1
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2025; 41:461-485. [PMID: 39023844 PMCID: PMC11876516 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Lee W, Kang B, Kim HM, Ishida T, Shin M, Iwashita M, Nitta M, Shiraishi A, Kiyonari H, Shimoya K, Masamoto K, Roh TY, Kosodo Y. Cyclin-dependent kinase inhibitor p18 regulates lineage transitions of excitatory neurons, astrocytes, and interneurons in the mouse cortex. EMBO J 2025; 44:382-412. [PMID: 39668249 PMCID: PMC11730326 DOI: 10.1038/s44318-024-00325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Neural stem cells (NSCs) can give rise to both neurons and glia, but the regulatory mechanisms governing their differentiation transitions remain incompletely understood. Here, we address the role of cyclin-dependent kinase inhibitors (CDKIs) in the later stages of dorsal cortical development. We find that the CDKIs p18 and p27 are upregulated at the onset of astrocyte generation. Acute manipulation of p18 and p27 levels shows that CDKIs modulate lineage switching between upper-layer neurons and astrocytes at the transitional stage. We generate a conditional knock-in mouse model to induce p18 in NSCs. The transcriptomic deconvolution of microdissected tissue reveals that increased levels of p18 promote glial cell development and activate Delta-Notch signaling. Furthermore, we show that p18 upregulates the homeobox transcription factor Dlx2 to subsequently induce the differentiation of olfactory bulb interneurons while reducing the numbers of upper-layer neurons and astrocytes at the perinatal stage. Clonal analysis using transposon-based reporters reveals that the transition from the astrocyte to the interneuron lineage is potentiated by p18 at the single-cell level. In sum, our study reports a function of p18 in determining the developmental boundaries among different cellular lineages arising sequentially from NSCs in the dorsal cortex.
Collapse
Affiliation(s)
- Wonyoung Lee
- Neural Regeneration Lab, Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Byunghee Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyo-Min Kim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Tsuyoshi Ishida
- Department of Obstetrics and Gynecology, Kobe Tokushukai Hospital, Kobe, Japan
| | - Minkyung Shin
- Neural Regeneration Lab, Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Misato Iwashita
- Neural Regeneration Lab, Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Masahiro Nitta
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Koichiro Shimoya
- Department of Obstetrics and Gynecology, Kawasaki Medical School, Kurashiki, Japan
| | - Kazuto Masamoto
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Yoichi Kosodo
- Neural Regeneration Lab, Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
3
|
Nakamura Y, Shimada IS, Maroofian R, Falabella M, Zaki MS, Fujimoto M, Sato E, Takase H, Aoki S, Miyauchi A, Koshimizu E, Miyatake S, Arioka Y, Honda M, Higashi T, Miya F, Okubo Y, Ogawa I, Scardamaglia A, Miryounesi M, Alijanpour S, Ahmadabadi F, Herkenrath P, Dafsari HS, Velmans C, Al Balwi M, Vitobello A, Denommé-Pichon AS, Jeanne M, Civit A, Abdel-Hamid MS, Naderi H, Darvish H, Bakhtiari S, Kruer MC, Carroll CJ, Ghayoor Karimiani E, Khailany RA, Abdulqadir TA, Ozaslan M, Bauer P, Zifarelli G, Seifi T, Zamani M, Al Alam C, Alvi JR, Sultan T, Efthymiou S, Pope SAS, Haginoya K, Matsunaga T, Osaka H, Matsumoto N, Ozaki N, Ohkawa Y, Oki S, Tsunoda T, Pitceathly RDS, Taketomi Y, Houlden H, Murakami M, Kato Y, Saitoh S. Biallelic null variants in PNPLA8 cause microcephaly by reducing the number of basal radial glia. Brain 2024; 147:3949-3967. [PMID: 39082157 PMCID: PMC11531855 DOI: 10.1093/brain/awae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 11/05/2024] Open
Abstract
Patatin-like phospholipase domain-containing lipase 8 (PNPLA8), one of the calcium-independent phospholipase A2 enzymes, is involved in various physiological processes through the maintenance of membrane phospholipids. Biallelic variants in PNPLA8 have been associated with a range of paediatric neurodegenerative disorders. However, the phenotypic spectrum, genotype-phenotype correlations and the underlying mechanisms are poorly understood. Here, we newly identified 14 individuals from 12 unrelated families with biallelic ultra-rare variants in PNPLA8 presenting with a wide phenotypic spectrum of clinical features. Analysis of the clinical features of current and previously reported individuals (25 affected individuals across 20 families) showed that PNPLA8-related neurological diseases manifest as a continuum ranging from variable developmental and/or degenerative epileptic-dyskinetic encephalopathy to childhood-onset neurodegeneration. We found that complete loss of PNPLA8 was associated with the more profound end of the spectrum, with congenital microcephaly. Using cerebral organoids generated from human induced pluripotent stem cells, we found that loss of PNPLA8 led to developmental defects by reducing the number of basal radial glial cells and upper-layer neurons. Spatial transcriptomics revealed that loss of PNPLA8 altered the fate specification of apical radial glial cells, as reflected by the enrichment of gene sets related to the cell cycle, basal radial glial cells and neural differentiation. Neural progenitor cells lacking PNPLA8 showed a reduced amount of lysophosphatidic acid, lysophosphatidylethanolamine and phosphatidic acid. The reduced number of basal radial glial cells in patient-derived cerebral organoids was rescued, in part, by the addition of lysophosphatidic acid. Our data suggest that PNPLA8 is crucial to meet phospholipid synthetic needs and to produce abundant basal radial glial cells in human brain development.
Collapse
Affiliation(s)
- Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Issei S Shimada
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Masanori Fujimoto
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Emi Sato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Shiho Aoki
- Department of Pediatrics, Jichi Medical University, Tochigi 3290498, Japan
| | - Akihiko Miyauchi
- Department of Pediatrics, Jichi Medical University, Tochigi 3290498, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama 2360004, Japan
| | - Yuko Arioka
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya 4668550, Japan
| | - Mizuki Honda
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 7398526, Japan
| | - Takayoshi Higashi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 1608582, Japan
| | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 9893126, Japan
| | - Isamu Ogawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 4678603, Japan
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Sahar Alijanpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Farzad Ahmadabadi
- Pediatric Neurology Department, Faculty of Medicine, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran
| | - Peter Herkenrath
- Department of Pediatrics and Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany
| | - Hormos Salimi Dafsari
- Department of Pediatrics and Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany
- Max-Planck-Institute for Biology of Ageing, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Clara Velmans
- Faculty of Medicine and University Hospital Cologne, Institute of Human Genetics, University of Cologne, Cologne 50931, Germany
| | - Mohammed Al Balwi
- Department of Pathology and Laboratory Medicine, College of Medicine, KSAU-HS, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Antonio Vitobello
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon 21000, France
- INSERM UMR1231 GAD ‘Génétique des Anomalies du Développement’, FHU-TRANSLAD, University of Burgundy, Dijon 21000, France
| | - Anne-Sophie Denommé-Pichon
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon 21000, France
- INSERM UMR1231 GAD ‘Génétique des Anomalies du Développement’, FHU-TRANSLAD, University of Burgundy, Dijon 21000, France
| | - Médéric Jeanne
- Genetics Department, University Hospital of Tours, Tours 37044, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours 37032, France
| | - Antoine Civit
- Genetics Department, University Hospital of Tours, Tours 37044, France
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Hamed Naderi
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Christopher J Carroll
- Genetics Section, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Section, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Rozhgar A Khailany
- Department of Basic Science, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Talib Adil Abdulqadir
- Department of Pediatrics, College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Mehmet Ozaslan
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, Gaziantep 27410, Turkey
| | | | | | - Tahere Seifi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz 61556-89467, Iran
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz 61556-89467, Iran
| | - Chadi Al Alam
- Pediatrics and Pediatric Neurology, American Center for Psychiatry and Neurology, Abu Dhabi 108699, UAE
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, the Children’s Hospital and the University of Child Health Sciences, Lahore 54600, Pakistan
| | - Tipu Sultan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Simon A S Pope
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 9893126, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 4678603, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi 3290498, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya 4668550, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 8128582, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 8600811, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Medical Science Mathematics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan
| | - Yoichi Kato
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| |
Collapse
|
4
|
Xu J, Zhao R, Yan M, Zhou M, Liu H, Wang X, Lu C, Li Q, Mo Y, Zhang P, Ju X, Zeng X. Sex-Specific Behavioral and Molecular Responses to Maternal Lipopolysaccharide-Induced Immune Activation in a Murine Model: Implications for Neurodevelopmental Disorders. Int J Mol Sci 2024; 25:9885. [PMID: 39337372 PMCID: PMC11432365 DOI: 10.3390/ijms25189885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Maternal immune activation (MIA) during pregnancy has been increasingly recognized as a critical factor in the development of neurodevelopmental disorders, with potential sex-specific impacts that are not yet fully understood. In this study, we utilized a murine model to explore the behavioral and molecular consequences of MIA induced by lipopolysaccharide (LPS) administration on embryonic day 12.5. Our findings indicate that male offspring exposed to LPS exhibited significant increases in anxiety-like and depression-like behaviors, while female offspring did not show comparable changes. Molecular analyses revealed alterations in pro-inflammatory cytokine levels and synaptic gene expression in male offspring, suggesting that these molecular disruptions may underlie the observed behavioral differences. These results emphasize the importance of considering sex as a biological variable in studies of neurodevelopmental disorders and highlight the need for further molecular investigations to understand the mechanisms driving these sex-specific outcomes. Our study contributes to the growing evidence that prenatal immune challenges play a pivotal role in the etiology of neurodevelopmental disorders and underscores the potential for sex-specific preventative approaches of MIA.
Collapse
Affiliation(s)
- Jing Xu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Rujuan Zhao
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Mingyang Yan
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Meng Zhou
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Huanhuan Liu
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Xueying Wang
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Chang Lu
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Qiang Li
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Yan Mo
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Paihao Zhang
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Xingda Ju
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Chauhan M, Singh K, Chongtham C, A G A, Sharma P. miR-449a mediated repression of the cell cycle machinery prevents neuronal apoptosis. J Biol Chem 2024; 300:107698. [PMID: 39173945 PMCID: PMC11419829 DOI: 10.1016/j.jbc.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Aberrant activation of the cell cycle of terminally differentiated neurons results in their apoptosis and is known to contribute to neuronal loss in various neurodegenerative disorders like Alzheimer's Disease. However, the mechanisms that regulate cell cycle-related neuronal apoptosis are poorly understood. We identified several miRNA that are dysregulated in neurons from a transgenic APP/PS1 mouse model for AD (TgAD). Several of these miRNA are known to and/or are predicted to target cell cycle-related genes. Detailed investigation on miR-449a revealed the following: a, it promotes neuronal differentiation by suppressing the neuronal cell cycle; b, its expression in cortical neurons was impaired in response to amyloid peptide Aβ42; c, loss of its expression resulted in aberrant activation of the cell cycle leading to apoptosis. miR-449a may prevent cell cycle-related neuronal apoptosis by targeting cyclin D1 and protein phosphatase CDC25A, which are important for G1-S transition. Importantly, the lentiviral-mediated delivery of miR-449a in TgAD mouse brain significantly reverted the defects in learning and memory, which are associated with AD.
Collapse
Affiliation(s)
- Monika Chauhan
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| | - Komal Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Aneeshkumar A G
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
6
|
De Vincenti AP, Bonafina A, Ledda F, Paratcha G. Lrig1 regulates cell fate specification of glutamatergic neurons via FGF-driven Jak2/Stat3 signaling in cortical progenitors. Development 2024; 151:dev202879. [PMID: 39250533 DOI: 10.1242/dev.202879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
| | - Antonela Bonafina
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires C1405 BWE, Argentina
| | - Fernanda Ledda
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires C1405 BWE, Argentina
| | - Gustavo Paratcha
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
| |
Collapse
|
7
|
Vancamp P, Frapin M, Parnet P, Amarger V. Unraveling the Molecular Mechanisms of the Neurodevelopmental Consequences of Fetal Protein Deficiency: Insights From Rodent Models and Public Health Implications. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100339. [PMID: 39040432 PMCID: PMC11262180 DOI: 10.1016/j.bpsgos.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Fetal brain development requires increased maternal protein intake to ensure that offspring reach their optimal cognitive potential in infancy and adulthood. While protein deficiency remains a prevalent issue in developing countries, it is also reemerging in Western societies due to the growing adoption of plant-based diets, some of which are monotonous and may fail to provide sufficient amino acids crucial for the brain's critical developmental phase. Confounding variables in human nutritional research have impeded our understanding of the precise impact of protein deficiency on fetal neurodevelopment, as well as its implications for childhood neurocognitive performance. Moreover, it remains unclear whether such deficiency could predispose to mental health problems in adulthood, mirroring observations in individuals exposed to prenatal famine. In this review, we sought to evaluate mechanistic data derived from rodent models, placing special emphasis on the involvement of neuroendocrine axes, the influence of sex and timing, epigenetic modifications, and cellular metabolism. Despite notable progress, critical knowledge gaps remain, including understanding the long-term reversibility of effects due to fetal protein restriction and the interplay between genetic predisposition and environmental factors. Enhancing our understanding of the precise mechanisms that connect prenatal nutrition to brain development in future research endeavors can be significantly advanced by integrating multiomics approaches and utilizing additional alternative models such as nonhuman primates. Furthermore, it is crucial to investigate potential interventions aimed at alleviating adverse outcomes. Ultimately, this research has profound implications for guiding public health strategies aimed at raising awareness about the crucial role of optimal maternal nutrition in supporting fetal neurodevelopment.
Collapse
Affiliation(s)
- Pieter Vancamp
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Morgane Frapin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patricia Parnet
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Valérie Amarger
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| |
Collapse
|
8
|
Sung CYW, Li M, Jonjic S, Sanchez V, Britt WJ. Cytomegalovirus infection lengthens the cell cycle of granule cell precursors during postnatal cerebellar development. JCI Insight 2024; 9:e175525. [PMID: 38855871 PMCID: PMC11382886 DOI: 10.1172/jci.insight.175525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection in infants infected in utero can lead to a variety of neurodevelopmental disorders. However, mechanisms underlying altered neurodevelopment in infected infants remain poorly understood. We have previously described a murine model of congenital HCMV infection in which murine CMV (MCMV) spreads hematogenously and establishes a focal infection in all regions of the brain of newborn mice, including the cerebellum. Infection resulted in disruption of cerebellar cortical development characterized by reduced cerebellar size and foliation. This disruption was associated with altered cell cycle progression of the granule cell precursors (GCPs), which are the progenitors that give rise to granule cells (GCs), the most abundant neurons in the cerebellum. In the current study, we have demonstrated that MCMV infection leads to prolonged GCP cell cycle, premature exit from the cell cycle, and reduced numbers of GCs resulting in cerebellar hypoplasia. Treatment with TNF-α neutralizing antibody partially normalized the cell cycle alterations of GCPs and altered cerebellar morphogenesis induced by MCMV infection. Collectively, our results argue that virus-induced inflammation altered the cell cycle of GCPs resulting in a reduced numbers of GCs and cerebellar cortical hypoplasia, thus providing a potential mechanism for altered neurodevelopment in fetuses infected with HCMV.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Mao Li
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Stipan Jonjic
- Department of Histology and Embryology and
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Veronica Sanchez
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Kaise T, Kageyama R. Transcriptional control of neural stem cell activity. Biochem Soc Trans 2024; 52:617-626. [PMID: 38477464 DOI: 10.1042/bst20230439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
In the adult brain, neural stem cells (NSCs) are under the control of various molecular mechanisms to produce an appropriate number of neurons that are essential for specific brain functions. Usually, the majority of adult NSCs stay in a non-proliferative and undifferentiated state known as quiescence, occasionally transitioning to an active state to produce newborn neurons. This transition between the quiescent and active states is crucial for the activity of NSCs. Another significant state of adult NSCs is senescence, in which quiescent cells become more dormant and less reactive, ceasing the production of newborn neurons. Although many genes involved in the regulation of NSCs have been identified using genetic manipulation and omics analyses, the entire regulatory network is complicated and ambiguous. In this review, we focus on transcription factors, whose importance has been elucidated in NSCs by knockout or overexpression studies. We mainly discuss the transcription factors with roles in the active, quiescent, and rejuvenation states of adult NSCs.
Collapse
Affiliation(s)
- Takashi Kaise
- RIKEN Center for Brain Science, Wako 351-0198, Japan
| | | |
Collapse
|
10
|
Yamanaka T, Kurosawa M, Yoshida A, Shimogori T, Hiyama A, Maity SN, Hattori N, Matsui H, Nukina N. The transcription factor NF-YA is crucial for neural progenitor maintenance during brain development. J Biol Chem 2024; 300:105629. [PMID: 38199563 PMCID: PMC10839448 DOI: 10.1016/j.jbc.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis. Detailed analyses revealed a progressive decline in multiple neural progenitors in the cerebral cortex and ganglionic eminences, accompanied by induced apoptotic cell death and reduced cell proliferation. In neural progenitors, the NF-YA short isoform lacking exon 3 is dominant and co-expressed with cell cycle genes. ChIP-seq analysis from the cortex during early corticogenesis revealed preferential binding of NF-Y to the cell cycle genes, some of which were confirmed to be downregulated following NF-YA deletion. Notably, the NF-YA short isoform disappears and is replaced by its long isoform during neuronal differentiation. Forced expression of the NF-YA long isoform in neural progenitors resulted in a significant decline in neuronal count, possibly due to the suppression of cell proliferation. Collectively, we elucidated a critical role of the NF-YA short isoform in maintaining neural progenitors, possibly by regulating cell proliferation and apoptosis. Moreover, we identified an isoform switch in NF-YA within the neuronal lineage in vivo, which may explain the stage-specific role of NF-Y during neuronal development.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan; Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aya Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Hiyama
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Li A, Tomita H, Xu L. Temporal gene expression changes and affected pathways in neurodevelopment of a mouse model of Smith-Lemli-Opitz syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568116. [PMID: 38045361 PMCID: PMC10690207 DOI: 10.1101/2023.11.21.568116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Smith-Lemli-Opitz syndrome is an autosomal recessive disorder that arises from mutations in the gene DHCR7, which encodes the terminal enzyme of cholesterol biosynthesis, leading to decreased production of cholesterol and accumulation of the cholesterol precursor, 7-dehydrocholesterol, and its oxysterol metabolites. The disorder displays a wide range of neurodevelopmental defects, intellectual disability, and behavioral problems. However, an in-depth study on the temporal changes of gene expression in the developing brains of SLOS mice has not been done before. In this work, we carried out the transcriptomic analysis of whole brains from WT and Dhcr7-KO mice at four-time points through postnatal day 0. First, we observed the expected downregulation of the Dhcr7 gene in the Dhcr7-KO mouse model, as well as gene expression changes of several other genes involved in cholesterol biosynthesis throughout all time points. Pathway and GO term enrichment analyses revealed affected signaling pathways and biological processes that were shared amongst time points and unique to individual time points. Specifically, the pathways important for embryonic development, including Hippo, Wnt, and TGF-β signaling pathways are the most significantly affected at the earliest time point, E12.5. Additionally, neurogenesis-related GO terms were enriched in earlier time points, consistent with the timing of development. Conversely, pathways related to synaptogenesis, which occurs later in development compared to neurogenesis, are significantly affected at the later time points, E16.5 and PND0, including the cholinergic, glutamatergic, and GABAergic synapses. The impact of these transcriptomic changes and enriched pathways is discussed in the context of known biological phenotypes of SLOS.
Collapse
Affiliation(s)
- Amy Li
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Hideaki Tomita
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| |
Collapse
|
13
|
Kim SN, Viswanadham VV, Doan RN, Dou Y, Bizzotto S, Khoshkhoo S, Huang AY, Yeh R, Chhouk B, Truong A, Chappell KM, Beaudin M, Barton A, Akula SK, Rento L, Lodato M, Ganz J, Szeto RA, Li P, Tsai JW, Hill RS, Park PJ, Walsh CA. Cell lineage analysis with somatic mutations reveals late divergence of neuronal cell types and cortical areas in human cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565899. [PMID: 37986891 PMCID: PMC10659282 DOI: 10.1101/2023.11.06.565899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The mammalian cerebral cortex shows functional specialization into regions with distinct neuronal compositions, most strikingly in the human brain, but little is known in about how cellular lineages shape cortical regional variation and neuronal cell types during development. Here, we use somatic single nucleotide variants (sSNVs) to map lineages of neuronal sub-types and cortical regions. Early-occurring sSNVs rarely respect Brodmann area (BA) borders, while late-occurring sSNVs mark neuron-generating clones with modest regional restriction, though descendants often dispersed into neighboring BAs. Nevertheless, in visual cortex, BA17 contains 30-70% more sSNVs compared to the neighboring BA18, with clones across the BA17/18 border distributed asymmetrically and thus displaying different cortex-wide dispersion patterns. Moreover, we find that excitatory neuron-generating clones with modest regional restriction consistently share low-mosaic sSNVs with some inhibitory neurons, suggesting significant co-generation of excitatory and some inhibitory neurons in the dorsal cortex. Our analysis reveals human-specific cortical cell lineage patterns, with both regional inhomogeneities in progenitor proliferation and late divergence of excitatory/inhibitory lineages.
Collapse
Affiliation(s)
- Sonia Nan Kim
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, 02115, MA, USA
| | - Vinayak V. Viswanadham
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
- Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, 02115, MA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
| | - Yanmei Dou
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
| | - Sara Bizzotto
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Sattar Khoshkhoo
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, 02115, MA, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Rebecca Yeh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
| | - Brian Chhouk
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
| | - Alex Truong
- Research Computing, Harvard Medical School, Boston, 02115, MA, USA
| | | | - Marc Beaudin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
| | - Alison Barton
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
- Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, 02115, MA, USA
| | - Shyam K. Akula
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
| | - Lariza Rento
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
| | - Michael Lodato
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Javier Ganz
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Ryan A. Szeto
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, 02115, MA, USA
| | - Pengpeng Li
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Jessica W. Tsai
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
| | - Robert Sean Hill
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, 02115, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, 02115, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, 02115, MA, USA
| |
Collapse
|
14
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
15
|
Saberi A, Paquola C, Wagstyl K, Hettwer MD, Bernhardt BC, Eickhoff SB, Valk SL. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity. PLoS Biol 2023; 21:e3002365. [PMID: 37943873 PMCID: PMC10684102 DOI: 10.1371/journal.pbio.3002365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.
Collapse
Affiliation(s)
- Amin Saberi
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Meike D. Hettwer
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Kang B, Yang Y, Hu K, Ruan X, Liu YL, Lee P, Lee J, Wang J, Zhang X. Infernape uncovers cell type-specific and spatially resolved alternative polyadenylation in the brain. Genome Res 2023; 33:1774-1787. [PMID: 37907328 PMCID: PMC10691540 DOI: 10.1101/gr.277864.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023]
Abstract
Differential polyadenylation sites (PAs) critically regulate gene expression, but their cell type-specific usage and spatial distribution in the brain have not been systematically characterized. Here, we present Infernape, which infers and quantifies PA usage from single-cell and spatial transcriptomic data and show its application in the mouse brain. Infernape uncovers alternative intronic PAs and 3'-UTR lengthening during cortical neurogenesis. Progenitor-neuron comparisons in the excitatory and inhibitory neuron lineages show overlapping PA changes in embryonic brains, suggesting that the neural proliferation-differentiation axis plays a prominent role. In the adult mouse brain, we uncover cell type-specific PAs and visualize such events using spatial transcriptomic data. Over two dozen neurodevelopmental disorder-associated genes such as Csnk2a1 and Mecp2 show differential PAs during brain development. This study presents Infernape to identify PAs from scRNA-seq and spatial data, and highlights the role of alternative PAs in neuronal gene regulation.
Collapse
Affiliation(s)
- Bowei Kang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yalan Yang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kaining Hu
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yi-Lin Liu
- Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Pinky Lee
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jasper Lee
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jingshu Wang
- Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA;
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
17
|
Salamon I, Park Y, Miškić T, Kopić J, Matteson P, Page NF, Roque A, McAuliffe GW, Favate J, Garcia-Forn M, Shah P, Judaš M, Millonig JH, Kostović I, De Rubeis S, Hart RP, Krsnik Ž, Rasin MR. Celf4 controls mRNA translation underlying synaptic development in the prenatal mammalian neocortex. Nat Commun 2023; 14:6025. [PMID: 37758766 PMCID: PMC10533865 DOI: 10.1038/s41467-023-41730-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.
Collapse
Affiliation(s)
- Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers University, School of Graduate Studies, New Brunswick, NJ, 08854, USA
| | - Yongkyu Park
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Terezija Miškić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicholas F Page
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Alfonso Roque
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Geoffrey W McAuliffe
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Miloš Judaš
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ivica Kostović
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia.
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
18
|
Zhang X, Wolinska J, Blair D, Hu W, Yin M. Responses to predation pressure involve similar sets of genes in two divergent species of Daphnia. J Anim Ecol 2023; 92:1743-1758. [PMID: 37337454 DOI: 10.1111/1365-2656.13969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Species that are not closely related can express similar inducible traits, but molecular mechanisms underlying the observed responses are often unknown, nor is it known if these mechanisms are shared between such species. Here, we compared transcriptional profiles of two Daphnia species (D. mitsukuri and D. sinensis) from different subgenera, at both juvenile and adult developmental stages. Both species were exposed to the same predation threat (fish kairomones), and both showed similar induced morphological changes (reduced body length). At the early developmental stage, response to predation risk resulted in similar changes in expression levels of 23 orthologues in both species. These orthologues, involved in 107 GO categories, changed in the same direction in both species (over- or underexpressed), in comparison to non-exposed controls. Several of these orthologues were associated with DNA replication, structural constituents of cuticle or innate immune response. In both species, the differentially expressed (DE) genes on average had higher ω (dN /dS ) values than non-DE genes, suggesting that these genes had experienced greater positive selection or lower purifying selection than non-DE genes. Overall, our results suggest that similar suites of genes, responding in similar ways to predation pressure, have been retained in Daphnia for many millions of years.
Collapse
Affiliation(s)
- Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
- Department of Microbiology and Bioengineering, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Morales-Gregorio A, van Meegen A, van Albada SJ. Ubiquitous lognormal distribution of neuron densities in mammalian cerebral cortex. Cereb Cortex 2023; 33:9439-9449. [PMID: 37409647 PMCID: PMC10438924 DOI: 10.1093/cercor/bhad160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 07/07/2023] Open
Abstract
Numbers of neurons and their spatial variation are fundamental organizational features of the brain. Despite the large corpus of cytoarchitectonic data available in the literature, the statistical distributions of neuron densities within and across brain areas remain largely uncharacterized. Here, we show that neuron densities are compatible with a lognormal distribution across cortical areas in several mammalian species, and find that this also holds true within cortical areas. A minimal model of noisy cell division, in combination with distributed proliferation times, can account for the coexistence of lognormal distributions within and across cortical areas. Our findings uncover a new organizational principle of cortical cytoarchitecture: the ubiquitous lognormal distribution of neuron densities, which adds to a long list of lognormal variables in the brain.
Collapse
Affiliation(s)
- Aitor Morales-Gregorio
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| | - Alexander van Meegen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| | - Sacha J van Albada
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| |
Collapse
|
20
|
Niggl E, Bouman A, Briere LC, Hoogenboezem RM, Wallaard I, Park J, Admard J, Wilke M, Harris-Mostert EDRO, Elgersma M, Bain J, Balasubramanian M, Banka S, Benke PJ, Bertrand M, Blesson AE, Clayton-Smith J, Ellingford JM, Gillentine MA, Goodloe DH, Haack TB, Jain M, Krantz I, Luu SM, McPheron M, Muss CL, Raible SE, Robin NH, Spiller M, Starling S, Sweetser DA, Thiffault I, Vetrini F, Witt D, Woods E, Zhou D, Elgersma Y, van Esbroeck ACM. HNRNPC haploinsufficiency affects alternative splicing of intellectual disability-associated genes and causes a neurodevelopmental disorder. Am J Hum Genet 2023; 110:1414-1435. [PMID: 37541189 PMCID: PMC10432175 DOI: 10.1016/j.ajhg.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five of them bear an identical in-frame deletion of nine amino acids in the extreme C terminus. To study the effect of this recurrent variant as well as HNRNPC haploinsufficiency, we used induced pluripotent stem cells (iPSCs) and fibroblasts obtained from affected individuals. While protein localization and oligomerization were unaffected by the recurrent C-terminal deletion variant, total HNRNPC levels were decreased. Previously, reduced HNRNPC levels have been associated with changes in alternative splicing. Therefore, we performed a meta-analysis on published RNA-seq datasets of three different cell lines to identify a ubiquitous HNRNPC-dependent signature of alternative spliced exons. The identified signature was not only confirmed in fibroblasts obtained from an affected individual but also showed a significant enrichment for genes associated with intellectual disability. Hence, we assessed the effect of decreased and increased levels of HNRNPC on neuronal arborization and neuronal migration and found that either condition affects neuronal function. Taken together, our data indicate that HNRNPC haploinsufficiency affects alternative splicing of multiple intellectual disability-associated genes and that the developing brain is sensitive to aberrant levels of HNRNPC. Hence, our data strongly support the inclusion of HNRNPC to the family of HNRNP-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eva Niggl
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands.
| | - Lauren C Briere
- Center for Genomic Medicine and Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Ilse Wallaard
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Emilio D R O Harris-Mostert
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Minetta Elgersma
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| | - Jennifer Bain
- Department of Neurology Division of Child Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, S5 7AU Sheffield, UK; Department of Oncology & Metabolism, University of Sheffield, S5 7AU Sheffield, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | - Paul J Benke
- Division of Clinical Genetics, Joe DiMaggio Children's Hospital, Hollywood, FL 33021, USA
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Alyssa E Blesson
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | - Jamie M Ellingford
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL Manchester, UK
| | | | - Dana H Goodloe
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Mahim Jain
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ian Krantz
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sharon M Luu
- Waisman Center, University of Wisconsin Hospitals and Clinics, Madison, WI 53704, USA; Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Molly McPheron
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Candace L Muss
- Nemours / AI DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Sarah E Raible
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Susan Starling
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO 64108, USA; School of Medicine, University of Missouri- Kansas City, Kansas City, MO 64108, USA
| | - David A Sweetser
- Center for Genomic Medicine and Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Thiffault
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO 64108, USA; Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA; Undiagnosed Rare Disease Clinic (URDC), Indiana University, Indianapolis, IN 46202, USA
| | - Dennis Witt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Emily Woods
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, S5 7AU Sheffield, UK
| | - Dihong Zhou
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO 64108, USA; School of Medicine, University of Missouri- Kansas City, Kansas City, MO 64108, USA
| | - Ype Elgersma
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands.
| | - Annelot C M van Esbroeck
- Department of Clinical Genetics, Erasmus MC, 3015 GD Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
21
|
Song B, Zhang Y, Xiong G, Luo H, Zhang B, Li Y, Wang Z, Zhou Z, Chang X. Single-cell transcriptomic analysis reveals the adverse effects of cadmium on the trajectory of neuronal maturation. Cell Biol Toxicol 2023; 39:1697-1713. [PMID: 36114956 DOI: 10.1007/s10565-022-09775-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Cadmium (Cd) is an extensively existing environmental pollutant that has neurotoxic effects. However, the molecular mechanism of Cd on neuronal maturation is unveiled. Single-cell RNA sequencing (scRNA-seq) has been widely used to uncover cellular heterogeneity and is a powerful tool to reconstruct the developmental trajectory of neurons. In this study, neural stem cells (NSCs) from subventricular zone (SVZ) of newborn mice were treated with CdCl2 for 24 h and differentiated for 7 days to obtain neuronal lineage cells. Then scRNA-seq analysis identified five cell stages with different maturity in neuronal lineage cells. Our findings revealed that Cd altered the trajectory of maturation of neuronal lineage cells by decreasing the number of cells in different stages and hindering their maturation. Cd induced differential transcriptome expression in different cell subpopulations in a stage-specific manner. Specifically, Cd induced oxidative damage and changed the proportion of cell cycle phases in the early stage of neuronal development. Furthermore, the autocrine and paracrine signals of Wnt5a were downregulated in the low mature neurons in response to Cd. Importantly, activation of Wnt5a effectively rescued the number of neurons and promoted their maturation. Taken together, the findings of this study provide new and comprehensive insights into the adverse effect of Cd on neuronal maturation.
Collapse
Affiliation(s)
- Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Guiya Xiong
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. Cell 2023; 186:2977-2994.e23. [PMID: 37343560 PMCID: PMC10461406 DOI: 10.1016/j.cell.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge, MA 02142, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Mann B, Crawford JC, Reddy K, Lott J, Youn YH, Gao G, Guy C, Chou CH, Darnell D, Trivedi S, Bomme P, Loughran AJ, Thomas PG, Han YG, Tuomanen EI. Bacterial TLR2/6 Ligands Block Ciliogenesis, Derepress Hedgehog Signaling, and Expand the Neocortex. mBio 2023; 14:e0051023. [PMID: 37052506 PMCID: PMC10294647 DOI: 10.1128/mbio.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Microbial components have a range of direct effects on the fetal brain. However, little is known about the cellular targets and molecular mechanisms that mediate these effects. Neural progenitor cells (NPCs) control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. We identify ventricular radial glia (vRG), the primary NPC, as the target of bacterial cell wall (BCW) generated during the antibiotic treatment of maternal pneumonia. BCW enhanced proliferative potential of vRGs by shortening the cell cycle and increasing self-renewal. Expanded vRGs propagated to increase neuronal output in all cortical layers. Remarkably, Toll-like receptor 2 (TLR2), which recognizes BCW, localized at the base of primary cilia in vRGs and the BCW-TLR2 interaction suppressed ciliogenesis leading to derepression of Hedgehog (HH) signaling and expansion of vRGs. We also show that TLR6 is an essential partner of TLR2 in this process. Surprisingly, TLR6 alone was required to set the number of cortical neurons under healthy conditions. These findings suggest that an endogenous signal from TLRs suppresses cortical expansion during normal development of the neocortex and that BCW antagonizes that signal through the TLR2/cilia/HH signaling axis changing brain structure and function. IMPORTANCE Fetal brain development in early gestation can be impacted by transplacental infection, altered metabolites from the maternal microbiome, or maternal immune activation. It is less well understood how maternal microbial subcomponents that cross the placenta, such as bacterial cell wall (BCW), directly interact with fetal neural progenitors and neurons and affect development. This scenario plays out in the clinic when BCW debris released during antibiotic therapy of maternal infection traffics to the fetal brain. This study identifies the direct interaction of BCW with TLR2/6 present on the primary cilium, the signaling hub on fetal neural progenitor cells (NPCs). NPCs control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. Within a window of vulnerability before the appearance of fetal immune cells, the BCW-TLR2/6 interaction results in the inhibition of ciliogenesis, derepression of Sonic Hedgehog signaling, excess proliferation of neural progenitors, and abnormal cortical architecture. In the first example of TLR signaling linked to Sonic Hedgehog, BCW/TLR2/6 appears to act during fetal brain morphogenesis to play a role in setting the total cell number in the neocortex.
Collapse
Affiliation(s)
- Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kavya Reddy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Josi Lott
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yong Ha Youn
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Geli Gao
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Perrine Bomme
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Allister J. Loughran
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
24
|
Srakočić S, Gorup D, Kutlić D, Petrović A, Tarabykin V, Gajović S. Reactivation of corticogenesis-related transcriptional factors BCL11B and SATB2 after ischemic lesion of the adult mouse brain. Sci Rep 2023; 13:8539. [PMID: 37237015 DOI: 10.1038/s41598-023-35515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to characterize expression of corticogenesis-related transcription factors BCL11B and SATB2 after brain ischemic lesion in the adult mice, and to analyze their correlation to the subsequent brain recovery. Ischemic brain lesion was induced by transient middle cerebral artery occlusion followed by reperfusion, and the animals with ischemic lesion were compared to the sham controls. Progression of the brain damage and subsequent recovery was longitudinally monitored structurally, by magnetic resonance imaging, and functionally, by neurological deficit assessment. Seven days after the ischemic injury the brains were isolated and analyzed by immunohistochemistry. The results showed higher expression in the brain of both, BCL11B and SATB2 in the animals with ischemic lesion compared to the sham controls. The co-expression of both markers, BCL11B and SATB2, increased in the ischemic brains, as well as the co-expression of BCL11B with the beneficial transcriptional factor ATF3 but not its co-expression with detrimental HDAC2. BCL11B was mainly implicated in the ipsilateral and SATB2 in the contralateral brain hemisphere, and their level in these regions correlated with the functional recovery rate. The results indicate that the reactivation of corticogenesis-related transcription factors BCL11B and SATB2 is beneficial after brain ischemic lesion.
Collapse
Affiliation(s)
- Sanja Srakočić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Dunja Gorup
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
- Universität Zürich, Universitätspital Zürich, Zürich, Switzerland
| | - Dominik Kutlić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Ante Petrović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience, University of Nizhny Novgorod, Pr. Gagarina 24, Nizhny Novgorod, Russia
| | - Srećko Gajović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
25
|
Kittock CM, Pilaz LJ. Advances in in utero electroporation. Dev Neurobiol 2023; 83:73-90. [PMID: 36861639 DOI: 10.1002/dneu.22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In utero electroporation (IUE) is a technique developed in the early 2000s to transfect the neurons and neural progenitors of embryonic brains, thus enabling continued development in utero and subsequent analyses of neural development. Early IUE experiments focused on ectopic expression of plasmid DNA to analyze parameters such as neuron morphology and migration. Recent advances made in other fields, such as CRISPR/CAS9 genome editing, have been incorporated into IUE techniques as they were developed. Here, we provide a general review of the mechanics and techniques involved in IUE and explore the breadth of approaches that can be used in conjunction with IUE to study cortical development in a rodent model, with a focus on the novel advances in IUE techniques. We also highlight a few cases that exemplify the potential of IUE to study a broad range of questions in neural development.
Collapse
Affiliation(s)
- Claire M Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
26
|
Fair T, Pollen AA. Genetic architecture of human brain evolution. Curr Opin Neurobiol 2023; 80:102710. [PMID: 37003107 DOI: 10.1016/j.conb.2023.102710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 04/03/2023]
Abstract
Comparative studies of hominids have long sought to identify mutational events that shaped the evolution of the human nervous system. However, functional genetic differences are outnumbered by millions of nearly neutral mutations, and the developmental mechanisms underlying human nervous system specializations are difficult to model and incompletely understood. Candidate-gene studies have attempted to map select human-specific genetic differences to neurodevelopmental functions, but it remains unclear how to contextualize the relative effects of genes that are investigated independently. Considering these limitations, we discuss scalable approaches for probing the functional contributions of human-specific genetic differences. We propose that a systems-level view will enable a more quantitative and integrative understanding of the genetic, molecular and cellular underpinnings of human nervous system evolution.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA. https://twitter.com/@TylerFair_
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533346. [PMID: 36993685 PMCID: PMC10055274 DOI: 10.1101/2023.03.19.533346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether changes in human cells alter requirements for essential genes. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells, providing support for the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells can reshape the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- These authors contributed equally: Richard She, Tyler Fair
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- These authors contributed equally: Richard She, Tyler Fair
| | - Nathan K. Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A. Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J. Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge 02142, MA
| | - Alex A. Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
28
|
Selahi Ö, Kuru Bektaşoğlu P, Hakan T, Firat Z, Güngör A, Çelikoğlu E. Cingulate sulcus morphology and paracingulate sulcus variations: Anatomical and radiological studies. Clin Anat 2023; 36:256-266. [PMID: 36403099 DOI: 10.1002/ca.23981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
The sulci and gyri found across the cerebrum differ in morphology between individuals. The cingulate sulcus is an important landmark for deciding the surgical approach for neighboring pathological lesions. Identifying the anatomical variations of anterior cingulate cortex morphology would help to determine the safe-entry route through neighboring lesions. In this study, magnetic resonance imaging data acquired from 149 healthy volunteers were investigated retrospectively for anatomical variations of the paracingulate sulcus. Also, human cadaveric brain hemispheres were investigated for cingulate and paracingulate sulcus anatomy. All participants had cingulate sulci in both hemispheres (n = 149, 100%). Three types of paracingulate sulcus patterns were identified: "prominent," "present," and "absent." Hemispheric comparisons indicated that the paracingulate sulcus is commonly "prominent" in the left hemisphere (n = 48, 32.21%) and more commonly "absent" in the right hemisphere (n = 73, 48.99%). Ten (6.71%) people had a prominent paracingulate sulcus in both the right and left hemispheres. Seven (4.70%) of them were male, and 3 (2.01%) of them were female. Paracingulate sulci were present in both hemispheres in 19 people (12.75%), of which 9 (6.04%) were male and 10 (6.71%) were female. There were 35 (23.49%) participants without paracingulate sulci in both hemispheres. Eleven (7.38%) were male and 24 (16.11%) were female. There were 73 (48.99%) participants without right paracingulate sulcus and 57 (38.26%) participants without left paracingulate sulcus (p = 0.019). In the examinations of the cadaver hemispheres, the paracingulate sulcus was present and prominent in 25%, and the intralimbic sulcus was present in 15%. It has been observed that the paracingulate sulcus is more prominent in the normal male brain compared to females. In females, there were more participants without paracingulate sulcus. This study shows that there are both hemispheric and sex differences in the anatomy of the paracingulate sulcus. Understanding the cingulate sulcus anatomy and considering the variations in the anterior cingulate cortex morphology during surgery will help surgeons to orient this elegant and complex area.
Collapse
Affiliation(s)
- Özge Selahi
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Istanbul, Turkey
| | | | - Tayfun Hakan
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Istanbul, Turkey
| | - Zeynep Firat
- Department of Radiology, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Abuzer Güngör
- Department of Neurosurgery, University of Health Sciences, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Erhan Çelikoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
29
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
30
|
Roussat M, Jungas T, Audouard C, Omerani S, Medevielle F, Agius E, Davy A, Pituello F, Bel-Vialar S. Control of G 2 Phase Duration by CDC25B Modulates the Switch from Direct to Indirect Neurogenesis in the Neocortex. J Neurosci 2023; 43:1154-1165. [PMID: 36596698 PMCID: PMC9962783 DOI: 10.1523/jneurosci.0825-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.
Collapse
Affiliation(s)
- Melanie Roussat
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Christophe Audouard
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sofiane Omerani
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Francois Medevielle
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Eric Agius
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Alice Davy
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Fabienne Pituello
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sophie Bel-Vialar
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| |
Collapse
|
31
|
Downregulation of CDC25C in NPCs Disturbed Cortical Neurogenesis. Int J Mol Sci 2023; 24:ijms24021505. [PMID: 36675024 PMCID: PMC9863197 DOI: 10.3390/ijms24021505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Cell division regulators play a vital role in neural progenitor cell (NPC) proliferation and differentiation. Cell division cycle 25C (CDC25C) is a member of the CDC25 family of phosphatases which positively regulate cell division by activating cyclin-dependent protein kinases (CDKs). However, mice with the Cdc25c gene knocked out were shown to be viable and lacked the apparent phenotype due to genetic compensation by Cdc25a and/or Cdc25b. Here, we investigate the function of Cdc25c in developing rat brains by knocking down Cdc25c in NPCs using in utero electroporation. Our results indicate that Cdc25c plays an essential role in maintaining the proliferative state of NPCs during cortical development. The knockdown of Cdc25c causes early cell cycle exit and the premature differentiation of NPCs. Our study uncovers a novel role of CDC25C in NPC division and cell fate determination. In addition, our study presents a functional approach to studying the role of genes, which elicit genetic compensation with knockout, in cortical neurogenesis by knocking down in vivo.
Collapse
|
32
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
33
|
Napoli FR, Daly CM, Neal S, McCulloch KJ, Zaloga AR, Liu A, Koenig KM. Cephalopod retinal development shows vertebrate-like mechanisms of neurogenesis. Curr Biol 2022; 32:5045-5056.e3. [PMID: 36356573 PMCID: PMC9729453 DOI: 10.1016/j.cub.2022.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
Coleoid cephalopods, including squid, cuttlefish, and octopus, have large and complex nervous systems and high-acuity, camera-type eyes. These traits are comparable only to features that are independently evolved in the vertebrate lineage. The size of animal nervous systems and the diversity of their constituent cell types is a result of the tight regulation of cellular proliferation and differentiation in development. Changes in the process of development during evolution that result in a diversity of neural cell types and variable nervous system size are not well understood. Here, we have pioneered live-imaging techniques and performed functional interrogation to show that the squid Doryteuthis pealeii utilizes mechanisms during retinal neurogenesis that are hallmarks of vertebrate processes. We find that retinal progenitor cells in the squid undergo nuclear migration until they exit the cell cycle. We identify retinal organization corresponding to progenitor, post-mitotic, and differentiated cells. Finally, we find that Notch signaling may regulate both retinal cell cycle and cell fate. Given the convergent evolution of elaborate visual systems in cephalopods and vertebrates, these results reveal common mechanisms that underlie the growth of highly proliferative neurogenic primordia. This work highlights mechanisms that may alter ontogenetic allometry and contribute to the evolution of complexity and growth in animal nervous systems.
Collapse
Affiliation(s)
- Francesca R Napoli
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Neal
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Kyle J McCulloch
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Alexandra R Zaloga
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Alicia Liu
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
34
|
Activation of Sonic Hedgehog Signaling Promotes Differentiation of Cortical Layer 4 Neurons via Regulation of Their Cell Positioning. J Dev Biol 2022; 10:jdb10040050. [PMID: 36547472 PMCID: PMC9787542 DOI: 10.3390/jdb10040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Neuronal subtypes in the mammalian cerebral cortex are determined by both intrinsic and extrinsic mechanisms during development. However, the extrinsic cues that are involved in this process remain largely unknown. Here, we investigated the role of sonic hedgehog (Shh) in glutamatergic cortical subtype specification. We found that E14.5-born, but not E15.5-born, neurons with elevated Shh expression frequently differentiated into layer 4 subtypes as judged by the cell positioning and molecular identity. We further found that this effect was achieved indirectly through the regulation of cell positioning rather than the direct activation of layer 4 differentiation programs. Together, we provided evidence that Shh, an extrinsic factor, plays an important role in the specification of cortical superficial layer subtypes.
Collapse
|
35
|
Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2022; 130:24-36. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
36
|
Ka M, Moffat JJ, Kim WY. MACF1, Involved in the 1p34.2p34.3 Microdeletion Syndrome, is Essential in Cortical Progenitor Polarity and Brain Integrity. Cell Mol Neurobiol 2022; 42:2187-2204. [PMID: 33871731 PMCID: PMC8523589 DOI: 10.1007/s10571-021-01088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
1p34.2p34.3 deletion syndrome is characterized by an increased risk for autism. Microtubule Actin Crosslinking Factor 1 (MACF1) is one candidate gene for this syndrome. It is unclear, however, how MACF1 deletion is linked to brain development and neurodevelopmental deficits. Here we report on Macf1 deletion in the developing mouse cerebral cortex, focusing on radial glia polarity and morphological integrity, as these are critical factors in brain formation. We found that deleting Macf1 during cortical development resulted in double cortex/subcortical band heterotopia as well as disrupted cortical lamination. Macf1-deleted radial progenitors showed increased proliferation rates compared to control cells but failed to remain confined within their defined proliferation zone in the developing brain. The overproliferation of Macf1-deleted radial progenitors was associated with elevated cell cycle speed and re-entry. Microtubule stability and actin polymerization along the apical ventricular area were decreased in the Macf1 mutant cortex. Correspondingly, there was a disconnection between radial glial fibers and the apical and pial surfaces. Finally, we observed that Macf1-mutant mice exhibited social deficits and aberrant emotional behaviors. Together, these results suggest that MACF1 plays a critical role in cortical progenitor proliferation and localization by promoting glial fiber stabilization and polarization. Our findings may provide insights into the pathogenic mechanism underlying the 1p34.2p34.3 deletion syndrome.
Collapse
Affiliation(s)
- Minhan Ka
- Research Center for Substance Abuse Pharmacology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jeffrey J Moffat
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
37
|
Coakley-Youngs E, Ranatunga M, Richardson S, Getti G, Shorter S, Fivaz M. Autism-associated CHD8 keeps proliferation of human neural progenitors in check by lengthening the G1 phase of the cell cycle. Biol Open 2022; 11:276883. [PMID: 36222238 PMCID: PMC9548376 DOI: 10.1242/bio.058941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2022] [Indexed: 01/17/2023] Open
Abstract
ABSTRACT
De novo mutations (DNMs) in chromodomain helicase DNA binding protein 8 (CHD8) are associated with a specific subtype of autism characterized by enlarged heads and distinct cranial features. The vast majority of these DNMs are heterozygous loss-of-function mutations with high penetrance for autism. CHD8 is a chromatin remodeler that preferentially regulates expression of genes implicated in early development of the cerebral cortex. How CHD8 haploinsufficiency alters the normal developmental trajectory of the brain is poorly understood and debated. Using long-term single-cell imaging, we show that disruption of a single copy of CHD8 in human neural precursor cells (NPCs) markedly shortens the G1 phase of the cell cycle. Consistent with faster progression of CHD8+/− NPCs through G1 and the G1/S checkpoint, we observed increased expression of E cyclins and elevated phosphorylation of Erk in these mutant cells – two central signaling pathways involved in S phase entry. Thus, CHD8 keeps proliferation of NPCs in check by lengthening G1, and mono-allelic disruption of this gene alters cell-cycle timing in a way that favors self-renewing over neurogenic cell divisions. Our findings further predict enlargement of the neural progenitor pool in CHD8+/− developing brains, providing a mechanistic basis for macrocephaly in this autism subtype.
Collapse
Affiliation(s)
- Emma Coakley-Youngs
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Medhavi Ranatunga
- University of Greenwich at Medway 2 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Simon Richardson
- Exogenics Laboratory, University of Greenwich at Medway 3 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Giulia Getti
- University of Greenwich at Medway 2 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Susan Shorter
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| | - Marc Fivaz
- Stem Cell & Gene Editing Laboratory, University of Greenwich at Medway 1 , Faculty of Science and Engineering, Kent ME4 4TB , UK
| |
Collapse
|
38
|
Arjun McKinney A, Petrova R, Panagiotakos G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 2022; 149:dev198853. [PMID: 36102617 PMCID: PMC9578689 DOI: 10.1242/dev.198853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calcium influx can be stimulated by various intra- and extracellular signals to set coordinated gene expression programs into motion. As such, the precise regulation of intracellular calcium represents a nexus between environmental cues and intrinsic genetic programs. Mounting genetic evidence points to a role for the deregulation of intracellular calcium signaling in neuropsychiatric disorders of developmental origin. These findings have prompted renewed enthusiasm for understanding the roles of calcium during normal and dysfunctional prenatal development. In this Review, we describe the fundamental mechanisms through which calcium is spatiotemporally regulated and directs early neurodevelopmental events. We also discuss unanswered questions about intracellular calcium regulation during the emergence of neurodevelopmental disease, and provide evidence that disruption of cell-specific calcium homeostasis and/or redeployment of developmental calcium signaling mechanisms may contribute to adult neurological disorders. We propose that understanding the normal developmental events that build the nervous system will rely on gaining insights into cell type-specific calcium signaling mechanisms. Such an understanding will enable therapeutic strategies targeting calcium-dependent mechanisms to mitigate disease.
Collapse
Affiliation(s)
- Arpana Arjun McKinney
- Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Ralitsa Petrova
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Georgia Panagiotakos
- Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Farcy S, Albert A, Gressens P, Baffet AD, El Ghouzzi V. Cortical Organoids to Model Microcephaly. Cells 2022; 11:2135. [PMID: 35883578 PMCID: PMC9320662 DOI: 10.3390/cells11142135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
How the brain develops and achieves its final size is a fascinating issue that questions cortical evolution across species and man's place in the animal kingdom. Although animal models have so far been highly valuable in understanding the key steps of cortical development, many human specificities call for appropriate models. In particular, microcephaly, a neurodevelopmental disorder that is characterized by a smaller head circumference has been challenging to model in mice, which often do not fully recapitulate the human phenotype. The relatively recent development of brain organoid technology from induced pluripotent stem cells (iPSCs) now makes it possible to model human microcephaly, both due to genetic and environmental origins, and to generate developing cortical tissue from the patients themselves. These 3D tissues rely on iPSCs differentiation into cortical progenitors that self-organize into neuroepithelial rosettes mimicking the earliest stages of human neurogenesis in vitro. Over the last ten years, numerous protocols have been developed to control the identity of the induced brain areas, the reproducibility of the experiments and the longevity of the cultures, allowing analysis of the later stages. In this review, we describe the different approaches that instruct human iPSCs to form cortical organoids, summarize the different microcephalic conditions that have so far been modeled by organoids, and discuss the relevance of this model to decipher the cellular and molecular mechanisms of primary and secondary microcephalies.
Collapse
Affiliation(s)
- Sarah Farcy
- Institut Curie, PSL Research University, CNRS UMR144, F-75005 Paris, France;
| | - Alexandra Albert
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| | - Pierre Gressens
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| | - Alexandre D. Baffet
- Institut Curie, PSL Research University, CNRS UMR144, F-75005 Paris, France;
| | - Vincent El Ghouzzi
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (A.A.); (P.G.)
| |
Collapse
|
40
|
Qing X, Zhang G, Wang Z. DNA
damage response in neurodevelopment and neuromaintenance. FEBS J 2022. [DOI: 10.1111/febs.16535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaobing Qing
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
| | - Guangyu Zhang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
| | - Zhao‐Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
- Faculty of Biological Sciences Friedrich‐Schiller‐University of Jena Germany
| |
Collapse
|
41
|
Espinós A, Fernández‐Ortuño E, Negri E, Borrell V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev Neurobiol 2022; 82:428-453. [PMID: 35670518 PMCID: PMC9543202 DOI: 10.1002/dneu.22891] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
The size of the cerebral cortex increases dramatically across amniotes, from reptiles to great apes. This is primarily due to different numbers of neurons and glial cells produced during embryonic development. The evolutionary expansion of cortical neurogenesis was linked to changes in neural stem and progenitor cells, which acquired increased capacity of self‐amplification and neuron production. Evolution works via changes in the genome, and recent studies have identified a small number of new genes that emerged in the recent human and primate lineages, promoting cortical progenitor proliferation and increased neurogenesis. However, most of the mammalian genome corresponds to noncoding DNA that contains gene‐regulatory elements, and recent evidence precisely points at changes in expression levels of conserved genes as key in the evolution of cortical neurogenesis. Here, we provide an overview of basic cellular mechanisms involved in cortical neurogenesis across amniotes, and discuss recent progress on genetic mechanisms that may have changed during evolution, including gene expression regulation, leading to the expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Alexandre Espinós
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | | | - Enrico Negri
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| | - Víctor Borrell
- Instituto de Neurociencias CSIC ‐ UMH, 03550 Sant Joan d'Alacant Spain
| |
Collapse
|
42
|
Heterogeneous fates of simultaneously-born neurons in the cortical ventricular zone. Sci Rep 2022; 12:6022. [PMID: 35411060 PMCID: PMC9001674 DOI: 10.1038/s41598-022-09740-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/23/2022] [Indexed: 12/18/2022] Open
Abstract
Neocortical excitatory neurons belong to diverse cell types, which can be distinguished by their dates of birth, laminar location, connectivity, and molecular identities. During embryogenesis, apical progenitors (APs) located in the ventricular zone first give birth to deep-layer neurons, and next to superficial-layer neurons. While the overall sequential construction of neocortical layers is well-established, whether APs produce multiple neuron types at single time points of corticogenesis is unknown. To address this question, here we used FlashTag to fate-map simultaneously-born (i.e. isochronic) cohorts of AP daughter neurons at successive stages of corticogenesis. We reveal that early in corticogenesis, isochronic neurons differentiate into heterogeneous laminar, hodological and molecular cell types. Later on, instead, simultaneously-born neurons have more homogeneous fates. Using single-cell gene expression analyses, we identify an early postmitotic surge in the molecular heterogeneity of nascent neurons during which some early-born neurons initiate and partially execute late-born neuron transcriptional programs. Together, these findings suggest that as corticogenesis unfolds, mechanisms allowing increased homogeneity in neuronal output are progressively implemented, resulting in progressively more predictable neuronal identities.
Collapse
|
43
|
Li A, Hines KM, Ross DH, MacDonald JW, Xu L. Temporal changes in the brain lipidome during neurodevelopment of Smith-Lemli-Opitz syndrome mice. Analyst 2022; 147:1611-1621. [PMID: 35293916 PMCID: PMC9018458 DOI: 10.1039/d2an00137c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodevelopment is an intricately orchestrated program of cellular events that occurs with tight temporal and spatial regulation. While it is known that the development and proper functioning of the brain, which is the second most lipid rich organ behind adipose tissue, greatly rely on lipid metabolism and signaling, the temporal lipidomic changes that occur throughout the course of neurodevelopment have not been investigated. Smith-Lemli-Opitz syndrome is a metabolic disorder caused by genetic mutations in the DHCR7 gene, leading to defective 3β-hydroxysterol-Δ7-reductase (DHCR7), the enzyme that catalyzes the last step of the Kandutsch-Russell pathway of cholesterol synthesis. Due to the close regulatory relationship between sterol and lipid homeostasis, we hypothesize that altered or dysregulated lipid metabolism beyond the primary defect of cholesterol biosynthesis is present in the pathophysiology of SLOS. Herein, we applied our HILIC-IM-MS method and LiPydomics Python package to streamline an untargeted lipidomics analysis of developing mouse brains in both wild-type and Dhcr7-KO mice, identifying lipids at Level 3 (lipid species level: lipid class/subclass and fatty acid sum composition). We compared relative lipid abundances throughout development, from embryonic day 12.5 to postnatal day 0 and determined differentially expressed brain lipids between wild-type and Dhcr7-KO mice at specific developmental time points, revealing lipid metabolic pathways that are affected in SLOS beyond the cholesterol biosynthesis pathway, such as glycerolipid, glycerophospholipid, and sphingolipid metabolism. Implications of the altered lipid metabolic pathways in SLOS pathophysiology are discussed.
Collapse
Affiliation(s)
- Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.
| | - Kelly M Hines
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.
| | - Dylan H Ross
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Bölicke N, Albert M. Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders. Dev Neurobiol 2022; 82:345-363. [PMID: 35384339 DOI: 10.1002/dneu.22876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.
Collapse
Affiliation(s)
- Nora Bölicke
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
45
|
Harb K, Richter M, Neelagandan N, Magrinelli E, Harfoush H, Kuechler K, Henis M, Hermanns-Borgmeyer I, Calderon de Anda F, Duncan K. Pum2 and TDP-43 refine area-specific cytoarchitecture post-mitotically and modulate translation of Sox5, Bcl11b, and Rorb mRNAs in developing mouse neocortex. eLife 2022; 11:55199. [PMID: 35262486 PMCID: PMC8906809 DOI: 10.7554/elife.55199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
In the neocortex, functionally distinct areas process specific types of information. Area identity is established by morphogens and transcriptional master regulators, but downstream mechanisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-binding proteins in defining area-specific cytoarchitecture. Mice lacking Pum2 or overexpressing human TDP-43 show apparent ‘motorization’ of layers IV and V of primary somatosensory cortex (S1), characterized by dramatic expansion of cells co-expressing Sox5 and Bcl11b/Ctip2, a hallmark of subcerebral projection neurons, at the expense of cells expressing the layer IV neuronal marker Rorβ. Moreover, retrograde labeling experiments with cholera toxin B in Pum2; Emx1-Cre and TDP43A315T mice revealed a corresponding increase in subcerebral connectivity of these neurons in S1. Intriguingly, other key features of somatosensory area identity are largely preserved, suggesting that Pum2 and TDP-43 may function in a downstream program, rather than controlling area identity per se. Transfection of primary neurons and in utero electroporation (IUE) suggest cell-autonomous and post-mitotic modulation of Sox5, Bcl11b/Ctip2, and Rorβ levels. Mechanistically, we find that Pum2 and TDP-43 directly interact with and affect the translation of mRNAs encoding Sox5, Bcl11b/Ctip2, and Rorβ. In contrast, effects on the levels of these mRNAs were not detectable in qRT-PCR or single-molecule fluorescent in situ hybridization assays, and we also did not detect effects on their splicing or polyadenylation patterns. Our results support the notion that post-transcriptional regulatory programs involving translational regulation and mediated by Pum2 and TDP-43 contribute to elaboration of area-specific neuronal identity and connectivity in the neocortex.
Collapse
Affiliation(s)
- Kawssar Harb
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melanie Richter
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagammal Neelagandan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Elia Magrinelli
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Hend Harfoush
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Katrin Kuechler
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melad Henis
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Irm Hermanns-Borgmeyer
- Transgenic Service Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Froylan Calderon de Anda
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kent Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
46
|
Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. FRONTIERS IN TOXICOLOGY 2022; 4:816370. [PMID: 35295221 PMCID: PMC8915868 DOI: 10.3389/ftox.2022.816370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.
Collapse
Affiliation(s)
- Katharina Koch
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kristina Bartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Hartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Jördis Klose
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Eliška Kuchovská
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Melanie Pahl
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kevin Schlüppmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
47
|
Chinnappa K, Cárdenas A, Prieto-Colomina A, Villalba A, Márquez-Galera Á, Soler R, Nomura Y, Llorens E, Tomasello U, López-Atalaya JP, Borrell V. Secondary loss of miR-3607 reduced cortical progenitor amplification during rodent evolution. SCIENCE ADVANCES 2022; 8:eabj4010. [PMID: 35020425 PMCID: PMC8754304 DOI: 10.1126/sciadv.abj4010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The evolutionary expansion and folding of the mammalian cerebral cortex resulted from amplification of progenitor cells during embryonic development. This process was reversed in the rodent lineage after splitting from primates, leading to smaller and smooth brains. Genetic mechanisms underlying this secondary loss in rodent evolution remain unknown. We show that microRNA miR-3607 is expressed embryonically in the large cortex of primates and ferret, distant from the primate-rodent lineage, but not in mouse. Experimental expression of miR-3607 in embryonic mouse cortex led to increased Wnt/β-catenin signaling, amplification of radial glia cells (RGCs), and expansion of the ventricular zone (VZ), via blocking the β-catenin inhibitor APC (adenomatous polyposis coli). Accordingly, loss of endogenous miR-3607 in ferret reduced RGC proliferation, while overexpression in human cerebral organoids promoted VZ expansion. Our results identify a gene selected for secondary loss during mammalian evolution to limit RGC amplification and, potentially, cortex size in rodents.
Collapse
|
48
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
49
|
Wang R, Yang DX, Liu YL, Ding J, Guo Y, Ding WH, Tian HL, Yuan F. Cell cycle exit and neuronal differentiation 1-engineered embryonic neural stem cells enhance neuronal differentiation and neurobehavioral recovery after experimental traumatic brain injury. Neural Regen Res 2022; 17:130-136. [PMID: 34100448 PMCID: PMC8451571 DOI: 10.4103/1673-5374.314316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Our previous study showed that cell cycle exit and neuronal differentiation 1 (CEND1) may participate in neural stem cell cycle exit and oriented differentiation. However, whether CEND1-transfected neural stem cells can improve the prognosis of traumatic brain injury remained unclear. In this study, we performed quantitative proteomic analysis and found that after traumatic brain injury, CEND1 expression was downregulated in mouse brain tissue. Three days after traumatic brain injury, we transplanted CEND1-transfected neural stem cells into the area surrounding the injury site. We found that at 5 weeks after traumatic brain injury, transplantation of CEND1-transfected neural stem cells markedly alleviated brain atrophy and greatly improved neurological function. In vivo and in vitro results indicate that CEND1 overexpression inhibited the proliferation of neural stem cells, but significantly promoted their neuronal differentiation. Additionally, CEND1 overexpression reduced protein levels of Notch1 and cyclin D1, but increased levels of p21 in CEND1-transfected neural stem cells. Treatment with CEND1-transfected neural stem cells was superior to similar treatment without CEND1 transfection. These findings suggest that transplantation of CEND1-transfected neural stem cells is a promising cell therapy for traumatic brain injury. This study was approved by the Animal Ethics Committee of the School of Biomedical Engineering of Shanghai Jiao Tong University, China (approval No. 2016034) on November 25, 2016.
Collapse
Affiliation(s)
- Ren Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dian-Xu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Liang Liu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Guo
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wan-Hai Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Prodromidou K, Matsas R. Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cell Mol Life Sci 2021; 79:56. [PMID: 34921638 PMCID: PMC11071749 DOI: 10.1007/s00018-021-04063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The human cerebral cortex is a uniquely complex structure encompassing an unparalleled diversity of neuronal types and subtypes. These arise during development through a series of evolutionary conserved processes, such as progenitor cell proliferation, migration and differentiation, incorporating human-associated adaptations including a protracted neurogenesis and the emergence of novel highly heterogeneous progenitor populations. Disentangling the unique features of human cortical development involves elucidation of the intricate developmental cell transitions orchestrated by progressive molecular events. Crucially, developmental timing controls the fine balance between cell cycle progression/exit and the neurogenic competence of precursor cells, which undergo morphological transitions coupled to transcriptome-defined temporal states. Recent advances in bulk and single-cell transcriptomic technologies suggest that alongside protein-coding genes, non-coding RNAs exert important regulatory roles in these processes. Interestingly, a considerable number of novel long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have appeared in human and non-human primates suggesting an evolutionary role in shaping cortical development. Here, we present an overview of human cortical development and highlight the marked diversification and complexity of human neuronal progenitors. We further discuss how lncRNAs and miRNAs constitute critical components of the extended epigenetic regulatory network defining intermediate states of progenitors and controlling cell cycle dynamics and fate choices with spatiotemporal precision, during human neurodevelopment.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece.
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| |
Collapse
|