1
|
Shen L, Huang H, Yan D, Ye Y, Hu J. NRDN: A novel nuclear degradation tag for targeted protein regulation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112529. [PMID: 40287097 DOI: 10.1016/j.plantsci.2025.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
The regulation of protein levels in plants is essential for improving agricultural productivity. Recent studies have explored inducible degradation systems in plants, with some showing promising advancements. This study introduces the NRDN degradation tag as a novel tool for regulating protein stability within the nucleus in Arabidopsis thaliana. Unlike traditional gene knockout methods, NRDN offers real-time, dynamic control over protein degradation, enabling precise studies of nuclear-localized proteins. This discovery provides a valuable tool for regulating protein stability in specific cellular compartments, which presents a versatile approach for dissecting complex cellular processes and offers broad applications in functional genomics and cellular research.
Collapse
Affiliation(s)
- Liting Shen
- Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huizhen Huang
- Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daqi Yan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongsheng Ye
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jun Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Hou J, Du K, Li J, Li Z, Cao S, Zhang S, Huang W, Liu H, Yang X, Sun S, Mo S, Qin T, Zhang X, Yin S, Nie X, Lu X. Research trends in the use of nanobodies for cancer therapy. J Control Release 2025; 381:113454. [PMID: 39922288 DOI: 10.1016/j.jconrel.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Although there are many challenges in using nanobodies for treating various complex tumor diseases, including rapid renal clearance and the complex blood-brain barrier environment, nanobodies have shown great potential due to their high antigen affinity, excellent tumor penetration ability, and favorable safety profile. Since the discovery of the variable domain (VHH) of camelid heavy-chain antibodies in 1993, nanobodies have been progressively applied to various cancer therapy platforms, such as antagonistic drugs and targeting agents for effector domains. In recent years, several nanobody-based drugs, including Caplacizumab, KN-035, and Ozoralizumab, have been approved for clinical use. Among them, KN-035 is used for treating advanced solid tumors, and these advancements have propelled nanobody development to new heights. Currently, nanobodies are being rapidly applied to the treatment of a wide range of diseases, from viral infections to cancer, demonstrating strong advantages in areas such as targeted protein degradation, bioimaging, nanobody-drug conjugation, bispecific T-cell engagers, and vaccine applications. Bibliometric tools, including CiteSpace, HisCite Pro, and Alluvial Generator, were employed to trace the historical development of nanobodies in cancer research. The contributions of authors, countries, and institutions in this field were analyzed, and research hotspots and emerging trends were identified through keyword analysis and influential articles. Future trends were also predicted. This study provides a unique, comprehensive, and objective perspective on the use of nanobodies in tumor research, laying a foundation for future research directions and offering valuable insights for researchers in the field.
Collapse
Affiliation(s)
- Jun Hou
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Kejiang Du
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou 545006, China
| | - Jinling Li
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shaorui Cao
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shilin Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Wenxing Huang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Heng Liu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xiaomei Yang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shuyang Sun
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shanzhao Mo
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Tianyu Qin
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xilei Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shihua Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China.
| | - Xinyu Nie
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230002, China.
| | - Xiaoling Lu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
3
|
Wang Y, Zhang G, Rong P, Guo P, Huang S, Hang Y, Wang P, Tang L, Li X, Tang X, Ding S, Huang X, Liu J, Sun L. Intrinsic/proximal cell surface marker logic-gated extracellular targeted protein degradation in specific cell population. Mol Ther 2025:S1525-0016(25)00371-5. [PMID: 40340249 DOI: 10.1016/j.ymthe.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/14/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Molecular tether-mediated extracellular targeted protein degradation (eTPD) presents an innovative technology and underlies a promising drug modality. However, to precisely implement eTPD within specific cell compartments remains a significant challenge. As eTPD depends on the degrader molecule expression and activity, we first seek to expand the panel of potential eTPD degraders. To this end, more than 50 receptors with variable tissue distributions are screened for identification of those with substantial endocytic rates. We subsequently assemble the bispecific, "Selected endocytic carrier-targeting chimeras (SecTAC)," and validate their efficacies to program the target cells to internalize membrane/extracellular protein cargos (or nucleic acids). Moreover, administration of a SecTAC for removal of excessive immunoglobulin G via a currently validated, emerging degrader (CD71) leads to evident therapeutic effect in a mouse lupus model. To further enhance cell-targeting specificity, we next develop logic-gated eTPD (LOG-eTPD) based on a combination of chimeras that indirectly couple cargo and degrader via another cell surface gating marker. Particularly, we find that a selective surface marker from the neighboring cells also may be exploited as input for LOG-eTPD in a therapeutically relevant context. Taken together, the present work has laid a strong foundation for developing eTPD agents that combine high potency with precision and safety.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Guiquan Zhang
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China; College of Life Sciences, Nanjing Medical University, Changzhou 213000, China
| | - Ping Rong
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center at Medical School of Nanjing University, Nanjing 210061, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Shisheng Huang
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China; College of Life Sciences, Nanjing Medical University, Changzhou 213000, China
| | - Yang Hang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center at Medical School of Nanjing University, Nanjing 210061, China
| | - Lin Tang
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaojing Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Shuai Ding
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xingxu Huang
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou 213000, China; Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; College of Life Sciences, Nanjing Medical University, Changzhou 213000, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center at Medical School of Nanjing University, Nanjing 210061, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
4
|
Guo K, Merdes A. Mechanisms of cortical microtubule organization in epidermal keratinocytes. Cell Mol Life Sci 2025; 82:193. [PMID: 40325225 PMCID: PMC12052723 DOI: 10.1007/s00018-025-05714-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Microtubules in many differentiated cell types are reorganized from a radial, centrosome-bound array into a cell type-specific, non-centrosomal network. In epidermal keratinocytes, a subset of microtubules is organized from the cell cortex. These microtubules are anchored to desmosomes, with ninein serving as a linker protein. Details of this organization are poorly understood. We used immunofluorescence expansion microscopy to visualize directly the contact between cortical microtubules and desmosomes in murine skin tissue. Microtubule bound laterally to desmosomes, or with their ends at mixed polarity. Experiments including time-lapse microscopy of EB3-GFP, microtubule regrowth after depolymerization, and expression of ectopic ninein that was sequestered to the plasma membrane by a CAAX sequence motif, indicated that nucleation of microtubules doesn't occur at the cortex. Experimental severing of microtubules by spastin led to accumulation of microtubules next to ectopic, cortical ninein. Overall, our data suggest that microtubules accumulate by translocation from non-cortical sites towards sites of cortical ninein.
Collapse
Affiliation(s)
- Keying Guo
- Centre de Biologie Intégrative, CNRS &, Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France
| | - Andreas Merdes
- Centre de Biologie Intégrative, CNRS &, Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
5
|
Segura RC, Gallaud E, Sythoff AVB, Aavula K, Taylor JA, Vahdat D, Otte F, Pielage J, Cabernard C. Asymmetry of centrosomes in Drosophila neural stem cells requires protein phosphatase 4. Mol Biol Cell 2025; 36:ar58. [PMID: 40072519 DOI: 10.1091/mbc.e25-01-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Asymmetric cell division is used by stem cells to create diverse cell types while self-renewing the stem cell population. Biased segregation of molecularly distinct centrosomes could provide a mechanism to maintain stem cell fate, induce cell differentiation or both. However, the molecular mechanisms generating molecular and functional asymmetric centrosomes remain incompletely understood. Here, we show that in asymmetrically dividing fly neural stem cells, protein phosphatase 4 (Pp4) is necessary for correct centrosome asymmetry establishment during mitosis, and microtubule organizing center (MTOC) maintenance in interphase. Using in vivo live-cell imaging, we show that while wild-type neural stem cells always maintain one active MTOC, Pp4 mutant neuroblasts contain two inactive centrioles in interphase. Furthermore, centrosomes of Pp4 mutant neural stem cells mature in mitosis but fail to correctly transfer the centriolar protein Centrobin (Cnb) from the mother to the daughter centriole. Using superresolution imaging, we find that phosphomimetic Centrobin fails to accurately relocalize in mitosis. We propose that Pp4 regulates the timely relocalization of Cnb in mitosis to establish two molecularly distinct centrosomes. In addition, Pp4 is also necessary to maintain MTOC activity in interphase, ensuring biased centrosome segregation. Mechanistically, Pp4 could regulate centrosome asymmetry by dephosphorylating both Cnb and gamma-Tubulin.
Collapse
Affiliation(s)
- Roberto Carlos Segura
- Department of Biology, University of Washington, Life Sciences Building, Seattle, WA 98105
| | - Emmanuel Gallaud
- Department of Biology, University of Washington, Life Sciences Building, Seattle, WA 98105
| | | | - Kumar Aavula
- Department of Neurobiology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jennifer A Taylor
- Department of Biology, University of Washington, Life Sciences Building, Seattle, WA 98105
| | - Danielle Vahdat
- Department of Biology, University of Washington, Life Sciences Building, Seattle, WA 98105
| | - Fabian Otte
- Department of Biology, University of Washington, Life Sciences Building, Seattle, WA 98105
| | - Jan Pielage
- Department of Neurobiology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Sciences Building, Seattle, WA 98105
| |
Collapse
|
6
|
Rojas-Pierce M, Bednarek SY. Manipulation of targeted protein degradation in plant biology. Biochem Soc Trans 2025; 53:BST20230939. [PMID: 40209052 DOI: 10.1042/bst20230939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
Inducible protein degradation systems are an important but untapped resource for the study of protein function in plant cells. Unlike mutagenesis or transcriptional control, regulated degradation of proteins of interest allows the study of the biological mechanisms of highly dynamic cellular processes involving essential proteins. While systems for targeted protein degradation are available for research and therapeutics in animals, there are currently limited options in plant biology. Targeted protein degradation systems rely on target ubiquitination by E3 ubiquitin ligases. Systems that are available or being developed in plants can be distinguished primarily by the type of E3 ubiquitin ligase involved, including those that utilize Cullin-RING ligases, bacterial novel E3 ligases, and N-end rule pathway E3 ligases, or they can be controlled by proteolysis targeting chimeras. Target protein ubiquitination leads to degradation by the proteasome or targeting to the vacuole, with both pathways being ubiquitous and important for the endogenous control of protein abundance in plants. Targeted proteolysis approaches for plants will likely be an important tool for basic research and to yield novel traits for crop biotechnology.
Collapse
Affiliation(s)
- Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, U.S.A
| | | |
Collapse
|
7
|
de Queiroz BR, Laghrissi H, Rajeev S, Blot L, De Graeve F, Dehecq M, Hallegger M, Dag U, Dunoyer de Segonzac M, Ramialison M, Cazevieille C, Keleman K, Ule J, Hubstenberger A, Besse F. Axonal RNA localization is essential for long-term memory. Nat Commun 2025; 16:2560. [PMID: 40089499 PMCID: PMC11910521 DOI: 10.1038/s41467-025-57651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Localization of mRNAs to neuronal terminals, coupled to local translation, has emerged as a prevalent mechanism controlling the synaptic proteome. However, the physiological regulation and function of this process in the context of mature in vivo memory circuits has remained unclear. Here, we combined synaptosome RNA profiling with whole brain high-resolution imaging to uncover mRNAs with different localization patterns in the axons of Drosophila Mushroom Body memory neurons, some exhibiting regionalized, input-dependent, recruitment along axons. By integrating transcriptome-wide binding approaches and functional assays, we show that the conserved Imp RNA binding protein controls the transport of mRNAs to Mushroom Body axons and characterize a mutant in which this transport is selectively impaired. Using this unique mutant, we demonstrate that axonal mRNA localization is required for long-term, but not short-term, behavioral memory. This work uncovers circuit-dependent mRNA targeting in vivo and demonstrates the importance of local RNA regulation in memory consolidation.
Collapse
Affiliation(s)
- Bruna R de Queiroz
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Hiba Laghrissi
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Seetha Rajeev
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Lauren Blot
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Fabienne De Graeve
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Marine Dehecq
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Martina Hallegger
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ugur Dag
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | | | - Mirana Ramialison
- Murdoch Children's Research Institute, Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
- Australian Regenerative Medicine Institute, Clayton, VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | | | - Krystyna Keleman
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Jernej Ule
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Arnaud Hubstenberger
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Florence Besse
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France.
| |
Collapse
|
8
|
Dorogova NV, Fedorova SA. Drosophila as a Promising In Vivo Research Model for the Application and Development of Targeted Protein Inactivation Technologies. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70046. [PMID: 40091490 DOI: 10.1002/arch.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/09/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Technologies for controlled protein targeting allow the selective manipulations of proteins resulting in their degradation and/or loss of function. Over the past two decades, these technologies have overcome the limitations of genetic methods and have become powerful tools in biological research and the search for new therapeutic approaches to disease treatment. Various methods of protein degradation and inactivation have been successfully applied to a model organism such as Drosophila melanogaster. In this article, we overview the capabilities and prospects of the Drosophila in vivo model for testing and developing modern methods of controlled protein targeting, analyzing their efficacy at the organism level and solving fundamental biological problems.
Collapse
Affiliation(s)
- Natalia V Dorogova
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
| | - Svetlana A Fedorova
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
| |
Collapse
|
9
|
Leem J, Lemonnier T, Khutsaidze A, Tian L, Xing X, Bai S, Nottoli T, Mogessie B. A versatile cohesion manipulation system reveals CENP-A dysfunction accelerates female reproductive age-related egg aneuploidy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640570. [PMID: 40060401 PMCID: PMC11888391 DOI: 10.1101/2025.02.27.640570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Female reproductive aging is accompanied by a dramatic rise in the incidence of egg aneuploidy. Premature loss of chromosome cohesion proteins and untimely separation of chromosomes is thought to underly high rates egg aneuploidy during maternal aging. However, because chromosome cohesion loss occurs gradually over female reproductive lifespan and cytoskeletal defects alone can predispose eggs to chromosomal abnormalities, the root causes of exponential rise in egg aneuploidy at advanced reproductive ages remain a mystery. Here, we applied high-resolution live imaging to visualize for the first time cohesion protein dynamics underpinning meiotic chromosome segregation. To discover proteins whose dysfunction accelerates aneuploidies associated with female reproductive aging, we innovated the first experimental system in which chemically induced cohesion reduction rapidly triggers aging-like chromosomal abnormalities in young eggs. By integrating this direct cohesion manipulation system with quantitative high-resolution microscopy and targeted protein degradation tools, we identified the centromeric protein CENP-A as a new factor whose aging-like depletion causes a dramatic rise in premature separation of sister chromatids. Our work illuminates cohesion loss-independent origins of age-related egg aneuploidy and provides new avenues to discover therapeutic targets for extending the female reproductive lifespan.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Tom Lemonnier
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Ani Khutsaidze
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Lei Tian
- Yale Genome Editing Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Suxia Bai
- Department of Comparative Medicine, Yale Genome Editing Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale Genome Editing Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Ou L, Setegne MT, Elliot J, Shen F, Dassama LMK. Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics. Chem Rev 2025; 125:2120-2183. [PMID: 39818743 PMCID: PMC11870016 DOI: 10.1021/acs.chemrev.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as "biologics") as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.
Collapse
Affiliation(s)
- Lisha Ou
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Mekedlawit T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Jeandele Elliot
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
11
|
Luo M, Zhu S, Dang H, Wen Q, Niu R, Long J, Wang Z, Tong Y, Ning Y, Yuan M, Xu G. Genetically-encoded targeted protein degradation technology to remove endogenous condensation-prone proteins and improve crop performance. Nat Commun 2025; 16:1159. [PMID: 39880812 PMCID: PMC11779824 DOI: 10.1038/s41467-025-56570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation. For example, a transgenic E3TCD1 fusion with Teosinte branched 1 (TB1) degrades the native TB1 protein, resulting in increased tiller numbers in rice. Additionally, conditional degradation of the negative defense regulator Early Flowering 3 via a pathogen-responsive ProTBF1-uORFsTBF1 cassette enhances rice blast resistance without affecting flowering time in the absence of pathogen. Unlike prevailing targeted protein degradation strategies, the TCD system does not rely on small molecules, antibodies, or genetic knock-in fusion tags, demonstrating its promise as a transgene-based approach for optimizing crop performance.
Collapse
Affiliation(s)
- Ming Luo
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Hua Dang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Qing Wen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Jiawei Long
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Yongjia Tong
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
- RNA Institute, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Segura RC, Gallaud E, von Barnau Sythoff A, Aavula K, Taylor JA, Vahdat D, Pielage J, Cabernard C. Protein phosphatase 4 is required for centrosome asymmetry in fly neural stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633270. [PMID: 39868139 PMCID: PMC11761633 DOI: 10.1101/2025.01.15.633270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Asymmetric cell division is used by stem cells to create diverse cell types while self-renewing the stem cell population. Biased segregation of molecularly distinct centrosomes could provide a mechanism to maintain stem cell fate, induce cell differentiation or both. However, the molecular mechanisms generating molecular and functional asymmetric centrosomes remain incompletely understood. Here, we show that in asymmetrically dividing fly neural stem cells, Protein phosphatase 4 (Pp4) is necessary for correct centrosome asymmetry establishment during mitosis, and microtubule organizing center (MTOC) maintenance in interphase. Using in-vivo live cell imaging we show that while wild type neural stem cells always maintain one active MTOC, Pp4 mutant neuroblasts contain two inactive centrioles in interphase. Furthermore, centrosomes of Pp4 mutant neural stem cells mature in mitosis but fail to correctly transfer the centriolar protein Centrobin (Cnb) from the mother to the daughter centriole. Using superresolution imaging, we find that phosphomimetic Centrobin fails to accurately relocalize in mitosis. We propose that Pp4 regulates the timely relocalization of Cnb in mitosis to establish two molecularly distinct centrosomes. In addition, Pp4 is also necessary to maintain MTOC activity in interphase, ensuring biased centrosome segregation. Mechanistically, Pp4 could regulate centrosome asymmetry by dephosphorylating both Cnb and gamma-Tubulin. SIGNIFICANCE STATEMENT Asymmetric centrosome segregation occurs in stem cells and has been linked with cell fate decisions. Protein phosphatase 4 (Pp4), a conserved Serine/Threonine phosphatase, regulates centrosome asymmetry in Drosophila neural stem cells by acting upon gamma tubulin and Centrobin. Pp4 regulates centrosome asymmetry establishment in mitosis and interphase, necessary for biased centrosome segregation.
Collapse
|
13
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. J Cell Biol 2024; 223:e202406119. [PMID: 39373700 PMCID: PMC11461286 DOI: 10.1083/jcb.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Ell CM, Safyan A, Chayengia M, Kustermann MMM, Lorenz J, Schächtle M, Pyrowolakis G. A genome-engineered tool set for Drosophila TGF-β/BMP signaling studies. Development 2024; 151:dev204222. [PMID: 39494616 DOI: 10.1242/dev.204222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Ligands of the TGF-β/BMP superfamily are crucially involved in the regulation of growth, patterning and organogenesis and can act as long-range morphogens. Essential for understanding TGF-β/BMP signaling dynamics and regulation are tools that allow monitoring and manipulating pathway components at physiological expression levels and endogenous spatiotemporal patterns. We used genome engineering to generate a comprehensive library of endogenously epitope- or fluorescent-tagged versions of receptors, co-receptors, transcription factors and key feedback regulators of the Drosophila BMP and Activin signaling pathways. We demonstrate that the generated alleles are biologically active and can be used for assessing tissue and subcellular distribution of the corresponding proteins. Furthermore, we show that the genomic platforms can be used for in locus structure-function and cis-regulatory analyses. Finally, we present a complementary set of protein binder-based tools, which allow visualization as well as manipulation of the stability and subcellular localization of epitope-tagged proteins, providing new tools for the analysis of BMP signaling and beyond.
Collapse
Affiliation(s)
- Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Abu Safyan
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, 79108 Freiburg, Germany
| | - Mrinal Chayengia
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Jennifer Lorenz
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Schächtle
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| | - George Pyrowolakis
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, HMH, Habsburgerstr. 49, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Ye T, Alamgir A, Robertus CM, Colina D, Monticello C, Donahue TC, Hong L, Vincoff S, Goel S, Fekkes P, Camargo LM, Lam K, Heyes J, Putnam D, Alabi CA, Chatterjee P, DeLisa MP. Programmable protein degraders enable selective knockdown of pathogenic β-catenin subpopulations in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622803. [PMID: 39605463 PMCID: PMC11601283 DOI: 10.1101/2024.11.10.622803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aberrant activation of Wnt signaling results in unregulated accumulation of cytosolic β-catenin, which subsequently enters the nucleus and promotes transcription of genes that contribute to cellular proliferation and malignancy. Here, we sought to eliminate pathogenic β-catenin from the cytosol using designer ubiquibodies (uAbs), chimeric proteins composed of an E3 ubiquitin ligase and a target-binding domain that redirect intracellular proteins to the proteasome for degradation. To accelerate uAb development, we leveraged a protein language model (pLM)-driven algorithm called SaLT&PepPr to computationally design "guide" peptides with affinity for β-catenin, which were subsequently fused to the catalytic domain of a human E3 called C-terminus of Hsp70-interacting protein (CHIP). Expression of the resulting peptide-guided uAbs in colorectal cancer cells led to the identification of several designs that significantly reduced the abnormally stable pool of free β-catenin in the cytosol and nucleus while preserving the normal membrane-associated subpopulation. This selective knockdown of pathogenic β-catenin suppressed Wnt/β-catenin signaling and impaired tumor cell survival and proliferation. Furthermore, one of the best degraders selectively decreased cytosolic but not membrane-associated β-catenin levels in livers of BALB/c mice following delivery as a lipid nanoparticle (LNP)-encapsulated mRNA. Collectively, these findings reveal the unique ability of uAbs to selectively eradicate abnormal proteins in vitro and in vivo and open the door to peptide-programmable biologic modulators of other disease-causing proteins.
Collapse
Affiliation(s)
- Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Azmain Alamgir
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Cara M. Robertus
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
| | - Darianna Colina
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 USA
| | - Connor Monticello
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
| | - Thomas Connor Donahue
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Lauren Hong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Shrey Goel
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Peter Fekkes
- UbiquiTx, 750 Main Street, Cambridge, MA 02139 USA
| | | | - Kieu Lam
- Genevant Sciences Corporation, 887 Great Northern Way, Vancouver, BC, V5T 4T5 Canada
| | - James Heyes
- Genevant Sciences Corporation, 887 Great Northern Way, Vancouver, BC, V5T 4T5 Canada
| | - David Putnam
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
| | - Christopher A. Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Computer Science, Duke University, Durham, NC 27708 USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708 USA
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
16
|
Vukovic D, Winkelvoß D, Kapp JN, Hänny AC, Bürgisser H, Riermeier L, Udovcic A, Tiefenboeck P, Plückthun A. Protein degradation kinetics measured by microinjection and live-cell fluorescence microscopy. Sci Rep 2024; 14:27153. [PMID: 39511251 PMCID: PMC11544240 DOI: 10.1038/s41598-024-76224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
We have developed a method combining microinjection and automated fluorescence microscopy to continuously assess the degradation rate, subcellular localization and intracellular concentration of protein analytes at the single-cell level. Cells are unperturbed and grown in unaltered environmental conditions and show high viability. The injection of analytes at defined ratios and concentrations allows for a clearly defined starting point of degradation, without the entanglement of biosynthesis/uptake, often encountered in existing methods. The possibility to evaluate, add, or remove post-translational modifications prior to injection represents a powerful tool to assess minute protein degradation rate changes with high precision and allowed us to determine the absolute degradation rates caused by N-degron pathway engagement, with a focus on the role of acetylation. The low degradation rate of eGFP was found to be caused by inefficient N-terminal proteasomal unfolding. We moreover quantified the surprisingly strong influences of commonly used peptide tags and detected high variation between fluorescent proteins with regard to both protein degradation and subcellular localization. Furthermore, we have validated the use of chemically coupled dyes as robust reporters for protein degradation, and elucidated the significance of their membrane-permeability, thereby extending the applicability of our method to any protein of interest.
Collapse
Affiliation(s)
- David Vukovic
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Dorothea Winkelvoß
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas N Kapp
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Anna-Carina Hänny
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Héloïse Bürgisser
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Luca Riermeier
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Anto Udovcic
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Peter Tiefenboeck
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
17
|
Aguilar G, Bauer M, Vigano MA, Schnider ST, Brügger L, Jiménez-Jiménez C, Guerrero I, Affolter M. Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing. Dev Cell 2024; 59:2672-2686.e5. [PMID: 38971155 DOI: 10.1016/j.devcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.
Collapse
Affiliation(s)
- Gustavo Aguilar
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Milena Bauer
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - M Alessandra Vigano
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Sophie T Schnider
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Lukas Brügger
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Carlos Jiménez-Jiménez
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - Markus Affolter
- Growth & Development, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
18
|
Taylor JD, Barrett N, Martinez Cuesta S, Cassidy K, Pachl F, Dodgson J, Patel R, Eriksson TM, Riley A, Burrell M, Bauer C, Rees DG, Cimbro R, Zhang AX, Minter RR, Hunt J, Legg S. Targeted protein degradation using chimeric human E2 ubiquitin-conjugating enzymes. Commun Biol 2024; 7:1179. [PMID: 39300128 DOI: 10.1038/s42003-024-06803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Proteins can be targeted for degradation by engineering biomolecules that direct them to the eukaryotic ubiquitination machinery. For instance, the fusion of an E3 ubiquitin ligase to a suitable target binding domain creates a 'biological Proteolysis-Targeting Chimera' (bioPROTAC). Here we employ an analogous approach where the target protein is recruited directly to a human E2 ubiquitin-conjugating enzyme via an attached target binding domain. Through rational design and screening we develop E2 bioPROTACs that induce the degradation of the human intracellular proteins SHP2 and KRAS. Using global proteomics, we characterise the target-specific and wider effects of E2 vs. VHL-based fusions. Taking SHP2 as a model target, we also employ a route to bioPROTAC discovery based on protein display libraries, yielding a degrader with comparatively weak affinity capable of suppressing SHP2-mediated signalling.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK.
| | - Nathalie Barrett
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Sergio Martinez Cuesta
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Katelyn Cassidy
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - Fiona Pachl
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - James Dodgson
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Radhika Patel
- Centre for Genomics Research, Dynamic Omics, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Tuula M Eriksson
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Aidan Riley
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Matthew Burrell
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Christin Bauer
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - D Gareth Rees
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Raffaello Cimbro
- Centre for Genomics Research, Dynamic Omics, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Andrew X Zhang
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - Ralph R Minter
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - James Hunt
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK.
| | - Sandrine Legg
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| |
Collapse
|
19
|
Barykina NV, Carey EM, Oliinyk OS, Nimmerjahn A, Verkhusha VV. Destabilized near-infrared fluorescent nanobodies enable background-free targeting of GFP-based biosensors for imaging and manipulation. Nat Commun 2024; 15:7788. [PMID: 39242569 PMCID: PMC11379940 DOI: 10.1038/s41467-024-51857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Near-infrared (NIR) probes are highly sought after as fluorescent tags for multicolor cellular and in vivo imaging. Here we develop small NIR fluorescent nanobodies, termed NIR-FbLAG16 and NIR-FbLAG30, enabling background-free visualization of various GFP-derived probes and biosensors. We also design a red-shifted variant, NIR-Fb(718), to simultaneously target several antigens within the NIR spectral range. Leveraging the antigen-stabilizing property of the developed NIR-Fbs, we then create two modular systems for precise control of gene expression in GFP-labeled cells. Applying the NIR-Fbs in vivo, we target cells expressing GFP and the calcium biosensor GCaMP6 in the somatosensory cortex of transgenic mice. Simultaneously tracking calcium activity and the reference signal from NIR-FbLAGs bound to GCaMP6 enables ratiometric deep-brain in vivo imaging. Altogether, NIR-FbLAGs present a promising approach for imaging and manipulating various processes in live cells and behaving animals expressing GFP-based probes.
Collapse
Affiliation(s)
- Natalia V Barykina
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA
| | - Erin M Carey
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Olena S Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Vladislav V Verkhusha
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA.
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
| |
Collapse
|
20
|
Huang L, Rojas-Pierce M. Rapid depletion of target proteins in plants by an inducible protein degradation system. THE PLANT CELL 2024; 36:3145-3161. [PMID: 38446628 PMCID: PMC11371150 DOI: 10.1093/plcell/koae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Inducible protein knockdowns are excellent tools to test the function of essential proteins in short time scales and to capture the role of proteins in dynamic events. Current approaches destroy or sequester proteins by exploiting plant biological mechanisms such as the activity of photoreceptors for optogenetics or auxin-mediated ubiquitination in auxin degrons. It follows that these are not applicable for plants as light and auxin are strong signals for plant cells. We describe here an inducible protein degradation system in plants named E3-DART for E3-targeted Degradation of Plant Proteins. The E3-DART system is based on the specific and well-characterized interaction between the Salmonella-secreted protein H1 (SspH1) and its human target protein kinase N1 (PKN1). This system harnesses the E3 catalytic activity of SspH1 and the SspH1-binding activity of the homology region 1b (HR1b) domain from PKN1. Using Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana), we show that a chimeric protein containing the leucine-rich repeat and novel E3 ligase domains of SspH1 efficiently targets protein fusions of varying sizes containing HR1b for degradation. Target protein degradation was induced by transcriptional control of the chimeric E3 ligase using a glucocorticoid transactivation system, and target protein depletion was detected as early as 3 h after induction. This system could be used to study the loss of any plant protein with high-temporal resolution and may become an important tool in plant cell biology.
Collapse
Affiliation(s)
- Linzhou Huang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
21
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against trans-synaptic signaling via extracellular vesicles. J Cell Biol 2024; 223:e202405025. [PMID: 38842573 PMCID: PMC11157088 DOI: 10.1083/jcb.202405025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | | | | | - Mark Rozencwaig
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Avital A. Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
22
|
Ran M, Yang W, Faryad Khan MU, Li T, Pan G. Microsporidia secretory effectors and their roles in pathogenesis. J Eukaryot Microbiol 2024; 71:e13046. [PMID: 39228342 DOI: 10.1111/jeu.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024]
Abstract
Microsporidia, a group of unicellular eukaryotic parasites, rely intensely on secretory effectors for successful invasion and proliferation within host cells. This review focuses on the identification, characterization, and functional roles of effectors, including secretory proteins and microRNAs. The adhesion proteins like the Ricin-B-lectin facilitate initial invasion, which binds to the host cell surface. Once inside, microsporidia deploy a range of effectors to modulate host immune responses, such as serpin proteins, and redirect host cell metabolism to meet the parasite's nutritional needs through hexokinase. Some effectors such as microRNAs, alter the host gene expression to create a more favorable intracellular parasitic environment. In conclusion, the secretory effectors of microsporidia play a pivotal role spanning from host cell invasion to intracellular establishment. In the future, more effectors secreted by microsporidia will be studied, which will not only help to elucidate the molecular mechanism of pathogenic manipulation of the host but also help to provide the potential targets for anti-parasitic treatments.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wenxin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Muhammad Usman Faryad Khan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Höffgen KS, Dabel J, Konken CP, Depke DA, Hermann S, Dörner W, Schelhaas S, Schäfers M, Mootz HD. Combining poly-epitope MoonTags and labeled nanobodies for signal amplification in cell-specific PET imaging in vivo. Nucl Med Biol 2024; 136-137:108937. [PMID: 38964257 DOI: 10.1016/j.nucmedbio.2024.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Immunorecognition provides an excellent basis for targeted imaging techniques covering a wide range from basic research to diagnostics and from single cells to whole organisms. Fluorescence- or radioisotope-labeled antibodies, antibody fragments or nanobodies enable a direct signal readout upon binding and allow for versatile imaging from microscopy to whole-body imaging. However, as the signal intensity directly correlates with the number of labeled antibodies bound to their epitopes (1:1 binding), sensitivity for low-expressing epitopes can be limiting for visualization. For the first time, we developed poly-epitope tags with multiple copies (1 to 7) of a short peptide epitope, specifically the MoonTag, that are recognized by a labeled nanobody and aimed at signal amplification in microscopy and cell-specific PET imaging. In transiently transfected HeLa cells or stably transduced A4573 cells we characterized complex formation and in vitro signal amplification. Indeed, using fluorescently and radioactively labeled nanobodies we found an approximately linear signal amplification with increasing numbers of epitope copies in vitro. To test the poly-epitope approach in vivo, A4573 tumor cells were injected subcutaneously into the shoulder of NSG mice, with A4573 tumor cells expressing a poly-epitope of 7 MoonTags on one side and WT cells on the other side. Using a [68Ga]-labeled NODAGA-conjugated MoonTag nanobody, we performed PET/CT imaging at day 8-9 after tumor implantation. Specific binding of a [68Ga]-labeled NODAGA-conjugated MoonTag nanobody was observed in 7xMoonTag tumors (1.7 ± 0.5%ID/mL) by PET imaging, showing significantly higher radiotracer accumulation compared to the WT tumors (1.1 ± 0.3%ID/mL; p < 0.01). Ex vivo gamma counter measurements confirmed significantly higher uptake in 7xMoonTag tumors compared to WT tumors (p < 0.001). In addition, MoonTag nanobody binding was detected by autoradiography which was spatially matched with histological analysis of the tumor tissues. In conclusion, we expect nanobody-based poly-epitope tag strategies to be widely applicable for multimodal imaging techniques given the advantageous properties of nanobodies and their amenability to genetic and chemical engineering.
Collapse
Affiliation(s)
| | - Jennifer Dabel
- University of Münster, European Institute for Molecular Imaging (EIMI), Münster, Germany
| | - Christian P Konken
- University of Münster, European Institute for Molecular Imaging (EIMI), Münster, Germany; University Hospital Münster, Department of Nuclear Medicine, Münster, Germany
| | - Dominic A Depke
- University of Münster, European Institute for Molecular Imaging (EIMI), Münster, Germany
| | - Sven Hermann
- University of Münster, European Institute for Molecular Imaging (EIMI), Münster, Germany
| | - Wolfgang Dörner
- University of Münster, Institute of Biochemistry, Münster, Germany
| | - Sonja Schelhaas
- University of Münster, European Institute for Molecular Imaging (EIMI), Münster, Germany
| | - Michael Schäfers
- University of Münster, European Institute for Molecular Imaging (EIMI), Münster, Germany; University Hospital Münster, Department of Nuclear Medicine, Münster, Germany.
| | - Henning D Mootz
- University of Münster, Institute of Biochemistry, Münster, Germany.
| |
Collapse
|
24
|
Weinberg ZY, Soliman SS, Kim MS, Shah DH, Chen IP, Ott M, Lim WA, El-Samad H. De novo-designed minibinders expand the synthetic biology sensing repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575267. [PMID: 38293112 PMCID: PMC10827046 DOI: 10.1101/2024.01.12.575267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Synthetic and chimeric receptors capable of recognizing and responding to user-defined antigens have enabled "smart" therapeutics based on engineered cells. These cell engineering tools depend on antigen sensors which are most often derived from antibodies. Advances in the de novo design of proteins have enabled the design of protein binders with the potential to target epitopes with unique properties and faster production timelines compared to antibodies. Building upon our previous work combining a de novo-designed minibinder of the Spike protein of SARS-CoV-2 with the synthetic receptor synNotch (SARSNotch), we investigated whether minibinders can be readily adapted to a diversity of cell engineering tools. We show that the Spike minibinder LCB1 easily generalizes to a next-generation proteolytic receptor SNIPR that performs similarly to our previously reported SARSNotch. LCB1-SNIPR successfully enables the detection of live SARS-CoV-2, an improvement over SARSNotch which can only detect cell-expressed Spike. To test the generalizability of minibinders to diverse applications, we tested LCB1 as an antigen sensor for a chimeric antigen receptor (CAR). LCB1-CAR enabled CD8+ T cells to cytotoxically target Spike-expressing cells. We further demonstrate that two other minibinders directed against the clinically relevant epidermal growth factor receptor are able to drive CAR-dependent cytotoxicity with efficacy similar to or better than an existing antibody-based CAR. Our findings suggest that minibinders represent a novel class of antigen sensors that have the potential to dramatically expand the sensing repertoire of cell engineering tools.
Collapse
Affiliation(s)
| | | | - Matthew S. Kim
- Tetrad Gradudate Program, UCSF, San Francisco CA
- Cell Design Institute, San Francisco CA
| | - Devan H. Shah
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA
| | - Irene P. Chen
- Gladstone Institutes, San Francisco CA
- Department of Medicine, UCSF, San Francisco CA
| | - Melanie Ott
- Gladstone Institutes, San Francisco CA
- Department of Medicine, UCSF, San Francisco CA
- Chan Zuckerberg Biohub–San Francisco, San Francisco CA
| | - Wendell A. Lim
- Cell Design Institute, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Hana El-Samad
- Department of Biochemistry & Biophysics, UCSF, San Francisco CA
- Cell Design Institute, San Francisco CA
- Chan Zuckerberg Biohub–San Francisco, San Francisco CA
- Altos Labs, San Francisco CA
| |
Collapse
|
25
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599638. [PMID: 38948705 PMCID: PMC11212998 DOI: 10.1101/2024.06.18.599638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two protocadherins, Dachsous (Ds) and Fat (Ft), regulate organ growth in Drosophila via the Hippo pathway. Ds and Ft bind heterotypically to regulate the abundance and subcellular localization of a 'core complex' consisting of Dachs, Dlish and Approximated. This complex localizes to the junctional cortex where it promotes growth by repressing the pathway kinase Warts. Ds is believed to promote growth by recruiting and stabilizing the core complex at the junctional cortex, while Ft represses growth by promoting degradation of core complex components. Here, we examine the functions of intracellular domains of Ds and Ft and their relationship to the core complex. While Ds promotes accumulation of the core complex proteins in cortical puncta, it is not required for core complex assembly. Indeed, the core complex assembles maximally in the absence of both Ds and Ft. Furthermore, while Ds promotes growth in the presence of Ft, it represses growth in the absence of Ft by removing the core complex from the junctional cortex. Ft similarly recruits core complex components, however it normally promotes their degradation. Our findings reveal that Ds and Ft constrain tissue growth by repressing the default 'on' state of the core complex.
Collapse
|
26
|
Kim M, Bhargava HK, Shavey GE, Lim WA, El-Samad H, Ng AH. Degron-Based bioPROTACs for Controlling Signaling in CAR T Cells. ACS Synth Biol 2024; 13:2313-2327. [PMID: 38991546 PMCID: PMC11334183 DOI: 10.1021/acssynbio.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a tremendous impact in the clinic, but potent signaling through the CAR can be detrimental to treatment safety and efficacy. The use of protein degradation to control CAR signaling can address these issues in preclinical models. Existing strategies for regulating CAR stability rely on small molecules to induce systemic degradation. In contrast to small molecule regulation, genetic circuits offer a more precise method to control CAR signaling in an autonomous cell-by-cell fashion. Here, we describe a programmable protein degradation tool that adopts the framework of bioPROTACs, heterobifunctional proteins that are composed of a target recognition domain fused to a domain that recruits the endogenous ubiquitin proteasome system. We develop novel bioPROTACs that utilize a compact four-residue degron and demonstrate degradation of cytosolic and membrane protein targets using either a nanobody or synthetic leucine zipper as a protein binder. Our bioPROTACs exhibit potent degradation of CARs and can inhibit CAR signaling in primary human T cells. We demonstrate the utility of our bioPROTACs by constructing a genetic circuit to degrade the tyrosine kinase ZAP70 in response to recognition of a specific membrane-bound antigen. This circuit can disrupt CAR T cell signaling only in the presence of a specific cell population. These results suggest that bioPROTACs are powerful tools for expanding the CAR T cell engineering toolbox.
Collapse
Affiliation(s)
- Matthew
S. Kim
- Tetrad
Graduate Program, University of California
San Francisco, San Francisco, California 94158, United States
- Cell
Design Institute, University of California
San Francisco, San Francisco, California 94158, United States
- Department
of Biochemistry and Biophysics, University
of California San Francisco, San
Francisco, California 94158, United States
| | - Hersh K. Bhargava
- Cell
Design Institute, University of California
San Francisco, San Francisco, California 94158, United States
- Department
of Biochemistry and Biophysics, University
of California San Francisco, San
Francisco, California 94158, United States
- Biophysics
Graduate Program, University of California
San Francisco, San Francisco, California 94158, United States
| | - Gavin E. Shavey
- Cell
Design Institute, University of California
San Francisco, San Francisco, California 94158, United States
| | - Wendell A. Lim
- Cell
Design Institute, University of California
San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Hana El-Samad
- Cell
Design Institute, University of California
San Francisco, San Francisco, California 94158, United States
- Department
of Biochemistry and Biophysics, University
of California San Francisco, San
Francisco, California 94158, United States
- Chan-Zuckerberg
Biohub, San Francisco, California 94158, United States
- Altos
Labs Inc., Redwood City, California, 94065, United States
| | - Andrew H. Ng
- Cell
Design Institute, University of California
San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Molecular Biology, Genentech Inc., South San Francisco, California 94080, United States
| |
Collapse
|
27
|
Gelová Z, Ingles-Prieto A, Bohstedt T, Frommelt F, Chi G, Chang YN, Garcia J, Wolf G, Azzollini L, Tremolada S, Scacioc A, Hansen JS, Serrano I, Droce A, Bernal JC, Burgess-Brown NA, Carpenter EP, Dürr KL, Kristensen P, Geertsma ER, Štefanić S, Scarabottolo L, Wiedmer T, Puetter V, Sauer DB, Superti-Furga G. Protein Binder Toolbox for Studies of Solute Carrier Transporters. J Mol Biol 2024; 436:168665. [PMID: 38878854 DOI: 10.1016/j.jmb.2024.168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.
Collapse
Affiliation(s)
- Zuzana Gelová
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tina Bohstedt
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julio Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Andreea Scacioc
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jesper S Hansen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iciar Serrano
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Aida Droce
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elisabeth P Carpenter
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Saša Štefanić
- Nanobody Service Facility, University of Zurich, AgroVet-Strickhof, Eschikon, Switzerland
| | | | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Chen T, Greene GH, Motley J, Mwimba M, Luo GZ, Xu G, Karapetyan S, Xiang Y, Liu C, He C, Dong X. m 6A modification plays an integral role in mRNA stability and translation during pattern-triggered immunity. Proc Natl Acad Sci U S A 2024; 121:e2411100121. [PMID: 39116132 PMCID: PMC11331096 DOI: 10.1073/pnas.2411100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Plants employ distinct mechanisms to respond to environmental changes. Modification of mRNA by N 6-methyladenosine (m6A), known to affect the fate of mRNA, may be one such mechanism to reprogram mRNA processing and translatability upon stress. However, it is difficult to distinguish a direct role from a pleiotropic effect for this modification due to its prevalence in RNA. Through characterization of the transient knockdown-mutants of m6A writer components and mutants of specific m6A readers, we demonstrate the essential role that m6A plays in basal resistance and pattern-triggered immunity (PTI). A global m6A profiling of mock and PTI-induced Arabidopsis plants as well as formaldehyde fixation and cross-linking immunoprecipitation-sequencing of the m6A reader, EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) showed that while dynamic changes in m6A modification and binding by ECT2 were detected upon PTI induction, most of the m6A sites and their association with ECT2 remained static. Interestingly, RNA degradation assay identified a dual role of m6A in stabilizing the overall transcriptome while facilitating rapid turnover of immune-induced mRNAs during PTI. Moreover, polysome profiling showed that m6A enhances immune-associated translation by binding to the ECT2/3/4 readers. We propose that m6A plays a positive role in plant immunity by destabilizing defense mRNAs while enhancing their translation efficiency to create a transient surge in the production of defense proteins.
Collapse
Affiliation(s)
- Tianyuan Chen
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - George H. Greene
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Jonathan Motley
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Musoki Mwimba
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Guan-Zheng Luo
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Guoyong Xu
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Sargis Karapetyan
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Yezi Xiang
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Chang Liu
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Chuan He
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Xinnian Dong
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| |
Collapse
|
29
|
Gillard G, Röper K. β-H-Spectrin is a key component of an apical-medial hub of proteins during cell wedging in tube morphogenesis. J Cell Sci 2024; 137:jcs261946. [PMID: 38988298 PMCID: PMC11361641 DOI: 10.1242/jcs.261946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. We previously identified that interplay between the apical-medial actomyosin, which drives apical constriction, and the underlying longitudinal microtubule array has a key role during tube budding of salivary glands in the Drosophila embryo. At this microtubule-actomyosin interface, a hub of proteins accumulates, and we have shown before that this hub includes the microtubule-actin crosslinker Shot and the microtubule minus-end-binding protein Patronin. Here, we identify two actin-crosslinkers, β-heavy (H)-Spectrin (also known as Karst) and Filamin (also known as Cheerio), and the multi-PDZ-domain protein Big bang as components of the protein hub. We show that tissue-specific degradation of β-H-Spectrin leads to reduction of apical-medial F-actin, Shot, Patronin and Big bang, as well as concomitant defects in apical constriction, but that residual Patronin is still sufficient to assist microtubule reorganisation. We find that, unlike Patronin and Shot, neither β-H-Spectrin nor Big bang require microtubules for their localisation. β-H-Spectrin is instead recruited via binding to apical-medial phosphoinositides, and overexpression of the C-terminal pleckstrin homology domain-containing region of β-H-Spectrin (β-H-33) displaces endogenous β-H-Spectrin and leads to strong morphogenetic defects. This protein hub therefore requires the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining apical constriction during tubulogenesis.
Collapse
Affiliation(s)
- Ghislain Gillard
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
30
|
Wang J, Chistov G, Zhang J, Huntington B, Salem I, Sandholu A, Arold ST. P-NADs: PUX-based NAnobody degraders for ubiquitin-independent degradation of target proteins. Heliyon 2024; 10:e34487. [PMID: 39130484 PMCID: PMC11315185 DOI: 10.1016/j.heliyon.2024.e34487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Targeted protein degradation (TPD) allows cells to maintain a functional proteome and to rapidly adapt to changing conditions. Methods that repurpose TPD for the deactivation of specific proteins have demonstrated significant potential in therapeutic and research applications. Most of these methods are based on proteolysis targeting chimaeras (PROTACs) which link the protein target to an E3 ubiquitin ligase, resulting in the ubiquitin-based degradation of the target protein. In this study, we introduce a method for ubiquitin-independent TPD based on nanobody-conjugated plant ubiquitin regulatory X domain-containing (PUX) adaptor proteins. We show that the PUX-based NAnobody Degraders (P-NADs) can unfold a target protein through the Arabidopsis and human orthologues of the CDC48 unfoldase without the need for ubiquitination or initiating motifs. We demonstrate that P-NAD plasmids can be transfected into a human cell line, where the produced P-NADs use the endogenous CDC48 machinery for ubiquitin-independent TPD of a 143 kDa multidomain protein. Thus, P-NADs pave the road for ubiquitin-independent therapeutic TPD approaches. In addition, the modular P-NAD design combined with in vitro and cellular assays provide a versatile platform for elucidating functional aspects of CDC48-based TPD in plants and animals.
Collapse
Affiliation(s)
- Jun Wang
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Junrui Zhang
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Brandon Huntington
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Israa Salem
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Anandsukeerthi Sandholu
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Yang H, Chen W. Protease-Responsive Toolkit for Conditional Targeted Protein Degradation. ACS Synth Biol 2024; 13:2073-2080. [PMID: 38889440 DOI: 10.1021/acssynbio.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BioPROTACs are heterobifunctional proteins designed for targeted protein degradation. While they offer a potential therapeutic avenue for modulating disease-related proteins, the current strategies are static in nature and lack the ability to modulate protein degradation dynamically. Here, we introduce a synthetic framework for dynamic fine-tuning of target protein levels using protease control switches. The idea is to utilize proteases as an interfacing layer between exogenous inputs and protein degradation by modulating the recruitment of target proteins to E3 ligase by separating the two binding domains on bioPROTACs. By decoupling the external inputs from the primary protease layer, new conditional degradation phenotypes can be readily adapted with minimal modifications to the design. We demonstrate the adaptability of this approach using two highly efficient "bioPROTAC" systems: AdPROM and IpaH9.8-based Ubiquibodies. Using the TEV protease as the transducer, we can interface small-molecule and optogenetic inputs for conditional targeted protein degradation. Our findings highlight the potential of bioPROTACs with protease-responsive linkers as a versatile tool for conditional targeted protein degradation.
Collapse
Affiliation(s)
- Hopen Yang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
32
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
33
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against transsynaptic signaling functions for extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.22.537920. [PMID: 38746182 PMCID: PMC11092503 DOI: 10.1101/2023.04.22.537920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto, Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; Department of Cell and Systems Biology University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | | |
Collapse
|
34
|
Singh A, Thale S, Leibner T, Lamparter L, Ricker A, Nüsse H, Klingauf J, Galic M, Ohlberger M, Matis M. Dynamic interplay of microtubule and actomyosin forces drive tissue extension. Nat Commun 2024; 15:3198. [PMID: 38609383 PMCID: PMC11014958 DOI: 10.1038/s41467-024-47596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Sameedha Thale
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Tobias Leibner
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Lucas Lamparter
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Milos Galic
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Mario Ohlberger
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany.
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany.
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
35
|
Poirson J, Cho H, Dhillon A, Haider S, Imrit AZ, Lam MHY, Alerasool N, Lacoste J, Mizan L, Wong C, Gingras AC, Schramek D, Taipale M. Proteome-scale discovery of protein degradation and stabilization effectors. Nature 2024; 628:878-886. [PMID: 38509365 DOI: 10.1038/s41586-024-07224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Targeted protein degradation and stabilization are promising therapeutic modalities because of their potency, versatility and their potential to expand the druggable target space1,2. However, only a few of the hundreds of E3 ligases and deubiquitinases in the human proteome have been harnessed for this purpose, which substantially limits the potential of the approach. Moreover, there may be other protein classes that could be exploited for protein stabilization or degradation3-5, but there are currently no methods that can identify such effector proteins in a scalable and unbiased manner. Here we established a synthetic proteome-scale platform to functionally identify human proteins that can promote the degradation or stabilization of a target protein in a proximity-dependent manner. Our results reveal that the human proteome contains a large cache of effectors of protein stability. The approach further enabled us to comprehensively compare the activities of human E3 ligases and deubiquitinases, identify and characterize non-canonical protein degraders and stabilizers and establish that effectors have vastly different activities against diverse targets. Notably, the top degraders were more potent against multiple therapeutically relevant targets than the currently used E3 ligases cereblon and VHL. Our study provides a functional catalogue of stability effectors for targeted protein degradation and stabilization and highlights the potential of induced proximity screens for the discovery of new proximity-dependent protein modulators.
Collapse
Affiliation(s)
- Juline Poirson
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Hanna Cho
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Akashdeep Dhillon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shahan Haider
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ahmad Zoheyr Imrit
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mandy Hiu Yi Lam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Lacoste
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lamisa Mizan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cassandra Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Lane IC, Kembuan G, Carreiro J, Kann MC, Lin W, Bouffard AA, Kreuzer J, Morris R, Schneider EM, Kim JY, Zou C, Salas-Benito D, Gasser JA, Leick MB, Słabicki M, Haas W, Maus MV, Jan M. Genetic retargeting of E3 ligases to enhance CAR T cell therapy. Cell Chem Biol 2024; 31:338-348.e5. [PMID: 37989314 PMCID: PMC10922718 DOI: 10.1016/j.chembiol.2023.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFβ signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFβ and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.
Collapse
Affiliation(s)
- Isabel C Lane
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriele Kembuan
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jeannie Carreiro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Kann
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - William Lin
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Amanda A Bouffard
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Johannes Kreuzer
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Morris
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Joanna Y Kim
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Charles Zou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Diego Salas-Benito
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica A Gasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark B Leick
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wilhelm Haas
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Max Jan
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
37
|
Niederhuber MJ, Leatham-Jensen M, McKay DJ. The SWI/SNF nucleosome remodeler constrains enhancer activity during Drosophila wing development. Genetics 2024; 226:iyad196. [PMID: 37949841 PMCID: PMC10847718 DOI: 10.1093/genetics/iyad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Chromatin remodeling is central to the dynamic changes in gene expression that drive cell fate determination. During development, the sets of enhancers that are accessible for use change globally as cells transition between stages. While transcription factors and nucleosome remodelers are known to work together to control enhancer accessibility, it is unclear how the short stretches of DNA that they individually unmask yield the kilobase-sized accessible regions characteristic of active enhancers. Here, we performed a genetic screen to investigate the role of nucleosome remodelers in control of dynamic enhancer activity. We find that the Drosophila Switch/Sucrose Non-Fermenting complex, BAP, is required for repression of a temporally dynamic enhancer, brdisc. Contrary to expectations, we find that the BAP-specific subunit Osa is dispensable for mediating changes in chromatin accessibility between the early and late stages of wing development. Instead, we find that Osa is required to constrain the levels of brdisc activity when the enhancer is normally active. Genome-wide profiling reveals that Osa directly binds brdisc as well as thousands of other developmentally dynamic regulatory sites, including multiple genes encoding components and targets of the Notch signaling pathway. Transgenic reporter analyses demonstrate that Osa is required for activation and for constraint of different sets of target enhancers in the same cells. Moreover, Osa loss results in hyperactivation of the Notch ligand Delta and development of ectopic sensory structures patterned by Notch signaling early in development. Together, these findings indicate that proper constraint of enhancer activity is necessary for regulation of dose-dependent developmental events.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
38
|
Arnold B, Riegger RJ, Okuda EK, Slišković I, Keller M, Bakisoglu C, McNicoll F, Zarnack K, Müller-McNicoll M. hGRAD: A versatile "one-fits-all" system to acutely deplete RNA binding proteins from condensates. J Cell Biol 2024; 223:e202304030. [PMID: 38108808 PMCID: PMC10726014 DOI: 10.1083/jcb.202304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Nuclear RNA binding proteins (RBPs) are difficult to study because they often belong to large protein families and form extensive networks of auto- and crossregulation. They are highly abundant and many localize to condensates with a slow turnover, requiring long depletion times or knockouts that cannot distinguish between direct and indirect or compensatory effects. Here, we developed a system that is optimized for the rapid degradation of nuclear RBPs, called hGRAD. It comes as a "one-fits-all" plasmid, and integration into any cell line with endogenously GFP-tagged proteins allows for an inducible, rapid, and complete knockdown. We show that the nuclear RBPs SRSF3, SRSF5, SRRM2, and NONO are completely cleared from nuclear speckles and paraspeckles within 2 h. hGRAD works in various cell types, is more efficient than previous methods, and does not require the expression of exogenous ubiquitin ligases. Combining SRSF5 hGRAD degradation with Nascent-seq uncovered transient transcript changes, compensatory mechanisms, and an effect of SRSF5 on transcript stability.
Collapse
Affiliation(s)
- Benjamin Arnold
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ricarda J. Riegger
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ellen Kazumi Okuda
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- International Max Planck Research School for Cellular Biophysics, Frankfurt am Main, Germany
| | - Irena Slišković
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Keller
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cem Bakisoglu
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - François McNicoll
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
39
|
Hoffman M, Cheah KMH, Wittrup KD. A Novel Gain-of-Signal Assay to Detect Targeted Protein Degradation. ACS Synth Biol 2024; 13:220-229. [PMID: 38171010 DOI: 10.1021/acssynbio.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Targeted protein degradation offers a promising avenue for expanding therapeutic development to previously inaccessible proteins of interest by regulating the target abundance rather than activity. However, current methods to screen for effective degraders serve as major bottlenecks for the development of degrader therapies. Here, we develop a novel assay platform for identification and characterization of macromolecules capable of inducing targeted degradation of oncogenic phosphatase SHP2. Unlike traditional reporter assays that utilize loss-of-signal readouts to detect degradation, our assay platform expresses a robust fluorescence signal in response to the depletion of a target protein and incorporates additional measures intended to prevent undesirable false positives. Using this gain-of-signal assay, we successfully identified novel macromolecule SHP2 degraders from a screen of 192 candidates and proposed design principles for further development of macromolecule degraders. This work demonstrates a proof of concept for gain-of-signal assays as a tool for screening targeted degrader candidates.
Collapse
Affiliation(s)
- Megan Hoffman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keith Ming Hong Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Ogawa Y, Ueda TP, Obara K, Nishimura K, Kamura T. Targeted Protein Degradation Systems: Controlling Protein Stability Using E3 Ubiquitin Ligases in Eukaryotic Species. Cells 2024; 13:175. [PMID: 38247866 PMCID: PMC10814424 DOI: 10.3390/cells13020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This review explores various methods for modulating protein stability to achieve target protein degradation, which is a crucial aspect in the study of biological processes and drug design. Thirty years have passed since the introduction of heat-inducible degron cells utilizing the N-end rule, and methods for controlling protein stability using the ubiquitin-proteasome system have moved from academia to industry. This review covers protein stability control methods, from the early days to recent advancements, and discusses the evolution of techniques in this field. This review also addresses the challenges and future directions of protein stability control techniques by tracing their development from the inception of protein stability control methods to the present day.
Collapse
Affiliation(s)
| | | | | | - Kohei Nishimura
- Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan; (Y.O.); (T.P.U.); (K.O.)
| | - Takumi Kamura
- Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan; (Y.O.); (T.P.U.); (K.O.)
| |
Collapse
|
41
|
Juan T, Bellec M, Cardoso B, Athéa H, Fukuda N, Albu M, Günther S, Looso M, Stainier DYR. Control of cardiac contractions using Cre-lox and degron strategies in zebrafish. Proc Natl Acad Sci U S A 2024; 121:e2309842121. [PMID: 38194447 PMCID: PMC10801847 DOI: 10.1073/pnas.2309842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
Cardiac contractions and hemodynamic forces are essential for organ development and homeostasis. Control over cardiac contractions can be achieved pharmacologically or optogenetically. However, these approaches lack specificity or require direct access to the heart. Here, we compare two genetic approaches to control cardiac contractions by modulating the levels of the essential sarcomeric protein Tnnt2a in zebrafish. We first recombine a newly generated tnnt2a floxed allele using multiple lines expressing Cre under the control of cardiomyocyte-specific promoters, and show that it does not recapitulate the tnnt2a/silent heart mutant phenotype in embryos. We show that this lack of early cardiac contraction defects is due, at least in part, to the long half-life of tnnt2a mRNA, which masks the gene deletion effects until the early larval stages. We then generate an endogenous Tnnt2a-eGFP fusion line that we use together with the zGRAD system to efficiently degrade Tnnt2a in all cardiomyocytes. Using single-cell transcriptomics, we find that Tnnt2a depletion leads to cardiac phenotypes similar to those observed in tnnt2a mutants, with a loss of blood and pericardial flow-dependent cell types. Furthermore, we achieve conditional degradation of Tnnt2a-eGFP by splitting the zGRAD protein into two fragments that, when combined with the cpFRB2-FKBP system, can be reassembled upon rapamycin treatment. Thus, this Tnnt2a degradation line enables non-invasive control of cardiac contractions with high spatial and temporal specificity and will help further understand how they shape organ development and homeostasis.
Collapse
Affiliation(s)
- Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
- Cardio-Pulmonary Institute, Bad Nauheim61231, Germany
| | - Maëlle Bellec
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Bárbara Cardoso
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Héloïse Athéa
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Nana Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Stefan Günther
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
- Cardio-Pulmonary Institute, Bad Nauheim61231, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
- Cardio-Pulmonary Institute, Bad Nauheim61231, Germany
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
- Cardio-Pulmonary Institute, Bad Nauheim61231, Germany
| |
Collapse
|
42
|
Tan WJ, Hawley HR, Wilson SJ, Fitzsimons HL. Deciphering the roles of subcellular distribution and interactions involving the MEF2 binding region, the ankyrin repeat binding motif and the catalytic site of HDAC4 in Drosophila neuronal morphogenesis. BMC Biol 2024; 22:2. [PMID: 38167120 PMCID: PMC10763444 DOI: 10.1186/s12915-023-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Dysregulation of nucleocytoplasmic shuttling of histone deacetylase 4 (HDAC4) is associated with several neurodevelopmental and neurodegenerative disorders. Consequently, understanding the roles of nuclear and cytoplasmic HDAC4 along with the mechanisms that regulate nuclear entry and exit is an area of concerted effort. Efficient nuclear entry is dependent on binding of the transcription factor MEF2, as mutations in the MEF2 binding region result in cytoplasmic accumulation of HDAC4. It is well established that nuclear exit and cytoplasmic retention are dependent on 14-3-3-binding, and mutations that affect binding are widely used to induce nuclear accumulation of HDAC4. While regulation of HDAC4 shuttling is clearly important, there is a gap in understanding of how the nuclear and cytoplasmic distribution of HDAC4 impacts its function. Furthermore, it is unclear whether other features of the protein including the catalytic site, the MEF2-binding region and/or the ankyrin repeat binding motif influence the distribution and/or activity of HDAC4 in neurons. Since HDAC4 functions are conserved in Drosophila, and increased nuclear accumulation of HDAC4 also results in impaired neurodevelopment, we used Drosophila as a genetic model for investigation of HDAC4 function. RESULTS Here we have generated a series of mutants for functional dissection of HDAC4 via in-depth examination of the resulting subcellular distribution and nuclear aggregation, and correlate these with developmental phenotypes resulting from their expression in well-established models of neuronal morphogenesis of the Drosophila mushroom body and eye. We found that in the mushroom body, forced sequestration of HDAC4 in the nucleus or the cytoplasm resulted in defects in axon morphogenesis. The actions of HDAC4 that resulted in impaired development were dependent on the MEF2 binding region, modulated by the ankyrin repeat binding motif, and largely independent of an intact catalytic site. In contrast, disruption to eye development was largely independent of MEF2 binding but mutation of the catalytic site significantly reduced the phenotype, indicating that HDAC4 acts in a neuronal-subtype-specific manner. CONCLUSIONS We found that the impairments to mushroom body and eye development resulting from nuclear accumulation of HDAC4 were exacerbated by mutation of the ankyrin repeat binding motif, whereas there was a differing requirement for the MEF2 binding site and an intact catalytic site. It will be of importance to determine the binding partners of HDAC4 in nuclear aggregates and in the cytoplasm of these tissues to further understand its mechanisms of action.
Collapse
Affiliation(s)
- Wei Jun Tan
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Hannah R Hawley
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Sarah J Wilson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helen L Fitzsimons
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
43
|
Pimenta-Marques A, Perestrelo T, Reis-Rodrigues P, Duarte P, Ferreira-Silva A, Lince-Faria M, Bettencourt-Dias M. Ana1/CEP295 is an essential player in the centrosome maintenance program regulated by Polo kinase and the PCM. EMBO Rep 2024; 25:102-127. [PMID: 38200359 PMCID: PMC10897187 DOI: 10.1038/s44319-023-00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024] Open
Abstract
Centrioles are part of centrosomes and cilia, which are microtubule organising centres (MTOC) with diverse functions. Despite their stability, centrioles can disappear during differentiation, such as in oocytes, but little is known about the regulation of their structural integrity. Our previous research revealed that the pericentriolar material (PCM) that surrounds centrioles and its recruiter, Polo kinase, are downregulated in oogenesis and sufficient for maintaining both centrosome structural integrity and MTOC activity. We now show that the expression of specific components of the centriole cartwheel and wall, including ANA1/CEP295, is essential for maintaining centrosome integrity. We find that Polo kinase requires ANA1 to promote centriole stability in cultured cells and eggs. In addition, ANA1 expression prevents the loss of centrioles observed upon PCM-downregulation. However, the centrioles maintained by overexpressing and tethering ANA1 are inactive, unlike the MTOCs observed upon tethering Polo kinase. These findings demonstrate that several centriole components are needed to maintain centrosome structure. Our study also highlights that centrioles are more dynamic than previously believed, with their structural stability relying on the continuous expression of multiple components.
Collapse
Affiliation(s)
- Ana Pimenta-Marques
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
- iNOVA4Health | NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Tania Perestrelo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Patricia Reis-Rodrigues
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Ana Ferreira-Silva
- iNOVA4Health | NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Mariana Lince-Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | | |
Collapse
|
44
|
Starkie DO, Arber C, Baker T, Lightwood DJ, Wray S. Antibody-mediated degradation of 4R-tau restores mitochondrial membrane polarization in human induced pluripotent stem cell-derived neurons with the MAPT 10+16 mutation. MAbs 2024; 16:2436102. [PMID: 39665388 PMCID: PMC11790244 DOI: 10.1080/19420862.2024.2436102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Microtubule-associated protein tau is inextricably linked to a group of clinically diverse neurodegenerative diseases termed tauopathies. The ratio balance of the major tau splicing isoform groups (3 R- and 4 R-tau) is critical in maintaining healthy neurons. An imbalance causing excess 4 R tau is associated with diseases such as progressive supranuclear palsy and frontotemporal dementia. The mechanisms by which increased 4 R results in neuronal dysfunction and neurodegeneration are not fully understood, and progress has been limited partly by a lack of suitable tools to investigate tau isoform imbalance. This work generated novel 3 R- and 4 R-specific antibody tools and 4 R-tau degrading intracellular antibody fragment "degrabodies". These were used to probe the molecular mechanisms of excess 4 R-tau in disease-mutant induced pluripotent stem cell-derived neurons. For the first time, we demonstrate a causative link between excess 4 R-tau and mitochondrial membrane hyperpolarization with wide-ranging potential for elucidating novel therapeutic approaches to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Dale O. Starkie
- Antibody Discovery and Optimization, UCB Pharma, Slough, Berkshire, UK
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Terry Baker
- Antibody Discovery and Optimization, UCB Pharma, Slough, Berkshire, UK
| | | | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
45
|
Joest EF, Tampé R. Design principles for engineering light-controlled antibodies. Trends Biotechnol 2023; 41:1501-1517. [PMID: 37507295 DOI: 10.1016/j.tibtech.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023]
Abstract
Engineered antibodies are essential tools for research and advanced pharmacy. In the development of therapeutics, antibodies are excellent candidates as they offer both target recognition and modulation. Thanks to the latest advances in biotechnology, light-activated antibody fragments can be constructed to control spontaneous antigen interaction with high spatiotemporal precision. To implement conditional antigen binding, several optogenetic and optochemical engineering concepts have recently been developed. Here, we highlight the various strategies and discuss the features of opto-conditional antibodies. Each concept offers intrinsic advantages beneficial to different applications. In summary, the novel design approaches constitute a complementary toolset to promote current and upcoming antibody technologies with ultimate precision.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany.
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany.
| |
Collapse
|
46
|
Fletcher A, Clift D, de Vries E, Martinez Cuesta S, Malcolm T, Meghini F, Chaerkady R, Wang J, Chiang A, Weng SHS, Tart J, Wong E, Donohoe G, Rawlins P, Gordon E, Taylor JD, James L, Hunt J. A TRIM21-based bioPROTAC highlights the therapeutic benefit of HuR degradation. Nat Commun 2023; 14:7093. [PMID: 37925433 PMCID: PMC10625600 DOI: 10.1038/s41467-023-42546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023] Open
Abstract
Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein, which functions as an RNA regulator. Overexpression of HuR correlates with high grade tumours and poor patient prognosis, implicating it as an attractive therapeutic target. However, an effective small molecule antagonist to HuR for clinical use remains elusive. Here, a single domain antibody (VHH) that binds HuR with low nanomolar affinity was identified and shown to inhibit HuR binding to RNA. This VHH was used to engineer a TRIM21-based biological PROTAC (bioPROTAC) that could degrade endogenous HuR. Significantly, HuR degradation reverses the tumour-promoting properties of cancer cells in vivo by altering the HuR-regulated proteome, highlighting the benefit of HuR degradation and paving the way for the development of HuR-degrading therapeutics. These observations have broader implications for degrading intractable therapeutic targets, with bioPROTACs presenting a unique opportunity to explore targeted-protein degradation through a modular approach.
Collapse
Affiliation(s)
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Emma de Vries
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Sergio Martinez Cuesta
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Raghothama Chaerkady
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Junmin Wang
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Abby Chiang
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Shao Huan Samuel Weng
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jonathan Tart
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Philip Rawlins
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Leo James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - James Hunt
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
47
|
Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies - an ongoing success story of small binders in biological research. J Cell Sci 2023; 136:jcs261395. [PMID: 37937477 DOI: 10.1242/jcs.261395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
A milestone in the field of recombinant binding molecules was achieved 30 years ago with the discovery of single-domain antibodies from which antigen-binding variable domains, better known as nanobodies (Nbs), can be derived. Being only one tenth the size of conventional antibodies, Nbs feature high affinity and specificity, while being highly stable and soluble. In addition, they display accessibility to cryptic sites, low off-target accumulation and deep tissue penetration. Efficient selection methods, such as (semi-)synthetic/naïve or immunized cDNA libraries and display technologies, have facilitated the isolation of Nbs against diverse targets, and their single-gene format enables easy functionalization and high-yield production. This Review highlights recent advances in Nb applications in various areas of biological research, including structural biology, proteomics and high-resolution and in vivo imaging. In addition, we provide insights into intracellular applications of Nbs, such as live-cell imaging, biosensors and targeted protein degradation.
Collapse
Affiliation(s)
- Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Reutlingen, Germany
| | - Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
48
|
Bisia AM, Costello I, Xypolita ME, Harland LTG, Kurbel PJ, Bikoff EK, Robertson EJ. A degron-based approach to manipulate Eomes functions in the context of the developing mouse embryo. Proc Natl Acad Sci U S A 2023; 120:e2311946120. [PMID: 37871215 PMCID: PMC10622880 DOI: 10.1073/pnas.2311946120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
The T-box transcription factor Eomesodermin (Eomes), also known as Tbr2, plays essential roles in the early mouse embryo. Loss-of-function mutant embryos arrest at implantation due to Eomes requirements in the trophectoderm cell lineage. Slightly later, expression in the visceral endoderm promotes anterior visceral endoderm formation and anterior-posterior axis specification. Early induction in the epiblast beginning at day 6 is necessary for nascent mesoderm to undergo epithelial to mesenchymal transition (EMT). Eomes acts in a temporally and spatially restricted manner to sequentially specify the yolk sac haemogenic endothelium, cardiac mesoderm, definitive endoderm, and axial mesoderm progenitors during gastrulation. Little is known about the underlying molecular mechanisms governing Eomes actions during the formation of these distinct progenitor cell populations. Here, we introduced a degron-tag and mCherry reporter sequence into the Eomes locus. Our experiments analyzing homozygously tagged embryonic stem cells and embryos demonstrate that the degron-tagged Eomes protein is fully functional. dTAG (degradation fusion tag) treatment in vitro results in rapid protein degradation and recapitulates the Eomes-null phenotype. However in utero administration of dTAG resulted in variable and lineage-specific degradation, likely reflecting diverse cell type-specific Eomes expression dynamics. Finally, we demonstrate that Eomes protein rapidly recovers following dTAG wash-out in vitro. The ability to temporally manipulate Eomes protein expression in combination with cell marking by the mCherry-reporter offers a powerful tool for dissecting Eomes-dependent functional roles in these diverse cell types in the early embryo.
Collapse
Affiliation(s)
- Alexandra M. Bisia
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Maria-Eleni Xypolita
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Luke T. G. Harland
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Philipp J. Kurbel
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| |
Collapse
|
49
|
Tsuboi A, Fujimoto K, Kondo T. Spatiotemporal remodeling of extracellular matrix orients epithelial sheet folding. SCIENCE ADVANCES 2023; 9:eadh2154. [PMID: 37656799 PMCID: PMC10854429 DOI: 10.1126/sciadv.adh2154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Biological systems are inherently noisy; however, they produce highly stereotyped tissue morphology. Drosophila pupal wings show a highly stereotypic folding through uniform expansion and subsequent buckling of wing epithelium within a surrounding cuticle sac. The folding pattern produced by buckling is generally stochastic; it is thus unclear how buckling leads to stereotypic tissue folding of the wings. We found that the extracellular matrix (ECM) protein, Dumpy, guides the position and direction of buckling-induced folds. Dumpy anchors the wing epithelium to the overlying cuticle at specific tissue positions. Tissue-wide alterations of Dumpy deposition and degradation yielded different buckling patterns. In summary, we propose that spatiotemporal ECM remodeling shapes stereotyped tissue folding through dynamic interactions between the epithelium and its external structures.
Collapse
Affiliation(s)
- Alice Tsuboi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Program of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
50
|
Chen YL, Xie XX, Zheng P, Zhu C, Ma H, Khalid Z, Xie YJ, Dang YZ, Ye Y, Sheng N, Zhong N, Lei WH, Zhang C, Zhang LJ, Jin T, Cao MJ. Selection, identification and crystal structure of shark-derived single-domain antibodies against a green fluorescent protein. Int J Biol Macromol 2023; 247:125852. [PMID: 37460076 DOI: 10.1016/j.ijbiomac.2023.125852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Shark variable domain of new antigen receptors (VNARs) are the smallest naturally occurring binding domains with properties of low complexity, small size, cytoplasmic expression, and ease of engineering. Green fluorescent protein (GFP) molecules have been analyzed in conventional microscopy, but their spectral characteristics preclude their use in techniques offering substantially higher resolution. Besides, the GFP molecules can be quenched in acidic environment, which makes it necessary to develop anti-GFP antibody to solve these problems. In view of the diverse applications of GFP and unique physicochemical features of VNAR, the present study aims to generate VNARs against GFP. Here, we identified 36 VNARs targeting eCGP123, an extremely stable GFP, by phage display from three immunized sharks. These VNARs bound to eCGP123 with affinity constant KD values ranging from 6.76 to 605 nM. Among them, two lead VNARs named aGFP-14 and aGFP-15 with nanomolar eCGP123-binding affinity were selected for in-depth characterization. aGFP-14 and aGFP-15 recognized similar epitopes on eCGP123. X-ray crystallography studies clarified the mechanism by which aGFP14 interacts with eCGP123. aGFP-14 also showed cross-reaction with EGFP, with KD values of 47.2 nM. Finally, immunostaining analyses demonstrated that aGFP-14 was able to bind effectively to the EGFP expressed in both cultured cells and mouse brain tissues, and can be used as a fluorescence amplifier for EGFP. Our research demonstrates a feasible idea for the screening and production of shark-derived VNARs. The two high-affinity VNARs developed in the study contribute to the diversity of GFP sdAbs and may enhance the applications of GFP.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xin-Xin Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Peiyi Zheng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Chenchen Zhu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Huan Ma
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Zunera Khalid
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Yang-Jie Xie
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yi-Zhao Dang
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yaxin Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wen-Hui Lei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | | | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China.
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|