1
|
Sengar D, Pathan NS, Gajbhiye V. D-bait: A siDNA for regulation of DNA-protein kinases against DNA damage and its implications in cancer. Int J Pharm 2025; 673:125416. [PMID: 40024452 DOI: 10.1016/j.ijpharm.2025.125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
siDNA fragments, also called Dbait and Pbait, are small DNA oligonucleotides of 30-32 base pairs that cause impairment in DNA repair pathways. Like siRNA and miRNA molecules, which lead to the degradation of mRNA molecules through the Argonaute and Drosha machinery, respectively, Dbait molecules act as false DNA damage signals and trigger and exhaust the DNA repair machinery. In normal cells with no significant DNA damage, the influence of these molecules is negligible. However, in cancer, when there is heavy DNA damage due to replication and anticancer therapies, the cancer cell is heavily dependent on DNA repair proteins to keep the genome intact and limit breaks. This phenomenon primarily occurs during radiation therapy, as significant DNA damage surpasses several DNA repair mechanisms, causing an accumulation of unrepaired lesions and ultimately leading to cell death. This review explores the therapeutic capacity of siDNA molecules in cancer treatment by stimulating the repair mechanisms in cells that depend on DNA repair pathways. For aggressive malignancies such as glioblastoma, prostate cancer, and colorectal cancer, the use of siDNA as a radiosensitizer, especially when combined with other treatments, increases the vulnerability of tumor cells to radiation-induced DNA damage, hence potentially enhancing therapy results.
Collapse
Affiliation(s)
- Devyani Sengar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Nida Sayed Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Desai K, Wanggou S, Luis E, Whetstone H, Yu C, Vanner RJ, Selvadurai HJ, Lee L, Vijay J, Jaramillo JE, Fan J, Guilhamon P, Kushida M, Li X, Stein G, Kesari S, Simons BD, Huang X, Dirks PB. OLIG2 mediates a rare targetable stem cell fate transition in sonic hedgehog medulloblastoma. Nat Commun 2025; 16:1092. [PMID: 39904987 PMCID: PMC11794873 DOI: 10.1038/s41467-024-54858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
Functional cellular heterogeneity in tumours often underlies incomplete response to therapy and relapse. Previously, we demonstrated that the growth of the paediatric brain malignancy, sonic hedgehog subgroup medulloblastoma, is rooted in a dysregulated developmental hierarchy, the apex of which is defined by characteristically quiescent SOX2+ stem-like cells. Integrating gene expression and chromatin accessibility patterns in distinct cellular compartments, we identify the transcription factor Olig2 as regulating the stem cell fate transition from quiescence to activation, driving the generation of downstream neoplastic progenitors. Inactivation of Olig2 blocks stem cell activation and tumour output. Targeting this rare OLIG2-driven proliferative programme with a small molecule inhibitor, CT-179, dramatically attenuates early tumour formation and tumour regrowth post-therapy, and significantly increases median survival in vivo. We demonstrate that targeting transition from quiescence to proliferation at the level of the tumorigenic cell could be a pivotal medulloblastoma treatment strategy.
Collapse
Affiliation(s)
- Kinjal Desai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Erika Luis
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Chunying Yu
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Robert J Vanner
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hayden J Selvadurai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jinchu Vijay
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julia E Jaramillo
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jerry Fan
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Xuejun Li
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gregory Stein
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
| | - Santosh Kesari
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, and the Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Xi Huang
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Freire NH, Herlinger AL, Vanini J, Dalmolin M, Fernandes MAC, Nör C, Ramaswamy V, de Farias CB, Brunetto AT, Brunetto AL, Gregianin LJ, Jaeger MDC, Taylor MD, Roesler R. Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres. Cells 2025; 14:72. [PMID: 39851500 PMCID: PMC11763699 DOI: 10.3390/cells14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest. These effects were accompanied by enhanced H3K9 histone acetylation (H3K9ac) and decreased expression of the MYC oncogene. VPA impaired the expansion of MB neurospheres enriched in stemness markers and reduced MYC while increasing TP53 expression in these neurospheres. In addition, VPA induced morphological changes consistent with neuronal differentiation and the increased expression of differentiation marker genes TUBB3 and ENO2. The expression of stemness genes SOX2, NES, and PRTG was differentially affected by VPA in MB cells with different TP53 status. VPA increased H3K9 occupancy of the promoter region of TP53. Among the genes regulated by VPA, the stemness regulators MYC and NES showed an association with patient survival in specific MB subgroups. Our results indicate that VPA may exert antitumor effects in MB by influencing histone acetylation, which may result in the modulation of stemness, neuronal differentiation, and the expression of genes associated with patient prognosis in specific molecular subgroups. Importantly, the actions of VPA in MB cells and neurospheres include a reduction in the expression of MYC and an increase in TP53.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Julia Vanini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Caroline Brunetto de Farias
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - André Tesainer Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Algemir Lunardi Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Lauro José Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
- Department of Pediatrics—Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX 77030, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
4
|
Freire NH, Herlinger AL, Vanini J, Dalmolin M, Fernandes MAC, Nör C, Ramaswamy V, de Farias CB, Brunetto AT, Brunetto AL, Gregianin LJ, da Cunha Jaeger M, Taylor MD, Roesler R. Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.23.614476. [PMID: 39386542 PMCID: PMC11463451 DOI: 10.1101/2024.09.23.614476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest. These effects were accompanied by enhanced H3K9 histone acetylation (H3K9ac) and decreased expression of the MYC oncogene. VPA impaired the expansion of MB neurospheres enriched in stemness markers and reduced MYC while increasing TP53 expression in these neurospheres. In addition, VPA induced morphological changes consistent with neuronal differentiation and the increased expression of differentiation marker genes TUBB3 and ENO2. The expression of stemness genes SOX2, NES, and PRTG was differentially affected by VPA in MB cells with different TP53 status. VPA increased H3K9 occupancy of the promoter region of TP53. Among the genes regulated by VPA, the stemness regulators MYC and NES showed an association with patient survival in specific MB subgroups. Our results indicate that VPA may exert antitumor effects in MB by influencing histone acetylation, which may result in the modulation of stemness, neuronal differentiation, and the expression of genes associated with patient prognosis in specific molecular subgroups. Importantly, the actions of VPA in MB cells and neurospheres include a reduction in the expression of MYC and an increase in TP53.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Julia Vanini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Caroline Brunetto de Farias
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - André Tesainer Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Algemir Lunardi Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Lauro José Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Texas Children’s Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics—Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Texas Children’s Hospital, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Power P, Straehla JP, Fangusaro J, Bandopadhayay P, Manoharan N. Pediatric neuro-oncology: Highlights of the last quarter-century. Neoplasia 2025; 59:101098. [PMID: 39637686 DOI: 10.1016/j.neo.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The last quarter century has heralded dramatic changes in the field of pediatric neuro-oncology, with the era defined by profound developments in the understanding of the biological underpinnings of childhood central nervous system (CNS) tumors and translational therapeutics. Although there have been momentous strides forward in biologic, diagnostic, therapeutic, and experimental domains, considerable challenges remain and CNS tumors remain the leading cause of pediatric cancer-related mortality. Here, we review the significant advances in the field of pediatric neuro-oncology over the last 25 years and highlight ongoing hurdles facing future progress.
Collapse
Affiliation(s)
- Phoebe Power
- Department of Pediatric Oncology, Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA
| | - Joelle P Straehla
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA; Aflac Cancer Center, Atlanta, GA, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neevika Manoharan
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia; Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
6
|
Wang S, Curry RN, McDonald MF, Koh HY, Erickson AW, Kleinman CL, Taylor MD, Rao G, Deneen B, Harmanci AO, Serin Harmanci A. Inferred developmental origins of brain tumors from single-cell RNA-sequencing data. Neurooncol Adv 2025; 7:vdaf016. [PMID: 40321621 PMCID: PMC12046312 DOI: 10.1093/noajnl/vdaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Background The reactivation of neurodevelopmental programs in cancer highlights parallel biological processes that occur in both normal development and brain tumors. Achieving a deeper understanding of how dysregulated developmental factors play a role in the progression of brain tumors is therefore crucial for identifying potential targets for therapeutic interventions. Single-cell RNA-sequencing (scRNA-Seq) provides an opportunity to understand how developmental programs are dysregulated and reinitiated in brain tumors at single-cell resolution. The aim of this study is to identify the developmental origins of brain tumors using scRNA-Seq data. Methods Here, we introduce COORS (Cell Of ORigin like CellS), a computational tool trained on developmental human brain single-cell datasets that annotates "developmental-like" cell states in brain tumors. COORS leverages cell type-specific multilayer perceptron models and incorporates a developmental cell type tree that reflects hierarchical relationships and models cell type probabilities. Results Applying COORS to various brain cancer datasets, including medulloblastoma (MB), glioma, and diffuse midline glioma (DMG), we identified developmental-like cells that represent putative cells of origin in these tumors. Our method provides both cell of origin classification and cell age regression, offering insights into the developmental cell types of tumor subgroups. COORS identified outer radial glia developmental cells within IDHWT glioma cells whereas oligodendrocyte precursor cells (OPCs) and neuronal-like cells in IDHMut. Interestingly, IDHMut subgroup cells that map to OPC show bimodal distributions that are both early and late weeks in development. Furthermore, COORS offers a valuable resource by providing novel markers linked to developmental states within MB, glioma, and DMG tumor subgroups. Conclusions Our work adds to our cumulative understanding of brain tumor heterogeneity and helps pave the way for tailored treatment strategies.
Collapse
Affiliation(s)
- Su Wang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Rachel Naomi Curry
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Malcolm F McDonald
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Hyun Yong Koh
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Anders W Erickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael D Taylor
- Department of Pediatrics, Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Hematology-Oncology Section, Texas Childeren’s Hospital, Houston, Texas, USA
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Arif O Harmanci
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas, USA
| | - Akdes Serin Harmanci
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Wireko AA, Ben-Jaafar A, Kong JSH, Mannan KM, Sanker V, Rosenke SL, Boye ANA, Nkrumah-Boateng PA, Poornaselvan J, Shah MH, Abdul-Rahman T, Atallah O. Sonic hedgehog signalling pathway in CNS tumours: its role and therapeutic implications. Mol Brain 2024; 17:83. [PMID: 39568072 PMCID: PMC11580395 DOI: 10.1186/s13041-024-01155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
CNS tumours encompass a diverse group of neoplasms with significant morbidity and mortality. The SHH signalling pathway plays a critical role in the pathogenesis of several CNS tumours, including gliomas, medulloblastomas and others. By influencing cellular proliferation, differentiation and migration in CNS tumours, the SHH pathway has emerged as a promising target for therapeutic intervention. Current strategies such as vismodegib and sonidegib have shown efficacy in targeting SHH pathway activation. However, challenges such as resistance mechanisms and paradoxical effects observed in clinical settings underscore the complexity of effectively targeting this pathway. Advances in gene editing technologies, particularly CRISPR/Cas9, have provided valuable tools for studying SHH pathway biology, validating therapeutic targets and exploring novel treatment modalities. These innovations have paved the way for a better understanding of pathway dynamics and the development of more precise therapeutic interventions. In addition, the identification and validation of biomarkers of SHH pathway activation are critical to guide clinical decision making and improve patient outcomes. Molecular profiling and biomarker discovery efforts are critical steps towards personalised medicine approaches in the treatment of SHH pathway-associated CNS tumours. While significant progress has been made in understanding the role of the SHH pathway in CNS tumorigenesis, ongoing research is essential to overcome current therapeutic challenges and refine treatment strategies. The integration of molecular insights with advanced technologies and clinical expertise holds great promise for developing more effective and personalised therapies for patients with SHH pathway-driven CNS tumours.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Vivek Sanker
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
8
|
Monteiro JM, Dalmolin M, Fernandes MAC, Ramos JIR, Ribas CAPM, Tabushi FI, Roesler R, Isolan GR. High Expression of GABA A Receptor β Subunit Genes Is Associated with Longer Overall Survival in Medulloblastoma. Brain Sci 2024; 14:1146. [PMID: 39595908 PMCID: PMC11592162 DOI: 10.3390/brainsci14111146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Most of the rapid inhibitory neurotransmission in the brain is mediated through activation of the γ-aminobutyric acid (GABA) type A (GABAA) receptor, which is a ligand-gated ion channel. GABAA receptor activation via GABA binding allows for an intracellular influx of Cl- ions, thus inducing cellular hyperpolarization. Each GABAA receptor consists of a combination of five subunits, and several subunits have been proposed as biomarkers and therapeutic targets in cancer. Here, we show the expression of genes encoding β subunits of the GABAA receptor, namely GABRB1, GABRB2, and GABRB3, across the four different molecular subgroups of medulloblastoma (MB), which is the most common malignant pediatric brain tumor. We also show the associations of GABAA receptor β subunits with MB patients' overall survival (OS). Methods: The expression of genes encoding GABAA receptor β subunits was analyzed using a previously described dataset comprising 763 MB tumor samples. Patients were classified into high- and low-gene-expression groups, and the Kaplan-Meier estimate was used to examine the relationship between gene expression levels and patient OS. Results: High GABRB1 expression was associated with better OS within each of the four molecular subgroups. The GABRB2 gene showed higher transcript levels in Group 3 MB compared to all other subgroups, and high expression was associated with better prognosis in Group 3 tumors. GABRB3 expression was significantly higher in Group 3 and Group 4 MB, and high expression of GABRB3 genes was associated with longer OS in the sonic hedgehog (SHH) subgroup. The high expression of GABRB1, GABRB2, and GABRB3 is associated with longer patient OS in a subgroup-specific manner. Conclusions: These results indicate a role for GABAA receptors containing β subunits in influencing MB progression.
Collapse
Affiliation(s)
- Jander M. Monteiro
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, Brazil; (J.M.M.)
| | - Matheus Dalmolin
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
| | - Marcelo A. C. Fernandes
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Jaqueline I. R. Ramos
- Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Carmen A. P. M. Ribas
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, Brazil; (J.M.M.)
| | - Fernando I. Tabushi
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, Brazil; (J.M.M.)
| | - Rafael Roesler
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, Brazil; (J.M.M.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, Brazil
| |
Collapse
|
9
|
Lu H, Wang Y, Chaudhary S, Balaga V, Ke H, Shi F, Liu J, Huo Y, Romanienko PJ, Xia B, De S, Chan CS, Shen Z. Medulloblastomas Initiated by Homologous Recombination Defects in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2007-2022. [PMID: 39168365 PMCID: PMC11816638 DOI: 10.1016/j.ajpath.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Germline mutations of homologous-recombination (HR) genes are among the top contributors to medulloblastomas. A significant portion of human medulloblastomas exhibit genomic signatures of HR defects. Whether ablation of Brca2 and Palb2, and their related Brca1 and Bccip genes, in the mouse brain can differentially initiate medulloblastomas was explored here. Conditional knockout mouse models of these HR genes and a conditional knockdown of Bccip (shBccip-KD) were established. Deletion of any of these genes led to microcephaly and neurologic defects, with Brca1- and Bccip- producing the worst defects. Trp53 co-deletion significantly rescued the microcephaly with Brca1, Palb2, and Brca2 deficiency but exhibited limited impact on Bccip- mice. For the first time, inactivation of either Brca1 or Palb2 with Trp53 was found to induce medulloblastomas. Despite shBccip-CKD being highly penetrative, Bccip/Trp53 deletions failed to induce medulloblastomas. The tumors displayed diverse immunohistochemical features and chromosome copy number variation. Although there were widespread up-regulations of cell proliferative pathways, most of the tumors expressed biomarkers of the sonic hedgehog subgroup. The medulloblastomas developed from Brca1-, Palb2-, and Brca2- mice were highly sensitive to a poly (ADP-ribose) polymerase inhibitor but not the ones from shBccip-CKD mice. These models recapitulate the spontaneous medulloblastoma development with high penetrance and a narrow time window, providing ideal platforms to test therapeutic agents with the ability to differentiate HR-defective and HR-proficient tumors.
Collapse
Affiliation(s)
- Huimei Lu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yuan Wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Shipra Chaudhary
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Varshita Balaga
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Hua Ke
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Fuqian Shi
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | | | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Chang S Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey.
| |
Collapse
|
10
|
Yang Y, Valdés-Rives SA, Liu Q, Gao T, Burudpakdee C, Li Y, Tan J, Tan Y, Koch CA, Rong Y, Houser SR, Wei S, Cai KQ, Wu J, Cheng SY, Wechsler-Reya R, Yang ZJ. Thyroid hormone suppresses medulloblastoma progression through promoting terminal differentiation of tumor cells. Cancer Cell 2024; 42:1434-1449.e5. [PMID: 39137728 PMCID: PMC11565524 DOI: 10.1016/j.ccell.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Hypothyroidism is commonly detected in patients with medulloblastoma (MB). However, whether thyroid hormone (TH) contributes to MB pathogenicity remains undetermined. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB, suggesting that TH can be used to broadly treat MB subgroups. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.
Collapse
Affiliation(s)
- Yijun Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Silvia Anahi Valdés-Rives
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Gao
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Chakkapong Burudpakdee
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Yuzhe Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinfei Tan
- Department of Pathology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Christian A Koch
- Department of Medicine, Division of Endocrinology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Yuan Rong
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, PA 19140, USA
| | - Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Robert Wechsler-Reya
- Brain Tumor Research, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Zeng-Jie Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA.
| |
Collapse
|
11
|
Gao X, Zhuang Q, Li Y, Li G, Huang Z, Chen S, Sun S, Yang H, Jiang L, Mao Y. Single-Cell Chromatin Accessibility Analysis Reveals Subgroup-Specific TF-NTR Regulatory Circuits in Medulloblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309554. [PMID: 38884167 PMCID: PMC11321678 DOI: 10.1002/advs.202309554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Indexed: 06/18/2024]
Abstract
Medulloblastoma (MB) stands as one of the prevalent malignant brain tumors among pediatric patients. Despite its prevalence, the intricate interplay between the regulatory program driving malignancy in MB cells and their interactions with the microenvironment remains insufficiently understood. Leveraging the capabilities of single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq), the chromatin accessibility landscape is unveiled across 59,015 distinct MB cells. This expansive dataset encompasses cells belonging to discrete molecular subgroups, namely SHH, WNT, Group3, and Group4. Within these chromatin accessibility profiles, specific regulatory elements tied to individual subgroups are uncovered, shedding light on the distinct activities of transcription factors (TFs) that likely orchestrate the tumorigenesis process. Moreover, it is found that certain neurotransmitter receptors (NTRs) are subgroup-specific and can predict MB subgroup classification when combined with their associated transcription factors. Notably, targeting essential NTRs within tumors influences both the in vitro sphere-forming capability and the in vivo tumorigenic capacity of MB cells. These findings collectively provide fresh insights into comprehending the regulatory networks and cellular dynamics within MBs. Furthermore, the significance of the TF-NTR regulatory circuits is underscored as prospective biomarkers and viable therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyue Gao
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qiyuan Zhuang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Yun Li
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guochao Li
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zheng Huang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shenzhi Chen
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shaoxing Sun
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hui Yang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitute for Translational Brain ResearchShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lan Jiang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
- College of Future Technology CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ying Mao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| |
Collapse
|
12
|
Peterson K, Turos-Cabal M, Salvador AD, Palomo-Caturla I, Howell AJ, Vieira ME, Greiner SM, Barnoud T, Rodriguez-Blanco J. Mechanistic insights into medulloblastoma relapse. Pharmacol Ther 2024; 260:108673. [PMID: 38857789 PMCID: PMC11270902 DOI: 10.1016/j.pharmthera.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Pediatric brain tumors are the leading cause of cancer-related deaths in children, with medulloblastoma (MB) being the most common type. A better understanding of these malignancies has led to their classification into four major molecular subgroups. This classification not only facilitates the stratification of clinical trials, but also the development of more effective therapies. Despite recent progress, approximately 30% of children diagnosed with MB experience tumor relapse. Recurrent disease in MB is often metastatic and responds poorly to current therapies. As a result, only a small subset of patients with recurrent MB survive beyond one year. Due to its dismal prognosis, novel therapeutic strategies aimed at preventing or managing recurrent disease are urgently needed. In this review, we summarize recent advances in our understanding of the molecular mechanisms behind treatment failure in MB, as well as those characterizing recurrent cases. We also propose avenues for how these findings can be used to better inform personalized medicine approaches for the treatment of newly diagnosed and recurrent MB. Lastly, we discuss the treatments currently being evaluated for MB patients, with special emphasis on those targeting MB by subgroup at diagnosis and relapse.
Collapse
Affiliation(s)
- Kendell Peterson
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Turos-Cabal
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - April D Salvador
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | - Ashley J Howell
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Megan E Vieira
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Sean M Greiner
- Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
13
|
Alhaj AK, Burhamah T, Mohammad F, Almutawa M, Dashti F, Almurshed M, Behzad S, Snuderl M, Hasan A. Are the Radiological and Molecular Features of Pediatric Medulloblastomas Valuable Prognostic Indicators? A 10-Year Retrospective Review in the Middle East. World Neurosurg 2024; 187:e156-e165. [PMID: 38636638 DOI: 10.1016/j.wneu.2024.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Medulloblastomas are the most common malignant brain tumors in the pediatric population. Based on the idea that tumors with identical radio-genomic features should behave similarly, the 4 molecular subtypes are now widely accepted as a guide for the management and prognosis. The radiological features of medulloblastomas can predict the molecular subtype; thus, anticipating the subsequent disease progression. However, this has not been evaluated comprehensively. We aim to thoroughly study the association between the molecular subtypes and radiological features of medulloblastomas. Moreover, we aim to investigate the efficacy of this correlation with the use of progression-free survival and 5-year survival rates. METHODS A retrospective analysis was conducted for all histopathological confirmed medulloblastomas in pediatric patients (<16 years old) that were operated on in Kuwait over the past ten years (n = 44). The radiological, histological, and molecular characteristics were justifiably evaluated and analyzed in our sample. RESULTS The overall progression-free survival after one year was noticed among 27 cases (≈44%) and the nonspecific 5-year survival was seen in 31 cases (≈70%) after a 5-year follow-up. Sonic Hedgehog and Wingless had the best outcomes, while group 3 showed the worst outcomes. CONCLUSIONS Our findings did not support the association between most of the typical magnetic resonance imaging characteristics and survival rate. We further established that Sonic Hedgehog and Wingless biological types have a better prognosis. There was no association observed between the radiographic features, specifically the location, and the molecular subtype.
Collapse
Affiliation(s)
- Ahmad Kh Alhaj
- Department of Neurosurgery, Ibn Sina Hospital, Ministry of Health, Kuwait City, Kuwait; Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Talal Burhamah
- Department of Neurosurgery, Ibn Sina Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Fadil Mohammad
- Department of Dermatology, McGill University, Montreal, Québec, Canada
| | - Mariam Almutawa
- Department of Neurosurgery, Ibn Sina Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Fatima Dashti
- Department of Neuroradiology, Ibn Sina Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Maryam Almurshed
- Department of Pathology, Sabah Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Shakir Behzad
- Department of Molecular Pathology, Kuwait Cancer Center, Ministry of Health, Kuwait City, Kuwait
| | - Matija Snuderl
- Department of Molecular Pathology, NYU Langone Hospital, New York, New York, USA
| | - Alya Hasan
- Department of Neurosurgery, Ibn Sina Hospital, Ministry of Health, Kuwait City, Kuwait.
| |
Collapse
|
14
|
Bakhit M, Fujii M. Bioinformatic Analysis of Gene Expression Related to Sialic Acid Biosynthesis in Patients With Medulloblastoma. Cureus 2024; 16:e59997. [PMID: 38854216 PMCID: PMC11162302 DOI: 10.7759/cureus.59997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background Sialic acid, a critical component for cell membrane integrity, undergoes complex biosynthesis involving enzymes like sialyltransferases (STs), impacting cancer progression. Aberrant sialylation by STs is implicated in cancer growth, invasion, and therapy resistance. Medulloblastoma (MB), a pediatric brain tumor with distinct subgroups and variable genetic alterations, poses uncertainty regarding the implications of sialylation. Methodology This study employs bioinformatic analyses on bulk and single-cell RNA-sequenced samples to explore atypical gene expressions linked to sialic acid metabolism in MB. A list of sialic biosynthesis-related genes was compiled using the STRING database. Data of MB samples from bulk and single-cell RNA sequencing were obtained from open-source repositories and were differentially analyzed, focusing on molecular subgroups (WNT, SHH, Group 3, and Group 4). The study employed survival analyses, specifically Cox regression, to analyze the overall survival (OS) data obtained through bulk RNA sequencing. Results Thirty-eight genes/proteins related to sialic acid metabolism were identified. Differential expression analysis between WNT and Group 3 and WNT and Group 4 revealed significant differences in seven and eleven genes, respectively, with consistent ST6GAL2 expression disparities (false discovery rate [FDR] P-value < 0.01, log2FC > 0.58). Elevated ST6GAL2 expression correlated with improved OS, with mortality risk reductions ranging from 26% to 48% (P-value < 0.006, Bonferroni-corrected threshold). Conclusions Elevated ST6GAL2 expression correlated with improved OS in diverse MB sample subsets, suggesting potential mechanisms in inhibiting tumor progression and enhancing immune response, requiring experimental validation.
Collapse
Affiliation(s)
| | - Masazumi Fujii
- Neurosurgery, Fukushima Medical University, Fukushima, JPN
| |
Collapse
|
15
|
O’Halloran K, Margol A, Davidson TB, Estrine D, Tamrazi B, Cotter JA, Ji J, Biegel JA. Disease Evolution Monitored by Serial Cerebrospinal Fluid Liquid Biopsies in Two Cases of Recurrent Medulloblastoma. Int J Mol Sci 2024; 25:4882. [PMID: 38732099 PMCID: PMC11084520 DOI: 10.3390/ijms25094882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in childhood. Initial treatment generally includes surgery, irradiation, and chemotherapy. Approximately 20-30% of patients will experience a recurrence, which portends a very poor prognosis. The current standard of care for evaluation for relapse includes radiographic surveillance with magnetic resonance imaging at regular intervals. The presence of circulating tumor DNA in the cerebrospinal fluid has been demonstrated to be a predictor of a higher risk of progression in a research setting for patients with medulloblastoma treated on a prospective single institution clinical trial. We have previously published and clinically validated a liquid-biopsy-based genetic assay utilizing low-pass whole genome sequencing to detect copy number alterations in circulating tumor DNA. Here, we present two teenage patients with posterior fossa medulloblastoma with recurrent disease who have been monitored with serial liquid biopsies showing tumor evolution over time, demonstrating the clinical utility of these approaches.
Collapse
Affiliation(s)
- Katrina O’Halloran
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (K.O.); (A.M.); (T.B.D.)
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (B.T.); (J.A.C.); (J.J.)
| | - Ashley Margol
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (K.O.); (A.M.); (T.B.D.)
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (B.T.); (J.A.C.); (J.J.)
| | - Tom B. Davidson
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (K.O.); (A.M.); (T.B.D.)
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (B.T.); (J.A.C.); (J.J.)
| | - Dolores Estrine
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Benita Tamrazi
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (B.T.); (J.A.C.); (J.J.)
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer A. Cotter
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (B.T.); (J.A.C.); (J.J.)
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Jianling Ji
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (B.T.); (J.A.C.); (J.J.)
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Jaclyn A. Biegel
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (B.T.); (J.A.C.); (J.J.)
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| |
Collapse
|
16
|
Katsushima K, Joshi K, Yuan M, Romero B, Batish M, Stapleton S, Jallo G, Kolanthai E, Seal S, Saulnier O, Taylor MD, Wechsler-Reya RJ, Eberhart CG, Perera RJ. A therapeutically targetable positive feedback loop between lnc-HLX-2-7, HLX, and MYC that promotes group 3 medulloblastoma. Cell Rep 2024; 43:113938. [PMID: 38460130 PMCID: PMC11372658 DOI: 10.1016/j.celrep.2024.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024] Open
Abstract
Recent studies suggest that long non-coding RNAs (lncRNAs) contribute to medulloblastoma (MB) formation and progression. We have identified an lncRNA, lnc-HLX-2-7, as a potential therapeutic target in group 3 (G3) MBs. lnc-HLX-2-7 RNA specifically accumulates in the promoter region of HLX, a sense-overlapping gene of lnc-HLX-2-7, which activates HLX expression by recruiting multiple factors, including enhancer elements. RNA sequencing and chromatin immunoprecipitation reveal that HLX binds to and activates the promoters of several oncogenes, including TBX2, LIN9, HOXM1, and MYC. Intravenous treatment with cerium-oxide-nanoparticle-coated antisense oligonucleotides targeting lnc-HLX-2-7 (CNP-lnc-HLX-2-7) inhibits tumor growth by 40%-50% in an intracranial MB xenograft mouse model. Combining CNP-lnc-HLX-2-7 with standard-of-care cisplatin further inhibits tumor growth and significantly prolongs mouse survival compared with CNP-lnc-HLX-2-7 monotherapy. Thus, the lnc-HLX-2-7-HLX-MYC axis is important for regulating G3 MB progression, providing a strong rationale for using lnc-HLX-2-7 as a therapeutic target for G3 MBs.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19701, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19701, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Olivier Saulnier
- Genomics and Development of Childhood Cancers, Institut Curie, PSL University, 75005 Paris, France; INSERM U830, Cancer Heterogeneity Instability and Plasticity, Institut Curie, PSL University, 75005 Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Michael D Taylor
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX 77004, USA; Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX 77004, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg. 558, Baltimore, MD 21205, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA.
| |
Collapse
|
17
|
Yang Y, Valdés-Rives SA, Liu Q, Li Y, Tan J, Tan Y, Koch CA, Rong Y, Houser SR, Wei S, Cai KQ, Cheng SY, Curran T, Wechsler-Reya R, Yang ZJ. Thyroid Hormone Suppresses Medulloblastoma Progression Through Promoting Terminal Differentiation of Tumor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580111. [PMID: 38405864 PMCID: PMC10888774 DOI: 10.1101/2024.02.13.580111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypothyroidism is commonly detected in patients with medulloblastoma (MB). A possible link between thyroid hormone (TH) signaling and MB pathogenicity has not been reported. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.
Collapse
|
18
|
Mishra DK, Popovski D, Morris SM, Bondoc A, Senthil Kumar S, Girard EJ, Rutka J, Fouladi M, Huang A, Olson JM, Drissi R. Preclinical pediatric brain tumor models for immunotherapy: Hurdles and a way forward. Neuro Oncol 2024; 26:226-235. [PMID: 37713135 PMCID: PMC10836771 DOI: 10.1093/neuonc/noad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 09/16/2023] Open
Abstract
Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.
Collapse
Affiliation(s)
- Deepak Kumar Mishra
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shelli M Morris
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew Bondoc
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - James Rutka
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Fouladi
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
19
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
20
|
Yuan M, Mahmud I, Katsushima K, Joshi K, Saulnier O, Pokhrel R, Lee B, Liyanage W, Kunhiraman H, Stapleton S, Gonzalez-Gomez I, Kannan RM, Eisemann T, Kolanthai E, Seal S, Garrett TJ, Abbasi S, Bockley K, Hanes J, Chapagain P, Jallo G, Wechsler-Reya RJ, Taylor MD, Eberhart CG, Ray A, Perera RJ. miRNA-211 maintains metabolic homeostasis in medulloblastoma through its target gene long-chain acyl-CoA synthetase 4. Acta Neuropathol Commun 2023; 11:203. [PMID: 38115140 PMCID: PMC10729563 DOI: 10.1186/s40478-023-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023] Open
Abstract
The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.
Collapse
Affiliation(s)
- Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rudramani Pokhrel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Bongyong Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Haritha Kunhiraman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Ignacio Gonzalez-Gomez
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tanja Eisemann
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Timothy J Garrett
- Department Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Kimberly Bockley
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, 33199, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX, 77030, USA
- Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA.
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
21
|
Cohen KJ, Munjapara V, Aguilera D, Castellino RC, Stapleton SL, Landi D, Ashley DM, Rodriguez FJ, Hawkins C, Yang E, London W, Chi S, Bandopadhayay P. A Pilot Study Omitting Radiation in the Treatment of Children with Newly Diagnosed Wnt-Activated Medulloblastoma. Clin Cancer Res 2023; 29:5031-5037. [PMID: 37498309 DOI: 10.1158/1078-0432.ccr-23-0348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Treatment of wingless (WNT)-activated medulloblastoma (WNT+MB) with surgery, irradiation (XRT), and chemotherapy results in excellent outcomes. We studied the efficacy of therapy de-intensification by omitting XRT entirely in children with WNT+MB. PATIENTS AND METHODS Tumors were molecularly screened to confirm the diagnosis of WNT+MB. Eligible children were treated within 31 days following surgery with nine cycles of adjuvant chemotherapy per ACNS0331. No XRT was planned. The primary endpoint was the occurrence of relapse, progression, or death in the absence of XRT within the first two years after study enrollment. Four events in the first 10 evaluable patients would result in early study closure. RESULTS Fourteen children were prescreened, and nine met the protocol definition of WNT+MB. Six of the nine eligible patients consented to protocol therapy, and five completed planned protocol therapy. The first two children enrolled relapsed shortly after therapy completion with local and leptomeningeal recurrences. The study was closed early due to safety concerns. Both children are surviving after XRT and additional chemotherapy. A third child relapsed at completion of therapy but died of progressive disease 35 months from diagnosis. Two children finished treatment but immediately received post-treatment XRT to guard against early relapse. The final child's treatment was aborted in favor of a high-dose therapy/stem cell rescue approach. Although OS at 5 years is 83%, no child received only planned protocol therapy, with all receiving eventual XRT and/or alternative therapy. CONCLUSIONS Radiotherapy is required to effectively treat children with WNT-altered medulloblastoma. See related commentary by Gottardo and Gajjar, p. 4996.
Collapse
Affiliation(s)
- Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Vasu Munjapara
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Dolly Aguilera
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Robert C Castellino
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Stacie L Stapleton
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Daniel Landi
- Department of Pediatrics, The Preston Robert Tisch Brain Tumor Center at Duke University Medical Center, Duke University Medical Center, Durham, North Carolina
| | - David M Ashley
- Department of Surgery, The Preston Robert Tisch Brain Tumor Center at Duke University Medical Center, Duke University Medical Center, Durham, North Carolina
| | - Fausto J Rodriguez
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, Canada
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Wendy London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Susan Chi
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Broad Institute of MIT and Harvard, Boston, Massachusetts
| |
Collapse
|
22
|
Sanghrajka RM, Koche R, Medrano H, El Nagar S, Stephen DN, Lao Z, Bayin NS, Ge K, Joyner AL. KMT2D suppresses Sonic hedgehog-driven medulloblastoma progression and metastasis. iScience 2023; 26:107831. [PMID: 37822508 PMCID: PMC10562805 DOI: 10.1016/j.isci.2023.107831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/29/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
The major cause of treatment failure and mortality among medulloblastoma patients is metastasis intracranially or along the spinal cord. The molecular mechanisms driving tumor metastasis in Sonic hedgehog-driven medulloblastoma (SHH-MB) patients, however, remain largely unknown. In this study we define a tumor suppressive role of KMT2D (MLL2), a gene frequently mutated in the most metastatic β-subtype. Strikingly, genetic mouse models of SHH-MB demonstrate that heterozygous loss of Kmt2d in conjunction with activation of the SHH pathway causes highly penetrant disease with decreased survival, increased hindbrain invasion and spinal cord metastasis. Loss of Kmt2d attenuates neural differentiation and shifts the transcriptional/chromatin landscape of primary and metastatic tumors toward a decrease in differentiation genes and tumor suppressors and an increase in genes/pathways implicated in advanced stage cancer and metastasis (TGFβ, Notch, Atoh1, Sox2, and Myc). Thus, secondary heterozygous KMT2D mutations likely have prognostic value for identifying SHH-MB patients prone to develop metastasis.
Collapse
Affiliation(s)
- Reeti Mayur Sanghrajka
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hector Medrano
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salsabiel El Nagar
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute of Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
23
|
Zhang HF, Delaidelli A, Javed S, Turgu B, Morrison T, Hughes CS, Yang X, Pachva M, Lizardo MM, Singh G, Hoffmann J, Huang YZ, Patel K, Shraim R, Kung SH, Morin GB, Aparicio S, Martinez D, Maris JM, Bosse KR, Williams KC, Sorensen PH. A MYCN-independent mechanism mediating secretome reprogramming and metastasis in MYCN-amplified neuroblastoma. SCIENCE ADVANCES 2023; 9:eadg6693. [PMID: 37611092 PMCID: PMC10446492 DOI: 10.1126/sciadv.adg6693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) and predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to MNA+ NB remains poorly understood. Here, we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently coexpressed with MYCN and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN, among which we uncover myosin 1B (MYO1B) as being highly expressed in MNA+ NB and, using a chick chorioallantoic membrane (CAM) model, as a crucial regulator of invasion and metastasis. Global secretome and proteome profiling further delineates MYO1B in regulating secretome reprogramming in MNA+ NB cells, and the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism promoting aggressive behavior in MNA+ NB and independently of MYCN.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Sumreen Javed
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Busra Turgu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Taylor Morrison
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Christopher S. Hughes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Xiaqiu Yang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Manideep Pachva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Michael M. Lizardo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Gurdeep Singh
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Jennifer Hoffmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Zhou Huang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Daniel Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Poul H. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| |
Collapse
|
24
|
Ismail M, Craig S, Ahmed R, de Blank P, Tiwari P. Opportunities and Advances in Radiomics and Radiogenomics for Pediatric Medulloblastoma Tumors. Diagnostics (Basel) 2023; 13:2727. [PMID: 37685265 PMCID: PMC10487205 DOI: 10.3390/diagnostics13172727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent advances in artificial intelligence have greatly impacted the field of medical imaging and vastly improved the development of computational algorithms for data analysis. In the field of pediatric neuro-oncology, radiomics, the process of obtaining high-dimensional data from radiographic images, has been recently utilized in applications including survival prognostication, molecular classification, and tumor type classification. Similarly, radiogenomics, or the integration of radiomic and genomic data, has allowed for building comprehensive computational models to better understand disease etiology. While there exist excellent review articles on radiomics and radiogenomic pipelines and their applications in adult solid tumors, in this review article, we specifically review these computational approaches in the context of pediatric medulloblastoma tumors. Based on our systematic literature research via PubMed and Google Scholar, we provide a detailed summary of a total of 15 articles that have utilized radiomic and radiogenomic analysis for survival prognostication, tumor segmentation, and molecular subgroup classification in the context of pediatric medulloblastoma. Lastly, we shed light on the current challenges with the existing approaches as well as future directions and opportunities with using these computational radiomic and radiogenomic approaches for pediatric medulloblastoma tumors.
Collapse
Affiliation(s)
- Marwa Ismail
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (P.T.)
| | - Stephen Craig
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (P.T.)
| | - Raheel Ahmed
- Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Peter de Blank
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Pallavi Tiwari
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (P.T.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
de Araújo MA, Malafaia O, Ribas Filho JM, Fratini L, Roesler R, Isolan GR. Low Expression of the NRP1 Gene Is Associated with Shorter Overall Survival in Patients with Sonic Hedgehog and Group 3 Medulloblastoma. Int J Mol Sci 2023; 24:11601. [PMID: 37511358 PMCID: PMC10380701 DOI: 10.3390/ijms241411601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma (MB) is the most common type of malignant pediatric brain tumor. Neuropilin-1 (NRP1), encoded by the NRP1 gene, is a transmembrane glycoprotein overexpressed in several types of cancer. Previous studies indicate that NRP1 inhibition displays antitumor effects in MB models and higher NRP1 levels are associated with poorer prognosis in MB patients. Here, we used a large MB tumor dataset to examine NRP1 gene expression in different molecular subgroups and subtypes of MB. We found overall widespread NRP1 expression across MB samples. Tumors in the sonic hedgehog (SHH) subgroup showed significantly higher NRP1 transcript levels in comparison with Group 3 and Group 4 tumors, with SHH samples belonging to the α, β, Δ, and γ subtypes. When all MB subgroups were combined, lower NRP1 expression was associated with significantly shorter patient overall survival (OS). Further analysis showed that low NRP1 was related to poorer OS, specifically in MB subgroups SHH and Group 3 MB. Our findings indicate that patients with SHH and Group 3 tumors that show lower expression of NRP1 in MB have a worse prognosis, which highlights the need for subgroup-specific investigation of the NRP1 role in MB.
Collapse
Affiliation(s)
- Moisés Augusto de Araújo
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
| | - Jurandir M. Ribas Filho
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
| | - Livia Fratini
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Research Center, Moinhos de Vento Hospital, Porto Alegre 90035-001, RS, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Spalt Therapeutics, Porto Alegre 90560-010, RS, Brazil
| |
Collapse
|
26
|
Fan J, Wang Y, Liang X, Peng Y, Li S, Li X, Zhou F, Li Y. B7-H6 enhances F-actin rearrangement by targeting c-MYC activation to promote medulloblastoma migration and invasion. Med Oncol 2023; 40:85. [PMID: 36692844 DOI: 10.1007/s12032-023-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023]
Abstract
Medulloblastoma (MB) is children's most common primary malignant primitive neuro-ectodermal tumor. Group 3 MB showed a higher propensity to metastasis, which is molecularly characterized by c-MYC gene amplification. The activation of c-MYC promotes the remodeling of the F-actin cytoskeleton to enhance metastasis. The B7 homologue 6 (B7-H6) is associated with the manifold essential hallmarks of tumorigenesis. In this study, we will explore whether B7-H6 regulates the reorganization of F-actin by elevating the c-MYC expression to promote metastasis. The Daoy cell line was used to act as the cell model of medulloblastoma. Small interfering RNA and the plasmid were used to downregulate and upregulate the expression of B7-H6 in Daoy cells. Transwell assays with/without the matrigel matrix were used to detect migration and invasion of Daoy cells. Western blots were used to detect the expression of related proteins. Immunofluorescence staining was used to observe the impact of B7-H6 on the c-MYC /F-actin axis. B7-H6 improved migration and invasion in the Daoy cell line. B7-H6 enhanced the rearrangement of F-actin and activated the expression of MMP-9 and MMP-2. B7-H6 promoted the remodeling of F-actin by targeting c-MYC activation to reinforce migration and invasion. B7-H6 acts as a promoter of migration and invasion in medulloblastoma by activating the c-MYC /F-actin axis.
Collapse
Affiliation(s)
- Jianing Fan
- School of Medicine, Chongqing University, Chongqing, China.,Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yangyang Wang
- Bioengineering College of Chongqing University, Chongqing, China.,Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, China.,Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yan Peng
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Shijie Li
- Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Fanlin Zhou
- Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yu Li
- School of Medicine, Chongqing University, Chongqing, China. .,Department of Pathology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
| |
Collapse
|
27
|
Chen Z, Yang H, Wang J, Long G, Xi Q, Chen T, He Y, Zhang B, Wan F. Molecular characterization of sub-frontal recurrent medulloblastomas reveals potential clinical relevance. Front Neurol 2023; 14:1148848. [PMID: 37181548 PMCID: PMC10173865 DOI: 10.3389/fneur.2023.1148848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023] Open
Abstract
Background Single recurrence in the sub-frontal region after cerebellar medulloblastoma (MB) resection is rare and the underlying molecular characteristics have not been specifically addressed. Methods We summarized two such cases in our center. All five samples were molecularly profiled for their genome and transcriptome signatures. Results The recurrent tumors displayed genomic and transcriptomic divergence. Pathway analysis of recurrent tumors showed functional convergence in metabolism, cancer, neuroactive ligand-receptor interaction, and PI3K-AKT signaling pathways. Notably, the sub-frontal recurrent tumors had a much higher proportion (50-86%) of acquired driver mutations than that reported in other recurrent locations. The acquired putative driver genes in the sub-frontal recurrent tumors functionally enriched for chromatin remodeler-associated genes, such as KDM6B, SPEN, CHD4, and CHD7. Furthermore, the germline mutations of our cases showed a significant functional convergence in focal adhesion, cell adhesion molecules, and ECM-receptor interaction. Evolutionary analysis showed that the recurrence could be derived from a single primary tumor lineage or had an intermediate phylogenetic similarity to the matched primary one. Conclusion Rare single sub-frontal recurrent MBs presented specific mutation signatures that might be related to the under-dose radiation. Particular attention should be paid to optimally covering the sub-frontal cribriform plate during postoperative radiotherapy targeting.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaitao Yang
- Department of Neurosurgery, Jingzhou Central Hospital, Jingzhou, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Department of Neurosurgery, Jingzhou Central Hospital, Jingzhou, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bin Zhang
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Feng Wan
| |
Collapse
|
28
|
Gorelyshev S, Medvedeva O, Mazerkina N, Ryzhova M, Krotkova O, Golanov A. Medulloblastomas in Pediatric and Adults. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:117-152. [PMID: 37452937 DOI: 10.1007/978-3-031-23705-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Medulloblastoma is the primary malignant embryonic tumor of the cerebellum and the most common malignant tumor of childhood, accounting up to 25% of all CNS tumors in children, but is extremely rare in adults. Despite the fact that medulloblastomas are one of the most malignant human tumors, it is worthy to note that a great breakthrough has been achieved in our understanding of oncogenesis and the development of real methods of treatment. The main objective of surgical treatment is a maximum resection of tumor with minimal impairment of neurological functions, in order to reduce the volume, remove tumor tissue, get the biopsy, and restore the cerebrospinal fluid flow. The progress of surgical techniques (using a microscope, ultrasound suction), anesthesiology, and intensive care has significantly decreased surgical mortality and increased radicality of tumor removal. Postoperative mortality is less than one percent in most studies, while neurological complications have been reported between 5-10%. Radiotherapy is the main method of treatment in patients older than 3 years, which dramatically improved the recurrence-free survival. Nevertheless, the radiation therapy without systemic chemotherapy leads to a high risk of systemic metastases. After the role of chemotherapy was statistically proven, investigations of the optimal combination of different chemotherapy regimens continued around the world. Currently, 80% of patients can already be cured, however, the quality of life of patients in the long-term period remains quite low, which depends on many factors including endocrinological, cognitive, neurological, and otoneurologic aspects. Thus, the main strategic goal of the development of neuro-oncology is to reduce the doses of radiation therapy to the CNS and the main task of international research is to optimize existing protocols and develop fundamentally new ones based on molecular genetic research in order to improve the quality of life.
Collapse
Affiliation(s)
- Sergey Gorelyshev
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia.
| | - Olga Medvedeva
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Nadezhda Mazerkina
- Pediatric Neurosurgical Department, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Marina Ryzhova
- Department of Neuropathology, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Olga Krotkova
- N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| | - Andrey Golanov
- Department of Radiosurgery, N.N. Burdenko National Medical Research Centre of Neurosurgery, Moscow, Russia
| |
Collapse
|
29
|
Paret C, Ustjanzew A, Ersali S, Seidmann L, Jennemann R, Ziegler N, Malki KE, Russo A, Wingerter A, Ortmüller F, Bornas A, Wehling PC, Lepădatu A, Ottenhausen M, Roth W, Sommer C, Fliss B, Frauenknecht KBM, Sandhoff R, Faber J. GD2 Expression in Medulloblastoma and Neuroblastoma for Personalized Immunotherapy: A Matter of Subtype. Cancers (Basel) 2022; 14:cancers14246051. [PMID: 36551537 PMCID: PMC9775636 DOI: 10.3390/cancers14246051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NBL) and medulloblastoma (MB) are aggressive pediatric cancers which can benefit from therapies targeting gangliosides. Therefore, we compared the ganglioside profile of 9 MB and 14 NBL samples by thin layer chromatography and mass spectrometry. NBL had the highest expression of GD2 (median 0.54 nmol GD2/mg protein), and also expressed complex gangliosides. GD2-low samples expressed GD1a and were more differentiated. MB mainly expressed GD2 (median 0.032 nmol GD2/mg protein) or GM3. Four sonic hedgehog-activated (SHH) as well as one group 4 and one group 3 MBs were GD2-positive. Two group 3 MB samples were GD2-negative but GM3-positive. N-glycolyl neuraminic acid-containing GM3 was neither detected in NBL nor MB by mass spectrometry. Furthermore, a GD2-phenotype predicting two-gene signature (ST8SIA1 and B4GALNT1) was applied to RNA-Seq datasets, including 86 MBs and validated by qRT-PCR. The signature values were decreased in group 3 and wingless-activated (WNT) compared to SHH and group 4 MBs. These results suggest that while NBL is GD2-positive, only some MB patients can benefit from a GD2-directed therapy. The expression of genes involved in the ganglioside synthesis may allow the identification of GD2-positive MBs. Finally, the ganglioside profile may reflect the differentiation status in NBL and could help to define MB subtypes.
Collapse
Affiliation(s)
- Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Correspondence:
| | - Arsenij Ustjanzew
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sara Ersali
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Larissa Seidmann
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Richard Jennemann
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nicole Ziegler
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Franziska Ortmüller
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Angelina Bornas
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Pia Charlotte Wehling
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Adina Lepădatu
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Malte Ottenhausen
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Wilfried Roth
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Clemens Sommer
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Barbara Fliss
- Institute of Forensic Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katrin B. M. Frauenknecht
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- National Center of Pathology (NCP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Roger Sandhoff
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
30
|
Hu Y, Zhu S, Xu R, Wang M, Chen F, Zhang Z, Feng B, Wang J, Chen Z, Wang J. Delta-catenin attenuates medulloblastoma cell invasion by targeting EMT pathway. Front Genet 2022; 13:867872. [PMID: 36303547 PMCID: PMC9595215 DOI: 10.3389/fgene.2022.867872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Medulloblastoma is the most common pediatric malignant tumor in central nervous system. Although its prognosis has been improved enormously by the combination treatments with surgery, radiotherapy, and chemotherapy, it still could progress via invasion and distant dissemination. We aimed to investigate molecular mechanisms of medulloblastoma invasion in the current work. Methods: The gene expression profile of medulloblastoma were analyzed based on the data deposited in Gene Expression Omnibus (GEO) and filtered according to brain specific proteins in the Uniprot. Delta-catenin was identified and further analyzed about its expression and roles in the prognosis of medulloblastoma patient. The function of delta-catenin on cell invasion and migration were investigated by transwell and wound healing assay. Whether delta-catenin participates in the epithelial-mesenchymal transition (EMT) regulated invasion was also studied. Results: Delta-catenin expression was highly upregulated in tumor tissues compared to normal tissues from medulloblastoma patients in five independent, nonoverlapping cohorts. Furthermore, delta-catenin expression level was upregulated in WNT subgroup, and significantly correlated with better prognosis, and associated with metastasis through GEO database analysis. Functional assays indicated that delta-catenin inhibited medulloblastoma cell invasion and migration through regulating the key factors of EMT pathway, such as E-cadherin and vimentin. Conclusion: Delta-catenin might be a positive predictor for prognosis of medulloblastoma patients, through attenuating medulloblastoma cell invasion by inhibiting EMT pathway.
Collapse
Affiliation(s)
- Yuanjun Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sihan Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rizhen Xu
- Department of Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Manxia Wang
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Furong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zeshun Zhang
- Department of Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Binghong Feng
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| | - Zhongping Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| |
Collapse
|
31
|
Sargazi ML, Jafarinejad-Farsangi S, Moazzam-Jazi M, Rostamzadeh F, Karam ZM. The crosstalk between long non-coding RNAs and the hedgehog signaling pathway in cancer. Med Oncol 2022; 39:127. [PMID: 35716241 DOI: 10.1007/s12032-022-01710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Hedgehog (Hh) is a conserved signaling pathway that is involved in embryo development as well as adult tissue maintenance and repair in invertebrates and vertebrates. Abnormal activation of this pathway in various types of malignant drug- and apoptosis-resistant tumors has made it a therapeutic target against tumorigenesis. Thus, understanding the molecular mechanisms that promote the activation or inhibition of this pathway is critical. Long non-coding RNAs (lncRNAs), a subclass of non-coding RNAs with a length of > 200 nt, affect the expression of Hh signaling components via a variety of transcriptional and post-transcriptional processes. This review focuses on the crosstalk between lncRNAs and the Hh pathway in carcinogenesis, outlines the broad role of Hh-related lncRNAs in tumor progression, and illustrates their clinical diagnostic, prognostic, and therapeutic potential in tumors.
Collapse
Affiliation(s)
- Marzieh Lotfian Sargazi
- Student Research Committee, Kerman University of Medical Sciences, Jehad Blvd, Ebn Sina Avenue, 7619813159, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 7619813159, Kerman, Iran.
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 19839-63113, Tehran, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, 7619813159, Kerman, Iran
| | - Zahra Miri Karam
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
32
|
Radiomics signature for the prediction of progression-free survival and radiotherapeutic benefits in pediatric medulloblastoma. Childs Nerv Syst 2022; 38:1085-1094. [PMID: 35394210 DOI: 10.1007/s00381-022-05507-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To develop and validate a radiomics signature for progression-free survival (PFS) and radiotherapeutic benefits in pediatric medulloblastoma. MATERIALS AND METHODS We retrospectively enrolled 253 consecutive children with medulloblastoma from two hospitals. A total of 1294 radiomic features were extracted from the region of tumor on the T1-weighted and contrast-enhanced T1-weighted (CE-T1w) MRI. Radiomic feature selection and machine learning modelling were performed to build radiomics signature for the prediction of PFS on the training set. Moreover, the prognostic performance of the clinical parameters was investigated for PFS. The Concordance index (a value of 0.5 indicates no predictive discrimination, and a value of 1 indicates perfect predictive discrimination) was used to measure and compare the prognostic performance of these models. RESULTS The radiomics signature for the prediction of the PFS yielded Concordance indices of 0.711, 0.707, and 0.717 on the training and held-out test sets 1 and 2, respectively. The radiomics nomogram integrating the radiomics signature, age, and metastasis performed better than the nomogram incorporating only clinicopathological factors (C-index, 0.723 vs. 0.665 and 0.722 vs. 0.677 on the held-out test sets 1 and 2, respectively), which was also validated by the good calibration and decision curve analysis. Further analysis demonstrated that patients with lower value of radiomics signature were associated with better clinical outcomes after postoperative radiotherapy (p < 0.001). CONCLUSION The radiomics signature and nomogram performed well for the prediction of PFS and could stratify patients underwent postoperative radiotherapy into the high- and low-risk groups with significantly different clinical outcomes.
Collapse
|
33
|
Pritha A, Anderson R, Anderson DE, Nicolaides T. A Holistic Review on the Current and Future Status of Biology-Driven and Broad-Spectrum Therapeutic Options for Medulloblastoma. Cureus 2022; 14:e23447. [PMID: 35481313 PMCID: PMC9034720 DOI: 10.7759/cureus.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
With a thorough investigation of the etiology of medulloblastomas, a comprehensive review was done to categorize available clinical trials in order to discuss the future potential of breakthroughs in treatment options. The pertinent issues of medulloblastoma therapy with radiation being inapplicable to children under the age of 3, and therapies causing toxicity are detailed and discussed in the context of understanding how the current therapies may address these suboptimal treatment modalities. This study aggregated published studies from the US government clinical trials website and filtered them based on their direct treatment towards medulloblastomas. Thirty-two clinical trials were applicable to be analyzed and the treatment mechanisms were discussed along with the efficacy; molecular groupings of medulloblastomas were also investigated. The investigated therapies tend to target sonic hedgehog (SHH)-subtype medulloblastomas, but there is a necessity for group 3 subtype and group 4 subtype to be targeted as well. Due to the heterogeneous nature of tumor relapse in groups 3 and 4, there are less specified trials towards those molecular groupings, and radiation seems to be the main scope of treatment. Medulloblastomas being primarily a pediatric tumor require treatment options that minimize radiation to increase the quality of living in children and to prevent long-term symptoms of over radiation. Exploring symptomatic treatment with donepezil in children with combination therapies may be a potential route for future trials; immunotherapies seem to hold potential in treating patients reacting adversely to radiation therapy.
Collapse
|
34
|
Primary leptomeningeal medulloblastoma: a case-based review. Childs Nerv Syst 2022; 38:527-536. [PMID: 35059784 DOI: 10.1007/s00381-021-05435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant pediatric brain tumor, accounting for 40% of childhood tumors in posterior fossa. Metastatic disease, occurring in 20-30% of all medulloblastoma cases at diagnosis, is largely exclusive to the leptomeninges. On the contrary, primary leptomeningeal medulloblastoma or so-called chameleon medulloblastoma, defined by the absence of a detectable intraparenchymal lesion with a widespread diffusion along leptomeninges, is a rare entity of difficult diagnosis with only a few cases reported in literature. METHODS AND RESULTS A comprehensive literature search of three databases (PubMed, Ovid Medline, and Ovid Embase) have been conducted to identify pertinent papers focusing on the diagnostic process, management, and treatment of primary leptomeningeal medulloblastoma and its peculiar features. To our knowledge, only eight cases are described in literature, including five pediatric patients and three adults, two of which with the initial involvement of the spinal cord. In addition, we report another two pediatric cases, showing widespread primary diffusion along leptomeninges of brain and spinal cord. Finally, we analyze in-depth the peculiar morphological MRI features of this tumor. CONCLUSION The classification and treatment of medulloblastomas are likely to change in the coming years due to new insights into the molecular biology of medulloblastoma. Primary leptomeningeal medulloblastoma could represent another potential challenge for biologists to start exploring the underlying mechanisms of this different clinical and pathological entity, with different implications for diagnosis and its management.
Collapse
|
35
|
Nawar N, Bukhari S, Adile AA, Suk Y, Manaswiyoungkul P, Toutah K, Olaoye OO, Raouf YS, Sedighi A, Garcha HK, Hassan MM, Gwynne W, Israelian J, Radu TB, Geletu M, Abdeldayem A, Gawel JM, Cabral AD, Venugopal C, de Araujo ED, Singh SK, Gunning PT. Discovery of HDAC6-Selective Inhibitor NN-390 with in Vitro Efficacy in Group 3 Medulloblastoma. J Med Chem 2022; 65:3193-3217. [PMID: 35119267 DOI: 10.1021/acs.jmedchem.1c01585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.
Collapse
Affiliation(s)
- Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ashley A Adile
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Harsimran Kaur Garcha
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - William Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mulu Geletu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ayah Abdeldayem
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Justyna M Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Chitra Venugopal
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
36
|
G9a/EHMT2 is a Potential Prognostic Biomarker and Molecular Target in SHH Medulloblastoma. Neuromolecular Med 2022; 24:392-398. [PMID: 35113321 DOI: 10.1007/s12017-022-08702-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
Changes in epigenetic programming are associated with cancer development during childhood. Components of the epigenetic machinery involved in normal embryonic development and hijacked by pediatric cancers include enzymes mediating post-translational modifications of DNA and histones that regulate chromatin structure, such as histone methyltransferases (HMTs). Overexpression of the HMT G9a (euchromatic histone lysine methyltransferase 2, EHMT2) has been described in several cancer types. Medulloblastoma (MB), the main type of malignant brain tumor afflicting children, is currently classified into four molecular subgroups. Here, we show that expression level of the G9a/Ehmt2 gene is higher in MB tumors belonging to the SHH, Group 3, and Group 4 subgroups, compared to Wnt tumors. Remarkably, high G9a expression was significantly associated with shorter overall survival in MB patients. We also present evidence that G9a inhibition dose-dependently reduces MB cell viability. Our findings suggest that higher transcription of G9a may be a predictor of poor prognosis in patients with SHH MB, and that inhibiting G9a activity can display antitumor effects in MB.
Collapse
|
37
|
The Alliance AMBUSH Trial: Rationale and Design. Cancers (Basel) 2022; 14:cancers14020414. [PMID: 35053576 PMCID: PMC8773887 DOI: 10.3390/cancers14020414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Medulloblastoma, the most common embryonal tumor in children, can also arise in older patients. Clinical studies in children with medulloblastoma have increased our understanding of molecular pathways and improved treatment strategies. We now know that medulloblastoma has at least four subtypes and each maybe best suited to specific therapies. The sonic hedgehog (SHH) pathway is altered in a significant proportion of older patients with medulloblastoma. The Alliance for Clinical Trials in Oncology cooperative group is developing the AMBUSH trial: Comprehensive Management of Adolescent and Young Adult (AYA) and Adult Patients with Medulloblastoma or Pineal Embryonal Tumors With A Randomized Placebo Controlled Phase II Focusing on Sonic Hedgehog Pathway Inhibition in SHH Subgroup Patients (Adult & Adolescent MedulloBlastoma Using Sonic Hedgehog Trial). The trial gives treatment directions for all patients and randomizes patients with average risk SHH-activated medulloblastoma to maintenance sonidegib, a hedgehog signaling pathway inhibitor, or placebo. This trial will establish a baseline for future trial comparison and investigate the benefit of a novel targeted agent. Abstract Unlike medulloblastoma (MB) in children, robust prospective trials have not taken place for older patients due to the low incidence of MB in adults and adolescent and young adults (AYA). Current MB treatment paradigms for older patients have been extrapolated from the pediatric experience even though questions exist about the applicability of these approaches. Clinical and molecular classification of MB now provides better prognostication and is being incorporated in pediatric therapeutic trials. It has been established that genomic alterations leading to activation of the sonic hedgehog (SHH) pathway occur in approximately 60% of MB in patients over the age of 16 years. Within this cohort, protein patched homolog (PTCH) and smoothened (SMO) mutations are commonly found. Among patients whose tumors harbor the SHH molecular signature, it is estimated that over 80% of patients could respond to SHH pathway inhibitors. Given the advances in the understanding of molecular subgroups and the lack of robust clinical data for adult/AYA MB, the Alliance for Clinical Trial in Oncology group developed the AMBUSH trial: Comprehensive Management of AYA and Adult Patients with Medulloblastoma or Pineal Embryonal Tumors with a Randomized Placebo Controlled Phase II Focusing on Sonic Hedgehog Pathway Inhibition in SHH Subgroup Patients (Adult & Adolescent MedulloBlastoma Using Sonic Hedgehog Trial). This trial will enroll patients 18 years of age or older with MB (any molecular subgroup and risk stratification) or pineal embryonal tumor. Patients will be assigned to one of three cohorts: (1) average risk non-SHH-MB, (2) average risk SHH-MB, and (3) high risk MB or pineal embryonal tumors. All patients will receive protocol-directed comprehensive treatment with radiation therapy and chemotherapy. Patients with SHH-MB in cohort 1 will be randomized to a smoothened inhibitor or placebo as maintenance therapy for one year.
Collapse
|
38
|
Naeem A, Harish V, Coste S, Parasido EM, Choudhry MU, Kromer LF, Ihemelandu C, Petricoin EF, Pierobon M, Noon MS, Yenugonda VM, Avantaggiati M, Kupfer GM, Fricke S, Rodriguez O, Albanese C. Regulation of Chemosensitivity in Human Medulloblastoma Cells by p53 and the PI3 Kinase Signaling Pathway. Mol Cancer Res 2022; 20:114-126. [PMID: 34635507 PMCID: PMC8738155 DOI: 10.1158/1541-7786.mcr-21-0277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023]
Abstract
In medulloblastoma, p53 expression has been associated with chemoresistance and radiation resistance and with poor long-term outcomes in the p53-mutated sonic hedgehog, MYC-p53, and p53-positive medulloblastoma subgroups. We previously established a direct role for p53 in supporting drug resistance in medulloblastoma cells with high basal protein expression levels (D556 and DAOY). We now show that p53 genetic suppression in medulloblastoma cells with low basal p53 protein expression levels (D283 and UW228) significantly reduced drug responsiveness, suggesting opposing roles for low p53 protein expression levels. Mechanistically, the enhanced cell death by p53 knockdown in high-p53 cells was associated with an induction of mTOR/PI3K signaling. Both mTOR inhibition and p110α/PIK3CA induction confirmed these findings, which abrogated or accentuated the enhanced chemosensitivity response in D556 cells respectively while converse was seen in D283 cells. Co-treatment with G-actin-sequestering peptide, thymosin β4 (Tβ4), induced p-AKTS473 in both p53-high and p53-low cells, enhancing chemosensitivity in D556 cells while enhancing chemoresistance in D283 and UW228 cells. IMPLICATIONS: Collectively, we identified an unexpected role for the PI3K signaling in enhancing cell death in medulloblastoma cells with high basal p53 expression. These studies indicate that levels of p53 immunopositivity may serve as a diagnostic marker of chemotherapy resistance and for defining therapeutic targeting.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Health Research Governance Department, Ministry of Public Health, Doha, Qatar
| | - Varsha Harish
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Sophie Coste
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Erika M. Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Muhammad Umer Choudhry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Lawrence F. Kromer
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Chukuemeka Ihemelandu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Emanuel F. Petricoin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | - Mariaelena Pierobon
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | | | | | - Maria Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Gary M. Kupfer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Pediatrics, Georgetown University Medical Center, Washington, DC
| | - Stanley Fricke
- Department of Radiology, Georgetown University Medical Center, Washington, DC.,Center for Translational Imaging, Georgetown University Medical Center, Washington, DC
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Center for Translational Imaging, Georgetown University Medical Center, Washington, DC
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Radiology, Georgetown University Medical Center, Washington, DC.,Center for Translational Imaging, Georgetown University Medical Center, Washington, DC.,Corresponding Author: Chris Albanese, Department of OncologyGeorgetown University Medical Center, Lombardi Cancer Center, NRB W417, Washington, DC 20007. Phone: 202-687-3305; E-mail:
| |
Collapse
|
39
|
Whitney J, Dollinger L, Tamrazi B, Hawes D, Couce M, Marcheque J, Judkins A, Margol A, Madabhushi A. Quantitative Nuclear Histomorphometry Predicts Molecular Subtype and Clinical Outcome in Medulloblastomas: Preliminary Findings. J Pathol Inform 2022; 13:100090. [PMID: 36268104 PMCID: PMC9576985 DOI: 10.1016/j.jpi.2022.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/11/2021] [Indexed: 10/30/2022] Open
Abstract
Molecular subtypes of medulloblastoma [Sonic Hedgehog (SHH), Wingless/INT (WNT), Group 3, and Group 4] are defined by common patterns of gene expression. These differential gene expression patterns appear to result in different histomorphology and prognosis. Quantitative histomorphometry is a well-known method of computer-aided pathology image analysis. The hypotheses we sought to examine in this preliminary proof of concept study were whether computer extracted nuclear morphological features of medulloblastomas from digitized tissue slide images could independently: (1) distinguish between molecularly determined subgroups and (2) identify patterns within these subgroups that correspond with clinical outcome. Our dataset was composed of 46 medulloblastoma patients: 16 SHH (5 dead, 11 survived), 3 WNT (0 dead, 3 survived), 12 Group 3 (4 dead, 8 survived), and 15 were Group 4 (5 dead, 10 survived). A watershed-based thresholding scheme was used to automatically identify individual nuclei within digitized whole slide hematoxylin and eosin tissue images. Quantitative histomorphometric features corresponding to the texture (variation in pixel intensity), shape (variations in size, roundness), and architectural rearrangement (distances between, and number of connected neighbors) of nuclei were subsequently extracted. These features were ranked using feature selection schemes and these top-ranked features were then used to train machine-learning classifiers via threefold cross-validation to separate patients based on: (1) molecular subtype and (2) disease-specific outcomes within the individual molecular subtype groups. SHH and WNT tumors were separated from Groups 3 and 4 tumors with a maximum area under the receiver operating characteristic curve (AUC) of 0.7, survival within Group 3 tumors was predicted with an AUC of 0.92, and Group 3 and 4 patients were separated into high- and low-risk groups with p = 0.002. Model prediction was quantitatively compared with age, stage, and histological subtype using univariate and multivariate Cox hazard ratio models. Age was the most statistically significant variable for predicting survival in Group 3 and 4 tumors, but model predictions had the highest hazard ratio value. Quantitative nuclear histomorphometry can be used to study medulloblastoma genetic expression phenotypes as it may distinguish meaningful features of disease pathology.
Collapse
|
40
|
Lee B, Katsushima K, Pokhrel R, Yuan M, Stapleton S, Jallo G, Wechsler-Reya RJ, Eberhart CG, Ray A, Perera RJ. The long non-coding RNA SPRIGHTLY and its binding partner PTBP1 regulate exon 5 skipping of SMYD3 transcripts in group 4 medulloblastomas. Neurooncol Adv 2022; 4:vdac120. [PMID: 36267874 PMCID: PMC9569026 DOI: 10.1093/noajnl/vdac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Although some of the regulatory genes, signaling pathways, and gene regulatory networks altered in medulloblastomas (MB) are known, the roles of non-coding RNAs, particularly long non-coding RNAs (lncRNAs), are poorly described. Here we report that the lncRNA SPRIGHTLY (SPRY4-IT1) gene is upregulated in group 4 medulloblastoma (G4 MB). Methods SPRIGHTLY expression was assessed in MB subgroup patient-derived xenografts, cell lines, and patient samples. The effect of SPRIGHTLY hemizygous deletion on proliferation, invasion, apoptosis, and colony formation were assessed in vitro and on tumor growth in vivo. dChIRP pull-down assays were used to assess SPRIGHTLY-binding partners, confirmed by immunoprecipitation. SMYD3 ΔE5 transcripts were examined in cell lines and publicly available RNA-seq data. Pathway analysis was performed by phospho-kinase profiling and RNA-seq. Results CRISPR/Cas9 deletion of SPRIGHTLY reduced cell viability and invasion and increased apoptosis in G4 MB cell lines in vitro. SPRIGHTLY hemizygous-deleted G4 MB cells injected into mouse cerebellums produced smaller tumors than those derived from parental cells expressing both copies of SPRIGHTLY. SPRIGHTLY lncRNA bound to the intronic region of the SMYD3 pre-mRNA transcript. SPRIGHTLY also interacted with PTPB1 protein to regulate SMYD3 exon skipping to produce an aberrant protein. SPRIGHTLY-driven SMYD3 regulation enhanced the expression of EGFR pathway genes in G4 MB cell lines and activated cell coagulation/hemostasis-related gene expression, suggesting a novel oncogenic role in G4 MB. Conclusions These results demonstrate the importance of SPRIGHTLY lncRNA as a promoter of G4 MB and the role of the SPRIGHTLY-SMYD3-PTPB1 axis as an important oncogenic regulator in MB.
Collapse
Affiliation(s)
- Bongyong Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Rudramani Pokhrel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Stacie Stapleton
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - George Jallo
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Robert J Wechsler-Reya
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charles G Eberhart
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave – Ross Bldg 558, Baltimore, MD 21205, USA
| | - Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont CA, 91711, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA
- Johns Hopkins All Children’s Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| |
Collapse
|
41
|
Ray S, Chaturvedi NK, Bhakat KK, Rizzino A, Mahapatra S. Subgroup-Specific Diagnostic, Prognostic, and Predictive Markers Influencing Pediatric Medulloblastoma Treatment. Diagnostics (Basel) 2021; 12:diagnostics12010061. [PMID: 35054230 PMCID: PMC8774967 DOI: 10.3390/diagnostics12010061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant central nervous system tumor in pediatric patients. Mainstay of therapy remains surgical resection followed by craniospinal radiation and chemotherapy, although limitations to this therapy are applied in the youngest patients. Clinically, tumors are divided into average and high-risk status on the basis of age, metastasis at diagnosis, and extent of surgical resection. However, technological advances in high-throughput screening have facilitated the analysis of large transcriptomic datasets that have been used to generate the current classification system, dividing patients into four primary subgroups, i.e., WNT (wingless), SHH (sonic hedgehog), and the non-SHH/WNT subgroups 3 and 4. Each subgroup can further be subdivided on the basis of a combination of cytogenetic and epigenetic events, some in distinct signaling pathways, that activate specific phenotypes impacting patient prognosis. Here, we delve deeper into the genetic basis for each subgroup by reviewing the extent of cytogenetic events in key genes that trigger neoplastic transformation or that exhibit oncogenic properties. Each of these discussions is further centered on how these genetic aberrations can be exploited to generate novel targeted therapeutics for each subgroup along with a discussion on challenges that are currently faced in generating said therapies. Our future hope is that through better understanding of subgroup-specific cytogenetic events, the field may improve diagnosis, prognosis, and treatment to improve overall quality of life for these patients.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Kishor K. Bhakat
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-(402)-599-7754
| |
Collapse
|
42
|
Perumal N, Kanchan RK, Doss D, Bastola N, Atri P, Chirravuri-Venkata R, Thapa I, Vengoji R, Maurya SK, Klinkebiel D, Talmon GA, Nasser MW, Batra SK, Mahapatra S. MiR-212-3p functions as a tumor suppressor gene in group 3 medulloblastoma via targeting nuclear factor I/B (NFIB). Acta Neuropathol Commun 2021; 9:195. [PMID: 34922631 PMCID: PMC8684142 DOI: 10.1186/s40478-021-01299-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Haploinsufficiency of chromosome 17p and c-Myc amplification distinguish group 3 medulloblastomas which are associated with early metastasis, rapid recurrence, and swift mortality. Tumor suppressor genes on this locus have not been adequately characterized. We elucidated the role of miR-212-3p in the pathophysiology of group 3 tumors. First, we learned that miR-212-3p undergoes epigenetic silencing by histone modifications in group 3 tumors. Restoring its expression reduced cancer cell proliferation, migration, colony formation, and wound healing in vitro and attenuated tumor burden and improved survival in vivo. MiR-212-3p also triggered c-Myc destabilization and degradation, leading to elevated apoptosis. We then isolated an oncogenic target of miR-212-3p, i.e. NFIB, a nuclear transcription factor implicated in metastasis and recurrence in various cancers. Increased expression of NFIB was confirmed in group 3 tumors and associated with poor survival. NFIB silencing reduced cancer cell proliferation, migration, and invasion. Concurrently, reduced medullosphere formation and stem cell markers (Nanog, Oct4, Sox2, CD133) were noted. These results substantiate the tumor-suppressive role of miR-212-3p in group 3 MB and identify a novel oncogenic target implicated in metastasis and tumor recurrence.
Collapse
Affiliation(s)
- Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Doss
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68124, USA
| | - Noah Bastola
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shailendra K Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
43
|
EHMT2/G9a as an Epigenetic Target in Pediatric and Adult Brain Tumors. Int J Mol Sci 2021; 22:ijms222011292. [PMID: 34681949 PMCID: PMC8539543 DOI: 10.3390/ijms222011292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms, including post-translational modifications of DNA and histones that influence chromatin structure, regulate gene expression during normal development and are also involved in carcinogenesis and cancer progression. The histone methyltransferase G9a (euchromatic histone lysine methyltransferase 2, EHMT2), which mostly mediates mono- and dimethylation by histone H3 lysine 9 (H3K9), influences gene expression involved in embryonic development and tissue differentiation. Overexpression of G9a has been observed in several cancer types, and different classes of G9a inhibitors have been developed as potential anticancer agents. Here, we review the emerging evidence suggesting the involvement of changes in G9a activity in brain tumors, namely glioblastoma (GBM), the main type of primary malignant brain cancer in adults, and medulloblastoma (MB), the most common type of malignant brain cancer in children. We also discuss the role of G9a in neuroblastoma (NB) and the drug development of G9a inhibitors.
Collapse
|
44
|
Mutlu M, Tekin C, Ak Aksoy S, Taskapilioglu MO, Kaya S, Balcin RN, Ocak PE, Kocaeli H, Bekar A, Tolunay S, Tunca B. Long non-coding RNAs as a predictive markers of group 3 medulloblastomas. Neurol Res 2021; 44:232-241. [PMID: 34533098 DOI: 10.1080/01616412.2021.1975223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ObjectiveThe appropriate treatments for the different molecular subgroups of medulloblastomas are challenging to determine. Hence, this study aimed to examine the expression profiles of long non-coding RNAs (LncRNAs) to determine a marker that may be important for treatment selection in these subgroups.MethodsChanges in the expression of LncRNAs in the tissues of patients with medulloblastoma, which are classified into four subgroups according to their clinical characteristics and gene expression profiles, were examined via reverse transcription polymerase chain reaction. Moreover, there association with patient prognosis was evaluated.ResultsThe expression levels of MALAT1 and SNGH16 were significantly higher in patients with group 3 medulloblastoma than in those with other subtypes. Patients with high expression levels of MALAT1 and SNGH16 had a relatively shorter overall survival than those with low expression levels.ConclusionsPatients with group 3 medulloblastoma have a high MALAT1 level, which is associated with poor prognosis. Therefore, MALAT1 can be a new therapeutic target in medulloblastoma.
Collapse
Affiliation(s)
- Melis Mutlu
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
| | | | - Seckin Kaya
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Rabia Nur Balcin
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Pınar Eser Ocak
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Sahsine Tolunay
- Department of Pathology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
45
|
Ku CC, Wuputra K, Kato K, Pan JB, Li CP, Tsai MH, Noguchi M, Nakamura Y, Liu CJ, Chan TF, Hou MF, Wakana S, Wu YC, Lin CS, Wu DC, Yokoyama KK. Deletion of Jdp2 enhances Slc7a11 expression in Atoh-1 positive cerebellum granule cell progenitors in vivo. Stem Cell Res Ther 2021; 12:369. [PMID: 34187574 PMCID: PMC8243712 DOI: 10.1186/s13287-021-02424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
Background The cerebellum is the sensitive region of the brain to developmental abnormalities related to the effects of oxidative stresses. Abnormal cerebellar lobe formation, found in Jun dimerization protein 2 (Jdp2)-knockout (KO) mice, is related to increased antioxidant formation and a reduction in apoptotic cell death in granule cell progenitors (GCPs). Here, we aim that Jdp2 plays a critical role of cerebellar development which is affected by the ROS regulation and redox control. Objective Jdp2-promoter-Cre transgenic mouse displayed a positive signal in the cerebellum, especially within granule cells. Jdp2-KO mice exhibited impaired development of the cerebellum compared with wild-type (WT) mice. The antioxidation controlled gene, such as cystine-glutamate transporter Slc7a11, might be critical to regulate the redox homeostasis and the development of the cerebellum. Methods We generated the Jdp2-promoter-Cre mice and Jdp2-KO mice to examine the levels of Slc7a11, ROS levels and the expressions of antioxidation related genes were examined in the mouse cerebellum using the immunohistochemistry. Results The cerebellum of Jdp2-KO mice displayed expression of the cystine-glutamate transporter Slc7a11, within the internal granule layer at postnatal day 6; in contrast, the WT cerebellum mainly displayed Sla7a11 expression in the external granule layer. Moreover, development of the cerebellar lobes in Jdp2-KO mice was altered compared with WT mice. Expression of Slc7a11, Nrf2, and p21Cip1 was higher in the cerebellum of Jdp2-KO mice than in WT mice. Conclusion Jdp2 is a critical regulator of Slc7a11 transporter during the antioxidation response, which might control the growth, apoptosis, and differentiation of GCPs in the cerebellar lobes. These observations are consistent with our previous study in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02424-4.
Collapse
Affiliation(s)
- Chia-Chen Ku
- Graduate Institute of Medicine, Regenerative Medicine and Cell Therapy Research Center, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 807, Koahsiung, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Regenerative Medicine and Cell Therapy Research Center, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 807, Koahsiung, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Regenerative Medicine and Cell Therapy Research Center, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 807, Koahsiung, Taiwan
| | - Chia-Pei Li
- Graduate Institute of Medicine, Regenerative Medicine and Cell Therapy Research Center, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 807, Koahsiung, Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, Regenerative Medicine and Cell Therapy Research Center, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Michiya Noguchi
- Cell Engineering Division, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 807, Koahsiung, Taiwan.,Department of Gastroenterology, Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.,Division of gastroenterology, Department of Internal Medicine, Kaohsiung University Hospital, 807, Kaohsiung, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ming-Feng Hou
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Shigeharu Wakana
- Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan.,Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Hygo, 650-0047, Japan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Regenerative Medicine and Cell Therapy Research Center, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 807, Koahsiung, Taiwan.,Department of Gastroenterology, Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.,Division of gastroenterology, Department of Internal Medicine, Kaohsiung University Hospital, 807, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Regenerative Medicine and Cell Therapy Research Center, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 807, Koahsiung, Taiwan. .,Department of Gastroenterology, Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
46
|
Natsumeda M, Miyahara H, Yoshimura J, Nakata S, Nozawa T, Ito J, Kanemaru Y, Watanabe J, Tsukamoto Y, Okada M, Oishi M, Hirato J, Wataya T, Ahsan S, Tateishi K, Yamamoto T, Rodriguez FJ, Takahashi H, Hovestadt V, Suva ML, Taylor MD, Eberhart CG, Fujii Y, Kakita A. GLI3 Is Associated With Neuronal Differentiation in SHH-Activated and WNT-Activated Medulloblastoma. J Neuropathol Exp Neurol 2021; 80:129-136. [PMID: 33249504 DOI: 10.1093/jnen/nlaa141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glioma-associated oncogene homolog 3 (GLI3), whose main function is to inhibit GLI1, has been associated with neuronal differentiation in medulloblastoma. However, it is not clear what molecular subtype(s) show increased GLI3 expression. GLI3 levels were assessed by immunohistochemistry in 2 independent cohorts, including a total of 88 cases, and found to be high in both WNT- and SHH-activated medulloblastoma. Analysis of bulk mRNA expression data and single cell RNA sequencing studies confirmed that GLI1 and GLI3 are highly expressed in SHH-activated medulloblastoma, whereas GLI3 but not GLI1 is highly expressed in WNT-activated medulloblastoma. Immunohistochemical analysis has shown that GLI3 is expressed inside the neuronal differentiated nodules of SHH-activated medulloblastoma, whereas GLI1/2 are expressed in desmoplastic areas. In contrast, GLI3 is diffusely expressed in WNT-activated medulloblastoma, whereas GLI1 is suppressed. Our data suggest that GLI3 may be a master regulator of neuronal differentiation and morphology in these subgroups.
Collapse
Affiliation(s)
- Manabu Natsumeda
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Miyahara
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu, Japan.,Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Japan
| | - Junichi Yoshimura
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Nakata
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Takanori Nozawa
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Junko Ito
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Pathology, Brain Research Institute, Niigata University
| | - Yu Kanemaru
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jun Watanabe
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshihiro Tsukamoto
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masayasu Okada
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Oishi
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Junko Hirato
- Department of Pathology, Public Tomioka General Hospital, Tomioka, Japan.,Department of Human Pathology, Gunma University, Maebashi, Japan
| | - Takafumi Wataya
- Department of Human Pathology, Gunma University, Maebashi, Japan
| | - Sama Ahsan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University
| | - Volker Hovestadt
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusettes.,Broad Institute of Harvard and MIT, Cambridge, Massachusettes
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusettes.,Broad Institute of Harvard and MIT, Cambridge, Massachusettes
| | - Michael D Taylor
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Canada
| | | | - Yukihiko Fujii
- From the Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University
| |
Collapse
|
47
|
Riedemann J, Figaji A, Davidson A, Stannard C, Pillay K, Kilborn T, Parkes J. Sequential improvement in paediatric medulloblastoma outcomes in a low-and-middle-income country setting over three decades. SOUTH AFRICAN JOURNAL OF ONCOLOGY 2021. [DOI: 10.4102/sajo.v5i0.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
48
|
Cheng Y, Liao S, Xu G, Hu J, Guo D, Du F, Contreras A, Cai KQ, Peri S, Wang Y, Corney DC, Noronha AM, Chau LQ, Zhou G, Wiest DL, Bellacosa A, Wechsler-Reya RJ, Zhao Y, Yang ZJ. NeuroD1 Dictates Tumor Cell Differentiation in Medulloblastoma. Cell Rep 2021; 31:107782. [PMID: 32579914 PMCID: PMC7357167 DOI: 10.1016/j.celrep.2020.107782] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor cells are characterized by unlimited proliferation and perturbed differentiation. Using single-cell RNA sequencing, we demonstrate that tumor cells in medulloblastoma (MB) retain their capacity to differentiate in a similar way as their normal originating cells, cerebellar granule neuron precursors. Once they differentiate, MB cells permanently lose their proliferative capacity and tumorigenic potential. Differentiated MB cells highly express NeuroD1, a helix-loop-helix transcription factor, and forced expression of NeuroD1 promotes the differentiation of MB cells. The expression of NeuroD1 in bulk MB cells is repressed by trimethylation of histone 3 lysine-27 (H3K27me3). Inhibition of the histone lysine methyltransferase EZH2 prevents H3K27 trimethylation, resulting in increased NeuroD1 expression and enhanced differentiation in MB cells, which consequently reduces tumor growth. These studies reveal the mechanisms underlying MB cell differentiation and provide rationales to treat MB (potentially other malignancies) by stimulating tumor cell differentiation. Cheng et al. demonstrate that medulloblastoma cells retain the capacity to undergo differentiation. The differentiation of tumor cells is regulated by NeuroD1 expression, which is repressed by H3K27me3 in tumor cells. EZH2 inhibitors suppress medulloblastoma growth by stimulating tumor cell differentiation.
Collapse
Affiliation(s)
- Yan Cheng
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA; Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shengyou Liao
- Bioinformatics Research Group, Chinese Academy of Sciences, Beijing, China
| | - Gang Xu
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Jian Hu
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA; Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Duancheng Guo
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fang Du
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Alejandra Contreras
- Blood Cell Development and Function, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Suraj Peri
- Biostatistics and Bioinformatics Research Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - David C Corney
- Genomics and Molecular Genetics, GENEWIZ Co., South Plainfield, NJ, USA
| | | | - Lianne Q Chau
- Tumor Initiation& Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ginger Zhou
- Genomics and Molecular Genetics, GENEWIZ Co., South Plainfield, NJ, USA
| | - David L Wiest
- Blood Cell Development and Function, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Alfonso Bellacosa
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation& Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yi Zhao
- Bioinformatics Research Group, Chinese Academy of Sciences, Beijing, China
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Veo B, Danis E, Pierce A, Wang D, Fosmire S, Sullivan KD, Joshi M, Khanal S, Dahl N, Karam S, Serkova N, Venkataraman S, Vibhakar R. Transcriptional control of DNA repair networks by CDK7 regulates sensitivity to radiation in MYC-driven medulloblastoma. Cell Rep 2021; 35:109013. [PMID: 33910002 PMCID: PMC12023313 DOI: 10.1016/j.celrep.2021.109013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022] Open
Abstract
MYC-driven medulloblastoma is a major therapeutic challenge due to frequent metastasis and a poor 5-year survival rate. MYC gene amplification results in transcriptional dysregulation, proliferation, and survival of malignant cells. To identify therapeutic targets in MYC-amplified medulloblastoma, we employ a CRISPR-Cas9 essentiality screen targeting 1,140 genes. We identify CDK7 as a mediator of medulloblastoma tumorigenesis. Using chemical inhibitors and genetic depletion, we observe cessation of tumor growth in xenograft mouse models and increases in apoptosis. The results are attributed to repression of a core set of MYC-driven transcriptional programs mediating DNA repair. CDK7 inhibition alters RNA polymerase II (RNA Pol II) and MYC association at DNA repair genes. Blocking CDK7 activity sensitizes cells to ionizing radiation leading to accrual of DNA damage, extending survival and tumor latency in xenograft mouse models. Our studies establish the selective inhibition of MYC-driven medulloblastoma by CDK7 inhibition combined with radiation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | - Nathan Dahl
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Sana Karam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Natalie Serkova
- Department of Radiology, University of Colorado Denver, Aurora, CO, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA; Department of Neurosurgery, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
50
|
Liu H, Sun Y, O'Brien JA, Franco-Barraza J, Qi X, Yuan H, Jin W, Zhang J, Gu C, Zhao Z, Yu C, Feng S, Yu X. Necroptotic astrocytes contribute to maintaining stemness of disseminated medulloblastoma through CCL2 secretion. Neuro Oncol 2021; 22:625-638. [PMID: 31729527 DOI: 10.1093/neuonc/noz214] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) with metastases at diagnosis and recurrence correlates with poor prognosis. Unfortunately, the molecular mechanism underlying metastases growth has received less attention than primary therapy-naïve MB. Though astrocytes have been frequently detected in brain tumors, their roles in regulating the stemness properties of MB stem-like cells (MBSCs) in disseminated lesions remain elusive. METHODS Effects of tumor-associated astrocyte (TAA)-secreted chemokine C-C ligand 2 (CCL2) on MBSC self-renewal was determined by immunostaining analysis. Necroptosis of TAA was examined by measuring necrosome activity. Alterations in Notch signaling were examined after inhibition of CCL2. Progression of MBSC-derived tumors was evaluated after pharmaceutical blockage of necroptosis. RESULTS TAA, as the essential components of disseminated tumor, produced high levels of CCL2 to shape the inflammation microenvironment, which stimulated the enrichment of MBSCs in disseminated MB. In particular, CCL2 played a pivotal role in maintaining stem-like properties via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3)-mediated activation of Notch signaling. Loss of CCL2/C-C chemokine receptor 2 (CCR2) function repressed the JAK2/STAT3-Notch pathway and impaired MBSC proliferation, leading to a dramatic reduction of stemness, tumorigenicity, and metastasizing capability. Furthermore, necroptosis-induced CCL2 release depended on activation of receptor-interacting protein 1 (RIP1)/RIP3/mixed lineage kinase domain-like pseudokinase (MLKL) in TAA, which promoted the oncogenic phenotype. Blockade of necroptosis resulted in CCL2 deprivation and compromised MBSC self-proliferation, indicating MBSCs outsourced CCL2 from necroptotic TAA. Finally, CCL2 was upregulated in high-risk stages of MB, further supporting its value as a prognostic indicator. CONCLUSION These findings highlighted the critical role of CCL2/CCR2 in Notch signaling activation in MBSCs and revealed a necroptosis-associated glial cytokine microenvironment driving stemness maintenance in disseminations.Key Points1. TAA-derived CCL2 promoted stemness in disseminated MBSCs through Notch signaling activation via the JAK2/STAT3 pathway.2. TAA released CCL2 in a RIP1/RIP3/MLKL-dependent manner leading to necroptosis.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.,Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Youliang Sun
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jenny A O'Brien
- Department of Internal Medicine, Temple University Health System, Philadelphia, Pennsylvania, USA.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Xueling Qi
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Science Cancer Hospital/National Cancer Center, Beijing, China
| | - Wei Jin
- Department of Pathology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junping Zhang
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chunyu Gu
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhao
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunjiang Yu
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Shiyu Feng
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|