schwann cell plasticity as an underlying cellular and molecular mechanism in the development of DPN. Understanding the interplay between Schwann cell plasticity and diabetes could reveal novel strategies for the treatment and management of DPN.
Collapse
Affiliation(s)
- Nurul Husna Abd Razak
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Jalilah Idris
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Nur Hidayah Hassan
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Fazlin Zaini
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Noorzaid Muhamad
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| |
Collapse
|
4
|
Ligocki AP, Vinson AV, Yachnis AT, Dunn WA, Smith DE, Scott EA, Alvarez-Castanon JV, Baez Montalvo DE, Frisone OG, Brown GAJ, Pessa JE, Scott EW. Cerebrospinal fluid flow extends to peripheral nerves further unifying the nervous system. SCIENCE ADVANCES 2024; 10:eadn3259. [PMID: 39231237 PMCID: PMC11373606 DOI: 10.1126/sciadv.adn3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Cerebrospinal fluid (CSF) is responsible for maintaining brain homeostasis through nutrient delivery and waste removal for the central nervous system (CNS). Here, we demonstrate extensive CSF flow throughout the peripheral nervous system (PNS) by tracing distribution of multimodal 1.9-nanometer gold nanoparticles, roughly the size of CSF circulating proteins, infused within the lateral cerebral ventricle (a primary site of CSF production). CSF-infused 1.9-nanometer gold transitions from CNS to PNS at root attachment/transition zones and distributes through the perineurium and endoneurium, with ultimate delivery to axoplasm of distal peripheral nerves. Larger 15-nanometer gold fails to transit from CNS to PNS and instead forms "dye-cuffs," as predicted by current dogma of CSF restriction within CNS, identifying size limitations in central to peripheral flow. Intravenous 1.9-nanometer gold is unable to cross the blood-brain/nerve barrier. Our findings suggest that CSF plays a consistent role in maintaining homeostasis throughout the nervous system with implications for CNS and PNS therapy and neural drug delivery.
Collapse
Affiliation(s)
- Alexander P Ligocki
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Augustine V Vinson
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Anthony T Yachnis
- Program in Stem Cell Biology and Regenerative Medicine, Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - William A Dunn
- Program in Stem Cell Biology and Regenerative Medicine, Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Smith
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth A Scott
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jimena V Alvarez-Castanon
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Daniel E Baez Montalvo
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Olivia G Frisone
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Gary A J Brown
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Joel E Pessa
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Edward W Scott
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
6
|
Wang L, Yang Z, Satoshi F, Prasanna X, Yan Z, Vihinen H, Chen Y, Zhao Y, He X, Bu Q, Li H, Zhao Y, Jiang L, Qin F, Dai Y, Zhang N, Qin M, Kuang W, Zhao Y, Jokitalo E, Vattulainen I, Kajander T, Zhao H, Cen X. Membrane remodeling by FAM92A1 during brain development regulates neuronal morphology, synaptic function, and cognition. Nat Commun 2024; 15:6209. [PMID: 39043703 PMCID: PMC11266426 DOI: 10.1038/s41467-024-50565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
The Bin/Amphiphysin/Rvs (BAR) domain protein FAM92A1 is a multifunctional protein engaged in regulating mitochondrial ultrastructure and ciliogenesis, but its physiological role in the brain remains unclear. Here, we show that FAM92A1 is expressed in neurons starting from embryonic development. FAM92A1 knockout in mice results in altered brain morphology and age-associated cognitive deficits, potentially due to neuronal degeneration and disrupted synaptic plasticity. Specifically, FAM92A1 deficiency impairs diverse neuronal membrane morphology, including the mitochondrial inner membrane, myelin sheath, and synapses, indicating its roles in membrane remodeling and maintenance. By determining the crystal structure of the FAM92A1 BAR domain, combined with atomistic molecular dynamics simulations, we uncover that FAM92A1 interacts with phosphoinositide- and cardiolipin-containing membranes to induce lipid-clustering and membrane curvature. Altogether, these findings reveal the physiological role of FAM92A1 in the brain, highlighting its impact on synaptic plasticity and neural function through the regulation of membrane remodeling and endocytic processes.
Collapse
Affiliation(s)
- Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ziyun Yang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fudo Satoshi
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xavier Prasanna
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ziyi Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Yaxing Chen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiumei He
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China
| | - Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongchun Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Tommi Kajander
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
- School of Life Sciences, Guangxi Normal University, Guilin, China.
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Liu S, Gao L, Chen J, Yan J. Single-neuron analysis of axon arbors reveals distinct presynaptic organizations between feedforward and feedback projections. Cell Rep 2024; 43:113590. [PMID: 38127620 DOI: 10.1016/j.celrep.2023.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The morphology and spatial distribution of axon arbors and boutons are crucial for neuron presynaptic functions. However, the principles governing their whole-brain organization at the single-neuron level remain unclear. We developed a machine-learning method to separate axon arbors from passing axons in single-neuron reconstruction from fluorescence micro-optical sectioning tomography imaging data and obtained 62,374 axon arbors that displayed distinct morphology, spatial patterns, and scaling laws dependent on neuron types and targeted brain areas. Focusing on the axon arbors in the thalamus and cortex, we revealed the segregated spatial distributions and distinct morphology but shared topographic gradients between feedforward and feedback projections. Furthermore, we uncovered an association between arbor complexity and microglia density. Finally, we found that the boutons on terminal arbors show branch-specific clustering with a log-normal distribution that again differed between feedforward and feedback terminal arbors. Together, our study revealed distinct presynaptic structural organizations underlying diverse functional innervation of single projection neurons.
Collapse
Affiliation(s)
- Sang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
8
|
Yuan H, Chen L, Zhang LC, Shi LL, Han XF, Liu S, Xiong LL, Wang TH. Microarray analysis of lncRNAs and mRNAs in spinal cord contusion rats with iPSC-derived A2B5 + oligodendrocyte precursor cells transplantation. Heliyon 2024; 10:e22808. [PMID: 38169755 PMCID: PMC10758718 DOI: 10.1016/j.heliyon.2023.e22808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a severe complication of spinal trauma with high disability and mortality rates. Effective therapeutic methods to alleviate neurobehavioural deficits in patients with SCI are still lacking. In this study, we established a spinal cord contusion (SCC) model in adult Sprague Dawley rats. Induced pluripotent stem cell-derived A2B5+ oligodendrocyte precursor cells (iP-A2B5+OPCs) were obtained from mouse embryonic fibroblasts and injected into the lesion sites of SCC rats. Serological testing and magnetic resonance imaging were employed to determine the effect of iP-A2B5+OPCs cell therapy. The Basso-Beattie-Bresnahan score and inclined plane test were performed on days 1, 3, 7, and 14 after cell transplantation, respectively. Differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) were detected by microarray analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to analyse the biological functions of these lncRNAs and mRNAs. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to verify variations in the expression of crucial target genes. The results demonstrated that induced pluripotent stem cells exhibited embryonic stem cell-like morphology and could differentiate into diverse neural cells dominated by oligodendrocytes. The neurobehavioural performance of rats treated with iP-A2B5+OPCs transplantation was better than that of rats with SCC without cell transplantation. Notably, we found that 22 lncRNAs and 42 mRNAs were concurrently altered after cell transplantation, and the key lncRNA (NR_037671) and target gene (Cntnap5a) were identified in the iP-A2B5+OPCs group. Moreover, RT-qPCR revealed that iP-A2B5+OPCs transplantation reversed the downregulation of NR_037671 induced by SCC. Our findings indicated that iP-A2B5+OPCs transplantation effectively improves neurological function recovery after SCC, and the mechanism might be related to alterations in the expression of lncRNAs and mRNAs, such as NR_037671 and Cntnap5a.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Li Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lan-Chun Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Lan-Lan Shi
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Xue-Fei Han
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Su Liu
- Internal Center of Spinal Cord Injury, Johns Hopkins School of Medicine, Baltimore, 21250, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, 21250, Maryland, USA
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ting-Hua Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
9
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
10
|
Ligocki AP, Vinson AV, Yachnis AT, Dunn WA, Smith DE, Scott EA, Alvarez-Castanon JV, Montalvo DEB, Frisone OG, Brown GAJ, Pessa JE, Scott EW. Cerebrospinal Fluid Flow Extends to Peripheral Nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567884. [PMID: 38045235 PMCID: PMC10690169 DOI: 10.1101/2023.11.20.567884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cerebrospinal fluid (CSF) is an aqueous solution responsible for nutrient delivery and waste removal for the central nervous system (CNS). The three-layer meningeal coverings of the CNS support CSF flow. Peripheral nerves have an analogous three-layer covering consisting of the epineurium, perineurium, and endoneurium. Peripheral axons, located in the inner endoneurium, are bathed in "endoneurial fluid" similar to CSF but of undefined origin. CSF flow in the peripheral nervous system has not been demonstrated. Here we show CSF flow extends beyond the CNS to peripheral nerves in a contiguous flowing system. Utilizing gold nanoparticles, we identified that CSF is continuous with the endoneurial fluid and reveal the endoneurial space as the likely site of CSF flow in the periphery. Nanogold distribution along entire peripheral nerves and within their axoplasm suggests CSF plays a role in nutrient delivery and waste clearance, fundamental aspects of peripheral nerve health and disease. One Sentence Summary Cerebrospinal fluid unites the nervous system by extending beyond the central nervous system into peripheral nerves.
Collapse
|
11
|
Gerevich Z, Kovács R, Liotta A, Hasam-Henderson LA, Weh L, Wallach I, Berndt N. Metabolic implications of axonal demyelination and its consequences for synchronized network activity: An in silico and in vitro study. J Cereb Blood Flow Metab 2023; 43:1571-1587. [PMID: 37125487 PMCID: PMC10414014 DOI: 10.1177/0271678x231170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023]
Abstract
Myelination enhances the conduction velocity of action potentials (AP) and increases energy efficiency. Thick myelin sheaths are typically found on large-distance axonal connections or in fast-spiking interneurons, which are critical for synchronizing neuronal networks during gamma-band oscillations. Loss of myelin sheath is associated with multiple alterations in axonal architecture leading to impaired AP propagation. While numerous studies are devoted to the effects of demyelination on conduction velocity, the metabolic effects and the consequences for network synchronization have not been investigated. Here we present a unifying computational model for electrophysiology and metabolism of the myelinated axon. The computational model suggested that demyelination not only decreases the AP speed but AP propagation in demyelinated axons requires compensatory processes like mitochondrial mass increase and a switch from saltatory to continuous propagation to rescue axon functionality at the cost of reduced AP propagation speed and increased energy expenditure. Indeed, these predictions were proven to be true in a culture model of demyelination where the pharmacologically-induced loss of myelin was associated with increased oxygen consumption rates, and a significant broadening of bandwidth as well as a decrease in the power of gamma oscillations.
Collapse
Affiliation(s)
- Zoltan Gerevich
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kovács
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agustin Liotta
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Luisa A Hasam-Henderson
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ludwig Weh
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Koskinen MK, Laine M, Abdollahzadeh A, Gigliotta A, Mazzini G, Journée S, Alenius V, Trontti K, Tohka J, Hyytiä P, Sierra A, Hovatta I. Node of Ranvier remodeling in chronic psychosocial stress and anxiety. Neuropsychopharmacology 2023; 48:1532-1540. [PMID: 36949148 PMCID: PMC10425340 DOI: 10.1038/s41386-023-01568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
Differential expression of myelin-related genes and changes in myelin thickness have been demonstrated in mice after chronic psychosocial stress, a risk factor for anxiety disorders. To determine whether and how stress affects structural remodeling of nodes of Ranvier, another form of myelin plasticity, we developed a 3D reconstruction analysis of node morphology in C57BL/6NCrl and DBA/2NCrl mice. We identified strain-dependent effects of chronic social defeat stress on node morphology in the medial prefrontal cortex (mPFC) gray matter, including shortening of paranodes in C57BL/6NCrl stress-resilient and shortening of node gaps in DBA/2NCrl stress-susceptible mice compared to controls. Neuronal activity has been associated with changes in myelin thickness. To investigate whether neuronal activation is a mechanism influencing also node of Ranvier morphology, we used DREADDs to repeatedly activate the ventral hippocampus-to-mPFC pathway. We found reduced anxiety-like behavior and shortened paranodes specifically in stimulated, but not in the nearby non-stimulated axons. Altogether, our data demonstrate (1) nodal remodeling of the mPFC gray matter axons after chronic stress and (2) axon-specific regulation of paranodes in response to repeated neuronal activity in an anxiety-associated pathway. Nodal remodeling may thus contribute to aberrant circuit function associated with anxiety disorders.
Collapse
Affiliation(s)
- Maija-Kreetta Koskinen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mikaela Laine
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ali Abdollahzadeh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Adrien Gigliotta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Giulia Mazzini
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sarah Journée
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Varpu Alenius
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Brackx W, de Cássia Collaço R, Theys M, Cruyssen JV, Bosmans F. Understanding the physiological role of Na V1.9: Challenges and opportunities for pain modulation. Pharmacol Ther 2023; 245:108416. [PMID: 37061202 DOI: 10.1016/j.pharmthera.2023.108416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.
Collapse
Affiliation(s)
- Wayra Brackx
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Margaux Theys
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Vander Cruyssen
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
14
|
Kozar-Gillan N, Velichkova A, Kanatouris G, Eshed-Eisenbach Y, Steel G, Jaegle M, Aunin E, Peles E, Torsney C, Meijer DN. LGI3/2-ADAM23 interactions cluster Kv1 channels in myelinated axons to regulate refractory period. J Cell Biol 2023; 222:e202211031. [PMID: 36828548 PMCID: PMC9997507 DOI: 10.1083/jcb.202211031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 02/26/2023] Open
Abstract
Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology.
Collapse
Affiliation(s)
- Nina Kozar-Gillan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | | | - George Kanatouris
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology and Molecular Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Gavin Steel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
| | | | - Eerik Aunin
- Biomedical Sciences, ErasmusMC, Rotterdam, Netherlands
| | - Elior Peles
- Department of Molecular Cell Biology and Molecular Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Carole Torsney
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh. UK
| | - Dies N. Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh. UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Mann RS, Allman BL, Schmid S. Developmental changes in electrophysiological properties of auditory cortical neurons in the Cntnap2 knockout rat. J Neurophysiol 2023; 129:937-947. [PMID: 36947880 PMCID: PMC10110732 DOI: 10.1152/jn.00029.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023] Open
Abstract
Disruptions in the CNTNAP2 gene are known to cause language impairments and symptoms associated with autism spectrum disorder (ASD). Importantly, knocking out this gene in rodents results in ASD-like symptoms that include auditory processing deficits. This study used in vitro patch-clamp electrophysiology to examine developmental alterations in auditory cortex pyramidal neurons of Cntnap2-/- rats, hypothesizing that CNTNAP2 is essential for maintaining intrinsic neuronal properties and synaptic wiring in the developing auditory cortex. Whole cell patch-clamp recordings were conducted in wildtype and Cntnap2-/- littermates at three postnatal age ranges (P8-12, P18-21, and P70-90). Consistent changes across age were seen in all measures of intrinsic membrane properties and spontaneous synaptic input. Intrinsic cell properties such as action potential half-widths, rheobase, and action-potential firing frequencies were different between wildtype and Cntnap2-/- rats predominantly during the juvenile stage (P18-21), whereas adult Cntnap2-/- rats showed higher frequencies of spontaneous and mini postsynaptic currents (sPSCs; mPSCs), with lower sPSC amplitudes. These results indicate that intrinsic cell properties are altered in Cntnap2-/- rats during the juvenile age, leading to a hyperexcitable phenotype during this stage of synaptic remodeling and refinement. Although intrinsic properties eventually normalize by reaching adulthood, changes in synaptic input, potentially caused by the differences in intrinsic membrane properties, seem to manifest in the adult age and are presumably responsible for the hyperreactive behavioral phenotype. In conjunction with a previous study, the present results also indicate a large influence of breeding scheme, i.e., pre- or postnatal environment, on the impact of Cntnap2 on cellular physiology.NEW & NOTEWORTHY This study shows that neurons in the auditory cortex of Cntnap2 knockout rats are hyperexcitable only during the juvenile age, whereas resulting changes in synaptic input persist in the adult. In conjunction with a previous study, the present results indicate that it is not the genes alone, but also the influence of pre- and postnatal environment, that shape neuronal function, highlighting the importance of early intervention in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rajkamalpreet S Mann
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Li Q, Chen Q, Zhang T, Xu Y, Kan Y, Zhang J. Case report: Anti-CNTN1 antibody-associated nodopathies disease with asymmetric onset. Front Neurol 2023; 14:1124540. [PMID: 36970505 PMCID: PMC10035883 DOI: 10.3389/fneur.2023.1124540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Anti-contactin-1 (CNTN1) IgG4 antibody-associated nodopathies is an autoimmune antibody-mediated peripheral neuropathy with a unique clinical presentation, pathophysiology, electrophysiology, and therapeutic response. The critical histopathological features are a dense lymphoplasmacytic infiltrate, a storiform pattern of fibrosis, and obliterative phlebitis. Here, a 62-year-old male patient presented with subacute unilateral limb onset, progressive exacerbation, marked weakness of the extremities, cranial, and autonomic nerve involvement. Neurophysiology showed slowed motor nerve conduction velocity (MCV), prolonged distal motor delay (DML), slowed sensory nerve conduction velocity (SCV), decreased sensory nerve activity potential (SNAP) amplitude, decreased amplitude of bilateral neuromotor conduction, abnormal cutaneous sympathetic response (SSR) in both lower extremities, axonal damage, prolonged F-wave latency, and discrete waves. In the initial phase, there was a response to intravenous immunoglobulin (IVIG), and corticosteroids and rituximab were also effective. After 1 year follow-up, the patient improved significantly. This article reports on a patient with nodular disease with anti-contactin-1 (CNTN1) IgG4 antibodies and reviews the literature to improve clinicians' understanding of the disease.
Collapse
Affiliation(s)
- Qian Li
- Neurology Department, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Qing Chen
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Ting Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Ying Xu
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yanmin Kan
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- The Third Central Clinical College of Nankai University, Tianjin, China
- *Correspondence: Yanmin Kan
| | - Jing Zhang
- Neurology Department, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- The Third Central Clinical College of Nankai University, Tianjin, China
- Jing Zhang
| |
Collapse
|
17
|
Pattnaik A, Sanket AS, Pradhan S, Sahoo R, Das S, Pany S, Douglas TEL, Dandela R, Liu Q, Rajadas J, Pati S, De Smedt SC, Braeckmans K, Samal SK. Designing of gradient scaffolds and their applications in tissue regeneration. Biomaterials 2023; 296:122078. [PMID: 36921442 DOI: 10.1016/j.biomaterials.2023.122078] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Gradient scaffolds are isotropic/anisotropic three-dimensional structures with gradual transitions in geometry, density, porosity, stiffness, etc., that mimic the biological extracellular matrix. The gradient structures in biological tissues play a major role in various functional and metabolic activities in the body. The designing of gradients in the scaffold can overcome the current challenges in the clinic compared to conventional scaffolds by exhibiting excellent penetration capacity for nutrients & cells, increased cellular adhesion, cell viability & differentiation, improved mechanical stability, and biocompatibility. In this review, the recent advancements in designing gradient scaffolds with desired biomimetic properties, and their implication in tissue regeneration applications have been briefly explained. Furthermore, the gradients in native tissues such as bone, cartilage, neuron, cardiovascular, skin and their specific utility in tissue regeneration have been discussed in detail. The insights from such advances using gradient-based scaffolds can widen the horizon for using gradient biomaterials in tissue regeneration applications.
Collapse
Affiliation(s)
- Ananya Pattnaik
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - A Swaroop Sanket
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Sanghamitra Pradhan
- Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar, 751030, Odisha, India
| | - Rajashree Sahoo
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Sudiptee Das
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Swarnaprbha Pany
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Timothy E L Douglas
- Engineering Department, Lancaster University, Lancaster, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Bhubaneswar, Odisha, India
| | - Qiang Liu
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford University School of Medicine, Department of Medicine, Stanford University, California, 94304, USA
| | - Jaykumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford University School of Medicine, Department of Medicine, Stanford University, California, 94304, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francusco (UCSF) School of Parmacy, California, USA
| | - Sanghamitra Pati
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
18
|
Zlomuzica A, Plank L, Kodzaga I, Dere E. A fatal alliance: Glial connexins, myelin pathology and mental disorders. J Psychiatr Res 2023; 159:97-115. [PMID: 36701970 DOI: 10.1016/j.jpsychires.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Mature oligodendrocytes are myelin forming glial cells which are responsible for myelination of neuronal axons in the white matter of the central nervous system. Myelin pathology is a major feature of severe neurological disorders. Oligodendrocyte-specific gene mutations and/or white matter alterations have also been addressed in a variety of mental disorders. Breakdown of myelin integrity and demyelination is associated with severe symptoms, including impairments in motor coordination, breathing, dysarthria, perception (vision and hearing), and cognition. Furthermore, there is evidence indicating that myelin sheath defects and white matter pathology contributes to the affective and cognitive symptoms of patients with mental disorders. Oligodendrocytes express the connexins GJC2; mCx47 [human (GJC2) and mouse (mCx47) connexin gene nomenclature according to Söhl and Willecke (2003)], GJB1; mCx32, and GJD1; mCx29 in both white and gray matter. Preclinical findings indicate that alterations in connexin expression in oligodendrocytes and astrocytes can induce myelin defects. GJC2; mCx47 is expressed at early embryonic stages in oligodendrocyte precursors cells which precedes central nervous system myelination. In adult humans and animals GJC2, respectively mCx47 expression is essential for oligodendrocyte function and ensures adequate myelination as well as myelin maintenance in the central nervous system. In the past decade, evidence has accumulated suggesting that mental disorders can be accompanied by changes in connexin expression, myelin sheath defects and corresponding white matter alterations. This dual pathology could compromise inter-neuronal information transfer, processing and communication and eventually contribute to behavioral, sensory-motor, affective and cognitive symptoms in patients with mental disorders. The induction of myelin repair and remyelination in the central nervous system of patients with mental disorders could help to restore normal neuronal information propagation and ameliorate behavioral and cognitive symptoms in individuals with mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Iris Kodzaga
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany; Sorbonne Université, UFR des Sciences de la Vie, 9 quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
19
|
Myelinated axon as a plastic cable regulating brain functions. Neurosci Res 2023; 187:45-51. [PMID: 36347403 DOI: 10.1016/j.neures.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Each oligodendrocyte (OC) forms myelin approximately in around 10 different axons to coordinate information transfer by regulating conduction velocity in the central nervous system (CNS). In the classical view, myelin has been considered a static structure that rarely turns over under healthy conditions because myelin tightly holds axons by their laminar complex structure. However, in recent decades, the classical views of static myelin have been renewed with pioneering studies that showed plastic changes in myelin throughout life with new experiences, such as the acquisition of new motor skills and the formation of memory. These changes in myelin regulate conduction velocity to optimize the temporal pattern of neuronal circuit activity among distinct brain regions associated with skill learning and memory. Here, we introduce pioneering studies and discuss the implications of plastic myelin on neural circuits and brain function.
Collapse
|
20
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
21
|
Abd Razak NH, Zainey AS, Idris J, Daud MF. The Fundamentals of Schwann Cell Biology. INDUSTRIAL REVOLUTION IN KNOWLEDGE MANAGEMENT AND TECHNOLOGY 2023:105-113. [DOI: 10.1007/978-3-031-29265-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Abad-Rodríguez J, Brocca ME, Higuero AM. Glycans and Carbohydrate-Binding/Transforming Proteins in Axon Physiology. ADVANCES IN NEUROBIOLOGY 2023; 29:185-217. [PMID: 36255676 DOI: 10.1007/978-3-031-12390-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mature nervous system relies on the polarized morphology of neurons for a directed flow of information. These highly polarized cells use their somatodendritic domain to receive and integrate input signals while the axon is responsible for the propagation and transmission of the output signal. However, the axon must perform different functions throughout development before being fully functional for the transmission of information in the form of electrical signals. During the development of the nervous system, axons perform environmental sensing functions, which allow them to navigate through other regions until a final target is reached. Some axons must also establish a regulated contact with other cells before reaching maturity, such as with myelinating glial cells in the case of myelinated axons. Mature axons must then acquire the structural and functional characteristics that allow them to perform their role as part of the information processing and transmitting unit that is the neuron. Finally, in the event of an injury to the nervous system, damaged axons must try to reacquire some of their immature characteristics in a regeneration attempt, which is mostly successful in the PNS but fails in the CNS. Throughout all these steps, glycans perform functions of the outermost importance. Glycans expressed by the axon, as well as by their surrounding environment and contacting cells, encode key information, which is fine-tuned by glycan modifying enzymes and decoded by glycan binding proteins so that the development, guidance, myelination, and electrical transmission functions can be reliably performed. In this chapter, we will provide illustrative examples of how glycans and their binding/transforming proteins code and decode instructive information necessary for fundamental processes in axon physiology.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | - María Elvira Brocca
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Alonso Miguel Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
23
|
Tozza S, Spina E, Iovino A, Iodice R, Dubbioso R, Ruggiero L, Nolano M, Manganelli F. Value of Antibody Determinations in Chronic Dysimmune Neuropathies. Brain Sci 2022; 13:37. [PMID: 36672019 PMCID: PMC9856104 DOI: 10.3390/brainsci13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic dysimmune neuropathies encompass a group of neuropathies that share immune-mediated pathomechanism. Chronic dysimmune antibody-related neuropathies include anti-MAG neuropathy, multifocal motor neuropathy, and neuropathies related to immune attack against paranodal antigens. Such neuropathies exhibit distinguishing pathomechanism, clinical and response to therapy features with respect to chronic inflammatory demyelinating polyradiculoneuropathy and its variants, which represent the most frequent form of chronic dysimmune neuropathy. This narrative review provides an overview of pathomechanism; clinical, electrophysiological, and biochemical features; and treatment response of the antibody-mediated neuropathies, aiming to establish when and why to look for antibodies in chronic dysimmune neuropathies.
Collapse
Affiliation(s)
- Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Emanuele Spina
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Aniello Iovino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
- Neurology Department, Skin Biopsy Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, 82037 Telese Terme, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, 80131 Naples, Italy
| |
Collapse
|
24
|
Abstract
The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.
Collapse
Affiliation(s)
- Sharon R. Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,CONTACT Matthew N. Rasband Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX77030, USA
| |
Collapse
|
25
|
Viney TJ, Sarkany B, Ozdemir AT, Hartwich K, Schweimer J, Bannerman D, Somogyi P. Spread of pathological human Tau from neurons to oligodendrocytes and loss of high-firing pyramidal neurons in aging mice. Cell Rep 2022; 41:111646. [PMID: 36384116 PMCID: PMC9681663 DOI: 10.1016/j.celrep.2022.111646] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Intracellular aggregation of hyperphosphorylated Tau (pTau) in the brain is associated with cognitive and motor impairments, and ultimately neurodegeneration. We investigate how human pTau affects cells and network activity in the hippocampal formation of the THY-Tau22 tauopathy model mice in vivo. We find that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to neurodegeneration, and we establish that pTau spreads to oligodendrocytes. During goal-directed virtual navigation in aged transgenic mice, we detect fewer high-firing prosubicular pyramidal cells, but the firing population retains its coupling to theta oscillations. Analysis of network oscillations and firing patterns of pyramidal and GABAergic neurons recorded in head-fixed and freely moving mice suggests preserved neuronal coordination. In spatial memory tests, transgenic mice have reduced short-term familiarity, but spatial working and reference memory are surprisingly normal. We hypothesize that unimpaired subcortical network mechanisms maintain cortical neuronal coordination, counteracting the widespread pTau aggregation, loss of high-firing cells, and neurodegeneration.
Collapse
Affiliation(s)
- Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Barbara Sarkany
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - A Tugrul Ozdemir
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Katja Hartwich
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Judith Schweimer
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
26
|
Collins MN, Mesce KA. A review of the bioeffects of low-intensity focused ultrasound and the benefits of a cellular approach. Front Physiol 2022; 13:1047324. [PMID: 36439246 PMCID: PMC9685663 DOI: 10.3389/fphys.2022.1047324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
This review article highlights the historical developments and current state of knowledge of an important neuromodulation technology: low-intensity focused ultrasound. Because compelling studies have shown that focused ultrasound can modulate neuronal activity non-invasively, especially in deep brain structures with high spatial specificity, there has been a renewed interest in attempting to understand the specific bioeffects of focused ultrasound at the cellular level. Such information is needed to facilitate the safe and effective use of focused ultrasound to treat a number of brain and nervous system disorders in humans. Unfortunately, to date, there appears to be no singular biological mechanism to account for the actions of focused ultrasound, and it is becoming increasingly clear that different types of nerve cells will respond to focused ultrasound differentially based on the complement of their ion channels, other membrane biophysical properties, and arrangement of synaptic connections. Furthermore, neurons are apparently not equally susceptible to the mechanical, thermal and cavitation-related consequences of focused ultrasound application-to complicate matters further, many studies often use distinctly different focused ultrasound stimulus parameters to achieve a reliable response in neural activity. In this review, we consider the benefits of studying more experimentally tractable invertebrate preparations, with an emphasis on the medicinal leech, where neurons can be studied as unique individual cells and be synaptically isolated from the indirect effects of focused ultrasound stimulation on mechanosensitive afferents. In the leech, we have concluded that heat is the primary effector of focused ultrasound neuromodulation, especially on motoneurons in which we observed a focused ultrasound-mediated blockade of action potentials. We discuss that the mechanical bioeffects of focused ultrasound, which are frequently described in the literature, are less reliably achieved as compared to thermal ones, and that observations ascribed to mechanical responses may be confounded by activation of synaptically-coupled sensory structures or artifacts associated with electrode resonance. Ultimately, both the mechanical and thermal components of focused ultrasound have significant potential to contribute to the sculpting of specific neural outcomes. Because focused ultrasound can generate significant modulation at a temperature <5°C, which is believed to be safe for moderate durations, we support the idea that focused ultrasound should be considered as a thermal neuromodulation technology for clinical use, especially targeting neural pathways in the peripheral nervous system.
Collapse
Affiliation(s)
- Morgan N. Collins
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
27
|
Oligodendroglia are emerging players in several forms of learning and memory. Commun Biol 2022; 5:1148. [PMID: 36309567 PMCID: PMC9617857 DOI: 10.1038/s42003-022-04116-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
Synaptic plasticity is the fundamental cellular mechanism of learning and memory, but recent research reveals that myelin-forming glia, oligodendrocytes (OL), are also involved. They contribute in ways that synaptic plasticity cannot, and the findings have not been integrated into the established conceptual framework used in the field of learning and memory. OLs and their progenitors are involved in long-term memory, memory consolidation, working memory, and recall in associative learning. They also contribute to short-term memory and non-associative learning by affecting synaptic transmission, intrinsic excitability of axons, and neural oscillations. Oligodendroglial involvement expands the field beyond synaptic plasticity to system-wide network function, where precise spike time arrival and neural oscillations are critical in information processing, storage, and retrieval. A Perspective highlights current evidence that supports oligodendrocytes and their progenitors’ involvement in cognition and proposes that our understanding of learning and memory can be expanded beyond the classic view of synaptic plasticity to a system-wide network function.
Collapse
|
28
|
Osanai Y, Yamazaki R, Shinohara Y, Ohno N. Heterogeneity and regulation of oligodendrocyte morphology. Front Cell Dev Biol 2022; 10:1030486. [PMID: 36393856 PMCID: PMC9644283 DOI: 10.3389/fcell.2022.1030486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 09/24/2023] Open
Abstract
Oligodendrocytes form multiple myelin sheaths in the central nervous system (CNS), which increase nerve conduction velocity and are necessary for basic and higher brain functions such as sensory function, motor control, and learning. Structures of the myelin sheath such as myelin internodal length and myelin thickness regulate nerve conduction. Various parts of the central nervous system exhibit different myelin structures and oligodendrocyte morphologies. Recent studies supported that oligodendrocytes are a heterogenous population of cells and myelin sheaths formed by some oligodendrocytes can be biased to particular groups of axons, and myelin structures are dynamically modulated in certain classes of neurons by specific experiences. Structures of oligodendrocyte/myelin are also affected in pathological conditions such as demyelinating and neuropsychiatric disorders. This review summarizes our understanding of heterogeneity and regulation of oligodendrocyte morphology concerning central nervous system regions, neuronal classes, experiences, diseases, and how oligodendrocytes are optimized to execute central nervous system functions.
Collapse
Affiliation(s)
- Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiaki Shinohara
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
29
|
Cury J, Smets H, Bouzin C, Doguet P, Vanhoestenberghe A, Delbeke J, Tahry RE, Nonclercq A, Gorza SP. Optical birefringence changes in myelinated and unmyelinated nerves: A comparative study. JOURNAL OF BIOPHOTONICS 2022; 15:e202200028. [PMID: 35703916 DOI: 10.1002/jbio.202200028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The measurement of birefringence variations related to nerve activity is a promising label-free technique for sensing compound neural action potentials (CNAPs). While widely applied in crustaceans, little is known about its efficiency on mammal peripheral nerves. In this work, birefringence recordings to detect CNAPs, and Stokes parameters measurements were performed in rat and lobster nerves. While single-trial detection of nerve activity in crustaceans was achieved successfully, no optical signal was detected in rats, even after extensive signal filtering and averaging. The Stokes parameters showed that a high degree of polarization of light is maintained in lobster sample, whereas an almost complete light depolarization occurs in rat nerve. Our results indicate that depolarization itself is not sufficient to explain the absence of birefringence signals in rats. We hypothesize that this absence comes from the myelin sheets, which constraint the birefringence changes to only take place at the nodes of Ranvier.
Collapse
Affiliation(s)
- Joaquín Cury
- Opera-photonics, Université Libre de Bruxelles, Brussels, Belgium
- Bio-, Electro- and Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | - Hugo Smets
- Bio-, Electro- and Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline Bouzin
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), IREC Imaging Platform (2IP), Brussels, Belgium
| | | | - Anne Vanhoestenberghe
- Aspire Centre for Rehabilitation Engineering and Assistive Technology, University College of London, London, UK
| | - Jean Delbeke
- Department of Neurology, Institute of Neurosciences (IONS), Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Riëm El Tahry
- Department of Neurology, Institute of Neurosciences (IONS), Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Antoine Nonclercq
- Bio-, Electro- and Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
30
|
Rey S, Ohm H, Klämbt C. Axonal ion homeostasis and glial differentiation. FEBS J 2022. [PMID: 35943294 DOI: 10.1111/febs.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
The brain is the ultimate control unit of the body. It conducts accurate, fast and reproducible calculations to control motor actions affecting mating, foraging and flight or fight decisions. Therefore, during evolution, better and more efficient brains have emerged. However, even simple brains are complex organs. They are formed by glial cells and neurons that establish highly intricate networks to enable information collection, processing and eventually, a precise motor control. Here, we review and connect some well-established and some hidden pieces of information to set the focus on ion homeostasis as a driving force in glial differentiation promoting signalling speed and accuracy.
Collapse
Affiliation(s)
- Simone Rey
- Institut für Neuro‐ und Verhaltensbiologie Münster Germany
| | - Henrike Ohm
- Institut für Neuro‐ und Verhaltensbiologie Münster Germany
| | | |
Collapse
|
31
|
Ramirez-Bermudez J, Perez-Esparza R, Flores J, Leon-Ortiz P, Corona T, Restrepo-Martínez M. Involuntary Emotional Expression Disorder in a Patient With Toluene Leukoencephalopathy. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2022; 51:163-166. [PMID: 35803687 DOI: 10.1016/j.rcpeng.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/05/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Inhalant users may develop toluene leukoencephalopathy, a devastating neuropsychiatric disorder. We present a case of toluene-induced damage to the corticospinal and the corticonuclear tracts, which presented with involuntary emotional expression disorder. METHODS Case study of a 20-year-old man with a 3-year history of frequent solvent abuse was admitted to the Neuropsychiatry Unit of the National Institute of Neurology and Neurosurgery because "he could not speak or walk" but would keep "laughing and crying without reason". RESULTS Neuropsychiatric examination revealed pathological laughter and crying, facial and speech apraxia, a bilateral pyramidal syndrome, and lack of control of urinary sphincter. Magnetic resonance imaging revealed a highly selective bilateral damage to the pyramidal system and the somatosensory pathway. SPECT imaging showed left fronto-parietal hypoperfusion. CONCLUSIONS This document provides support for the understanding of involuntary emotional expression disorders as a differential diagnosis in the clinical practice of psychiatrists, as well as the functional anatomy of these conditions.
Collapse
Affiliation(s)
- Jesús Ramirez-Bermudez
- Department of Neuropsychiatry, National Institute of Neurology and Neurosurgery, Mexico.
| | - Rodrigo Perez-Esparza
- Department of Neuropsychiatry, National Institute of Neurology and Neurosurgery, Mexico
| | - Jose Flores
- Department of Neurology, National Institute of Neurology and Neurosurgery, Mexico
| | - Pablo Leon-Ortiz
- Department of Neuropsychiatry, National Institute of Neurology and Neurosurgery, Mexico
| | - Teresa Corona
- Department of Neurology, National Institute of Neurology and Neurosurgery, Mexico
| | | |
Collapse
|
32
|
Meschkat M, Steyer AM, Weil MT, Kusch K, Jahn O, Piepkorn L, Agüi-Gonzalez P, Phan NTN, Ruhwedel T, Sadowski B, Rizzoli SO, Werner HB, Ehrenreich H, Nave KA, Möbius W. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun 2022; 13:1163. [PMID: 35246535 PMCID: PMC8897471 DOI: 10.1038/s41467-022-28720-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes. Myelin is formed of proteins of long half-lives. The mechanisms of renewal of such a stable structure are unclear. Here, the authors show that myelin integrity requires continuous myelin synthesis at the inner tongue, contributing to the maintenance of a functional axon-myelin unit.
Collapse
Affiliation(s)
- Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Abberior Instruments GmbH, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Imaging Centre, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marie-Theres Weil
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Nhu Thi Ngoc Phan
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Boguslawa Sadowski
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Silvio O Rizzoli
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
33
|
Panganiban CH, Barth JL, Tan J, Noble KV, McClaskey CM, Howard BA, Jafri SH, Dias JW, Harris KC, Lang H. Two distinct types of nodes of Ranvier support auditory nerve function in the mouse cochlea. Glia 2021; 70:768-791. [DOI: 10.1002/glia.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
- Wolfson Centre for Age‐Related Diseases King's College London London UK
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston South Carolina USA
| | - Junying Tan
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Carolyn M. McClaskey
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Blake A. Howard
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Shabih H. Jafri
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - James W. Dias
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Kelly C. Harris
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
34
|
Pathophysiology of the Different Clinical Phenotypes of Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP). Int J Mol Sci 2021; 23:ijms23010179. [PMID: 35008604 PMCID: PMC8745770 DOI: 10.3390/ijms23010179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common form of autoimmune polyneuropathy. It is a chronic disease and may be monophasic, progressive or recurrent with exacerbations and incomplete remissions, causing accumulating disability. In recent years, there has been rapid progress in understanding the background of CIDP, which allowed us to distinguish specific phenotypes of this disease. This in turn allowed us to better understand the mechanism of response or non-response to various forms of therapy. On the basis of a review of the relevant literature, the authors present the current state of knowledge concerning the pathophysiology of the different clinical phenotypes of CIDP as well as ongoing research in this field, with reference to key points of immune-mediated processes involved in the background of CIDP.
Collapse
|
35
|
Gao Y, Kong L, Liu S, Liu K, Zhu J. Impact of Neurofascin on Chronic Inflammatory Demyelinating Polyneuropathy via Changing the Node of Ranvier Function: A Review. Front Mol Neurosci 2021; 14:779385. [PMID: 34975399 PMCID: PMC8716720 DOI: 10.3389/fnmol.2021.779385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
The effective conduction of action potential in the peripheral nervous system depends on the structural and functional integrity of the node of Ranvier and paranode. Neurofascin (NF) plays an important role in the conduction of action potential in a saltatory manner. Two subtypes of NF, NF186, and NF155, are involved in the structure of the node of Ranvier. In patients with chronic inflammatory demyelinating polyneuropathy (CIDP), anti-NF antibodies are produced when immunomodulatory dysfunction occurs, which interferes with the conduction of action potential and is considered the main pathogenic factor of CIDP. In this study, we describe the assembling mechanism and anatomical structure of the node of Ranvier and the necessary cell adhesion molecules for its physiological function. The main points of this study are that we summarized the recent studies on the role of anti-NF antibodies in the changes in the node of Ranvier function and its impact on clinical manifestations and analyzed the possible mechanisms underlying the pathogenesis of CIDP.
Collapse
Affiliation(s)
- Ying Gao
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lingxin Kong
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
36
|
Anti-MAG neuropathy: From biology to clinical management. J Neuroimmunol 2021; 361:577725. [PMID: 34610502 DOI: 10.1016/j.jneuroim.2021.577725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
Abstract
The acquired chronic demyelinating neuropathies include a growing number of disease entities that have characteristic, often overlapping, clinical presentations, mediated by distinct immune mechanisms, and responding to different therapies. After the discovery in the early 1980s, that the myelin associated glycoprotein (MAG) is a target antigen in an autoimmune demyelinating neuropathy, assays to measure the presence of anti-MAG antibodies were used as the basis to diagnose the anti-MAG neuropathy. The route was open for describing the clinical characteristics of this new entity as a chronic distal large fiber sensorimotor neuropathy, for studying its pathogenesis and devising specific treatment strategies. The initial use of chemotherapeutic agents was replaced by the introduction in the late 1990s of rituximab, a monoclonal antibody against CD20+ B-cells. Since then, other anti-B cells agents have been introduced. Recently a novel antigen-specific immunotherapy neutralizing the anti-MAG antibodies with a carbohydrate-based ligand mimicking the natural HNK-1 glycoepitope has been described.
Collapse
|
37
|
A near-infrared AIE fluorescent probe for myelin imaging: From sciatic nerve to the optically cleared brain tissue in 3D. Proc Natl Acad Sci U S A 2021; 118:2106143118. [PMID: 34740969 PMCID: PMC8609329 DOI: 10.1073/pnas.2106143118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
The high spatial resolution of three-dimensional (3D) fluorescence imaging of myelinated fibers will greatly facilitate the understanding of 3D neural networks and the pathophysiology of demyelinating diseases. However, existing myelin probes are far from satisfactory because of their low–signal-to-background ratio and poor tissue permeability. We herein developed a near-infrared aggregation-induced emission-active probe, PM-ML, for high-performance myelin imaging. PM-ML could specifically image myelinated fibers in teased sciatic nerves and mouse brain tissues with high contrast, good photostability, and deep penetration depth. PM-ML staining is compatible with several tissue-clearing methods. Its application in assessing myelination for neuropathological studies was also demonstrated using a multiple sclerosis mouse model. Myelin, the structure that surrounds and insulates neuronal axons, is an important component of the central nervous system. The visualization of the myelinated fibers in brain tissues can largely facilitate the diagnosis of myelin-related diseases and understand how the brain functions. However, the most widely used fluorescent probes for myelin visualization, such as Vybrant DiD and FluoroMyelin, have strong background staining, low-staining contrast, and low brightness. These drawbacks may originate from their self-quenching properties and greatly limit their applications in three-dimensional (3D) imaging and myelin tracing. Chemical probes for the fluorescence imaging of myelin in 3D, especially in optically cleared tissue, are highly desirable but rarely reported. We herein developed a near-infrared aggregation-induced emission (AIE)-active probe, PM-ML, for high-performance myelin imaging. PM-ML is plasma membrane targeting with good photostability. It could specifically label myelinated fibers in teased sciatic nerves and mouse brain tissues with a high–signal-to-background ratio. PM-ML could be used for 3D visualization of myelin sheaths, myelinated fibers, and fascicles with high-penetration depth. The staining is compatible with different brain tissue–clearing methods, such as ClearT and ClearT2. The utility of PM-ML staining in demyelinating disease studies was demonstrated using the mouse model of multiple sclerosis. Together, this work provides an important tool for high-quality myelin visualization across scales, which may greatly contribute to the study of myelin-related diseases.
Collapse
|
38
|
Lu P, Wang F, Zhou S, Huang X, Sun H, Zhang YW, Yao Y, Zheng H. A Novel CNTNAP2 Mutation Results in Abnormal Neuronal E/I Balance. Front Neurol 2021; 12:712773. [PMID: 34737720 PMCID: PMC8562072 DOI: 10.3389/fneur.2021.712773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
CNTNAP2 (coding for protein Caspr2), a member of the neurexin family, plays an important role in the balance of excitatory and inhibitory post-synaptic currents (E/I balance). Here, we describe a novel pathogenic missense mutation in an infant with spontaneous recurrent seizures (SRSs) and intellectual disability. Genetic testing revealed a missense mutation, c.2329 C>G (p. R777G), in the CNTNAP2 gene. To explore the effect of this novel mutation, primary cultured neurons were transfected with wild type homo CNTNAP2 or R777G mutation and the morphology and function of neurons were evaluated. When compared with the vehicle control group or wild type group, the neurites and the membrane currents, including spontaneous excitatory post-synaptic currents (sEPSCs) and inhibitory post-synaptic currents (sIPSCs), in CNTNAP2 R777G mutation group were all decreased or weakened. Moreover, the action potentials (APs) were also impaired in CNTNAP2 R777G group. Therefore, CNTNAP2 R777G may lead to the imbalance of excitatory and inhibitory post-synaptic currents in neural network contributing to SRSs.
Collapse
Affiliation(s)
- Ping Lu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Jiangsu Province Hospital of Integrated Chinese and Western Medicine, Nanjing, China
| | - Fengpeng Wang
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Shuixiu Zhou
- Department of Neurology, Xiamen University Hospital, Xiamen, China
| | - Xiaohua Huang
- Basic Medical Sciences, College of Medicine, Xiamen University, Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Yao
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Basic Medical Sciences, College of Medicine, Xiamen University, Xiamen, China
- Shenzhen Research Institute, Xiamen University, Shenzhen, China
| |
Collapse
|
39
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
40
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
41
|
Ahmed S, Mohan A, Yoo HB, To WT, Kovacs S, Sunaert S, De Ridder D, Vanneste S. Structural correlates of the audiological and emotional components of chronic tinnitus. PROGRESS IN BRAIN RESEARCH 2021; 262:487-509. [PMID: 33931193 DOI: 10.1016/bs.pbr.2021.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective is to investigate white matter tracts, more specifically the arcuate fasciculus and acoustic radiation, in tinnitus and assess their relationship with distress, loudness and hearing loss. DTI images were acquired for 58 tinnitus patients and 65 control subjects. Deterministic tractography was first performed to visualize the arcuate fasciculus and acoustic radiation tracts bilaterally and to calculate tract density, fractional anisotropy, radial diffusivity, and axial diffusivity for tinnitus and control subjects. Tinnitus patients had a significantly reduced tract density compared to controls in both tracts of interest. They also exhibited increased axial diffusivity in the left acoustic radiation, as well as increased radial diffusivity in the left arcuate fasciculus, and both the left and right acoustic radiation. Furthermore, they exhibited decreased fractional anisotropy in the left arcuate fasciculus, as well as the left and right acoustic radiation tracts. Partial correlation analysis showed: (1) a negative correlation between arcuate fasciculus tract density and tinnitus distress, (2) a negative correlation between acoustic radiation tract density and hearing loss, (3) a negative correlation between acoustic radiation tract density and loudness, (4) a positive correlation between left arcuate fasciculus and tinnitus distress for radial diffusivity, (5) a negative correlation between left arcuate fasciculus and tinnitus distress for fractional anisotropy, (6) a positive correlation between left and right acoustic radiation and hearing loss for radial diffusivity, (7) No correlation between any of the white matter characteristics and tinnitus loudness. Structural alterations in the acoustic radiation and arcuate fasciculus correlate with hearing loss and distress in tinnitus but not tinnitus loudness showing that loudness is a more functional correlate of the disorder which does not manifest structurally.
Collapse
Affiliation(s)
- Shaheen Ahmed
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Anusha Mohan
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Hye Bin Yoo
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Wing Ting To
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| | - Silvia Kovacs
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk De Ridder
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
42
|
Pantazou V, Roux T, Oliveira Moreira V, Lubetzki C, Desmazières A. Interaction between Neurons and the Oligodendroglial Lineage in Multiple Sclerosis and Its Preclinical Models. Life (Basel) 2021; 11:231. [PMID: 33799653 PMCID: PMC7999210 DOI: 10.3390/life11030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a complex central nervous system inflammatory disease leading to demyelination and associated functional deficits. Though endogenous remyelination exists, it is only partial and, with time, patients can enter a progressive phase of the disease, with neurodegeneration as a hallmark. Though major therapeutic advances have been made, with immunotherapies reducing relapse rate during the inflammatory phase of MS, there is presently no therapy available which significantly impacts disease progression. Remyelination has been shown to favor neuroprotection, and it is thus of major importance to better understand remyelination mechanisms in order to promote them and hence preserve neurons. A crucial point is how this process is regulated through the neuronal crosstalk with the oligodendroglial lineage. In this review, we present the current knowledge on neuron interaction with the oligodendroglial lineage, in physiological context as well as in MS and its experimental models. We further discuss the therapeutic possibilities resulting from this research field, which might allow to support remyelination and neuroprotection and thus limit MS progression.
Collapse
Affiliation(s)
- Vasiliki Pantazou
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Service de Neurologie, Centre Hospitalier Universitaire Vaudois, 46 Rue du Bugnon, 1011 Lausanne, Switzerland
| | - Thomas Roux
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Assistance Publique-Hôpitaux de Paris, Neurology Department, Pitié Salpêtrière University Hospital, 75013 Paris, France
| | - Vanessa Oliveira Moreira
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
| | - Catherine Lubetzki
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Assistance Publique-Hôpitaux de Paris, Neurology Department, Pitié Salpêtrière University Hospital, 75013 Paris, France
| | - Anne Desmazières
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
| |
Collapse
|
43
|
Chang KJ, Agrawal I, Vainshtein A, Ho WY, Xin W, Tucker-Kellogg G, Susuki K, Peles E, Ling SC, Chan JR. TDP-43 maximizes nerve conduction velocity by repressing a cryptic exon for paranodal junction assembly in Schwann cells. eLife 2021; 10:e64456. [PMID: 33689679 PMCID: PMC7946431 DOI: 10.7554/elife.64456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
TDP-43 is extensively studied in neurons in physiological and pathological contexts. However, emerging evidence indicates that glial cells are also reliant on TDP-43 function. We demonstrate that deletion of TDP-43 in Schwann cells results in a dramatic delay in peripheral nerve conduction causing significant motor deficits in mice, which is directly attributed to the absence of paranodal axoglial junctions. By contrast, paranodes in the central nervous system are unaltered in oligodendrocytes lacking TDP-43. Mechanistically, TDP-43 binds directly to Neurofascin mRNA, encoding the cell adhesion molecule essential for paranode assembly and maintenance. Loss of TDP-43 triggers the retention of a previously unidentified cryptic exon, which targets Neurofascin mRNA for nonsense-mediated decay. Thus, TDP-43 is required for neurofascin expression, proper assembly and maintenance of paranodes, and rapid saltatory conduction. Our findings provide a framework and mechanism for how Schwann cell-autonomous dysfunction in nerve conduction is directly caused by TDP-43 loss-of-function.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Ira Agrawal
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Wan Yun Ho
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Wendy Xin
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, and Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, United States
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shuo-Chien Ling
- Department of Physiology, National University of Singapore, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore, Singapore
- Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Jonah R Chan
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
44
|
Kawagashira Y, Koike H, Takahashi M, Ohyama K, Iijima M, Katsuno M, Niwa JI, Doyu M, Sobue G. Aberrant Expression of Nodal and Paranodal Molecules in Neuropathy Associated With IgM Monoclonal Gammopathy With Anti-Myelin-Associated Glycoprotein Antibodies. J Neuropathol Exp Neurol 2021; 79:1303-1312. [PMID: 32856086 DOI: 10.1093/jnen/nlaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
To clarify the pathogenesis of anti-myelin-associated glycoprotein (MAG) antibody neuropathy associated with IgM monoclonal gammopathy (anti-MAG neuropathy), sural nerve biopsy specimens from 15 patients were investigated. Sodium channels, potassium channels, contactin-associated protein 1 (Caspr1), contactin 1, and neurofascin were evaluated by immunofluorescence in teased-fiber preparations. Immunoreactivity to the pan-sodium channel in both anti-MAG neuropathy patients and in normal controls was concentrated at the node of Ranvier unless there was demyelination, which was defined as the widening of the node of Ranvier. However, this immunoreactivity became weak or disappeared as demyelination progressed. In contrast, KCNQ2 immunostaining was nearly absent even in the absence of demyelination. The lengths of Caspr1, contactin 1, and pan-neurofascin immunostaining sites at the paranode were significantly increased compared with those of normal controls despite the absence of demyelination. The length of paranodal neurofascin staining correlated with the anti-MAG antibody titer, nerve conduction indices, the frequency of de/remyelination in teased-fiber preparations, and the frequency of widely spaced myelin (p < 0.05, p < 0.05, p < 0.01, and <0.05, respectively). These findings suggest that nodal and paranodal molecular alterations occur in early stages preceding the morphological changes associated with demyelination in anti-MAG neuropathy.
Collapse
Affiliation(s)
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya
| | - Mie Takahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya
| | - Ken Ohyama
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya
| | - Masahiro Iijima
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya
| | - Jun-Ichi Niwa
- Department of Neurology, Aichi Medical University, Nagakute
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University, Nagakute
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
45
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Kalafatakis I, Savvaki M, Velona T, Karagogeos D. Implication of Contactins in Demyelinating Pathologies. Life (Basel) 2021; 11:life11010051. [PMID: 33451101 PMCID: PMC7828632 DOI: 10.3390/life11010051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways.
Collapse
|
47
|
Ramirez-Bermudez J, Perez-Esparza R, Flores J, Leon-Ortiz P, Corona T, Restrepo-Martínez M. Involuntary Emotional Expression Disorder in a Patient With Toluene Leukoencephalopathy. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2020; 51:S0034-7450(20)30087-1. [PMID: 33735011 DOI: 10.1016/j.rcp.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Inhalant users may develop toluene leukoencephalopathy, a devastating neuropsychiatric disorder. We present a case of toluene-induced damage to the corticospinal and the corticonuclear tracts, which presented with involuntary emotional expression disorder. METHODS Case study of a 20-year-old man with a 3-year history of frequent solvent abuse was admitted to the Neuropsychiatry Unit of the National Institute of Neurology and Neurosurgery because "he could not speak or walk" but would keep "laughing and crying without reason". RESULTS Neuropsychiatric examination revealed pathological laughter and crying, facial and speech apraxia, a bilateral pyramidal syndrome, and lack of control of urinary sphincter. Magnetic resonance imaging revealed a highly selective bilateral damage to the pyramidal system and the somatosensory pathway. SPECT imaging showed left fronto-parietal hypoperfusion. CONCLUSIONS This document provides support for the understanding of involuntary emotional expression disorders as a differential diagnosis in the clinical practice of psychiatrists, as well as the functional anatomy of these conditions.
Collapse
Affiliation(s)
- Jesús Ramirez-Bermudez
- Department of Neuropsychiatry, National Institute of Neurology and Neurosurgery, Mexico.
| | - Rodrigo Perez-Esparza
- Department of Neuropsychiatry, National Institute of Neurology and Neurosurgery, Mexico
| | - Jose Flores
- Department of Neurology, National Institute of Neurology and Neurosurgery, Mexico
| | - Pablo Leon-Ortiz
- Department of Neuropsychiatry, National Institute of Neurology and Neurosurgery, Mexico
| | - Teresa Corona
- Department of Neurology, National Institute of Neurology and Neurosurgery, Mexico
| | | |
Collapse
|
48
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
49
|
Basilico B, Morandell J, Novarino G. Molecular mechanisms for targeted ASD treatments. Curr Opin Genet Dev 2020; 65:126-137. [PMID: 32659636 DOI: 10.1016/j.gde.2020.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
The possibility to generate construct valid animal models enabled the development and testing of therapeutic strategies targeting the core features of autism spectrum disorders (ASDs). At the same time, these studies highlighted the necessity of identifying sensitive developmental time windows for successful therapeutic interventions. Animal and human studies also uncovered the possibility to stratify the variety of ASDs in molecularly distinct subgroups, potentially facilitating effective treatment design. Here, we focus on the molecular pathways emerging as commonly affected by mutations in diverse ASD-risk genes, on their role during critical windows of brain development and the potential treatments targeting these biological processes.
Collapse
Affiliation(s)
| | - Jasmin Morandell
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
50
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|