1
|
De Cecco F, Chellini L, Riccioni V, Paronetto MP. Oncogenic Fusions Harboring ETS Genes: Exploring Novel Targetable Opportunities in Prostate Cancer. Cancers (Basel) 2025; 17:1657. [PMID: 40427154 PMCID: PMC12110702 DOI: 10.3390/cancers17101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Chromosomal rearrangements are implicated in the pathogenesis of several human malignancies, but, concurrently, they also represent targetable opportunities, as exemplified by imatinib (Gleevec), which targets the BCR-ABL gene fusion in myeloid leukemia. In prostate cancer, several chromosomal rearrangements have been identified, most of them involving ETS genes, which encode key transcription factors. In this review, we explore the discovery of 5' partners that classify ETS gene fusions into distinct groups based on the prostate specificity and androgen responsiveness. Furthermore, we try to address the relationship between gene fusion status and patient outcomes and discuss the possibility of using prostate-specific targeting of ETS gene fusions in cancer detection, stratification, and treatment.
Collapse
Affiliation(s)
- Federica De Cecco
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy;
| | - Lidia Chellini
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (L.C.); (V.R.)
| | - Veronica Riccioni
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (L.C.); (V.R.)
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis, 6, 00135 Rome, Italy;
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (L.C.); (V.R.)
| |
Collapse
|
2
|
Tang X, Lu L, Li X, Huang P. Bridging Cancer and COVID-19: The Complex Interplay of ACE2 and TMPRSS2. Cancer Med 2025; 14:e70829. [PMID: 40145441 PMCID: PMC11947763 DOI: 10.1002/cam4.70829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic presents heightened risks for cancer patients, who are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and severe outcomes due to immunosuppression from both the malignancy and anticancer therapies. This review investigates the dual roles of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in SARS-CoV-2 infection among cancer patients. ACE2, the vital entry receptor for SARS-CoV-2, is overexpressed in certain tumors such as colon adenocarcinoma, renal carcinomas, pancreatic adenocarcinoma, and lung adenocarcinoma, potentially increasing viral susceptibility. Paradoxically, ACE2 also exhibits tumor-suppressive properties by inhibiting angiogenesis and modulating the tumor microenvironment, leading to improved patient prognoses in some cancers like breast cancer. TMPRSS2, essential for viral entry, shows decreased expression in several tumors but acts as a prognostic biomarker in prostate and lung cancers. This review illustrates the complexity of therapeutically targeting ACE2 and TMPRSS2 due to their contrasting roles in cancer progression and viral entry. We analyze the expression levels of ACE2 and TMPRSS2 in relation to immune cell infiltration and patient outcomes, and propose personalized therapeutic strategies. Furthermore, we underscore the necessity for multidisciplinary approaches, integrating antiviral treatments with cancer therapies and tailoring interventions based on individual molecular profiles. This approach to personalized medicine seeks to enhance treatment results and better manage cancer patients who have contracted SARS-CoV-2.
Collapse
Affiliation(s)
- Xuerui Tang
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Liuzhi Lu
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Xiaoping Li
- Clinical LaboratoryTongxiang First People's HospitalZhejiangChina
| | - Panpan Huang
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
3
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Panja S, Truica MI, Yu CY, Saggurthi V, Craige MW, Whitehead K, Tuiche MV, Al-Saadi A, Vyas R, Ganesan S, Gohel S, Coffman F, Parrott JS, Quan S, Jha S, Kim I, Schaeffer E, Kothari V, Abdulkadir SA, Mitrofanova A. Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC. Nat Commun 2024; 15:352. [PMID: 38191557 PMCID: PMC10774320 DOI: 10.1038/s41467-024-44686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Heterogeneous response to Enzalutamide, a second-generation androgen receptor signaling inhibitor, is a central problem in castration-resistant prostate cancer (CRPC) management. Genome-wide systems investigation of mechanisms that govern Enzalutamide resistance promise to elucidate markers of heterogeneous treatment response and salvage therapies for CRPC patients. Focusing on the de novo role of MYC as a marker of Enzalutamide resistance, here we reconstruct a CRPC-specific mechanism-centric regulatory network, connecting molecular pathways with their upstream transcriptional regulatory programs. Mining this network with signatures of Enzalutamide response identifies NME2 as an upstream regulatory partner of MYC in CRPC and demonstrates that NME2-MYC increased activities can predict patients at risk of resistance to Enzalutamide, independent of co-variates. Furthermore, our experimental investigations demonstrate that targeting MYC and its partner NME2 is beneficial in Enzalutamide-resistant conditions and could provide an effective strategy for patients at risk of Enzalutamide resistance and/or for patients who failed Enzalutamide treatment.
Collapse
Affiliation(s)
- Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mihai Ioan Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christina Y Yu
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Vamshi Saggurthi
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Michael W Craige
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Katie Whitehead
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mayra V Tuiche
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, 07039, USA
| | - Aymen Al-Saadi
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Riddhi Vyas
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Frederick Coffman
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - James S Parrott
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Songhua Quan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shantenu Jha
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Isaac Kim
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Urology, Yale School of Medicine, New Heaven, CT, 06510, USA
| | - Edward Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vishal Kothari
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
Hasterok S, Scott TG, Roller DG, Spencer A, Dutta AB, Sathyan KM, Frigo DE, Guertin MJ, Gioeli D. The Androgen Receptor Does Not Directly Regulate the Transcription of DNA Damage Response Genes. Mol Cancer Res 2023; 21:1329-1341. [PMID: 37698543 PMCID: PMC11022999 DOI: 10.1158/1541-7786.mcr-23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The clinical success of combined androgen deprivation therapy (ADT) and radiotherapy (RT) in prostate cancer created interest in understanding the mechanistic links between androgen receptor (AR) signaling and the DNA damage response (DDR). Convergent data have led to a model where AR both regulates, and is regulated by, the DDR. Integral to this model is that the AR regulates the transcription of DDR genes both at a steady state and in response to ionizing radiation (IR). In this study, we sought to determine which immediate transcriptional changes are induced by IR in an AR-dependent manner. Using PRO-seq to quantify changes in nascent RNA transcription in response to IR, the AR antagonist enzalutamide, or the combination of the two, we find that enzalutamide treatment significantly decreased expression of canonical AR target genes but had no effect on DDR gene sets in prostate cancer cells. Surprisingly, we also found that the AR is not a primary regulator of DDR genes either in response to IR or at a steady state in asynchronously growing prostate cancer cells. IMPLICATIONS Our data indicate that the clinical benefit of combining ADT with RT is not due to direct AR regulation of DDR gene transcription, and that the field needs to consider alternative mechanisms for this clinical benefit.
Collapse
Affiliation(s)
- Sylwia Hasterok
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Thomas G. Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Devin G. Roller
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Adam Spencer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Arun B. Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Kizhakke M Sathyan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut 06030, USA
| | - Daniel E. Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Michael J. Guertin
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut 06030, USA
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Cancer Center Member, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Bowling GC, Rands MG, Dobi A, Eldhose B. Emerging Developments in ETS-Positive Prostate Cancer Therapy. Mol Cancer Ther 2023; 22:168-178. [PMID: 36511830 DOI: 10.1158/1535-7163.mct-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a global health concern, which has a low survival rate in its advanced stages. Even though second-generation androgen receptor-axis inhibitors serve as the mainstay treatment options, utmost of the metastatic cases progress into castration-resistant prostate cancer after their initial treatment response with poor prognostic outcomes. Hence, there is a dire need to develop effective inhibitors that aim the causal oncogenes tangled in the prostate cancer initiation and progression. Molecular-targeted therapy against E-26 transformation-specific (ETS) transcription factors, particularly ETS-related gene, has gained wide attention as a potential treatment strategy. ETS rearrangements with the male hormone responsive transmembrane protease serine 2 promoter defines a significant number of prostate cancer cases and is responsible for cancer initiation and progression. Notably, inhibition of ETS activity has shown to reduce tumorigenesis, thus highlighting its potential as a clinical therapeutic target. In this review, we recapitulate the various targeted drug approaches, including small molecules, peptidomimetics, nucleic acids, and many others, aimed to suppress ETS activity. Several inhibitors have demonstrated ERG antagonist activity in prostate cancer, but further investigations into their molecular mechanisms and impacts on nontumor ETS-containing tissues is warranted.
Collapse
Affiliation(s)
- Gartrell C Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mitchell G Rands
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| |
Collapse
|
7
|
Fang L, Li D, Yin J, Pan H, Ye H, Bowman J, Capaldo B, Kelly K. TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence. Cancer Gene Ther 2022; 29:1463-1476. [PMID: 35393570 PMCID: PMC9537368 DOI: 10.1038/s41417-022-00454-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
ERG translocations are commonly involved in the initiation of prostate neoplasia, yet previous experimental approaches have not addressed mechanisms of oncogenic inception. Here, in a genetically engineered mouse model, combining TMPRSS2-driven ERG with KrasG12D led to invasive prostate adenocarcinomas, while ERG or KrasG12D alone were non-oncogenic. In primary prostate luminal epithelial cells, following inducible oncogenic Kras expression or Pten depletion, TMPRSS2-ERG suppressed oncogene-induced senescence, independent of TP53 induction and RB1 inhibition. Oncogenic KRAS and TMPRSS2-ERG synergized to promote tumorigenesis and metastasis of primary luminal cells. The presence of TMPRSS2-ERG compared to a wild-type background was associated with a stemness phenotype and with relatively increased RAS-induced differential gene expression for MYC and mTOR-regulated pathways, including protein translation and lipogenesis. In addition, mTOR inhibitors abrogated ERG-dependent senescence resistance. These studies reveal a previously unappreciated function whereby ERG expression primes preneoplastic cells for the accumulation of additional gene mutations by suppression of oncogene-induced senescence.
Collapse
Affiliation(s)
- Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Hong Pan
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, P. R. China
| | - Huihui Ye
- Department of Pathology and Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Joel Bowman
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Brian Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
8
|
Raina K, Kant R, Prasad RR, Kandhari K, Tomar M, Mishra N, Kumar R, Fox JT, Sei S, Shoemaker RH, Chen Y, Maroni P, Agarwal C, Agarwal R. Characterization of stage-specific tumor progression in TMPRSS2-ERG (fusion)-driven and non-fusion-driven prostate cancer in GEM models. Mol Carcinog 2022; 61:717-734. [PMID: 35452553 PMCID: PMC10007524 DOI: 10.1002/mc.23413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/29/2023]
Abstract
In the present study, we performed a comparative stage-specific pathological and molecular marker evaluation of TMPRSS2-ERG fusion and PTEN loss-driven (TMPRSS2-ERG. Ptenflox/flox ) versus non-fusion-driven prostate tumorigenesis (Hi-Myc) in mice. Anterior, ventral, and dorsolateral prostates were collected from mice at different ages (or time points post-Cre induction). Results indicated that growth and progression of prostatic intraepithelial lesions to adenocarcinoma stages occurred in both mice models albeit at different rates. In the TMPRSS2-ERG. Ptenflox/flox mice, the initiation of tumorigenesis was slow, but subsequent progression through different stages became increasingly faster. Adenocarcinoma stage was reached early on; however, no high-grade undifferentiated tumors were observed. Conversely, in the Hi-Myc+/- mice, tumorigenesis initiation was rapid; however, progression through different stages was relatively slower and it took a while to reach the more aggressive phenotype stage. Nevertheless, at the advanced stages in the Hi-Myc+/- mice, high-grade undifferentiated tumors were observed compared to the later stage tumors observed in the fusion-driven TMPRSS2-ERG. Ptenflox/flox mice. These results were corroborated by the stage specific-pattern in the molecular expression of proliferation markers (PCNA and c-Myc); androgen receptor (AR); fusion-resultant overexpression of ERG; Prostein (SLC45-A3); and angiogenesis marker (CD-31). Importantly, there was a significant increase in immune cell infiltrations, which increased with the stage of tumorigenesis, in the TMPRSS2-ERG fusion-positive tumors relative to fusion negative tumors. Together, these findings are both novel and highly significant in establishing a working preclinical model for evaluating the efficacy of interventions during different stages of tumorigenesis in TMPRSS2-ERG fusion-driven PCa.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ram R Prasad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Munendra Tomar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robin Kumar
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jennifer T Fox
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shizuko Sei
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Robert H Shoemaker
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yu Chen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Paul Maroni
- Department of Surgery, Division of Urology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Nascente EDP, Amorim RL, Fonseca-Alves CE, de Moura VMBD. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers (Basel) 2022; 14:2727. [PMID: 35681707 PMCID: PMC9179314 DOI: 10.3390/cancers14112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
First described in 1817, prostate cancer is considered a complex neoplastic entity, and one of the main causes of death in men in the western world. In dogs, prostatic carcinoma (PC) exhibits undifferentiated morphology with different phenotypes, is hormonally independent of aggressive character, and has high rates of metastasis to different organs. Although in humans, the risk factors for tumor development are known, in dogs, this scenario is still unclear, especially regarding castration. Therefore, with the advent of molecular biology, studies were and are carried out with the aim of identifying the main molecular mechanisms and signaling pathways involved in the carcinogenesis and progression of canine PC, aiming to identify potential biomarkers for diagnosis, prognosis, and targeted treatment. However, there are extensive gaps to be filled, especially when considering the dog as experimental model for the study of this neoplasm in humans. Thus, due to the complexity of the subject, the objective of this review is to present the main pathobiological aspects of canine PC from a comparative point of view to the same neoplasm in the human species, addressing the historical context and current understanding in the scientific field.
Collapse
Affiliation(s)
- Eduardo de Paula Nascente
- School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | | |
Collapse
|
10
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
11
|
Fontana F, Anselmi M, Limonta P. Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Lett 2022; 534:215619. [PMID: 35276289 DOI: 10.1016/j.canlet.2022.215619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
Prostate cancer remains one of the most lethal malignancies among men worldwide. Although the primary tumor can be successfully managed by surgery and radiotherapy, advanced metastatic carcinoma requires better therapeutic approaches. In this context, a deeper understanding of the molecular mechanisms that underlie the initiation and progression of this disease is urgently needed, leading to the identification of new diagnostic/prognostic markers and the development of more effective treatments. Herein, the current state of knowledge of prostate cancer genetic alterations is discussed, with a focus on their potential in tumor detection and staging as well as in the screening of novel therapeutics.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Martina Anselmi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
13
|
Liu X, Liu B, Shang Y, Cao P, Hou J, Chen F, Zhang B, Fan Y, Tan K. Decreased TMPRSS2 expression by SARS-CoV-2 predicts the poor prognosis of lung cancer patients through metabolic pathways and immune infiltration. Aging (Albany NY) 2022; 14:73-108. [PMID: 35017320 PMCID: PMC8791221 DOI: 10.18632/aging.203823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world and became a global pandemic in 2020. One promising drug target for SARS-CoV-2 is the transmembrane protease serine 2 (TMPRSS2). This study was designed to explore the expression status, prognostic significance and molecular functions of TMPRSS2 in lung cancer. TMPRSS2 expression was investigated using the TIMER, Oncomine, UALCAN, GEO, HPA and TCGA databases. The prognostic value of TMPRSS2 was examined using Cox regression and a nomogram. KEGG, GO and GSEA were performed to investigate the cellular function of TMPRSS2 in lung cancer. The relationship between TMPRSS2 and immune infiltration was determined using the TIMER and CIBERSORT algorithms. TMPRSS2 mRNA and protein expression was significantly reduced in lung cancer. Decreased TMPRSS2 expression and increased DNA methylation of TMPRSS2 were associated with various clinicopathological parameters in patients with lung cancer. Low TMPRSS2 mRNA expression also correlated with poor outcome in lung cancer patients. Moreover, a nomogram was constructed and exhibited good predictive power for the overall survival of lung cancer patients. KEGG and GO analyses and GSEA implied that multiple immune- and metabolism-related pathways were significantly linked with TMPRSS2 expression. Intriguingly, TMPRSS2 expression associated with immune cell infiltration in lung cancer. More importantly, TMPRSS2 expression was markedly decreased in SARS-CoV-infected cells. These findings indicate that TMPRSS2 may be a promising prognostic biomarker and therapeutic target for lung cancer through metabolic pathways and immune cell infiltration.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Bing Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yanan Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jiajie Hou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fei Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Bo Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
14
|
Lethongsavarn V, Pinault M, Diedhiou A, Guimaraes C, Guibon R, Bruyère F, Mathieu R, Rioux-Leclercq N, Multigner L, Brureau L, Fournier G, Doucet L, Blanchet P, Fromont G. Tissue cholesterol metabolism and prostate cancer aggressiveness: Ethno-geographic variations. Prostate 2021; 81:1365-1373. [PMID: 34516695 DOI: 10.1002/pros.24234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is more frequent and more aggressive in populations of African descent than in Caucasians. Since the fatty acid composition of peri-prostatic adipose tissue (PPAT) has been shown to differ according to the ethno-geographic origin and is involved in PCa aggressiveness, we aimed to analyze the cholesterol content of PPAT from Caucasian and African-Caribbean patients, in correlation with markers of disease aggressiveness and cholesterol metabolism in cancer tissues. METHODS The quantification of cholesterol in PPAT was analyzed in 52 Caucasian and 52 African-Caribbean PCa patients, with in each group 26 indolent tumors (ISUP Group1 and pT2) and 26 potentially aggressive tumors (ISUP Group 3-5 and/or pT3). The expression of proteins involved in cholesterol metabolism was analyzed by immunohistochemistry on cancer tissue samples included in tissue microarrays. RESULTS The amount of cholesterol esters was lower in PPAT from African-Caribbean patients compared with Caucasians, without any correlation with markers of disease aggressiveness. In cancer tissues from African-Caribbean patients, the expression of ABCA1 (involved in cholesterol efflux) was decreased, and that of SREBP-2 (involved in cholesterol uptake) was increased. In both groups of patients, SREBP-2 expression was strongly associated with that of Zeb1, a key player in the epithelial-to-mesenchymal transition (EMT) process. CONCLUSION These results suggest that cholesterol metabolism differs according to the ethno-geographic origin, in both PPAT and cancer tissues. In African-Caribbeans, the orientation towards accumulation of cholesterol in cancer cells is associated with a more frequent state of EMT, which may promote PCa aggressiveness in this population.
Collapse
Affiliation(s)
- Vincent Lethongsavarn
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHU de la Guadeloupe, Guadeloupe, France
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
| | - Michèle Pinault
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
| | | | - Cyrille Guimaraes
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
| | - Roseline Guibon
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHRU Tours, Tours, France
| | | | - Romain Mathieu
- Department of Urology, CHU Rennes, Rennes, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
| | - Nathalie Rioux-Leclercq
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Pathology, CHU Rennes, Rennes, France
| | - Luc Multigner
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
| | - Laurent Brureau
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Urology, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | | | | | - P Blanchet
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Urology, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Gaëlle Fromont
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHRU Tours, Tours, France
| |
Collapse
|
15
|
Eldhose B, Pandrala M, Xavier C, Mohamed AA, Srivastava S, Sunkara AD, Dobi A, Malhotra SV. New Selective Inhibitors of ERG Positive Prostate Cancer: ERGi-USU-6 Salt Derivatives. ACS Med Chem Lett 2021; 12:1703-1709. [PMID: 34790292 PMCID: PMC8591719 DOI: 10.1021/acsmedchemlett.1c00308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
![]()
Prostate
cancer is among the leading causes of cancer related death
of men in the United States. The ERG gene fusion
leading to overexpression of near full-length ERG transcript and protein represents most prevalent (50–65%)
prostate cancer driver gene alterations. The ERG oncoprotein overexpression
persists in approximately 35% of metastatic castration resistant prostate
cancers. Due to the emergence of eventual refractoriness to second-
and third-generation androgen axis-based inhibitors, there remains
a pressing need to develop drugs targeting other validated prostate
cancer drivers such as ERG. Here we report the new and more potent
ERG inhibitor ERGi-USU-6 developed by structure–activity studies
from the parental ERGi-USU. We have developed an improved procedure
for the synthesis of ERGi-USU-6 and identified a salt formulation
that further improves its activity in biological assays for selective
targeting of ERG harboring prostate cancer cells.
Collapse
Affiliation(s)
- Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817, United States
| | - Mallesh Pandrala
- Division of Radiation & Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Charles Xavier
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817, United States
| | - Ahmed A. Mohamed
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817, United States
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889, United States
| | - Anu D. Sunkara
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889, United States
- Washington Adventist University, Takoma Park, Maryland 20912, United States
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817, United States
| | - Sanjay V. Malhotra
- Division of Radiation & Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
16
|
Shao L, Wang J, Karatas O, Ittmann M. MEX3D is an oncogenic driver in prostate cancer. Prostate 2021; 81:1202-1213. [PMID: 34455614 PMCID: PMC8460603 DOI: 10.1002/pros.24216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common visceral malignancy and the second leading cause of cancer deaths in US men. The two most common genetic alterations in PCa are expression of the TMPRSS2/ERG (TE) fusion gene and loss of the PTEN tumor suppressor. These genetic alterations act cooperatively to transform prostatic epithelium but the exact mechanisms involved are unclear. METHODS Microarray expression analysis of immortalized prostate epithelial cells transformed by loss of PTEN and expression of the TE fusion revealed MEX3D as one of the most highly upregulated genes. MEX3D expression in prostate cancer was examined in patient samples and in silico. In vitro and in vivo studies to characterize the biological impact of MEX3D were carried out. Analysis of the TCGA PanCancer database revealed TCF3 as a major target of MEX3D. The induction of TCF3 by MEX3D was confirmed and the biological impact of TCF3 examined by in vitro studies. RESULTS MEX3D is expressed at increased levels in prostate cancer and is increased by decreased PTEN and/or expression of the TE fusion gene and drives soft agar colony formation, invasion and tumor formation in vivo. The known oncogenic transcription factor TCF3 is highly correlated with MEX3D in prostate cancer. MEX3D expression strongly induces TCF3, which promotes soft agar colony formation and invasion in vitro. CONCLUSIONS Loss of PTEN and expression of the TE fusion gene in prostate cancer strongly upregulates expression of MEX3D and its target TCF3 and promotes transformation associated phenotypes via this pathway.
Collapse
Affiliation(s)
- Longjiang Shao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Jianghua Wang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Omer Karatas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas, USA
| |
Collapse
|
17
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
18
|
Proteomic Landscape of Prostate Cancer: The View Provided by Quantitative Proteomics, Integrative Analyses, and Protein Interactomes. Cancers (Basel) 2021; 13:cancers13194829. [PMID: 34638309 PMCID: PMC8507874 DOI: 10.3390/cancers13194829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most frequent cancer of men worldwide. While the genetic landscapes and heterogeneity of prostate cancer are relatively well-known already, methodological developments now allow for studying basic and dynamic proteomes on a large scale and in a quantitative fashion. This aids in revealing the functional output of cancer genomes. It has become evident that not all aberrations at the genetic and transcriptional level are translated to the proteome. In addition, the proteomic level contains heterogeneity, which increases as the cancer progresses from primary prostate cancer (PCa) to metastatic and castration-resistant prostate cancer (CRPC). While multiple aspects of prostate adenocarcinoma proteomes have been studied, less is known about proteomes of neuroendocrine prostate cancer (NEPC). In this review, we summarize recent developments in prostate cancer proteomics, concentrating on the proteomic landscapes of clinical prostate cancer, cell line and mouse model proteomes interrogating prostate cancer-relevant signaling and alterations, and key prostate cancer regulator interactomes, such as those of the androgen receptor (AR). Compared to genomic and transcriptomic analyses, the view provided by proteomics brings forward changes in prostate cancer metabolism, post-transcriptional RNA regulation, and post-translational protein regulatory pathways, requiring the full attention of studies in the future.
Collapse
|
19
|
Dual Targeting of EGFR with PLK1 Exerts Therapeutic Synergism in Taxane-Resistant Lung Adenocarcinoma by Suppressing ABC Transporters. Cancers (Basel) 2021; 13:cancers13174413. [PMID: 34503223 PMCID: PMC8430738 DOI: 10.3390/cancers13174413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Our previous studies led us to hypothesize that downregulation of PLK1 expression or its activity can overcome the hurdles of taxane resistance by downregulating ABC transporters. Targeting PLK1 with shRNA or non-functional mutants downregulated ABCB1, ABCC9, and ABCG2 in paclitaxel-resistant lung adenocarcinoma (LUADTXR), similar to the downregulation effects from treatment with PLK1 inhibitors. Since EGFR is highly expressed in LUADTXR cells, gefitinib was combined with PLK1 inhibitors. Under these conditions, LUADTXR cells tend to undergo apoptosis more effectively than parental cells, showing a synergistic effect on downregulation of ABC transporters through c-Myc or AP-1. Clinical data provide evidence for the relationship between survival rates and expressions of PLK1 and EGFR in LUAD patients. Taken together, our data suggest that a combination of gefitinib and PLK1 inhibitors exerts strong synergism in LUADTXR, providing a benefit to overcome the limitations associated with taxanes. Abstract To overcome the limitations of chemoresistance, combination therapies using druggable targets have been investigated. Our previous studies led us to hypothesize that the downregulation of PLK1 expression or activity can be one strategy to overcome the hurdles of taxane resistance by the downregulation of ABC transporters. To explore this, various versions of PLK1 including a constitutively active version, kinase-dead form, and polo-box domain mutant were expressed in paclitaxel-resistant lung adenocarcinoma (LUADTXR). Targeting PLK1 using shRNA or non-functional mutants downregulated ABCB1, ABCC9, and ABCG2 in LUADTXR cells, which was similar to the downregulation effects from treatment with PLK1 inhibitors. The high expression of EGFR in LUAD led us to administer gefitinib, showing a markedly reduced EGFR level in LUADTXR cells. When gefitinib and PLK1 inhibitors were combined, LUADTXR cells tended to undergo apoptosis more effectively than parental cells, showing a synergistic effect on the downregulation of ABC transporters through c-Myc and AP-1. Clinical data provide evidence for the relevance between survival rates and expressions of PLK1 and EGFR in LUAD patients. Based on these results, we suggest that a combination of gefitinib and PLK1 inhibitors exerts strong synergism in LUADTXR, which helps to overcome the limitations associated with taxanes.
Collapse
|
20
|
Jillson LK, Yette GA, Laajala TD, Tilley WD, Costello JC, Cramer SD. Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers (Basel) 2021; 13:3272. [PMID: 34208794 PMCID: PMC8269091 DOI: 10.3390/cancers13133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond. The field has turned to PCa genomics to aid in stratifying high risk patients, and to better understand the mechanisms driving aggressive PCa and therapy resistance. While alterations to the AR gene itself occur at later stages, genomic changes at the primary stage can affect the AR axis and impact response to AR-directed therapies. Here, we review common genomic alterations in primary PCa and their influence on AR function and activity. Through a meta-analysis of multiple independent primary PCa databases, we also identified subtypes of significantly co-occurring alterations and examined their combinatorial effects on the AR axis. Further, we discussed the subsequent implications for response to AR-targeted therapies and other treatments. We identified multiple primary PCa genomic subtypes, and given their differing effects on AR activity, patient tumor genetics may be an important stratifying factor for AR therapy resistance.
Collapse
Affiliation(s)
- Lauren K. Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
- Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| |
Collapse
|
21
|
Panicker S, Venkatabalasubramanian S, Pathak S, Ramalingam S. The impact of fusion genes on cancer stem cells and drug resistance. Mol Cell Biochem 2021; 476:3771-3783. [PMID: 34095988 DOI: 10.1007/s11010-021-04203-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
With ever increasing evidences on the role of fusion genes as the oncogenic protagonists in myriad cancers, it's time to explore if fusion genes can be the next generational drug targets in meeting the current demands of higher drug efficacy. Eliminating cancer stem cells (CSC) has become the current focus; however, we have reached a standstill in drug development owing to the lack of effective strategies to eradicate CSC. We believe that fusion genes could be the novel targets to overcome this limitation. The intriguing feature of fusion genes is that it dominantly impacts every aspect of CSC including self-renewal, differentiation, lineage commitment, tumorigenicity and stemness. Given the clinical success of fusion gene-based drugs in hematological cancers, our attempt to target fusion genes in eradicating CSC can be rewarding. As fusion genes are expressed explicitly in cancer cells, eradicating CSC by targeting fusion genes provides yet an another advantage of negligible patient side effects since normal cells remain unaffected by the drug. We hereby delineate the latest evidences on how fusion genes regulate CSC and drug resistance.
Collapse
Affiliation(s)
- Saurav Panicker
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, 603203, Tamil Nadu, India
| | | | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai, 603103, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, 603203, Tamil Nadu, India.
| |
Collapse
|
22
|
de Godoy Fernandes G, Pedrina B, de Faria Lainetti P, Kobayashi PE, Govoni VM, Palmieri C, de Moura VMBD, Laufer-Amorim R, Fonseca-Alves CE. Morphological and Molecular Characterization of Proliferative Inflammatory Atrophy in Canine Prostatic Samples. Cancers (Basel) 2021; 13:1887. [PMID: 33920045 PMCID: PMC8071022 DOI: 10.3390/cancers13081887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Proliferative inflammatory atrophy (PIA) is an atrophic lesion of the prostate gland that occurs in men and dogs and is associated with a chronic inflammatory infiltrate. In this study, we retrospectively reviewed canine prostatic samples from intact dogs, identifying 50 normal prostates, 140 cases of prostatic hyperplasia, 171 cases of PIA, 84 with prostate cancer (PC), 14 with prostatic intraepithelial neoplasia (PIN) and 10 with bacterial prostatitis. PIA samples were then selected and classified according to the human classification. The presence of PIA lesions surrounding neoplastic areas was then evaluated to establish a morphological transition from normal to preneoplastic and neoplastic tissue. In addition, the expression of PTEN, P53, MDM2 and nuclear androgen receptor (AR) were analyzed in 20 normal samples and 20 PIA lesions by immunohistochemistry and qPCR. All PIA lesions showed variable degrees of mononuclear cell infiltration around the glands and simple atrophy was the most common histopathological feature. PIA was identified between normal glands and PC in 51 (61%) out of the 84 PC samples. PIA lesions were diffusely positive for molecular weight cytokeratin (HMWC). Decreased PTEN and AR gene and protein expression was found in PIA compared to normal samples. Overall, our results strongly suggest that PIA is a frequent lesion associated with PC. Additionally, this finding corroborates the hypothesis that in dogs, as is the case in humans, PIA is a pre neoplastic lesion that has the potential to progress into PC, indicating an alternative mechanism of prostate cancer development in dogs.
Collapse
Affiliation(s)
- Giovana de Godoy Fernandes
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Bruna Pedrina
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Patrícia de Faria Lainetti
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Priscila Emiko Kobayashi
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Verônica Mollica Govoni
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Chiara Palmieri
- Gatton Campus, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | | | - Renée Laufer-Amorim
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
| | - Carlos Eduardo Fonseca-Alves
- School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (G.d.G.F.); (B.P.); (P.d.F.L.); (P.E.K.); (V.M.G.); (R.L.-A.)
- Institute of Health Sciences, Paulista University-UNIP, Bauru 17048-290, Brazil
| |
Collapse
|
23
|
Kong DP, Chen R, Zhang CL, Zhang W, Xiao GA, Wang FB, Ta N, Gao X, Sun YH. Prevalence and clinical application of TMPRSS2-ERG fusion in Asian prostate cancer patients: a large-sample study in Chinese people and a systematic review. Asian J Androl 2021; 22:200-207. [PMID: 31210145 PMCID: PMC7155806 DOI: 10.4103/aja.aja_45_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fusion between the transmembrane protease serine 2 and v-ets erythroblastosis virus E26 oncogene homolog (TMPRSS2-ERG fusion) is a common genetic alteration in prostate cancer among Western populations and has been suggested as playing a role in tumorigenesis and progression of prostate cancer. However, the prevalence of TMPRSS2-ERG fusion differs among different ethnic groups, and contradictory results have been reported in Asian patients. We aim to evaluate the prevalence and significance of TMPRSS2-ERG fusion as a molecular subtyping and prognosis indicator of prostate cancer in Asians. We identified the fusion status in 669 samples from prostate biopsy and radical prostatectomy by fluorescence in situ hybridization and/or immunohistochemistry in China. We examined the association of TMPRSS2-ERG fusion with clinicopathological characteristics and biochemical recurrence by Chi-square test and Kaplan–Meier analysis. Finally, a systematic review was performed to investigate the positive rate of the fusion in Asian prostate cancer patients. McNemar's test was employed to compare the positive rates of TMPRSS2-ERG fusion detected using different methods. The positive rates of TMPRSS2-ERG fusion were 16% in our samples and 27% in Asian patients. In our samples, 9.4% and 19.3% of cases were recognized as fusion positive by fluorescence in situ hybridization and immunohistochemistry, respectively. No significant association between the fusion and clinical parameters was observed. TMPRSS2-ERG fusion is not a frequent genomic alteration among Asian prostate cancer patients and has limited significance in clinical practices in China. Besides ethnic difference, detection methods potentially influence the results showing a positive rate of TMPRSS2-ERG fusion.
Collapse
Affiliation(s)
- De-Pei Kong
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Rui Chen
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chun-Lei Zhang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei Zhang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guang-An Xiao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fu-Bo Wang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Na Ta
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ying-Hao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Scaravilli M, Koivukoski S, Latonen L. Androgen-Driven Fusion Genes and Chimeric Transcripts in Prostate Cancer. Front Cell Dev Biol 2021; 9:623809. [PMID: 33634124 PMCID: PMC7900491 DOI: 10.3389/fcell.2021.623809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Androgens are steroid hormones governing the male reproductive development and function. As such, androgens and the key mediator of their effects, androgen receptor (AR), have a leading role in many diseases. Prostate cancer is a major disease where AR and its transcription factor function affect a significant number of patients worldwide. While disease-related AR-driven transcriptional programs are connected to the presence and activity of the receptor itself, also novel modes of transcriptional regulation by androgens are exploited by cancer cells. One of the most intriguing and ingenious mechanisms is to bring previously unconnected genes under the control of AR. Most often this occurs through genetic rearrangements resulting in fusion genes where an androgen-regulated promoter area is combined to a protein-coding area of a previously androgen-unaffected gene. These gene fusions are distinctly frequent in prostate cancer compared to other common solid tumors, a phenomenon still requiring an explanation. Interestingly, also another mode of connecting androgen regulation to a previously unaffected gene product exists via transcriptional read-through mechanisms. Furthermore, androgen regulation of fusion genes and transcripts is not linked to only protein-coding genes. Pseudogenes and non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) can also be affected by androgens and de novo functions produced. In this review, we discuss the prevalence, molecular mechanisms, and functional evidence for androgen-regulated prostate cancer fusion genes and transcripts. We also discuss the clinical relevance of especially the most common prostate cancer fusion gene TMPRSS2-ERG, as well as present open questions of prostate cancer fusions requiring further investigation.
Collapse
Affiliation(s)
- Mauro Scaravilli
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Guo C, Ran Q, Sun C, Zhou T, Yang X, Zhang J, Pang S, Xiao Y. Loss of FGFR3 Delays Acute Myeloid Leukemogenesis by Programming Weakly Pathogenic CD117-Positive Leukemia Stem-Like Cells. Front Pharmacol 2021; 11:632809. [PMID: 33584313 PMCID: PMC7879375 DOI: 10.3389/fphar.2020.632809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Chemotherapeutic patients with leukemia often relapse and produce drug resistance due to the existence of leukemia stem cells (LSCs). Fibroblast growth factor receptor 3 (FGFR3) signaling mediates the drug resistance of LSCs in chronic myeloid leukemia (CML). However, the function of FGFR3 in acute myeloid leukemia (AML) is less understood. Here, we identified that the loss of FGFR3 reprograms MLL-AF9 (MA)-driven murine AML cells into weakly pathogenic CD117-positive leukemia stem-like cells by activating the FGFR1-ERG signaling pathway. FGFR3 deletion significantly inhibits AML cells engraftment in vivo and extends the survival time of leukemic mice. FGFR3 deletion sharply decreased the expression of chemokines and the prolonged survival time in mice receiving FGFR3-deficient MA cells could be neutralized by overexpression of CCL3. Here we firstly found that FGFR3 had a novel regulatory mechanism for the stemness of LSCs in AML, and provided a promising anti-leukemia approach by interrupting FGFR3.
Collapse
Affiliation(s)
- Chen Guo
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qiuju Ran
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chun Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Tingting Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xi Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jizhou Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Shifeng Pang
- Department of Biotechnology, Guangdong Medical University, Dongguan, China
| | - Yechen Xiao
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
26
|
Sharad S, Allemang TC, Li H, Nousome D, Ku AT, Whitlock NC, Sowalsky AG, Cullen J, Sesterhenn IA, McLeod DG, Srivastava S, Dobi A. Age and Tumor Differentiation-Associated Gene Expression Based Analysis of Non-Familial Prostate Cancers. Front Oncol 2021; 10:584280. [PMID: 33575208 PMCID: PMC7870995 DOI: 10.3389/fonc.2020.584280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer incidence in young men has increased. Patients diagnosed at an earlier age are likely to have aggressive prostate cancer and treatment decisions are continuing to be weighted by patient age and life expectancy. Identification of age-associated gene-expression signatures hold great potential to augment current and future treatment modalities. To investigate age-specific tumor associated gene signatures and their potential biomarkers for disease aggressiveness, this study was designed and stratified into well and poorly differentiated tumor types of young (42–58 years) and old (66–73 years) prostate cancer patients. The differentially expressed genes related to tumor-normal differences between non-familial prostate cancer patients were identified and several genes uniquely associated with the age and tumor differentiation are markedly polarized. Overexpressed genes known to be associated with somatic genomic alterations was predominantly found in young men, such as TMPRESS2-ERG and c-MYC. On the other hand, old men have mostly down-regulated gene expressions indicating the loss of protective genes and reduced cell mediated immunity indicated by decreased HLA-A and HLA-B expression. The normalization for the benign signatures between the age groups indicates a significant age and tumor dependent heterogeneity exists among the patients with a great potential for age-specific and tumor differentiation-based therapeutic stratification of prostate cancer.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Travis C Allemang
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Hua Li
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Darryl Nousome
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Anson Tai Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Jennifer Cullen
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, United States
| | | | - David G McLeod
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Shiv Srivastava
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Albert Dobi
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
27
|
Chen W, Mou KY, Solomon P, Aggarwal R, Leung KK, Wells JA. Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proc Natl Acad Sci U S A 2021; 118:e2018861118. [PMID: 33483421 PMCID: PMC7848737 DOI: 10.1073/pnas.2018861118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MYC is a powerful transcription factor overexpressed in many human cancers including B cell and prostate cancers. Antibody therapeutics are exciting opportunities to attack cancers but require knowledge of surface proteins that change due to oncogene expression. To identify how MYC overexpression remodels the cell surface proteome in a cell autologous fashion and in different cell types, we investigated the impact of MYC overexpression on 800 surface proteins in three isogenic model cell lines either of B cell or prostate cell origin engineered to have high or low MYC levels. We found that MYC overexpression resulted in dramatic remodeling (both up- and down-regulation) of the cell surfaceome in a cell type-dependent fashion. We found systematic and large increases in distinct sets of >80 transporters including nucleoside transporters and nutrient transporters making cells more sensitive to toxic nucleoside analogs like cytarabine, commonly used for treating hematological cancers. Paradoxically, MYC overexpression also increased expression of surface proteins driving cell turnover such as TNFRSF10B, also known as death receptor 5, and immune cell attacking signals such as the natural killer cell activating ligand NCR3LG1, also known as B7-H6. We generated recombinant antibodies to these two targets and verified their up-regulation in MYC overexpression cell lines and showed they were sensitive to bispecific T cell engagers (BiTEs). Our studies demonstrate how MYC overexpression leads to dramatic bidirectional remodeling of the surfaceome in a cell type-dependent but functionally convergent fashion and identify surface targets or combinations thereof as possible candidates for cytotoxic metabolite or immunotherapy.
Collapse
Affiliation(s)
- Wentao Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA 91320
| | - Kurt Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529
| | - Paige Solomon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, CA 94158
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158;
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
28
|
Kareddula A, Medina DJ, Petrosky W, Dolfi S, Tereshchenko I, Walton K, Aviv H, Sadimin E, Tabakin AL, Singer EA, Hirshfield KM. The role of chromodomain helicase DNA binding protein 1 (CHD1) in promoting an invasive prostate cancer phenotype. Ther Adv Urol 2021; 13:17562872211022462. [PMID: 34408788 PMCID: PMC8365013 DOI: 10.1177/17562872211022462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/15/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) phenotypes vary from indolent to aggressive. Molecular subtyping may be useful in predicting aggressive cancers and directing therapy. One such subtype involving deletions of chromodomain helicase DNA binding protein 1 (CHD1), a tumor suppressor gene, are found in 10-26% of PCa tumors. In this study, we evaluate the functional cellular effects that follow CHD1 deletion. METHODS CHD1 was knocked out (KO) in the non-tumorigenic, human papillomavirus 16 (HPV16)-immortalized prostate epithelial cell line, RWPE-1, using CRISPR/Cas9. In vitro assays such as T7 endonuclease assay, western blot, and sequencing were undertaken to characterize the CHD1 KO clones. Morphologic and functional assays for cell adhesion and viability were performed. To study expression of extracellular matrix (ECM) and adhesion molecules, a real-time (RT) profiler assay was performed using RWPE-1 parental, non-target cells (NT2) and CHD1 KO cells. RESULT Compared to parental RWPE-1 and non-target cells (NT2), the CHD1 KO cells had a smaller, rounder morphology and were less adherent under routine culture conditions. Compared to parental cells, CHD1 KO cells showed a reduction in ECM and adhesion molecules as well as a greater proportion of viable suspension cells when cultured on standard tissue culture plates and on plates coated with laminin, fibronectin or collagen I. CHD1 KO cells showed a decrease in the expression of secreted protein acidic and rich in cysteine (SPARC), matrix metalloproteinase 2 (MMP2), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 5 (ITGA5), integrin subunit alpha 6 (ITGA6), fibronectin (FN1), laminin subunit beta-3 precursor (LAMB3), collagen, tenascin and vitronectin as compared to parental and NT2 cells. CONCLUSION These data suggest that in erythroblast transformation specific (ETS) fusion-negative, phosphatase and tensin homolog (PTEN) wildtype PCa, deletion of CHD1 alters cell-cell and cell-matrix adhesion dynamics, suggesting an important role for CHD1 in the development and progression of PCa.
Collapse
Affiliation(s)
- Aparna Kareddula
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Daniel J. Medina
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Whitney Petrosky
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sonia Dolfi
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Irina Tereshchenko
- Department of Medicine, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kelly Walton
- Department of Medicine/Division of Medical Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hana Aviv
- Department of Pathology and Laboratory Medicine, Rutgers -Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Evita Sadimin
- Section of Urologic Pathology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alexandra L. Tabakin
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Eric A. Singer
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | |
Collapse
|
29
|
Li L, Hobson L, Perry L, Clark B, Heavey S, Haider A, Sridhar A, Shaw G, Kelly J, Freeman A, Wilson I, Whitaker H, Nurmemmedov E, Oltean S, Porazinski S, Ladomery M. Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer. Br J Cancer 2020; 123:1024-1032. [PMID: 32581342 PMCID: PMC7493922 DOI: 10.1038/s41416-020-0951-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ERG oncogene, a member of the ETS family of transcription factor encoding genes, is a genetic driver of prostate cancer. It is activated through a fusion with the androgen-responsive TMPRSS2 promoter in 50% of cases. There is therefore significant interest in developing novel therapeutic agents that target ERG. We have taken an antisense approach and designed morpholino-based oligonucleotides that target ERG by inducing skipping of its constitutive exon 4. METHODS We designed antisense morpholino oligonucleotides (splice-switching oligonucleotides, SSOs) that target both the 5' and 3' splice sites of ERG's exon 4. We tested their efficacy in terms of inducing exon 4 skipping in two ERG-positive cell lines, VCaP prostate cancer cells and MG63 osteosarcoma cells. We measured their effect on cell proliferation, migration and apoptosis. We also tested their effect on xenograft tumour growth in mice and on ERG protein expression in a human prostate cancer radical prostatectomy sample ex vivo. RESULTS In VCaP cells, both SSOs were effective at inducing exon 4 skipping, which resulted in a reduction of overall ERG protein levels up to 96 h following a single transfection. SSO-induced ERG reduction decreased cell proliferation, cell migration and significantly increased apoptosis. We observed a concomitant reduction in protein levels for cyclin D1, c-Myc and the Wnt signalling pathway member β-catenin as well as a marker of activated Wnt signalling, p-LRP6. We tested the 3' splice site SSO in MG63 xenografts in mice and observed a reduction in tumour growth. We also demonstrated that the 3' splice site SSO caused a reduction in ERG expression in a patient-derived prostate tumour tissue cultured ex vivo. CONCLUSIONS We have successfully designed and tested morpholino-based SSOs that cause a marked reduction in ERG expression, resulting in decreased cell proliferation, a reduced migratory phenotype and increased apoptosis. Our initial tests on mouse xenografts and a human prostate cancer radical prostatectomy specimen indicate that SSOs can be effective for oncogene targeting in vivo. As such, this study encourages further in vivo therapeutic studies using SSOs targeting the ERG oncogene.
Collapse
Affiliation(s)
- Ling Li
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Lisa Hobson
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Laura Perry
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Bethany Clark
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Ashwin Sridhar
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Greg Shaw
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - John Kelly
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Ian Wilson
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, USA
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Sean Porazinski
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK.
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK.
| |
Collapse
|
30
|
Bonk S, Kluth M, Jansen K, Hube-Magg C, Makrypidi-Fraune G, Höflmayer D, Weidemann S, Möller K, Uhlig R, Büscheck F, Luebke AM, Burandt E, Clauditz TS, Steurer S, Schlomm T, Huland H, Heinzer H, Sauter G, Simon R, Dum D. Reduced KLK2 expression is a strong and independent predictor of poor prognosis in ERG-negative prostate cancer. Prostate 2020; 80:1097-1107. [PMID: 32628300 DOI: 10.1002/pros.24038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Kallikrein-related peptidase 2 (KLK2)-like KLK3 (prostate-specific antigen [PSA])-belongs to the highly conserved serine proteases of the glandular kallikrein protein family (KLK family). Studies suggested that measurement of KLK2 serum levels advanced the predictive accuracy of PSA testing in prostate cancer. METHODS To clarify the potential utility of KLK2 as a prognostic tissue biomarker, KLK2 expression was analyzed by immunohistochemistry in more than 12 000 prostate cancers. RESULTS Normal epithelium cells usually showed weak to moderate KLK2 immunostaining, whereas KLK2 was negative in 23%, weak in 38%, moderate in 35%, and strong in 4% of 9576 analyzable cancers. Lost or reduced KLK2 immunostaining was associated with advanced tumor stage, high Gleason score, lymph node metastasis, increased cell proliferation, positive resection margin, and early PSA recurrence (P < .0001). Comparison with previously analyzed molecular alterations revealed a strong association of KLK2 loss and presence of TMPRSS2:ERG fusion (P < .0001), most of all analyzed common deletions (9 of 11; P ≤ .03), and decreased PSA immunostaining (P < .0001 each). Cancers with combined negative or weak immunostaining of KLK2 and PSA showed worse prognosis than cancers with at least moderate staining of one or both proteins (P < .0001). Multivariate analyses including established preoperative and postoperative prognostic parameters showed a strong independent prognostic impact of KLK2 loss alone or in combination of PSA, especially in erythroblast transformation-specific-negative cancers (P ≤ .006). CONCLUSIONS Loss of KLK2 expression is a potentially useful prognostic marker in prostate cancer. Analysis of KLK2 alone or in combination with PSA may be useful for estimating cancer aggressiveness at the time of biopsy.
Collapse
Affiliation(s)
- Sarah Bonk
- Department of General, Visceral and Thoracic Surgery and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Jansen
- Department of General, Visceral and Thoracic Surgery and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Prostate Cancer Center (Martini-Clinic), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center (Martini-Clinic), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Yuan Y, Du Y, Wang L, Liu X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer 2020; 11:3588-3595. [PMID: 32284755 PMCID: PMC7150444 DOI: 10.7150/jca.42338] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
N6-methyladenosine (m6A) is the richest modification in mammalian messenger RNAs (mRNAs), and exerts key roles in many biological processes, including cancer development, whereas its roles in prostate carcinoma (PCa) remain to be unclear. Here, we found that m6A modifications are increased in PCa and methyltransferase-like 3 (METTL3), but not other major m6A modification genes including METTL14, fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5), was the major dysregulated gene associated with abnormal m6A modification. In addition, METTL3 up-regulation acted as a poor prognostic factor for overall survival and disease-free survival in PCa patients. Knockdown of METTL3 significantly inhibited PCa cells proliferation, migration, and invasion. In addition, over-expression of METTL3, but not its catalytic mutant form, significantly promoted PCa cells growth and progression. Mechanistically, we revealed that METTL3 enhanced MYC(c-myc) expression by increasing m6A levels of MYC mRNA transcript, leading to oncogenic functions in PCa. Importantly, PCa cells growth and progression inhibition by METTL3 knockdown were restored through over-expression of MYC. Our results uncovered a METTL3/m6A/MYC axis and provided insight into the mechanisms of PCa progression.
Collapse
Affiliation(s)
- Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| |
Collapse
|
32
|
Wang M, Nagle RB, Knudsen BS, Cress AE, Rogers GC. Centrosome loss results in an unstable genome and malignant prostate tumors. Oncogene 2019; 39:399-413. [PMID: 31477840 DOI: 10.1038/s41388-019-0995-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Localized, nonindolent prostate cancer (PCa) is characterized by large-scale genomic rearrangements, aneuploidy, chromothripsis, and other forms of chromosomal instability (CIN), yet how this occurs remains unclear. A well-established mechanism of CIN is the overproduction of centrosomes, which promotes tumorigenesis in various mouse models. Therefore, we developed a single-cell assay for quantifying centrosomes in human prostate tissue. Surprisingly, centrosome loss-which has not been described in human cancer-was associated with PCa progression. By chemically or genetically inducing centrosome loss in nontumorigenic prostate epithelial cells, mitotic errors ensued, producing aneuploid, and multinucleated cells. Strikingly, transient or chronic centrosome loss transformed prostate epithelial cells, which produced highly proliferative and poorly differentiated malignant tumors in mice. Our findings suggest that centrosome loss could create a cellular crisis with oncogenic potential in prostate epithelial cells.
Collapse
Affiliation(s)
- Mengdie Wang
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Beatrice S Knudsen
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
33
|
Comparative RNA-seq analysis reveals dys-regulation of major canonical pathways in ERG-inducible LNCaP cell progression model of prostate cancer. Oncotarget 2019; 10:4290-4306. [PMID: 31303963 PMCID: PMC6611515 DOI: 10.18632/oncotarget.27019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/30/2019] [Indexed: 11/25/2022] Open
Abstract
Prostate Cancer (CaP) is the second leading cause of cancer related death in USA. In human CaP, gene fusion between androgen responsive regulatory elements at the 5'-untranslated region of TMPRSS2 and ETS-related genes (ERG) is present in at least 50% of prostate tumors. Here we have investigated the unique cellular transcriptome associated with over-expression of ERG in ERG-inducible LNCaP cell model system of human CaP. Comprehensive transcriptome analyses reveal a distinct signature that distinguishes ERG dependent and independent CaP in LNCaP cells. Our data highlight a significant heterogeneity among the transcripts. Out of the 526 statistically significant differentially expressed genes, 232 genes are up-regulated and 294 genes are down-regulated in response to ERG. These ERG-associated genes are linked to several major cellular pathways, cell cycle regulation being the most significant. Consistently our data indicate that ERG plays a key role in modulating the expression of genes required for G1 to S phase transition, particularly those that affect cell cycle arrest at G1 phase. Moreover, cell cycle arrest in response to ERG appears to be promoted by induction of p21 in a p53 independent manner. These findings may provide new insights into mechanisms that promote growth and progression of CaP.
Collapse
|
34
|
Islam MT, Zhou X, Chen F, Khan MA, Fu J, Chen H. Targeting the signalling pathways regulated by deubiquitinases for prostate cancer therapeutics. Cell Biochem Funct 2019; 37:304-319. [PMID: 31062387 DOI: 10.1002/cbf.3401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa) is the most common cancer diagnosed and the second most common cause of cancer-related death in men worldwide. The current androgen deprivation therapy for PCa cannot fully cure this disease. Moreover, androgen receptor gene amplification and mutation are associated with PCa to develop castration-resistant prostate cancer (CRPC). This review focuses on the deubiquitinases (DUBs) involved in PCa development and progression. For PCa development and progression, several cellular pathways are regulated by specific DUBs which are also highlighted in here. The ubiquitin-specific proteases (USPs), a family member of DUBs mostly involved in the regulation of cellular pathways for PCa development, and the ubiquitin C-terminal hydrolases (UCHs), another family member of DUBs, are responsible for PCa metastasis. Small molecular inhibitors against DUBs can inhibit or reduce the level of specific DUBs through the regulation of cellular pathway to treat this disease. Some small molecular inhibitors are already identified against some of the DUBs, but very few of them are clinically proved in PCa. So, to find out other DUBs involving in the regulation of PCa-related pathways and to develop more effective small molecule inhibitors with greater potency would be a great idea to target PCa cells for future therapeutics and drug development with or without the combination of other anticancer drugs. SIGNIFICANCE OF THE STUDY: This review is targeting DUB proteins which are responsible for PCa induction, proliferation, and metastasis by highlighting their signalling pathway so that the readers can get information about other mechanisms for PCa besides androgen receptor pathway and helps to find other oncogenic DUBs involving in these signalling pathways. This review also hopes to find other oncogenic DUBs involving in PCa-related signalling pathways or to find the DUBs that can regulate multiple oncogenic signalling pathways which might be a good target for PCa therapeutics. In addition, there are some small molecule inhibitors that can inhibit the oncogenic DUBs and thus able to control the oncogenic pathways which would be a novel strategy to treat CRPC by using DUB inhibitor combined with or without other anticancer drugs.
Collapse
Affiliation(s)
- Md Tariqul Islam
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Xi Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Fangzhi Chen
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Hanchun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
35
|
Segalés L, Juanpere N, Lorenzo M, Albero-González R, Fumadó L, Cecchini L, Bellmunt J, Lloreta-Trull J, Hernández-Llodrà S. Strong cytoplasmic ETV1 expression has a negative impact on prostate cancer outcome. Virchows Arch 2019; 475:457-466. [DOI: 10.1007/s00428-019-02573-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 01/28/2023]
|
36
|
Marín‐Aguilera M, Reig Ò, Milà‐Guasch M, Font A, Domènech M, Rodríguez‐Vida A, Carles J, Suárez C, Alba AG, Jiménez N, Victoria I, Sala‐González N, Ribal MJ, López S, Etxaniz O, Anguera G, Maroto P, Fernández PL, Prat A, Mellado B. The influence of treatment sequence in the prognostic value of
TMPRSS2‐ERG
as biomarker of taxane resistance in castration‐resistant prostate cancer. Int J Cancer 2019; 145:1970-1981. [DOI: 10.1002/ijc.32238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Mercedes Marín‐Aguilera
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryFundació Clínic per a la Recerca Biomèdica Barcelona Spain
- Department of Medical OncologyHospital Clínic Barcelona Spain
| | - Òscar Reig
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryFundació Clínic per a la Recerca Biomèdica Barcelona Spain
- Department of Medical OncologyHospital Clínic Barcelona Spain
| | - Maria Milà‐Guasch
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Department of Medical OncologyHospital Clínic Barcelona Spain
| | - Albert Font
- Department of Medical OncologyInstitut Català d'Oncologia Badalona Spain
| | | | | | - Joan Carles
- Department of Medical OncologyVall d'Hebron Institute of Oncology. Vall d'Hebron University Hospital Barcelona Spain
| | - Cristina Suárez
- Department of Medical OncologyVall d'Hebron Institute of Oncology. Vall d'Hebron University Hospital Barcelona Spain
| | - Aránzazu González Alba
- Department of Medical OncologyHospital Universitario Puerta de Hierro Majadahonda Madrid Spain
| | - Natalia Jiménez
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Department of Medical OncologyHospital Clínic Barcelona Spain
| | - Iván Victoria
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryFundació Clínic per a la Recerca Biomèdica Barcelona Spain
- Department of Medical OncologyHospital Clínic Barcelona Spain
| | | | - Maria José Ribal
- Department of UrologyHospital Clinic Barcelona Spain
- Faculty of MedicineUniversity of Barcelona Barcelona Spain
| | - Sandra López
- Department of Medical OncologyHospital Clínic Barcelona Spain
| | - Olatz Etxaniz
- Department of Medical OncologyInstitut Català d'Oncologia Badalona Spain
| | - Geòrgia Anguera
- Department of Medical OncologyHospital de la Santa Cruz y San Pablo Barcelona Spain
| | - Pablo Maroto
- Department of Medical OncologyHospital de la Santa Cruz y San Pablo Barcelona Spain
| | - Pedro Luis Fernández
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Faculty of MedicineUniversity of Barcelona Barcelona Spain
- Department of PathologyHospital Clínic Barcelona Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryFundació Clínic per a la Recerca Biomèdica Barcelona Spain
- Department of Medical OncologyHospital Clínic Barcelona Spain
- Faculty of MedicineUniversity of Barcelona Barcelona Spain
| | - Begoña Mellado
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors LaboratoryFundació Clínic per a la Recerca Biomèdica Barcelona Spain
- Department of Medical OncologyHospital Clínic Barcelona Spain
- Faculty of MedicineUniversity of Barcelona Barcelona Spain
| |
Collapse
|
37
|
Li X, Wang C, Jiang H, Luo C. A patent review of arginine methyltransferase inhibitors (2010-2018). Expert Opin Ther Pat 2019; 29:97-114. [PMID: 30640571 DOI: 10.1080/13543776.2019.1567711] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Protein arginine methyltransferases (PRMTs) are fundamental enzymes that specifically modify the arginine residues of versatile substrates in cells. The aberrant expression and abnormal enzymatic activity of PRMTs are associated with many human diseases, especially cancer. PRMTs are emerging as promising drug targets in both academia and industry. AREAS COVERED This review summarizes the updated patented inhibitors targeting PRMTs from 2010 to 2018. The authors illustrate the chemical structures, molecular mechanism of action, pharmacological activities as well as the potential clinical application including combination therapy and biomarker-guided therapy. PRMT inhibitors in clinical trials are also highlighted. The authors provide a future perspective for further development of potent and selective PRMT inhibitors. EXPERT OPINION Although a number of small molecule inhibitors of PRMTs with sufficient potency have been developed, the selectivity of most PRMT inhibitors remains to be improved. Hence, novel approaches such as allosteric regulation need to be further studied to identify PRMT inhibitors. So far, three PRMT inhibitors have entered clinical trials, including PRMT5 inhibitor GSK3326595 and JNJ-64619178 as well as PRMT1 inhibitor GSK3368715. PRMT inhibitors with novel mechanism of action and good drug-like properties may shed new light on drug research and development progress.
Collapse
Affiliation(s)
- Xiao Li
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Chen Wang
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Hao Jiang
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Cheng Luo
- a CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China.,b Department of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
38
|
TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells. Oncogene 2019; 38:4397-4411. [PMID: 30718921 PMCID: PMC6542710 DOI: 10.1038/s41388-019-0730-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
The aberrant activation of the ERG oncogenic pathway due to the TMPRSS2-ERG gene fusion is the major event that contributes to prostate cancer (PCa) development. However, the critical downstream effectors that can be therapeutically targeted remain to be identified. In this study, we have found that the expression of the α1 and β1 subunits of soluble guanylyl cyclase (sGC) was directly and specifically regulated by ERG in vitro and in vivo and was significantly associated with TMPRSS2-ERG fusion in clinical PCa cohorts. sGC is the major mediator of nitric oxide (NO)-cGMP signaling in cells that, upon NO binding, catalyzes the synthesis of cGMP and subsequently activates protein kinase G (PKG). We showed that cGMP synthesis was significantly elevated by ERG in PCa cells, leading to increased PKG activity and cell proliferation. Importantly, we also demonstrated that sGC inhibitor treatment repressed tumor growth in TMPRSS2-ERG-positive PCa xenograft models and can act in synergy with a potent AR antagonist, enzalutamide. This study strongly suggests that targeting NO-cGMP signaling pathways may be a novel therapeutic strategy to treat PCa with TMPRSS2-ERG gene fusion.
Collapse
|
39
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
40
|
Mishra P, Kiebish MA, Cullen J, Srinivasan A, Patterson A, Sarangarajan R, Narain NR, Dobi A. Genomic alterations of Tenascin C in highly aggressive prostate cancer: a meta-analysis. Genes Cancer 2019; 10:150-159. [PMID: 31798767 PMCID: PMC6872669 DOI: 10.18632/genesandcancer.196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Tenascin C (TNC), an extra-cellular matrix (ECM) family gene, is expressed in several cancer tissues of breast, lung, colon, and gastrointestinal tract leading to proliferation, migration, invasion, angiogenesis and metastasis, but its role in tumorigenesis of prostate cancer is poorly understood. We took a meta-analysis approach to characterize the alterations of TNC gene in prostate cancer using publicly available databases (cBioportal Version 2.2.0, http://www.cBioportal.org/index.do). The analysis identified TNC alterations (gene amplification) significantly in the neuroendocrine prostate cancer dataset (Trento/Broad/Cornell, N = 114), which was further validated in other prostate cancer datasets, including The Cancer Genome Atlas (TCGA) prostate cancer (2015). In the TCGA prostate cancer dataset (N = 498), high TNC (alteration frequency, 36%) revealed a strong association with high diagnostic Gleason score. Genomic alterations of TNC was also significantly associated (P < 0.05) with expression level of genes from NOTCH, SOX and WNT family, implicating a link between TNC and poorly differentiated aggressive phenotype in NEPC. TCGA prostate adenocarcinoma cases with TNC alteration also demonstrated prominent decrease in disease-free survival (P = 0.0637). These findings indicate a possible association of TNC to the aggressive subtype of prostate cancer and warrant further functional studies to evident the involvement of TNC in prostate cancer progression.
Collapse
Affiliation(s)
- Prachi Mishra
- Henry Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Center for Prostate Disease Research, USU-Walter Reed Surgery, Bethesda, MD, USA
| | | | - Jennifer Cullen
- Henry Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Center for Prostate Disease Research, USU-Walter Reed Surgery, Bethesda, MD, USA
| | | | - Aliyah Patterson
- Division of Science and Mathematics, University of the District of Columbia, Washington DC, USA
| | | | | | - Albert Dobi
- Henry Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Center for Prostate Disease Research, USU-Walter Reed Surgery, Bethesda, MD, USA
| |
Collapse
|
41
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
42
|
Abstract
Prostate cancer development involves corruption of the normal prostate transcriptional network, following deregulated expression or mutation of key transcription factors. Here, we provide an overview of the transcription factors that are important in normal prostate homeostasis (NKX3-1, p63, androgen receptor [AR]), primary prostate cancer (ETS family members, c-MYC), castration-resistant prostate cancer (AR, FOXA1), and AR-independent castration-resistant neuroendocrine prostate cancer (RB1, p53, N-MYC). We use functional (in vitro and in vivo) as well as clinical data to discuss evidence that unveils their roles in the initiation and progression of prostate cancer, with an emphasis on results of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
Collapse
Affiliation(s)
- David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
43
|
Berglund AE, Rounbehler RJ, Gerke T, Awasthi S, Cheng CH, Takhar M, Davicioni E, Alshalalfa M, Erho N, Klein EA, Freedland SJ, Ross AE, Schaeffer EM, Trock BJ, Den RB, Cleveland JL, Park JY, Dhillon J, Yamoah K. Distinct transcriptional repertoire of the androgen receptor in ETS fusion-negative prostate cancer. Prostate Cancer Prostatic Dis 2018; 22:292-302. [PMID: 30367117 PMCID: PMC6760558 DOI: 10.1038/s41391-018-0103-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/27/2018] [Accepted: 09/08/2018] [Indexed: 12/21/2022]
Abstract
Background Prostate cancer (PCa) tumors harboring translocations of ETS family genes with the androgen responsive TMPRSS2 gene (ETS+ tumors) provide a robust biomarker for detecting PCa in approximately 70% of patients. ETS+ PCa express high levels of the androgen receptor (AR), yet PCa tumors lacking ETS fusions (ETS−) also express AR and demonstrate androgen-regulated growth. In this study, we evaluate the differences in the AR-regulated transcriptomes between ETS+ and ETS− PCa tumors. Methods 10,608 patient tumors from three independent PCa datasets classified as ETS+ (samples overexpressing ERG or other ETS family members) or ETS− (all other PCa) were analyzed for differential gene expression using false-discovery-rate adjusted methods and gene-set enrichment analysis (GSEA). Results Based on the expression of AR-dependent genes and an unsupervised Principal Component Analysis (PCA) model, AR-regulated gene expression alone was able to separate PCa samples into groups based on ETS status in all PCa databases. ETS status distinguished several differentially expressed genes in both TCGA (6.9%) and GRID (6.6%) databases, with 413 genes overlapping in both databases. Importantly, GSEA showed enrichment of distinct androgen-responsive genes in both ETS− and ETS+ tumors, and AR ChIP-seq data identified 131 direct AR-target genes that are regulated in an ETS-specific fashion. Notably, dysregulation of ETS-dependent AR-target genes within the metabolic and non-canonical WNT pathways was associated with clinical outcomes. Conclusions ETS status influences the transcriptional repertoire of the AR, and ETS− PCa tumors appear to rely on distinctly different AR-dependent transcriptional programs to drive and sustain tumorigenesis.
Collapse
Affiliation(s)
- Anders E Berglund
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Robert J Rounbehler
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,Department of Oncological Sciences, University of South Florida, Tampa, FL, USA
| | - Travis Gerke
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Chia-Ho Cheng
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | | | | | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Center for Integrated Research on Cancer and Lifestyle, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Bruce J Trock
- Department of Urology, Johns Hopkins, Baltimore, MD, USA
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kosj Yamoah
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA. .,Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
44
|
Skvortsov S, Skvortsova II, Tang DG, Dubrovska A. Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells 2018; 36:1457-1474. [PMID: 29845679 DOI: 10.1002/stem.2859] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PCa) is heterogeneous, harboring phenotypically diverse cancer cell types. PCa cell heterogeneity is caused by genomic instability that leads to the clonal competition and evolution of the cancer genome and by epigenetic mechanisms that result in subclonal cellular differentiation. The process of tumor cell differentiation is initiated from a population of prostate cancer stem cells (PCSCs) that possess many phenotypic and functional properties of normal stem cells. Since the initial reports on PCSCs in 2005, there has been much effort to elucidate their biological properties, including unique metabolic characteristics. In this Review, we discuss the current methods for PCSC enrichment and analysis, the hallmarks of PCSC metabolism, and the role of PCSCs in tumor progression. Stem Cells 2018;36:1457-1474.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Frank S, Nelson P, Vasioukhin V. Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Res 2018; 7. [PMID: 30135717 PMCID: PMC6073096 DOI: 10.12688/f1000research.14499.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a disease of mutated and misregulated genes. However, primary prostate tumors have relatively few mutations, and only three genes (
ERG,
PTEN, and
SPOP) are recurrently mutated in more than 10% of primary tumors. On the other hand, metastatic castration-resistant tumors have more mutations, but, with the exception of the androgen receptor gene (
AR), no single gene is altered in more than half of tumors. Structural genomic rearrangements are common, including
ERG fusions, copy gains involving the
MYC locus, and copy losses containing
PTEN. Overall, instead of being associated with a single dominant driver event, prostate tumors display various combinations of modifications in oncogenes and tumor suppressors. This review takes a broad look at the recent advances in PCa research, including understanding the genetic alterations that drive the disease and how specific mutations can sensitize tumors to potential therapies. We begin with an overview of the genomic landscape of primary and metastatic PCa, enabled by recent large-scale sequencing efforts. Advances in three-dimensional cell culture techniques and mouse models for PCa are also discussed, and particular emphasis is placed on the benefits of patient-derived xenograft models. We also review research into understanding how ETS fusions (in particular,
TMPRSS2-ERG) and
SPOP mutations contribute to tumor initiation. Next, we examine the recent findings on the prevalence of germline DNA repair mutations in about 12% of patients with metastatic disease and their potential benefit from the use of poly(ADP-ribose) polymerase (PARP) inhibitors and immune modulation. Lastly, we discuss the recent increased prevalence of AR-negative tumors (neuroendocrine and double-negative) and the current state of immunotherapy in PCa. AR remains the primary clinical target for PCa therapies; however, it does not act alone, and better understanding of supporting mutations may help guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sander Frank
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Departments of Medicine and Urology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
46
|
Fry EA, Mallakin A, Inoue K. Translocations involving ETS family proteins in human cancer. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2018; 5:10.15761/ICST.1000281. [PMID: 30542624 PMCID: PMC6287620 DOI: 10.15761/icst.1000281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating certain gene transcriptions. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. Three chimeric genes involving ETS genes have been identified in human cancers, which are EWS-FLI1 in Ewing's sarcoma, TMPRSS2-ERG in prostate cancer, and ETV6-RUNX1 in acute lymphocytic leukemia. Although these fusion transcripts definitely contribute to the pathogenesis of the disease, the impact of these fusion transcripts on patients' prognosis is highly controversial. In the present review, the roles of ETS protein translocations in human carcinogenesis are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | | | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
47
|
Civenni G, Carbone GM, Catapano CV. Overview of Genetically Engineered Mouse Models of Prostate Cancer and Their Applications in Drug Discovery. ACTA ACUST UNITED AC 2018; 81:e39. [PMID: 29927081 DOI: 10.1002/cpph.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is the most common malignant visceral neoplasm in males in Western countries. Despite progress made in the early treatment of localized malignancies, there remains a need for therapies effective against advanced forms of the disease. Genetically engineered mouse (GEM) models are valuable tools for addressing this issue, particularly in defining the cellular and molecular mechanisms responsible for tumor initiation and progression. While cell and tissue culture systems are important models for this purpose as well, they cannot recapitulate the complex interactions within heterotypic cells and the tumor microenvironment that are crucial in the initiation and progression of prostate tumors. Limitations of GEM models include resistance to developing invasive and metastatic tumors that resemble the advanced stages of human PCa. Nonetheless, because genetic models provide valuable information on the human condition that would otherwise be impossible to obtain, they are increasingly employed to identify molecular targets and to examine the efficacy of cancer therapeutics. The aim of this overview is to provide a brief but comprehensive summary of GEM models for PCa, with particular emphasis on the strengths and weaknesses of this experimental approach. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Gianluca Civenni
- Experimental Therapeutics Group, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Giuseppina M Carbone
- Prostate Cancer Biology Group, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Carlo V Catapano
- Experimental Therapeutics Group, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland.,Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Chen L, Cao H, Yu C, Feng Y. Lobaplatin inhibits prostate cancer progression in part by impairing AR and ERG signal. Fundam Clin Pharmacol 2018; 32:548-557. [PMID: 29733466 DOI: 10.1111/fcp.12377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/15/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Chen
- Surgical Department I (Urology Department); LONGHUA Hospital Shanghai University of Traditional Chinese Medicine; No. 725 Wanping Road South Xuhui District, Shanghai City 200032 China
| | - Hongwen Cao
- Surgical Department I (Urology Department); LONGHUA Hospital Shanghai University of Traditional Chinese Medicine; No. 725 Wanping Road South Xuhui District, Shanghai City 200032 China
| | - Chao Yu
- Surgical Department I (Urology Department); LONGHUA Hospital Shanghai University of Traditional Chinese Medicine; No. 725 Wanping Road South Xuhui District, Shanghai City 200032 China
| | - Yigeng Feng
- Surgical Department I (Urology Department); LONGHUA Hospital Shanghai University of Traditional Chinese Medicine; No. 725 Wanping Road South Xuhui District, Shanghai City 200032 China
| |
Collapse
|
49
|
Mohamed AA, Xavier CP, Sukumar G, Tan SH, Ravindranath L, Seraj N, Kumar V, Sreenath T, McLeod DG, Petrovics G, Rosner IL, Srivastava M, Strovel J, Malhotra SV, LaRonde NA, Dobi A, Dalgard CL, Srivastava S. Identification of a Small Molecule That Selectively Inhibits ERG-Positive Cancer Cell Growth. Cancer Res 2018; 78:3659-3671. [PMID: 29712692 DOI: 10.1158/0008-5472.can-17-2949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
Oncogenic activation of the ETS-related gene (ERG) by recurrent gene fusions (predominantly TMPRSS2-ERG) is one of the most validated and prevalent genomic alterations present in early stages of prostate cancer. In this study, we screened small-molecule libraries for inhibition of ERG protein in TMPRSS2-ERG harboring VCaP prostate cancer cells using an In-Cell Western Assay with the highly specific ERG-MAb (9FY). Among a subset of promising candidates, 1-[2-Thiazolylazo]-2-naphthol (NSC139021, hereafter ERGi-USU) was identified and further characterized. ERGi-USU selectively inhibited growth of ERG-positive cancer cell lines with minimal effect on normal prostate or endothelial cells or ERG-negative tumor cell lines. Combination of ERGi-USU with enzalutamide showed additive effects in inhibiting growth of VCaP cells. A screen of kinases revealed that ERGi-USU directly bound the ribosomal biogenesis regulator atypical kinase RIOK2 and induced ribosomal stress signature. In vivo, ERGi-USU treatment inhibited growth of ERG-positive VCaP tumor xenografts with no apparent toxicity. Structure-activity-based derivatives of ERGi-USU recapitulated the ERG-selective activity of the parental compound. Taken together, ERGi-USU acts as a highly selective inhibitor for the growth of ERG-positive cancer cells and has potential for further development of ERG-targeted therapy of prostate cancer and other malignancies.Significance: A highly selective small-molecule inhibitor of ERG, a critical driver of early stages of prostate cancer, will be imperative for prostate cancer therapy. Cancer Res; 78(13); 3659-71. ©2018 AACR.
Collapse
Affiliation(s)
- Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Nishat Seraj
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Vineet Kumar
- Division of Radiation & Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Taduru Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Inger L Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland.,Urology Service, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | - Sanjay V Malhotra
- Division of Radiation & Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Nicole A LaRonde
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland. .,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland. .,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
50
|
Butler MS, Roshan-Moniri M, Hsing M, Lau D, Kim A, Yen P, Mroczek M, Nouri M, Lien S, Axerio-Cilies P, Dalal K, Yau C, Ghaidi F, Guo Y, Yamazaki T, Lawn S, Gleave ME, Gregory-Evans CY, McIntosh LP, Cox ME, Rennie PS, Cherkasov A. Discovery and characterization of small molecules targeting the DNA-binding ETS domain of ERG in prostate cancer. Oncotarget 2018; 8:42438-42454. [PMID: 28465491 PMCID: PMC5522078 DOI: 10.18632/oncotarget.17124] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
Genomic alterations involving translocations of the ETS-related gene ERG occur in approximately half of prostate cancer cases. These alterations result in aberrant, androgen-regulated production of ERG protein variants that directly contribute to disease development and progression. This study describes the discovery and characterization of a new class of small molecule ERG antagonists identified through rational in silico methods. These antagonists are designed to sterically block DNA binding by the ETS domain of ERG and thereby disrupt transcriptional activity. We confirmed the direct binding of a lead compound, VPC-18005, with the ERG-ETS domain using biophysical approaches. We then demonstrated VPC-18005 reduced migration and invasion rates of ERG expressing prostate cancer cells, and reduced metastasis in a zebrafish xenograft model. These results demonstrate proof-of-principal that small molecule targeting of the ERG-ETS domain can suppress transcriptional activity and reverse transformed characteristics of prostate cancers aberrantly expressing ERG. Clinical advancement of the developed small molecule inhibitors may provide new therapeutic agents for use as alternatives to, or in combination with, current therapies for men with ERG-expressing metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Miriam S Butler
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Mani Roshan-Moniri
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Desmond Lau
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ari Kim
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Paul Yen
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Marta Mroczek
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Mannan Nouri
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Scott Lien
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Peter Axerio-Cilies
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Kush Dalal
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Clement Yau
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Fariba Ghaidi
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yubin Guo
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Yamazaki
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Sam Lawn
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|