1
|
Bysack A, Jash C, Raghuraman H. Structural Dynamics of the Slide Helix of Inactive/Closed Conformation of KirBac1.1 in Micelles and Membranes: A Fluorescence Approach. J Membr Biol 2025; 258:97-112. [PMID: 39789244 PMCID: PMC11779782 DOI: 10.1007/s00232-024-00335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state. Similar to micelles, KirBac1.1 is reported to be in the inactive/closed conformation in POPC membranes. The slide helix of KirBac1.1 is an important structural motif that regulates channel gating. Despite the importance of slide helix in lipid-dependent gating, conflicting models have emerged for the location of slide helix and its structural dynamics in membrane mimetics is poorly understood. Here, we monitored the structural dynamics of the slide helix (residues 46-57) of KirBac1.1 in both DM micelles and POPC membranes utilizing various site-directed fluorescence approaches. We show, using ACMA-based liposome-flux assay, the cysteine mutants of the slide helix are not functional, ensuring the inactive/closed conformation in POPC membranes similar to wild-type channel. Time-resolved fluorescence and water accessibility measurements of NBD-labeled single-cysteine mutants of slide-helix residues suggest that the location of the slide helix at the interfacial region might be shallower in membranes compared to micelles. Interestingly, the slide helix of KirBac1.1 is more dynamic in the physiologically relevant membrane environment, which is accompanied by a differential hydration dynamics throughout the slide helix. Further, REES and lifetime distribution analyses suggest significant changes in conformational heterogeneity of the slide helix in membrane mimetics. Overall, our results give an insight into how membrane mimetics affect the organization and dynamics of slide helix of the closed state of KirBac1.1, and highlight the importance of lipid-protein interactions in membranes.
Collapse
Affiliation(s)
- Arpan Bysack
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Chandrima Jash
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhabha National Institute, Training School Complex, Mumbai, India.
| |
Collapse
|
2
|
Coll-Díez C, Giudici AM, Potenza A, González-Ros JM, Poveda JA. pH-induced conformational changes in the selectivity filter of a potassium channel lead to alterations in its selectivity and permeation properties. Front Pharmacol 2025; 15:1499383. [PMID: 39834826 PMCID: PMC11743430 DOI: 10.3389/fphar.2024.1499383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The Selectivity Filter (SF) in tetrameric K+ channels, has a highly conserved sequence, TVGYG, at the extracellular entry to the channel pore region. There, the backbone carbonyl oxygens from the SF residues, create a stack of K+ binding sites where dehydrated K+ binds to induce a conductive conformation of the SF. This increases intersubunit interactions and confers a higher stability to the channel against thermal denaturation. Indeed, the fit of dehydrated K+ to its binding sites is fundamental to define K+ selectivity, an important feature of these channels. Nonetheless, the SF conformation can be modified by different effector molecules. Such conformational plasticity opposes selectivity, as the SF departs from the "induced-fit" conformation required for K+ recognition. Here we studied the KirBac1.1 channel, a prokaryotic analog of inwardly rectifying K+ channels, confronted to permeant (K+) and non-permeant (Na+) cations. This channel is pH-dependent and transits from the open state at neutral pH to the closed state at acidic pH. KirBac1.1 has the orthodox TVGYG sequence at the SF and thus, its behavior should resemble that of K+-selective channels. However, we found that when at neutral pH, KirBac1.1 is only partly K+ selective and permeates this ion causing the characteristic "induced-fit" phenomenon in the SF conformation. However, it also conducts Na+ with a mechanism of ion passage reminiscent of Na+ channels, i.e., through a wide-open pore, without increasing intersubunit interactions within the tetrameric channel. Conversely, when at acidic pH, the channel completely loses selectivity and conducts both K+ and Na+ similarly, increasing intersubunit interactions through an apparent "induced-fit"-like mechanism for the two ions. These observations underline that KirBac1.1 SF is able to adopt different conformations leading to changes in selectivity and in the mechanism of ion passage.
Collapse
Affiliation(s)
| | | | | | - José Manuel González-Ros
- IDiBE—Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - José Antonio Poveda
- IDiBE—Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
3
|
Li J, Jo MH, Yan J, Hall T, Lee J, López-Sánchez U, Yan S, Ha T, Springer TA. Ligand binding initiates single-molecule integrin conformational activation. Cell 2024; 187:2990-3005.e17. [PMID: 38772370 PMCID: PMC11162317 DOI: 10.1016/j.cell.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin β-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.
Collapse
Affiliation(s)
- Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Myung Hyun Jo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Taylor Hall
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Joon Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Uriel López-Sánchez
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Newton South High School, Newton, MA 02459, USA
| | - Taekjip Ha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Renart ML, Giudici AM, González-Ros JM, Poveda JA. Steady-state and time-resolved fluorescent methodologies to characterize the conformational landscape of the selectivity filter of K + channels. Methods 2024; 225:89-99. [PMID: 38508347 DOI: 10.1016/j.ymeth.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
A variety of equilibrium and non-equilibrium methods have been used in a multidisciplinary approach to study the conformational landscape associated with the binding of different cations to the pore of potassium channels. These binding processes, and the conformational changes resulting therefrom, modulate the functional properties of such integral membrane properties, revealing these permeant and blocking cations as true effectors of such integral membrane proteins. KcsA, a prototypic K+ channel from Streptomyces lividans, has been extensively characterized in this regard. Here, we revise several fluorescence-based approaches to monitor cation binding under different experimental conditions in diluted samples, analyzing the advantages and disadvantages of each approach. These studies have contributed to explain the selectivity, conduction, and inactivation properties of K+ channels at the molecular level, together with the allosteric communication between the two gates that control the ion channel flux, and how they are modulated by lipids.
Collapse
Affiliation(s)
- María Lourdes Renart
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Ana Marcela Giudici
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José M González-Ros
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - José A Poveda
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
5
|
Archer C. Isothermal Titration Calorimetry for Fragment-Based Analysis of Ion Channel Interactions. Methods Mol Biol 2024; 2796:271-289. [PMID: 38856907 DOI: 10.1007/978-1-0716-3818-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Ion channels are membrane proteins that may also have intracellular and extracellular domains that interact with other ligands. In many cases, these interaction sites are highly mobile and may undergo changes in the configuration upon binding with regulatory signaling molecules. Isothermal titration calorimetry (ITC) is a powerful technique to quantify protein-ligand interactions of purified samples in solution. This chapter describes a fragment-based analysis method using ITC to quantify the interactions between a domain of the voltage-gated Kv7 channel and the calcium-regulated protein calmodulin. This example can be used to quantify the interactions between specific domains of other ion channels and their regulatory signaling proteins.
Collapse
Affiliation(s)
- Crystal Archer
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Fancher IS, Levitan I. Membrane Cholesterol Interactions with Proteins in Hypercholesterolemia-Induced Endothelial Dysfunction. Curr Atheroscler Rep 2023; 25:535-541. [PMID: 37418067 PMCID: PMC10471518 DOI: 10.1007/s11883-023-01127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight work identifying mechanisms driving hypercholesterolemia-mediated endothelial dysfunction. We specifically focus on cholesterol-protein interactions and address specific questions related to the impact of hypercholesterolemia on cellular cholesterol and vascular endothelial function. We describe key approaches used to determine the effects of cholesterol-protein interactions in mediating endothelial dysfunction under dyslipidemic conditions. RECENT FINDINGS The benefits of removing the cholesterol surplus on endothelial function in models of hypercholesterolemia is clear. However, specific mechanisms driving cholesterol-induced endothelial dysfunction need to be determined. In this review, we detail the latest findings describing cholesterol-mediated endothelial dysfunction, highlighting our studies indicating that cholesterol suppresses endothelial Kir2.1 channels as a major underlying mechanism. The findings detailed in this review support the targeting of cholesterol-induced suppression of proteins in restoring endothelial function in dyslipidemic conditions. The identification of similar mechanisms regarding other cholesterol-endothelial protein interactions is warranted.
Collapse
Affiliation(s)
- Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
7
|
White D, Smith MA, Chanda B, Goldsmith RH. Strategies for Overcoming the Single-Molecule Concentration Barrier. ACS MEASUREMENT SCIENCE AU 2023; 3:239-257. [PMID: 37600457 PMCID: PMC10436376 DOI: 10.1021/acsmeasuresciau.3c00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 08/22/2023]
Abstract
Fluorescence-based single-molecule approaches have helped revolutionize our understanding of chemical and biological mechanisms. Unfortunately, these methods are only suitable at low concentrations of fluorescent molecules so that single fluorescent species of interest can be successfully resolved beyond background signal. The application of these techniques has therefore been limited to high-affinity interactions despite most biological and chemical processes occurring at much higher reactant concentrations. Fortunately, recent methodological advances have demonstrated that this concentration barrier can indeed be broken, with techniques reaching concentrations as high as 1 mM. The goal of this Review is to discuss the challenges in performing single-molecule fluorescence techniques at high-concentration, offer applications in both biology and chemistry, and highlight the major milestones that shatter the concentration barrier. We also hope to inspire the widespread use of these techniques so we can begin exploring the new physical phenomena lying beyond this barrier.
Collapse
Affiliation(s)
- David
S. White
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mackinsey A. Smith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Baron Chanda
- Center
for
Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Ghanam J, Chetty VK, Zhu X, Liu X, Gelléri M, Barthel L, Reinhardt D, Cremer C, Thakur BK. Single Molecule Localization Microscopy for Studying Small Extracellular Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205030. [PMID: 36635058 DOI: 10.1002/smll.202205030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Small extracellular vesicles (sEVs) are 30-200 nm nanovesicles enriched with unique cargoes of nucleic acids, lipids, and proteins. sEVs are released by all cell types and have emerged as a critical mediator of cell-to-cell communication. Although many studies have dealt with the role of sEVs in health and disease, the exact mechanism of sEVs biogenesis and uptake remain unexplored due to the lack of suitable imaging technologies. For sEVs functional studies, imaging has long relied on conventional fluorescence microscopy that has only 200-300 nm resolution, thereby generating blurred images. To break this resolution limit, recent developments in super-resolution microscopy techniques, specifically single-molecule localization microscopy (SMLM), expanded the understanding of subcellular details at the few nanometer level. SMLM success relies on the use of appropriate fluorophores with excellent blinking properties. In this review, the basic principle of SMLM is highlighted and the state of the art of SMLM use in sEV biology is summarized. Next, how SMLM techniques implemented for cell imaging can be translated to sEV imaging is discussed by applying different labeling strategies to study sEV biogenesis and their biomolecular interaction with the distant recipient cells.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| | | | - Xingfu Zhu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Márton Gelléri
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| | - Christoph Cremer
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
9
|
Li Y, Li H, Gao J, Niu B, Wang H, Wang W. Visualizing the Intermittent Gating of Na + /H + Antiporters in Single Native Bioluminescent Bacteria. Angew Chem Int Ed Engl 2023; 62:e202215800. [PMID: 36562656 DOI: 10.1002/anie.202215800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
While the intermittent gating of ion channels has been well studied for decades, dynamics of the action of secondary transporters, another major pathway for ion transmembrane transports, remains largely unexplored in living cells. Herein, intermittent blinking of the spontaneous bioluminescence (BL) from single native bacteria, P. phosphoreum, was reported, investigated and attributed to the intermittent gating of sodium/proton antiporters (NhaA) between the active and inactive conformations. Each gating event caused the rapid depolarization and recovery of membrane potential within several seconds, accompanying with the apparent BL blinking due to the transient inhibitions on the activity of the respiratory chain. Temperature-dependent measurements further obtained an activation energy barrier of the conformational change of 20.3 kJ mol-1 .
Collapse
Affiliation(s)
- Yaohua Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Huan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Han S, Vance J, Jones S, DeCata J, Tran K, Cummings J, Wang S. Voltage sensor dynamics of a bacterial voltage-gated sodium channel NavAb reveal three conformational states. J Biol Chem 2023; 299:102967. [PMID: 36736429 PMCID: PMC9986516 DOI: 10.1016/j.jbc.2023.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
High-resolution structures of voltage-gated sodium channels (Nav) were first obtained from a prokaryotic ortholog NavAb, which provided important mechanistic insights into Na+ selectivity and voltage gating. Unlike eukaryotic Navs, the NavAb channel is formed by four identical subunits, but its ion selectivity and pharmacological profiles are very similar to eukaryotic Navs. Recently, the structures of the NavAb voltage sensor at resting and activated states were obtained by cryo-EM, but its intermediate states and transition dynamics remain unclear. In the present work, we used liposome flux assays to show that purified NavAb proteins were functional to conduct both H+ and Na+ and were blocked by the local anesthetic lidocaine. Additionally, we examined the real-time conformational dynamics of the NavAb voltage sensor using single-molecule FRET. Our single-molecule FRET measurements on the tandem NavAb channel labeled with Cy3/5 FRET fluorophore pair revealed spontaneous transitions of the NavAb S4 segment among three conformational states, which fitted well with the kinetic model developed for the S4 segment of the human voltage-gated proton channel hHv1. Interestingly, even under strong activating voltage, the NavAb S4 segment seems to adopt a conformational distribution similar to that of the hHv1 S4 segment at a deep resting state. The conformational behaviors of the NavAb voltage sensor under different voltages need to be further examined to understand the mechanisms of voltage sensing and gating in the canonical voltage-gated ion channel superfamily.
Collapse
Affiliation(s)
- Shuo Han
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Joshua Vance
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Samuel Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jenna DeCata
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Kimberly Tran
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Cummings
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| |
Collapse
|
11
|
Matamoros M, Ng XW, Brettmann JB, Piston DW, Nichols CG. Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters. Nat Commun 2023; 14:89. [PMID: 36609575 PMCID: PMC9822992 DOI: 10.1038/s41467-022-35756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
The K+ channel selectivity filter (SF) is defined by TxGYG amino acid sequences that generate four identical K+ binding sites (S1-S4). Only two sites (S3, S4) are present in the non-selective bacterial NaK channel, but a four-site K+-selective SF is obtained by mutating the wild-type TVGDGN SF sequence to a canonical K+ channel TVGYGD sequence (NaK2K mutant). Using single molecule FRET (smFRET), we show that the SF of NaK2K, but not of non-selective NaK, is ion-dependent, with the constricted SF configuration stabilized in high K+ conditions. Patch-clamp electrophysiology and non-canonical fluorescent amino acid incorporation show that NaK2K selectivity is reduced by crosslinking to limit SF conformational movement. Finally, the eukaryotic K+ channel TREK2 SF exhibits essentially identical smFRET-reported ion-dependent conformations as in prokaryotic K+ channels. Our results establish the generality of K+-induced SF conformational stability across the K+ channel superfamily, and introduce an approach to study manipulation of channel selectivity.
Collapse
Affiliation(s)
- Marcos Matamoros
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Wen Ng
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Brettmann
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Millipore-Sigma Inc., St. Louis, MO, USA
| | - David W Piston
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G Nichols
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
13
|
Abstract
Although human sperm is morphologically mature in the epididymis, it cannot fertilize eggs before capacitation. Cholesterol efflux from the sperm plasma membrane is a key molecular event essential for cytoplasmic alkalinization and hyperactivation, but the underlying mechanism remains unclear. The human voltage-gated proton (hHv1) channel functions as an acid extruder to regulate intracellular pHs of many cell types, including sperm. Aside from voltage and pH, Hv channels are also regulated by distinct ligands, such as Zn2+ and albumin. In the present work, we identified cholesterol as an inhibitory ligand of the hHv1 channel and further investigated the underlying mechanism using the single-molecule fluorescence resonance energy transfer (smFRET) approach. Our results indicated that cholesterol inhibits the hHv1 channel by stabilizing the voltage-sensing S4 segment at resting conformations, a similar mechanism also utilized by Zn2+. Our results suggested that the S4 segment is the central gating machinery in the hHv1 channel, on which voltage and distinct ligands are converged to regulate channel function. Identification of membrane cholesterol as an inhibitory ligand provides a mechanism by which the hHv1 channel regulates fertilization by linking the cholesterol efflux with cytoplasmic alkalinization, a change that triggers calcium influx through the CatSper channel. These events finally lead to hyperactivation, a remarkable change in the mobility pattern indicating fertilization competence of human sperm.
Collapse
|
14
|
Moya R, Norris AC, Spangler LC, Scholes GD, Schlau-Cohen GS. Observation of conformational dynamics in single light-harvesting proteins from cryptophyte algae. J Chem Phys 2022; 157:035102. [PMID: 35868944 PMCID: PMC9894659 DOI: 10.1063/5.0095763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Photosynthetic organisms use pigment-protein complexes to capture the sunlight that powers most life on earth. Within these complexes, the position of the embedded pigments is all optimized for light harvesting. At the same time, the protein scaffold undergoes thermal fluctuations that vary the structure, and, thus, photophysics, of the complexes. While these variations are averaged out in ensemble measurements, single-molecule spectroscopy provides the ability to probe these conformational changes. We used single-molecule fluorescence spectroscopy to identify the photophysical substates reflective of distinct conformations and the associated conformational dynamics in phycoerythrin 545 (PE545), a pigment-protein complex from cryptophyte algae. Rapid switching between photophysical states was observed, indicating that ensemble measurements average over a conformational equilibrium. A highly quenched conformation was also identified, and its population increased under high light. This discovery establishes that PE545 has the characteristics to serve as a photoprotective site. Finally, unlike homologous proteins from the evolutionarily related cyanobacteria and red algae, quenching was not observed upon photobleaching, which may allow for robust photophysics without the need for rapid repair or replacement machinery. Collectively, these observations establish the presence of a rich and robust set of conformational states of PE545. Cryptophytes exhibit particularly diverse energetics owing to the variety of microenvironments in which they survive, and the conformational states and dynamics reported here may provide photophysical flexibility that contributes to their remarkable ability to flourish under diverse conditions.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Leah C. Spangler
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA,Author to whom correspondence should be addressed:
| |
Collapse
|
15
|
Barbera N, Granados ST, Vanoye CG, Abramova TV, Kulbak D, Ahn SJ, George AL, Akpa BS, Levitan I. Cholesterol-induced suppression of Kir2 channels is mediated by decoupling at the inter-subunit interfaces. iScience 2022; 25:104329. [PMID: 35602957 PMCID: PMC9120057 DOI: 10.1016/j.isci.2022.104329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Cholesterol is a major regulator of multiple types of ion channels. Although there is increasing information about cholesterol binding sites, the molecular mechanisms through which cholesterol binding alters channel function are virtually unknown. In this study, we used a combination of Martini coarse-grained simulations, a network theory-based analysis, and electrophysiology to determine the effect of cholesterol on the dynamic structure of the Kir2.2 channel. We found that increasing membrane cholesterol reduced the likelihood of contact between specific regions of the cytoplasmic and transmembrane domains of the channel, most prominently at the subunit-subunit interfaces of the cytosolic domains. This decrease in contact was mediated by pairwise interactions of specific residues and correlated to the stoichiometry of cholesterol binding events. The predictions of the model were tested by site-directed mutagenesis of two identified residues-V265 and H222-and high throughput electrophysiology.
Collapse
Affiliation(s)
- Nicolas Barbera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sara T. Granados
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Carlos Guillermo Vanoye
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana V. Abramova
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danielle Kulbak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sang Joon Ahn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Alfred L. George
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Belinda S. Akpa
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Irena Levitan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| |
Collapse
|
16
|
Han S, Peng S, Vance J, Tran K, Do N, Bui N, Gui Z, Wang S. Structural dynamics determine voltage and pH gating in human voltage-gated proton channel. eLife 2022; 11:73093. [PMID: 35244539 PMCID: PMC8926398 DOI: 10.7554/elife.73093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Voltage-gated proton (Hv) channels are standalone voltage sensors without separate ion conductive pores. They are gated by both voltage and transmembrane proton gradient (i.e., ∆pH), serving as acid extruders in most cells. Like the canonical voltage sensors, Hv channels are a bundle of four helices (named S1 –S4), with the S4 segment carrying three positively charged Arg residues. Extensive structural and electrophysiological studies on voltage-gated ion channels, in general, agree on an outwards movement of the S4 segment upon activating voltage, but the real-time conformational transitions are still unattainable. With purified human voltage-gated proton (hHv1) channels reconstituted in liposomes, we have examined its conformational dynamics, including the S4 segment at different voltage and pHs using single-molecule fluorescence resonance energy transfer (smFRET). Here, we provide the first glimpse of real-time conformational trajectories of the hHv1 voltage sensor and show that both voltage and pH gradient shift the conformational dynamics of the S4 segment to control channel gating. Our results indicate that the S4 segment transits among three major conformational states and only the transitions between the inward and outward conformations are highly dependent on voltage and pH. Altogether, we propose a kinetic model that explains the mechanisms underlying voltage and pH gating in Hv channels, which may also serve as a general framework for understanding the voltage sensing and gating in other voltage-gated ion channels.
Collapse
Affiliation(s)
- Shuo Han
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Sophia Peng
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Joshua Vance
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Kimberly Tran
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Nhu Do
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Nauy Bui
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Zhenhua Gui
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Shizhen Wang
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| |
Collapse
|
17
|
Diffracted X-ray Tracking Method for Measuring Intramolecular Dynamics of Membrane Proteins. Int J Mol Sci 2022; 23:ijms23042343. [PMID: 35216461 PMCID: PMC8880040 DOI: 10.3390/ijms23042343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins change their conformations in response to chemical and physical stimuli and transmit extracellular signals inside cells. Several approaches have been developed for solving the structures of proteins. However, few techniques can monitor real-time protein dynamics. The diffracted X-ray tracking method (DXT) is an X-ray-based single-molecule technique that monitors the internal motion of biomolecules in an aqueous solution. DXT analyzes trajectories of Laue spots generated from the attached gold nanocrystals with a two-dimensional axis by tilting (θ) and twisting (χ). Furthermore, high-intensity X-rays from synchrotron radiation facilities enable measurements with microsecond-timescale and picometer-spatial-scale intramolecular information. The technique has been applied to various membrane proteins due to its superior spatiotemporal resolution. In this review, we introduce basic principles of DXT, reviewing its recent and extended applications to membrane proteins and living cells, respectively.
Collapse
|
18
|
Single-molecule fluorescence vistas of how lipids regulate membrane proteins. Biochem Soc Trans 2021; 49:1685-1694. [PMID: 34346484 DOI: 10.1042/bst20201074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The study of membrane proteins is undergoing a golden era, and we are gaining unprecedented knowledge on how this key group of proteins works. However, we still have only a basic understanding of how the chemical composition and the physical properties of lipid bilayers control the activity of membrane proteins. Single-molecule (SM) fluorescence methods can resolve sample heterogeneity, allowing to discriminate between the different molecular populations that biological systems often adopt. This short review highlights relevant examples of how SM fluorescence methodologies can illuminate the different ways in which lipids regulate the activity of membrane proteins. These studies are not limited to lipid molecules acting as ligands, but also consider how the physical properties of the bilayer can be determining factors on how membrane proteins function.
Collapse
|
19
|
Déri S, Borbás J, Hartai T, Hategan L, Csányi B, Visnyovszki Á, Madácsy T, Maléth J, Hegedűs Z, Nagy I, Arora R, Labro AJ, Környei L, Varró A, Sepp R, Ördög B. Impaired cytoplasmic domain interactions cause co-assembly defect and loss of function in the p.Glu293Lys KNCJ2 variant isolated from an Andersen-Tawil syndrome patient. Cardiovasc Res 2021; 117:1923-1934. [PMID: 32810216 DOI: 10.1093/cvr/cvaa249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Subunit interactions at the cytoplasmic domain interface (CD-I) have recently been shown to control gating in inward rectifier potassium channels. Here we report the novel KCNJ2 variant p.Glu293Lys that has been found in a patient with Andersen-Tawil syndrome type 1 (ATS1), causing amino acid substitution at the CD-I of the inward rectifier potassium channel subunit Kir2.1. Neither has the role of Glu293 in gating control been investigated nor has a pathogenic variant been described at this position. This study aimed to assess the involvement of Glu293 in CD-I subunit interactions and to establish the pathogenic role of the p.Glu293Lys variant in ATS1. METHODS AND RESULTS The p.Glu293Lys variant produced no current in homomeric form and showed dominant-negative effect over wild-type (WT) subunits. Immunocytochemical labelling showed the p.Glu293Lys subunits to distribute in the subsarcolemmal space. Salt bridge prediction indicated the presence of an intersubunit salt bridge network at the CD-I of Kir2.1, with the involvement of Glu293. Subunit interactions were studied by the NanoLuc® Binary Technology (NanoBiT) split reporter assay. Reporter constructs carrying NanoBiT tags on the intracellular termini produced no bioluminescent signal above background with the p.Glu293Lys variant in homomeric configuration and significantly reduced signals in cells co-expressing WT and p.Glu293Lys subunits simultaneously. Extracellularly presented reporter tags, however, generated comparable bioluminescent signals with heteromeric WT and p.Glu293Lys subunits and with homomeric WT channels. CONCLUSIONS Loss of function and dominant-negative effect confirm the causative role of p.Glu293Lys in ATS1. Co-assembly of Kir2.1 subunits is impaired in homomeric channels consisting of p.Glu293Lys subunits and is partially rescued in heteromeric complexes of WT and p.Glu293Lys Kir2.1 variants. These data point to an important role of Glu293 in mediating subunit assembly, as well as in gating of Kir2.1 channels.
Collapse
Affiliation(s)
- Szilvia Déri
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 12, 6720 Szeged, Hungary
| | - János Borbás
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Semmelweis u. 8, 6725 Szeged, Hungary
| | - Teodóra Hartai
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
| | - Lidia Hategan
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Semmelweis u. 8, 6725 Szeged, Hungary
| | - Beáta Csányi
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Semmelweis u. 8, 6725 Szeged, Hungary
| | - Ádám Visnyovszki
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
| | - Tamara Madácsy
- 1st Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, 6720 Szeged, Hungary, Hungary
| | - József Maléth
- 1st Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, 6720 Szeged, Hungary, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
- Seqomics Biotechnology Ltd, Vállalkozók útja 7, 6782 Mórahalom, Hungary
| | - Rohit Arora
- Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alain J Labro
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Basic Medical Sciences, University of Ghent, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - László Környei
- Gottsegen György National Institute of Cardiology, Haller u. 9, 1096 Budapest, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 12, 6720 Szeged, Hungary
- MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Dóm tér 12, 6720 Szeged, Hungary
| | - Róbert Sepp
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Semmelweis u. 8, 6725 Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
| |
Collapse
|
20
|
White DS, Chowdhury S, Idikuda V, Zhang R, Retterer ST, Goldsmith RH, Chanda B. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 2021; 595:606-610. [PMID: 34194042 PMCID: PMC8513821 DOI: 10.1038/s41586-021-03686-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
Electrical activity in the brain and heart depends on rhythmic generation of action potentials by pacemaker ion channels (HCN) whose activity is regulated by cAMP binding1. Previous work has uncovered evidence for both positive and negative cooperativity in cAMP binding2,3, but such bulk measurements suffer from limited parameter resolution. Efforts to eliminate this ambiguity using single-molecule techniques have been hampered by the inability to directly monitor binding of individual ligand molecules to membrane receptors at physiological concentrations. Here we overcome these challenges using nanophotonic zero-mode waveguides4 to directly resolve binding dynamics of individual ligands to multimeric HCN1 and HCN2 ion channels. We show that cAMP binds independently to all four subunits when the pore is closed, despite a subsequent conformational isomerization to a flip state at each site. The different dynamics in binding and isomerization are likely to underlie physiologically distinct responses of each isoform to cAMP5 and provide direct validation of the ligand-induced flip-state model6-9. This approach for observing stepwise binding in multimeric proteins at physiologically relevant concentrations can directly probe binding allostery at single-molecule resolution in other intact membrane proteins and receptors.
Collapse
Affiliation(s)
- David S White
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sandipan Chowdhury
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Vinay Idikuda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Center for Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Ruohan Zhang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Baron Chanda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
21
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
22
|
Matamoros M, Nichols CG. Pore-forming transmembrane domains control ion selectivity and selectivity filter conformation in the KirBac1.1 potassium channel. J Gen Physiol 2021; 153:211923. [PMID: 33779689 PMCID: PMC8008366 DOI: 10.1085/jgp.202012683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
Potassium (K+) channels are membrane proteins with the remarkable ability to very selectively conduct K+ ions across the membrane. High-resolution structures have revealed that dehydrated K+ ions permeate through the narrowest region of the pore, formed by the backbone carbonyls of the signature selectivity filter (SF) sequence TxGYG. However, the existence of nonselective channels with similar SF sequences, as well as effects of mutations in other regions on selectivity, suggest that the SF is not the sole determinant of selectivity. We changed the selectivity of the KirBac1.1 channel by introducing mutations at residue I131 in transmembrane helix 2 (TM2). These mutations increase Na+ flux in the absence of K+ and introduce significant proton conductance. Consistent with K+ channel crystal structures, single-molecule FRET experiments show that the SF is conformationally constrained and stable in high-K+ conditions but undergoes transitions to dilated low-FRET states in high-Na+/low-K+ conditions. Relative to wild-type channels, I131M mutants exhibit marked shifts in the K+ and Na+ dependence of SF dynamics to higher K+ and lower Na+ concentrations. These results illuminate the role of I131, and potentially other structural elements outside the SF, in controlling ion selectivity, by suggesting that the physical interaction of these elements with the SF contributes to the relative stability of the constrained K+-induced SF configuration versus nonselective dilated conformations.
Collapse
Affiliation(s)
- Marcos Matamoros
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Colin G Nichols
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
23
|
Zangerl-Plessl EM, Lee SJ, Maksaev G, Bernsteiner H, Ren F, Yuan P, Stary-Weinzinger A, Nichols CG. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels. J Gen Physiol 2021; 152:jgp.201912422. [PMID: 31744859 PMCID: PMC7034095 DOI: 10.1085/jgp.201912422] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
This paper presents the crystal structure of a forced open inward rectifier Kir2.2 channel. Molecular dynamics reveals the details of ion permeation through the open channel. Potassium ion conduction through open potassium channels is essential to control of membrane potentials in all cells. To elucidate the open conformation and hence the mechanism of K+ ion conduction in the classic inward rectifier Kir2.2, we introduced a negative charge (G178D) at the crossing point of the inner helix bundle, the location of ligand-dependent gating. This “forced open” mutation generated channels that were active even in the complete absence of phosphatidylinositol-4,5-bisphosphate (PIP2), an otherwise essential ligand for Kir channel opening. Crystal structures were obtained at a resolution of 3.6 Å without PIP2 bound, or 2.8 Å in complex with PIP2. The latter revealed a slight widening at the helix bundle crossing (HBC) through backbone movement. MD simulations showed that subsequent spontaneous wetting of the pore through the HBC gate region allowed K+ ion movement across the HBC and conduction through the channel. Further simulations reveal atomistic details of the opening process and highlight the role of pore-lining acidic residues in K+ conduction through Kir2 channels.
Collapse
Affiliation(s)
| | - Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Grigory Maksaev
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Feifei Ren
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Peng Yuan
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | | | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
24
|
Iwahashi Y, Toyama Y, Imai S, Itoh H, Osawa M, Inoue M, Shimada I. Conformational equilibrium shift underlies altered K + channel gating as revealed by NMR. Nat Commun 2020; 11:5168. [PMID: 33057011 PMCID: PMC7560842 DOI: 10.1038/s41467-020-19005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2020] [Indexed: 01/30/2023] Open
Abstract
The potassium ion (K+) channel plays a fundamental role in controlling K+ permeation across the cell membrane and regulating cellular excitabilities. Mutations in the transmembrane pore reportedly affect the gating transitions of K+ channels, and are associated with the onset of neural disorders. However, due to the lack of structural and dynamic insights into the functions of K+ channels, the structural mechanism by which these mutations cause K+ channel dysfunctions remains elusive. Here, we used nuclear magnetic resonance spectroscopy to investigate the structural mechanism underlying the decreased K+-permeation caused by disease-related mutations, using the prokaryotic K+ channel KcsA. We demonstrated that the conformational equilibrium in the transmembrane region is shifted toward the non-conductive state with the closed intracellular K+-gate in the disease-related mutant. We also demonstrated that this equilibrium shift is attributable to the additional steric contacts in the open-conductive structure, which are evoked by the increased side-chain bulkiness of the residues lining the transmembrane helix. Our results suggest that the alteration in the conformational equilibrium of the intracellular K+-gate is one of the fundamental mechanisms underlying the dysfunctions of K+ channels caused by disease-related mutations. Potassium ion channels control K+ permeation across cell membranes and mutations that cause cardiovascular and neural diseases are known. Here, the authors perform NMR measurements with the prototypical K+ channel from Streptomyces lividans, KcsA and characterise the effects of disease causing mutations on the conformational dynamics of K+ channels in a physiological solution environment.
Collapse
Affiliation(s)
- Yuta Iwahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan.
| |
Collapse
|
25
|
Zhu G, Xie J, Kong W, Xie J, Li Y, Du L, Zheng Q, Sun L, Guan M, Li H, Zhu T, He H, Liu Z, Xia X, Kan C, Tao Y, Shen HC, Li D, Wang S, Yu Y, Yu ZH, Zhang ZY, Liu C, Zhu J. Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation. Cell 2020; 183:490-502.e18. [PMID: 33002410 DOI: 10.1016/j.cell.2020.09.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
The non-receptor protein tyrosine phosphatase (PTP) SHP2, encoded by PTPN11, plays an essential role in RAS-mitogen-activated protein kinase (MAPK) signaling during normal development. It has been perplexing as to why both enzymatically activating and inactivating mutations in PTPN11 result in human developmental disorders with overlapping clinical manifestations. Here, we uncover a common liquid-liquid phase separation (LLPS) behavior shared by these disease-associated SHP2 mutants. SHP2 LLPS is mediated by the conserved well-folded PTP domain through multivalent electrostatic interactions and regulated by an intrinsic autoinhibitory mechanism through conformational changes. SHP2 allosteric inhibitors can attenuate LLPS of SHP2 mutants, which boosts SHP2 PTP activity. Moreover, disease-associated SHP2 mutants can recruit and activate wild-type (WT) SHP2 in LLPS to promote MAPK activation. These results not only suggest that LLPS serves as a gain-of-function mechanism involved in the pathogenesis of SHP2-associated human diseases but also provide evidence that PTP may be regulated by LLPS that can be therapeutically targeted.
Collapse
Affiliation(s)
- Guangya Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfei Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Du
- Etern Biopharma Co. Ltd., Shanghai 201203, China
| | | | - Lin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingfeng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxin Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Kan
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong C Shen
- Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Shanghai 201203, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siying Wang
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
26
|
Liu Z, Liu H, Vera AM, Bernardi RC, Tinnefeld P, Nash MA. High force catch bond mechanism of bacterial adhesion in the human gut. Nat Commun 2020; 11:4321. [PMID: 32859904 PMCID: PMC7456326 DOI: 10.1038/s41467-020-18063-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Bacterial colonization of the human intestine requires firm adhesion of bacteria to insoluble substrates under hydrodynamic flow. Here we report the molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. Using single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations, we resolve two binding modes and three unbinding reaction pathways of a mechanically ultrastable R. champanellensis (Rc) Dockerin:Cohesin (Doc:Coh) complex. The complex assembles in two discrete binding modes with significantly different mechanical properties, with one breaking at ~500 pN and the other at ~200 pN at loading rates from 1-100 nN s-1. A neighboring X-module domain allosterically regulates the binding interaction and inhibits one of the low-force pathways at high loading rates, giving rise to a catch bonding mechanism that manifests under force ramp protocols. Multi-state Monte Carlo simulations show strong agreement with experimental results, validating the proposed kinetic scheme. These results explain mechanistically how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery and catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rafael C Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
- Department of Physics, Auburn University, 36849, Auburn, AL, USA
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
27
|
Borcik CG, Versteeg DB, Amani R, Yekefallah M, Khan NH, Wylie BJ. The Lipid Activation Mechanism of a Transmembrane Potassium Channel. J Am Chem Soc 2020; 142:14102-14116. [PMID: 32702990 DOI: 10.1021/jacs.0c01991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Membrane proteins and lipids coevolved to yield unique coregulatory mechanisms. Inward-rectifier K+ (Kir) channels are often activated by anionic lipids endemic to their native membranes and require accessible water along their K+ conductance pathway. To better understand Kir channel activation, we target multiple mutants of the Kir channel KirBac1.1 via solid-state nuclear magnetic resonance (SSNMR) spectroscopy, potassium efflux assays, and Förster resonance energy transfer (FRET) measurements. In the I131C stability mutant (SM), we observe an open-active channel in the presence of anionic lipids with greater activity upon addition of cardiolipin (CL). The introduction of three R to Q mutations (R49/151/153Q (triple Q mutant, TQ)) renders the protein inactive within the same activating lipid environment. Our SSNMR experiments reveal a stark reduction of lipid-protein interactions in the TQ mutant explaining the dramatic loss of channel activity. Water-edited SSNMR experiments further determined the TQ mutant possesses greater overall solvent exposure in comparison to wild-type but with reduced water accessibility along the ion conduction pathway, consistent with the closed state of the channel. These experiments also suggest water is proximal to the selectivity filter of KirBac1.1 in the open-activated state but that it may not directly enter the selectivity filter. Our findings suggest lipid binding initiates a concerted rotation of the cytoplasmic domain subunits, which is stabilized by multiple intersubunit salt bridges. This action buries ionic side chains away from the bulk water, while allowing water greater access to the K+ conduction pathway. This work highlights universal membrane protein motifs, including lipid-protein interactions, domain rearrangement, and water-mediated diffusion mechanisms.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Derek B Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Reza Amani
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Nazmul H Khan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
28
|
Bacic L, Sabantsev A, Deindl S. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic. Curr Opin Struct Biol 2020; 65:61-68. [PMID: 32634693 DOI: 10.1016/j.sbi.2020.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/30/2023]
Abstract
Single-molecule fluorescence microscopy has long been appreciated as a powerful tool to study the structural dynamics that enable biological function of macromolecules. Recent years have witnessed the development of more complex single-molecule fluorescence techniques as well as powerful combinations with structural approaches to obtain mechanistic insights into the workings of various molecular machines and protein complexes. In this review, we highlight these developments that together bring us one step closer to a dynamic understanding of biological processes in atomic details.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Wang L, Johnson ZL, Wasserman MR, Levring J, Chen J, Liu S. Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses. eLife 2020; 9:56451. [PMID: 32458799 PMCID: PMC7253176 DOI: 10.7554/elife.56451] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
ATP-binding cassette (ABC) transporters are molecular pumps ubiquitous across all kingdoms of life. While their structures have been widely reported, the kinetics governing their transport cycles remain largely unexplored. Multidrug resistance protein 1 (MRP1) is an ABC exporter that extrudes a variety of chemotherapeutic agents and native substrates. Previously, the structures of MRP1 were determined in an inward-facing (IF) or outward-facing (OF) conformation. Here, we used single-molecule fluorescence spectroscopy to track the conformational changes of bovine MRP1 (bMRP1) in real time. We also determined the structure of bMRP1 under active turnover conditions. Our results show that substrate stimulates ATP hydrolysis by accelerating the IF-to-OF transition. The rate-limiting step of the transport cycle is the dissociation of the nucleotide-binding-domain dimer, while ATP hydrolysis per se does not reset MRP1 to the resting state. The combination of structural and kinetic data illustrates how different conformations of MRP1 are temporally linked and how substrate and ATP alter protein dynamics to achieve active transport.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, United States
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, United States
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| |
Collapse
|
30
|
New Structural insights into Kir channel gating from molecular simulations, HDX-MS and functional studies. Sci Rep 2020; 10:8392. [PMID: 32439887 PMCID: PMC7242327 DOI: 10.1038/s41598-020-65246-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 11/25/2022] Open
Abstract
Inward rectifier potassium (Kir) channels play diverse and important roles in shaping action potentials in biological membranes. An increasing number of diseases are now known to be directly associated with abnormal Kir function. However, the gating of Kir still remains unknown. To increase our understanding of its gating mechanism, a dynamical view of the entire channel is essential. Here the gating activation was studied using a recent developped in silico method, MDeNM, which combines normal mode analysis and molecular dynamics simulations that showed for the very first time the importance of interrelated collective and localized conformational movements. In particular, we highlighted the role played by concerted movements of the different regions throughout the entire protein, such as the cytoplasmic and transmembrane domains and the slide helices. In addition, the HDX-MS analysis achieved in these studies provided a comprehensive and detailed view of the dynamics associated with open/closed transition of the Kir channel in coherence with the theoretical results. MDeNM gives access to the probability of the different opening states that are in agreement with our electrophysiological experiments. The investigations presented in this article are important to remedy dysfunctional channels and are of interest for designing new pharmacological compounds.
Collapse
|
31
|
Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays. Proc Natl Acad Sci U S A 2020; 117:2938-2947. [PMID: 31980523 PMCID: PMC7022178 DOI: 10.1073/pnas.1915010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inward rectifier K+ (Kir) channels play an important role in reestablishing the resting membrane state of the action potential of excitable cells in humans. KirBac1.1 is a prokaryotic Kir channel with a high degree of homology to human Kir channels and can be isotopically labeled in NMR quantities for structural studies. Functional assays and NMR assignments confirm that KirBac1.1 is in a constitutively conductive state. Solid-state NMR assignments further reveal alternate conformations at key sites in the protein that are well conserved through human Kir channels, hinting at a possible allosteric network between channels. These underlying sequential and structural motifs could explain abnormal conductive properties of these channels fundamental to their native gating processes. The conformational changes required for activation and K+ conduction in inward-rectifier K+ (Kir) channels are still debated. These structural changes are brought about by lipid binding. It is unclear how this process relates to fast gating or if the intracellular and extracellular regions of the protein are coupled. Here, we examine the structural details of KirBac1.1 reconstituted into both POPC and an activating lipid mixture of 3:2 POPC:POPG (wt/wt). KirBac1.1 is a prokaryotic Kir channel that shares homology with human Kir channels. We establish that KirBac1.1 is in a constitutively active state in POPC:POPG bilayers through the use of real-time fluorescence quenching assays and Förster resonance energy transfer (FRET) distance measurements. Multidimensional solid-state NMR (SSNMR) spectroscopy experiments reveal two different conformers within the transmembrane regions of the protein in this activating lipid environment, which are distinct from the conformation of the channel in POPC bilayers. The differences between these three distinct channel states highlight conformational changes associated with an open activation gate and suggest a unique allosteric pathway that ties the selectivity filter to the activation gate through interactions between both transmembrane helices, the turret, selectivity filter loop, and the pore helix. We also identify specific residues involved in this conformational exchange that are highly conserved among human Kir channels.
Collapse
|
32
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
33
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|
34
|
Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. Conduction through a narrow inward-rectifier K + channel pore. J Gen Physiol 2019; 151:1231-1246. [PMID: 31511304 PMCID: PMC6785732 DOI: 10.1085/jgp.201912359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
G-protein–gated inwardly rectifying potassium channels are important mediators of inhibitory neurotransmission. Based on microsecond-scale molecular dynamics simulations, Bernsteiner et al. propose novel gating details that may enable K+ flux via a direct knock-on mechanism. Inwardly rectifying potassium (Kir) channels play a key role in controlling membrane potentials in excitable and unexcitable cells, thereby regulating a plethora of physiological processes. G-protein–gated Kir channels control heart rate and neuronal excitability via small hyperpolarizing outward K+ currents near the resting membrane potential. Despite recent breakthroughs in x-ray crystallography and cryo-EM, the gating and conduction mechanisms of these channels are poorly understood. MD simulations have provided unprecedented details concerning the gating and conduction mechanisms of voltage-gated K+ and Na+ channels. Here, we use multi-microsecond–timescale MD simulations based on the crystal structures of GIRK2 (Kir3.2) bound to phosphatidylinositol-4,5-bisphosphate to provide detailed insights into the channel’s gating dynamics, including insights into the behavior of the G-loop gate. The simulations also elucidate the elementary steps that underlie the movement of K+ ions through an inward-rectifier K+ channel under an applied electric field. Our simulations suggest that K+ permeation might occur via direct knock-on, similar to the mechanism recently shown for Kv channels.
Collapse
Affiliation(s)
- Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
35
|
Litwin DB, Durham RJ, Jayaraman V. Single-Molecule FRET Methods to Study Glutamate Receptors. Methods Mol Biol 2019; 1941:3-16. [PMID: 30707423 DOI: 10.1007/978-1-4939-9077-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Single-molecule fluorescence energy transfer methods allow us to determine the complete structural landscape between the donor and acceptor fluorophores introduced on the protein of interest. This method is particularly attractive to study ion channel proteins as single-molecule current recordings have been used to study the function of these proteins for several decades. Here we describe the smFRET method used to study glutamate receptors.
Collapse
Affiliation(s)
- Douglas B Litwin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
36
|
Toyama Y, Shimada I. Frequency selective coherence transfer NMR spectroscopy to study the structural dynamics of high molecular weight proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:62-77. [PMID: 31129430 DOI: 10.1016/j.jmr.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Multidimensional nuclear magnetic resonance (NMR) spectroscopy has enabled detailed characterizations of protein structures and dynamics that are closely linked to functions. However, it leads to a large sensitivity loss in applications to high molecular weight proteins, which is caused by spin relaxation during the frequency discrimination period in the indirect dimension. Here, we describe a selective coherence transfer scheme, which enables us to selectively observe 1H nuclei bonded to 15N or 13C nuclei with specified resonance frequencies. By utilizing this scheme, we achieved a 2.5- to 6-fold increase in signal height per unit of time with this scheme by avoiding the relaxation loss in the indirect dimension, as compared to the conventional two-dimensional heteronuclear correlation spectroscopy. We also demonstrated the effectiveness of this approach with applications to the membrane protein KirBac1.1, and characterized the functionally relevant conformational exchange process in both detergent micelles and a reconstituted membrane environment, corresponding to the apparent molecular masses of 220 kDa and 300 kDa, respectively.
Collapse
Affiliation(s)
- Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
37
|
smFRET Probing Reveals Substrate-Dependent Conformational Dynamics of E. coli Multidrug MdfA. Biophys J 2019; 116:2296-2303. [PMID: 31146923 DOI: 10.1016/j.bpj.2019.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
Bacterial multidrug-resistance transporters of the major facilitator superfamily are distinguished by their extraordinary ability to bind structurally diverse substrates, thus serving as a highly efficient tool to protect cells from multiple toxic substances present in their environment, including antibiotic drugs. However, details of the dynamic conformational changes of the transport cycle involved remain to be elucidated. Here, we used the single-molecule fluorescence resonance energy transfer technique to investigate the conformational behavior of the Escherichia coli multidrug transporter MdfA under conditions of different substrates, pH, and alkali metal ions. Our data show that different substrates exhibit distinct effects on both the conformational distribution and transition rate between two major conformations. Although the cationic substrate tetraphenylphosphonium favors the outward-facing conformation, it has less effect on the transition rate. In contrast, binding of the electroneutral substrate chloramphenicol tends to stabilize the inward-facing conformation and decreases the transition rate. Therefore, our study supports the notion that the MdfA transporter uses distinct mechanisms to transport electroneutral and cationic substrates.
Collapse
|
38
|
Potassium channel selectivity filter dynamics revealed by single-molecule FRET. Nat Chem Biol 2019; 15:377-383. [PMID: 30833778 PMCID: PMC6430689 DOI: 10.1038/s41589-019-0240-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/25/2019] [Indexed: 11/09/2022]
Abstract
Potassium (K) channels exhibit exquisite selectivity for conduction of K+ ions over other cations, particularly Na+. High-resolution structures reveal an archetypal selectivity filter (SF) conformation in which dehydrated K+ ions, but not Na+ ions, are perfectly coordinated. Using single-molecule FRET (smFRET), we show that the SF-forming loop (SF-loop) in KirBac1.1 transitions between constrained and dilated conformations as a function of ion concentration. The constrained conformation, essential for selective K+ permeability, is stabilized by K+ but not Na+ ions. Mutations that render channels nonselective result in dilated and dynamically unstable conformations, independent of the permeant ion. Further, while wild-type KirBac1.1 channels are K+ selective in physiological conditions, Na+ permeates in the absence of K+. Moreover, whereas K+ gradients preferentially support 86Rb+ fluxes, Na+ gradients preferentially support 22Na+ fluxes. This suggests differential ion selectivity in constrained versus dilated states, potentially providing a structural basis for this anomalous mole fraction effect.
Collapse
|
39
|
Liao X, Zhang B, Blatt MR, Jenkins GI. A FRET method for investigating dimer/monomer status and conformation of the UVR8 photoreceptor. Photochem Photobiol Sci 2019; 18:367-374. [PMID: 30534791 PMCID: PMC6374739 DOI: 10.1039/c8pp00489g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022]
Abstract
The photoreceptor UVR8 has a pivotal role in mediating plant responses to UV-B wavelengths. Dimeric UVR8 dissociates into monomers following UV-B photoreception, and there is evidence that this process is accompanied by conformational changes that may facilitate interaction of UVR8 with other proteins to initiate signaling. Hence monitoring UVR8 dimer/monomer status and conformation is key to understanding UVR8 action. Here we have used Fluorescence Resonance Energy Transfer (FRET) to study these processes in both wild-type and mutant UVR8 proteins in vivo. UVR8 was fused to GFP and mCherry at the C- and N-termini, respectively and both the FRET efficiency and loss of GFP fluorescence after photobleaching were measured. In addition, measurements were made for UVR8 fused to either GFP or mCherry to eliminate intra-molecular FRET signals. The results indicate that dissociation of UVR8 dimer to monomer principally accounts for the loss of FRET signal for wild-type UVR8 and there is little evidence of a contribution from conformational change in vivo. Examination of plants expressing UVR8W285F and UVR8D96N,D107N are consistent with these mutant proteins being constitutively dimeric and monomeric, respectively. The methods employed here will be valuable for monitoring UVR8 dimer/monomer status in vivo in relation to signaling, and will facilitate characterization of dimer/monomer status and conformation of further UVR8 mutants.
Collapse
Affiliation(s)
- Xinyang Liao
- Institute of Molecular
, Cell and Systems Biology
, College of Medical
, Veterinary and Life Sciences
, Bower Building
, University of Glasgow
,
Glasgow G12 8QQ
, UK
.
| | - Ben Zhang
- Institute of Molecular
, Cell and Systems Biology
, College of Medical
, Veterinary and Life Sciences
, Bower Building
, University of Glasgow
,
Glasgow G12 8QQ
, UK
.
| | - Michael R. Blatt
- Institute of Molecular
, Cell and Systems Biology
, College of Medical
, Veterinary and Life Sciences
, Bower Building
, University of Glasgow
,
Glasgow G12 8QQ
, UK
.
| | - Gareth I. Jenkins
- Institute of Molecular
, Cell and Systems Biology
, College of Medical
, Veterinary and Life Sciences
, Bower Building
, University of Glasgow
,
Glasgow G12 8QQ
, UK
.
| |
Collapse
|
40
|
Lee Y, Trocchia SM, Warren SB, Young EF, Vernick S, Shepard KL. Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays. ACS NANO 2018; 12:9922-9930. [PMID: 30260623 PMCID: PMC6887518 DOI: 10.1021/acsnano.8b03073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally deliver higher stability but have traditionally been more difficult to control, resulting in low yield. Here, we present a single-point-functionalization method for CNTFET arrays based on electrochemical control of a diazonium reaction to create sp3 defects, combined with a scalable spin-casting method for fabricating large arrays of devices on arbitrary substrates. Attachment of probe DNA to the functionalized device enables single-molecule detection of DNA hybridization with complementary target, verifying the single-point functionalization. Overall, this method enables single-point defect generation with 80% yield.
Collapse
Affiliation(s)
- Yoonhee Lee
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Scott M. Trocchia
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Erik F. Young
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Sefi Vernick
- Agricultural Research Organization, Volcani Center, Institute of Agricultural Engineering, Bet Dagan, Israel
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
41
|
Senavirathne G, Lopez MA, Messer R, Fishel R, Yoder KE. Expression and purification of nuclease-free protocatechuate 3,4-dioxygenase for prolonged single-molecule fluorescence imaging. Anal Biochem 2018; 556:78-84. [PMID: 29932890 PMCID: PMC6076860 DOI: 10.1016/j.ab.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/23/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Single-molecule (SM) microscopy is a powerful tool capable of visualizing individual molecules and events in real time. SM imaging may rely on proteins or nucleic acids labelled with a fluorophore. Unfortunately photobleaching of fluorophores leads to irreversible loss of signal, impacting the collection of data from SM experiments. Trace amounts of dissolved oxygen (O2) are the main cause of photobleaching. Oxygen scavenging systems (OSS) have been developed that decrease dissolved O2. Commercial OSS enzyme preparations are frequently contaminated with nucleases that damage nucleic acid substrates. In this protocol, we purify highly active Pseudomonas putida protocatechuate 3,4-dioxygenase (PCD) without nuclease contaminations. Quantitation of Cy3 photostability revealed that PCD with its substrate protocatechuic acid (PCA) increased the fluorophore half-life 100-fold. This low cost purification method of recombinant PCD yields an enzyme superior to commercially available OSS that is effectively free of nuclease activity.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Miguel A. Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Ryan Messer
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| | - Kristine E. Yoder
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA,To whom correspondence should be addressed. Tel: (614) 688-2106; , Correspondence may also be addressed to. Tel: (614) 292-2484;
| |
Collapse
|
42
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
43
|
Riederer EA, Focke PJ, Georgieva ER, Akyuz N, Matulef K, Borbat PP, Freed JH, Blanchard SC, Boudker O, Valiyaveetil FI. A facile approach for the in vitro assembly of multimeric membrane transport proteins. eLife 2018; 7:36478. [PMID: 29889023 PMCID: PMC6025958 DOI: 10.7554/elife.36478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.
Collapse
Affiliation(s)
- Erika A Riederer
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Paul J Focke
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Kimberly Matulef
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, Unites States.,National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States
| | | | - Olga Boudker
- Weill Cornell Medicine, New York, United States.,Howard Hughes Medical Institute, Maryland, United States
| | - Francis I Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
44
|
Inanobe A, Itamochi H, Kurachi Y. Kir Channel Blockages by Proflavine Derivatives via Multiple Modes of Interaction. Mol Pharmacol 2018; 93:592-600. [PMID: 29650538 DOI: 10.1124/mol.117.111377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/06/2018] [Indexed: 11/22/2022] Open
Abstract
Many compounds inhibit tetrameric and pseudo-tetrameric cation channels by associating with the central cavity located in the middle of the membrane plane. They traverse the ion conduction pathway from the intracellular side and through access to the cavity. Previously, we reported that the bacteriostatic agent, proflavine, preferentially blocked a subset of inward rectifier K+ (Kir) channels. However, the development of the inhibition of Kir1.1 by the compound was obviously different from that operating in Kir3.2 as a pore blocker. To gain mechanistic insights into the compound-channel interaction, we analyzed its chemical specificity, subunit selectivity, and voltage dependency using 13 different combinations of Kir-channel family members and 11 proflavine derivatives. The Kir-channel family members were classified into three groups: 1) Kir2.2, Kir3.x, Kir4.2, and Kir6.2Δ36, which exhibited Kir3.2-type inhibition (slow onset and recovery, irreversible, and voltage-dependent blockage); 2) Kir1.1 and Kir4.1/Kir5.1 (prompt onset and recovery, reversible, and voltage-independent blockage); and 3) Kir2.1, Kir2.3, Kir4.1, and Kir7.1 (no response). The degree of current inhibition depended on the combination of compounds and channels. Chimera between proflavine-sensitive Kir1.1 and -insensitive Kir4.1 revealed that the extracellular portion of Kir1.1 is crucial for the recognition of the proflavine derivative acrinol. In conclusion, preferential blockage of Kir-channel family members by proflavine derivatives is based on multiple modes of action. This raises the possibility of designing subunit-specific inhibitors.
Collapse
Affiliation(s)
- Atsushi Inanobe
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| | - Hideaki Itamochi
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine (A.I., H.I., Y.K.), and Center for Advanced Medical Engineering and Informatics (A.I., Y.K.), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
45
|
Moonschi FH, Fox-Loe AM, Fu X, Richards CI. Mammalian Cell-derived Vesicles for the Isolation of Organelle Specific Transmembrane Proteins to Conduct Single Molecule Studies. Bio Protoc 2018; 8:e2825. [PMID: 30406159 DOI: 10.21769/bioprotoc.2825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell-derived vesicles facilitate the isolation of transmembrane proteins in their physiological membrane maintaining their structural and functional integrity. These vesicles can be generated from different cellular organelles producing, housing, or transporting the proteins. Combined with single-molecule imaging, isolated organelle specific vesicles can be employed to study the trafficking and assembly of the embedded proteins. Here we present a method for organelle specific single molecule imaging via isolation of ER and plasma membrane vesicles from HEK293T cells by employing OptiPrep gradients and nitrogen cavitation. The isolation was validated through Western blotting, and the isolated vesicles were used to perform single molecule studies of oligomeric receptor assembly.
Collapse
Affiliation(s)
- Faruk H Moonschi
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley M Fox-Loe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Xu Fu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Chris I Richards
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
46
|
Ma L, Li Y, Ma J, Hu S, Li M. Watching Three-Dimensional Movements of Single Membrane Proteins in Lipid Bilayers. Biochemistry 2018; 57:4735-4740. [PMID: 29619828 DOI: 10.1021/acs.biochem.8b00253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is challenging to assess protein-membrane interactions because of the lack of appropriate tools to detect position changes of single proteins in the ∼4 nm range of biological membranes. We developed an assay recently, termed surface-induced fluorescence attenuation (SIFA). It is able to track both vertical and lateral dynamic motion of singly labeled membrane proteins in supported lipid bilayers. Similar to the FRET (fluorescence resonance energy transfer) principle, SIFA takes advantage of the energy transfer from a fluorophore to a light-absorbing surface to determine the distance at 2-8 nm away from the surface. By labeling a protein with a proper fluorophore and using graphene oxide as a two-dimensional quencher, we showed that SIFA is capable of monitoring three-dimensional movements of the fluorophore-labeled protein not only inside but also above the lipid bilayer atop the graphene oxide. Our data show that SIFA is a well-suited method to study the interplay between proteins and membranes.
Collapse
Affiliation(s)
- Li Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianbing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuxin Hu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
47
|
Schrangl L, Göhring J, Schütz GJ. Kinetic analysis of single molecule FRET transitions without trajectories. J Chem Phys 2018; 148:123328. [DOI: 10.1063/1.5006038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lukas Schrangl
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8–10, 1040 Wien, Vienna, Austria
| | - Janett Göhring
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Wien, Vienna, Austria
| | - Gerhard J. Schütz
- Institute of Applied Physics, TU Wien, Wiedner Hauptstraße 8–10, 1040 Wien, Vienna, Austria
| |
Collapse
|
48
|
Abstract
Transmembrane protein 16F (TMEM16F) is a Ca2+-dependent phospholipid scramblase that translocates phospholipids bidirectionally between the leaflets of the plasma membrane. Phospholipid scrambling of TMEM16F causes exposure of phosphatidylserine in activated platelets to induce blood clotting and in differentiated osteoblasts to promote bone mineralization. Despite the importance of TMEM16F-mediated phospholipid scrambling in various biological reactions, the fundamental features of the scrambling reaction remain elusive due to technical difficulties in the preparation of a platform for assaying scramblase activity in vitro. Here, we established a method to express and purify mouse TMEM16F as a dimeric molecule by constructing a stable cell line and developed a microarray containing membrane bilayers with asymmetrically distributed phospholipids as a platform for single-molecule scramblase assays. The purified TMEM16F was integrated into the microarray, and monitoring of phospholipid translocation showed that a single TMEM16F molecule transported phospholipids nonspecifically between the membrane bilayers in a Ca2+-dependent manner. Thermodynamic analysis of the reaction indicated that TMEM16F transported 4.5 × 104 lipids per second at 25 °C, with an activation free energy of 47 kJ/mol. These biophysical features were similar to those observed with channels, which transport substrates by facilitating diffusion, and supported the stepping-stone model for the TMEM16F phospholipid scramblase.
Collapse
|
49
|
Silva JR. How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels. Biophys J 2018; 114:259-266. [PMID: 29401425 PMCID: PMC5984968 DOI: 10.1016/j.bpj.2017.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/09/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Many have worked to create cardiac action potential models that explicitly represent atomic-level details of ion channel structure. Such models have the potential to define new therapeutic directions and to show how nanoscale perturbations to channel function predispose patients to deadly cardiac arrhythmia. However, there have been significant experimental and theoretical barriers that have limited model usefulness. Recently, many of these barriers have come down, suggesting that considerable progress toward creating these long-sought models may be possible in the near term.
Collapse
Affiliation(s)
- Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
50
|
Nanazashvili M, Sánchez-Rodríguez JE, Fosque B, Bezanilla F, Sackin H. LRET Determination of Molecular Distances during pH Gating of the Mammalian Inward Rectifier Kir1.1b. Biophys J 2018; 114:88-97. [PMID: 29320699 PMCID: PMC5773755 DOI: 10.1016/j.bpj.2017.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/23/2017] [Accepted: 10/19/2017] [Indexed: 01/31/2023] Open
Abstract
Gating of the mammalian inward rectifier Kir1.1 at the helix bundle crossing (HBC) by intracellular pH is believed to be mediated by conformational changes in the C-terminal domain (CTD). However, the exact motion of the CTD during Kir gating remains controversial. Crystal structures and single-molecule fluorescence resonance energy transfer of KirBac channels have implied a rigid body rotation and/or a contraction of the CTD as possible triggers for opening of the HBC gate. In our study, we used lanthanide-based resonance energy transfer on single-Cys dimeric constructs of the mammalian renal inward rectifier, Kir1.1b, incorporated into anionic liposomes plus PIP2, to determine unambiguous, state-dependent distances between paired Cys residues on diagonally opposite subunits. Functionality and pH dependence of our proteoliposome channels were verified in separate electrophysiological experiments. The lanthanide-based resonance energy transfer distances measured in closed (pH 6) and open (pH 8) conditions indicated neither expansion nor contraction of the CTD during gating, whereas the HBC gate widened by 8.8 ± 4 Å, from 6.3 ± 2 to 15.1 ± 6 Å, during opening. These results are consistent with a Kir gating model in which rigid body rotation of the large CTD around the permeation axis is correlated with opening of the HBC hydrophobic gate, allowing permeation of a 7 Å hydrated K ion.
Collapse
Affiliation(s)
- Mikheil Nanazashvili
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois
| | - Jorge E Sánchez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois; Departamento de Física, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ben Fosque
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Henry Sackin
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois.
| |
Collapse
|