1
|
Chen YZ, Zhu XM, Lv P, Hou XK, Pan Y, Li A, Du Z, Xuan JF, Guo X, Xing JX, Liu K, Yao J. Association of histone modification with the development of schizophrenia. Biomed Pharmacother 2024; 175:116747. [PMID: 38744217 DOI: 10.1016/j.biopha.2024.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Schizophrenia, influenced by genetic and environmental factors, may involve epigenetic alterations, notably histone modifications, in its pathogenesis. This review summarizes various histone modifications including acetylation, methylation, phosphorylation, ubiquitination, serotonylation, lactylation, palmitoylation, and dopaminylation, and their implications in schizophrenia. Current research predominantly focuses on histone acetylation and methylation, though other modifications also play significant roles. These modifications are crucial in regulating transcription through chromatin remodeling, which is vital for understanding schizophrenia's development. For instance, histone acetylation enhances transcriptional efficiency by loosening chromatin, while increased histone methyltransferase activity on H3K9 and altered histone phosphorylation, which reduces DNA affinity and destabilizes chromatin structure, are significant markers of schizophrenia.
Collapse
Affiliation(s)
- Yun-Zhou Chen
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xi-Kai Hou
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Ying Pan
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Ang Li
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xiaochong Guo
- Laboratory Animal Center, China Medical University, PR China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China.
| | - Kun Liu
- Key Laboratory of Health Ministry in Congenital Malformation, Shengjing Hospital of China Medical University, PR China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China.
| |
Collapse
|
2
|
Protective Effects of Fermented Houttuynia cordata Against UVA and H2O2-Induced Oxidative Stress in Human Skin Keratinocytes. Appl Biochem Biotechnol 2022; 195:3027-3046. [PMID: 36495375 DOI: 10.1007/s12010-022-04241-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
The biological activities of Houttuynia cordata (H. cordata) fermented with Aureobasidium pullulans (A. pullulans) was investigated for human skin keratinocyte-induced chemical and photo oxidations. In this research, H2O2/UVA-induced HaCaT cell lines were treated with H. cordata water/ethanol extracts (HCW/HCE) and fermented with A. pullulans water/ethanol extracts (HCFW/HCFE). A. pullulans fermented with H. cordata (HCFW) increased in 5.4-folds of total polyphenol (HCFW 46.89 mg GAE/extract g), and 2.3-folds in flavonoids (HCFW 53.80 mg GAE/extract g) compared with water extracts of H. cordata (HCW). Further, no significant cytotoxicity for HaCaT cells showed by all the extracts of H. cordata fermented with A. pullulans. HCFW extracts have significantly lowered inflammation factors such as COX-2 and Hsp70 proteins in oxidative stressed HaCaT cells induced by H2O2 and UVA treatments. All H. cordata extracts significantly downregulated gene expression involved in oxidative stress and inflammation factors, including IL-1β, IL-6, COX-2, TNF-α, NF-κB, and MMP-1 in the H2O2/UVA-treated HaCaT cells. However, keratin-1 gene expression in the UVA-treated HaCaT cells was increased in twofolds by HCFW extracts. Further, A. pullulans fermented H. cordata extracts (HCFW/HCFE) reduced the genes involved in oxidative stresses more effectively than those of H. cordata extract only. Overall, the polyphenol-rich extracts of H. cordata fermented with A. pullulans showed synergistic protective effects for human epidermal keratinocytes to prevent photoaging and intrinsic aging by anti-oxidation and anti-inflammatory functions.
Collapse
|
3
|
Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, Li T, Jin A, Ding L, Xian J, Tian T, Pan B, Guo W, Wang B. Modulation of the p38 MAPK Pathway by Anisomycin Promotes Ferroptosis of Hepatocellular Carcinoma through Phosphorylation of H3S10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6986445. [PMID: 36466092 PMCID: PMC9715334 DOI: 10.1155/2022/6986445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 07/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Ferroptosis is emerging as an effective target for tumor treatment as it has been shown to potentiate cell death in some malignancies. However, it remains unclear whether histone phosphorylation events, an epigenetic mechanism that regulates transcriptional expression, are involved in ferroptosis. Our study found that supplementation with anisomycin, an agonist of p38 mitogen-activated protein kinase (MAPK), induced ferroptosis in HCC cells, and the phosphorylation of histone H3 on serine 10 (p-H3S10) was participated in anisomycin-induced ferroptosis. To investigate the anticancer effects of anisomycin-activated p38 MAPK in HCC, we analyzed cell viability, colony formation, cell death, and cell migration in Hep3B and HCCLM3 cells. The results showed that anisomycin could significantly suppress HCC cell colony formation and migration and induce HCC cell death. The hallmarks of ferroptosis, such as abnormal accumulation of iron and elevated levels of lipid peroxidation and malondialdehyde, were detected to confirm the ability of anisomycin to promote ferroptosis. Furthermore, coincubation with SB203580, an inhibitor of activated p38 MAPK, partially rescued anisomycin-induced ferroptosis. And the levels of p-p38 MAPK and p-H3S10 were successively increased by anisomycin treatment. The relationship between p-H3S10 and ferroptosis was revealed by ChIP sequencing. The reverse transcription PCR and immunofluorescence results showed that NCOA4 was upregulated both in mRNA and protein levels after anisomycin treatment. And by C11-BODIPY staining, we found that anisomycin-induced lipid reactive oxygen species was reduced after NCOA4 knockdown. In conclusion, the anisomycin-activated p38 MAPK promoted ferroptosis of HCC cells through H3S10 phosphorylation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingrong Xian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Kim JG, Kang HY, Kim MJ, Lim S, Lee CJ, Kim KM, Jung SK. 4-phenylpyridine suppresses UVB-induced skin inflammation by targeting c-Src in vitro and in vivo. J Cell Mol Med 2022; 26:3891-3901. [PMID: 35686492 PMCID: PMC9279582 DOI: 10.1111/jcmm.17422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Acute or repetitive exposure to ultraviolet (UV) cause disruptions to the skin barrier and subsequent inflammatory skin disease. 4‐phenylpyridine (4‐PP) is a constituent of Brassica campestris L. ssp. Pekinensis and its effect on skin inflammation and molecular target remain unclear. The purpose of this study is to confirm the anti‐inflammatory efficacy of 4‐PP on UVB‐induced skin inflammation in human keratinocytes HaCaT and mouse skin and validation of its molecular target. 4‐PP also attenuated UVB‐induced phosphorylation of p38/mitogen‐activated protein kinase kinase (MKK) 3/6, c‐Jun N‐terminal kinase 1/2, MKK 4/7, extracellular‐signal‐regulated kinase 1/2, mitogen‐activated protein kinase 1/2. Additionally, 4‐PP inhibited UVB‐induced phosphorylation of epidermal growth factor receptor (EGFR) Y1068, Y1045 and 854 residues but not the proto‐oncogene tyrosine‐protein kinase c‐Src. Drug affinity responsive target stability assay revealed that 4‐PP directly binds to c‐Src and inhibits pronase c‐proteolysis. Knockdown of c‐Src inhibited UVB‐induced COX‐2 expression and phosphorylation of MAPKs and EGFR in HaCaT cells. Dorsal treatment of 4‐PP prevented UVB (0.5 J/cm2)‐induced skin thickness, phosphorylation of EGFR and COX‐2 expression in mouse skin. Our findings suggest that 4‐PP can be used as anti‐inflammatory agent with an effect of skin inflammation by inhibiting the COX‐2 expression via suppressing the c‐Src/EGFR/MAPKs signalling pathway.
Collapse
Affiliation(s)
- Ju Gyeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Ha Yeong Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Gyeonggi-do, Korea
| | - Chang Joo Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea.,Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, Korea
| |
Collapse
|
5
|
Torres-Perez JV, Irfan J, Febrianto MR, Di Giovanni S, Nagy I. Histone post-translational modifications as potential therapeutic targets for pain management. Trends Pharmacol Sci 2021; 42:897-911. [PMID: 34565578 DOI: 10.1016/j.tips.2021.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Effective pharmacological management of pain associated with tissue pathology is an unmet medical need. Transcriptional modifications in nociceptive pathways are pivotal for the development and the maintenance of pain associated with tissue damage. Accumulating evidence has shown the importance of the epigenetic control of transcription in nociceptive pathways via histone post-translational modifications (PTMs). Hence, histone PTMs could be targets for novel effective analgesics. Here, we discuss the current understanding of histone PTMs in the modulation of gene expression affecting nociception and pain phenotypes following tissue injury. We also provide a critical view of the translational implications of preclinical models and discuss opportunities and challenges of targeting histone PTMs to relieve pain in clinically relevant tissue injuries.
Collapse
Affiliation(s)
- Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK.
| | - Jahanzaib Irfan
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Muhammad Rizki Febrianto
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, E505, Burlington Danes, Du Cane Road, London W12 ONN, UK.
| | - Istvan Nagy
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
6
|
Akter S, Sharma RK, Sharma S, Rastogi S, Fiebich BL, Akundi RS. Exogenous ATP modulates PGE 2 release in macrophages through sustained phosphorylation of CDK9 and p38 MAPK. J Leukoc Biol 2021; 110:663-677. [PMID: 33438260 DOI: 10.1002/jlb.3a1219-697rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
An important mediator of inflammation is prostaglandin E2 (PGE2 ), whose levels are determined by the activity of the enzyme cyclooxygenase (COX). Of the two isoforms of the enzyme, COX-2 has been shown to be induced in macrophages during inflammation. Although general COX inhibitors, belonging to the class of nonsteroidal anti-inflammatory drugs, or specific COX-2 inhibitors, called coxibs, are useful in the control of acute inflammation, adverse reactions were seen when used chronically in the treatment of rheumatoid arthritis or neurodegenerative diseases. Extracellular ATP (eATP) has been reported as a damage-associated molecular pattern signal. In this report, we show that eATP synergistically increases the levels of COX-2 enzyme and PGE2 in LPS-activated RAW264.7 macrophages and human monocytes. Activation of macrophages also occurred when cultured in media obtained from dying neurons that contained higher levels of ATP. We show that eATP increases the levels of COX-2 protein, which is sustained up to 36 h poststimulation. This is in turn due to sustained levels of phosphorylated, or activated, cyclin-dependent kinase 9 and p38 MAPK in ATP-treated cells compared to LPS-stimulated cells. The eATP-dependent increase in COX-2/PGE2 levels in LPS-activated RAW264.7 cells could be abolished using antagonists for purinergic P2X7 -and P2Y6 receptors. Similarly, the increase in COX-2/PGE2 levels in the peritoneum of LPS-treated mice could be significantly abolished in mice that were preinjected with the nonspecific P2 receptor antagonist, suramin. P2 receptor antagonists, therefore, should be explored in our search for an ideal anti-inflammatory candidate.
Collapse
Affiliation(s)
- Shamima Akter
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rakesh Kumar Sharma
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Shilpa Sharma
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Saumya Rastogi
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Ravi Shankar Akundi
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
7
|
Shikata D, Yamamoto T, Honda S, Ikeda S, Minami N. H4K20 monomethylation inhibition causes loss of genomic integrity in mouse preimplantation embryos. J Reprod Dev 2020; 66:411-419. [PMID: 32378528 PMCID: PMC7593633 DOI: 10.1262/jrd.2020-036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maintaining genomic integrity in mammalian early embryos, which are deficient in DNA damage repair, is critical for normal preimplantation and subsequent
development. Abnormalities in DNA damage repair in preimplantation embryos can cause not only developmental arrest, but also diseases such as congenital
disorders and cancers. Histone H4 lysine 20 monomethylation (H4K20me1) is involved in DNA damage repair and regulation of gene expression. However, little is
known about the role of H4K20me1 during mouse preimplantation development. In this study, we revealed that H4K20me1 mediated by SETD8 is involved in maintaining
genomic integrity. H4K20me1 was present throughout preimplantation development. In addition, reduction in the level of H4K20me1 by inhibition of SETD8 activity
or a dominant-negative mutant of histone H4 resulted in developmental arrest at the S/G2 phase and excessive accumulation of DNA double-strand breaks. Together,
our results suggest that H4K20me1, a type of epigenetic modification, is associated with the maintenance of genomic integrity and is essential for
preimplantation development. A better understanding of the mechanisms involved in maintaining genome integrity during preimplantation development could
contribute to advances in reproductive medicine and technology.
Collapse
Affiliation(s)
- Daiki Shikata
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takuto Yamamoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Formaldehyde Exposure and Epigenetic Effects: A Systematic Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formaldehyde (FA) is a general living and occupational pollutant, classified as carcinogenic for humans. Although genotoxicity is recognized as a FA mechanism of action, a potential contribution of epigenetic effects cannot be excluded. Therefore, aim of this review is to comprehensively assess possible epigenetic alterations induced by FA exposure in humans, animals, and cellular models. A systematic review of Pubmed, Scopus, and Isi Web of Science databases was performed. DNA global methylation changes were demonstrated in workers exposed to FA, and also in human bronchial cells. Histone alterations, i.e., the reduction in acetylation of histone lysine residues, in human lung cells were induced by FA. Moreover, a dysregulation of microRNA expression in human lung adenocarcinoma cells as well as in the nose, olfactory bulb and white blood cells of rodents and nonhuman primates was reported. Although preliminary, these findings suggest the role of epigenetic modifications as possible FA mechanisms of action that need deeper qualitative and quantitative investigation. This may allow to define the role of such alterations as indicators of early biological effect and the opportunity to include such information in future risk assessment and management strategies for public and occupationally FA-exposed populations.
Collapse
|
9
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Yoo OK, Keum YS. 4'-O-β-D-Glucosyl-5-O-Methylvisamminol Attenuates Pro-Inflammatory Responses and Protects against Oxidative Damages. Biomol Ther (Seoul) 2019; 27:381-385. [PMID: 30971060 PMCID: PMC6609110 DOI: 10.4062/biomolther.2018.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/17/2019] [Accepted: 03/04/2019] [Indexed: 11/14/2022] Open
Abstract
We attempted to examine anti-inflammatory and anti-oxidant effects of 4′-O-β-D-glucosyl-5-O-methylvisamminol (GOMV), the first epigenetic inhibitor of histone phosphorylation at Ser10. While GOMV did not affect the viability of murine macrophage RAW 264.7 cells, it significantly suppressed lipopolysaccharide (LPS)-induced generation of prostaglandin E2 (PGE2) and nitric oxide (NO) through transcriptional inhibition of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). GOMV also scavenged free radicals in vitro, increased NF-E2-related factor 2 (NRF2), and activated antioxidant response element (ARE), thereby resulting in the induction of phase II cytoprotective enzymes in human keratinocyte HaCaT cells. Finally, GOMV significantly protected HaCaT cells against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative intracellular damages. Together, our results illustrate that GOMV possesses anti-inflammatory and anti-oxidant activity.
Collapse
Affiliation(s)
- Ok-Kyung Yoo
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Young-Sam Keum
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
11
|
Silver Nanoparticle-Induced Phosphorylation of Histone H3 at Serine 10 Involves MAPK Pathways. Biomolecules 2019; 9:biom9020078. [PMID: 30813344 PMCID: PMC6406294 DOI: 10.3390/biom9020078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
The phosphorylation of histone H3 at serine 10 (p-H3S10) has been shown to be closely correlated with mitotic chromosome condensation. We previously reported that intracellular silver nanoparticles (AgNPs) release Ag ions that alter actin filament dynamics, leading to the activation of Aurora kinases and the formation of p-H3S10 through a mechanism clearly different from that occurring during mitosis. In the present study, we examined other mechanisms underlying the induction of p-H3S10 formation by AgNPs. We observed that the early formation of p-H3S10 induced by AgNPs occurred via the activation of mitogen-activated protein kinase (MAPK) pathways, specifically the Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways. The late AgNP-induced p-H3S10 formation occurred via the activation of the entire MAPK cascade. On the other hand, p-H3S10 formation was not due to DNA damage induced by AgNPs, or the activation of the kinases ataxia telangiectasia-mutated (ATM) and ATM-Rad3-related (ATR). Several studies have compared the mechanism of AgNP toxicity to a Trojan horse-type molecular pathway. We observed different effects of AgNO3 (Ag+) and AgNPs on cells, and only the JNK inhibitor suppressed the temporary AgNO3-induced formation of p-H3S10. These results strongly indicate that AgNP-induced p-H3S10 formation does not rely solely on one signaling pathway, but rather may involve two or more pathways.
Collapse
|
12
|
Schrecengost RS, Green CL, Zhuang Y, Keller SN, Smith RA, Maines LW, Smith CD. In Vitro and In Vivo Antitumor and Anti-Inflammatory Capabilities of the Novel GSK3 and CDK9 Inhibitor ABC1183. J Pharmacol Exp Ther 2018; 365:107-116. [PMID: 29434052 PMCID: PMC5830635 DOI: 10.1124/jpet.117.245738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/19/2018] [Indexed: 01/20/2023] Open
Abstract
Glycogen synthase kinase-3s (GSK3α and GSK3β) are constitutively active protein kinases that target over 100 substrates, incorporate into numerous protein complexes, and regulate such vital cellular functions as proliferation, apoptosis, and inflammation. Cyclin-dependent kinase 9 (CDK9) regulates RNA production as a component of positive transcription elongation factor b and promotes expression of oncogenic and inflammatory genes. Simultaneous inhibition of these signaling nodes is a promising approach for drug discovery, although previous compounds exhibit limited selectivity and clinical efficacy. The novel diaminothiazole ABC1183 is a selective GSK3α/β and CDK9 inhibitor and is growth-inhibitory against a broad panel of cancer cell lines. ABC1183 treatment decreases cell survival through G2/M arrest and modulates oncogenic signaling through changes in GSK3, glycogen synthase, and β-catenin phosphorylation and MCL1 expression. Oral administration, which demonstrates no organ or hematologic toxicity, suppresses tumor growth and inflammation-driven gastrointestinal disease symptoms, owing in part to downregulation of tumor necrosis factor α and interleukin-6 proinflammatory cytokines. Therefore, ABC1183 is strategically poised to effectively mitigate multiple clinically relevant diseases.
Collapse
Affiliation(s)
| | | | - Yan Zhuang
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Staci N Keller
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Ryan A Smith
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Lynn W Maines
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | | |
Collapse
|
13
|
Protein activation mapping of human sun-protected epidermis after an acute dose of erythemic solar simulated light. NPJ Precis Oncol 2017; 1. [PMID: 29167824 PMCID: PMC5695572 DOI: 10.1038/s41698-017-0037-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ultraviolet radiation is an important etiologic factor in skin cancer and a better understanding of how solar stimulated light (SSL) affects signal transduction pathways in human skin which is needed in further understanding activated networks that could be targeted for skin cancer prevention. We utilized Reverse Phase Protein Microarray Analysis (RPPA), a powerful technology that allows for broad-scale and quantitative measurement of the activation/phosphorylation state of hundreds of key signaling proteins and protein pathways in sun-protected skin after an acute dose of two minimal erythema dose (MED) of SSL. RPPA analysis was used to map the altered cell signaling networks resulting from acute doses of solar simulated radiation (SSL). To that end, we exposed sun-protected skin in volunteers to acute doses of two MED of SSL and collected biopsies pre-SSL and post-SSL irradiation. Frozen biopsies were subjected to laser capture microdissection (LCM) and then assessed by RPPA. The activation/phosphorylation or total levels of 128 key signaling proteins and drug targets were selected for statistical analysis. Coordinate network-based analysis was performed on specific signaling pathways that included the PI3k/Akt/mTOR and Ras/Raf/MEK/ERK pathways. Overall, we found early and sustained activation of the PI3K-AKT-mTOR and MAPK pathways. Cell death and apoptosis-related proteins were activated at 5 and 24 h. Ultimately, expression profile patterns of phosphorylated proteins in the epidermal growth factor receptor(EGFR), AKT, mTOR, and other relevant pathways may be used to determine pharmacodynamic activity of new and selective topical chemoprevention agents administered in a test area exposed to SSL to determine drug-induced attenuation or reversal of skin carcinogenesis pathways. Skin exposure to ultraviolet radiation leads to the activation of proteins involved in carcinogenic pathways. Janine Einspahr and Clara Curiel-Lewandrowski of the Arizona Cancer Center and colleagues in the US exposed normally ultraviolet protected skin of 12 individuals to two times the dose of solar-simulated light needed to induce redness. Skin biopsies were taken before and after exposure and 128 proteins known to be involved in key cancer signaling pathways were examined using ‘reverse phase protein microarray analysis’. They found early and sustained activation of multiple signaling pathways, in addition to activation of cell death and apoptosis-related proteins. The study may serve as a model for investigating the pathways involved in chronic or ultraviolet-induced carcinogenesis, which may ultimately lead to the development of targeted therapies to attenuate or reverse skin cancer pathways.
Collapse
|
14
|
Kim JE, Heo YS, Lee KW. Osajin Inhibits Solar UV-Induced Cyclooxygenase-2 Expression Through Direct Inhibition of RSK2. J Cell Biochem 2017; 118:4080-4087. [PMID: 28409880 DOI: 10.1002/jcb.26063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 01/10/2023]
Abstract
Solar ultraviolet light (sUV) has been shown to promote the development of skin disorders including inflammation, photoaging, and skin carcinogenesis. Osajin is the major bioactive isoflavone present in the fruit of Maclura pomifera, commonly referred to as the Osage orange. In this study, we observed that osajin inhibited sUV-induced cyclooxygenase (COX)-2 protein expression in both HaCaT and JB6 cells. COX-2 is a major mediator of skin inflammation. sUV activated the transcription factors nuclear factor-κB and activator protein-1 which, in turn, induces COX-2 expression. Osajin inhibited transactivation of these transcription factors. We identified RSK2 as an inhibitory target of osajin by screening against 68 kinases related to inflammation. Osajin binds with RSK2 directly in an ATP-competitive manner. Computer modeling simulated a plausible binding orientation between osajin and RSK2. Osajin inhibited sUV-induced phosphorylation of histone H3, a substrate of RSK2. However, sUV-induced phosphorylation of extracellular signal-regulated kinases, p38 kinase, c-Jun N-terminal kinase and Akt, which are signaling factors upstream of RSK2, was unchanged in the presence of osajin. The anti-inflammatory effects and molecular mechanism of osajin suggest that it may have utility as a functional food for skin health and cosmetic ingredient. J. Cell. Biochem. 118: 4080-4087, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jong-Eun Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang, Republic of Korea.,WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.,Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Seoul, Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Zhao X, Toyooka T, Ibuki Y. Silver nanoparticle-induced phosphorylation of histone H3 at serine 10 is due to dynamic changes in actin filaments and the activation of Aurora kinases. Toxicol Lett 2017; 276:39-47. [PMID: 28499611 DOI: 10.1016/j.toxlet.2017.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/08/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022]
Abstract
The phosphorylation of histone H3 at serine 10 (p-H3S10) has been closely correlated with mitotic chromosome condensation. We previously reported that silver nanoparticles (AgNPs) significantly induced p-H3S10 independent of mitosis. In the present study, we examined the mechanisms underlying the induction of p-H3S10 by AgNPs. A treatment with AgNPs markedly induced p-H3S10 in a dose-dependent manner in three types of cell lines, and this was dependent on the cellular incorporation of AgNPs. The immunofluorescent staining of AgNP-induced p-H3S10 was thin and solid throughout the nucleus, and differed from that normally associated with mitosis. AgNPs induced the formation of globular actin in a dose-dependent manner. Latrunculin B (LatB) and phalloidin, inhibitors of actin polymerization and depolymerization, respectively, inhibited p-H3S10, suggesting that dynamic changes in actin filaments are related to AgNP-induced p-H3S10. Furthermore, p-H3S10 was mediated by Aurora kinase (AURK) pathways, which were suppressed by LatB and siRNA for cofilin 1, an actin-depolymerizing protein. AgNO3 (Ag ions) exerted similar effects to those of AgNPs. These results suggest that Ag ions released from AgNPs incorporated into inner cells changed the dynamics of actin filaments, and this was followed by the activation of AURKs, leading to the induction of p-H3S10.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tatsushi Toyooka
- Industrial Toxicology and Health Effects Research Group, National Institute of Occupational Safety and Health, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
16
|
Wagley Y, Law PY, Wei LN, Loh HH. Epigenetic Activation of μ-Opioid Receptor Gene via Increased Expression and Function of Mitogen- and Stress-Activated Protein Kinase 1. Mol Pharmacol 2017; 91:357-372. [PMID: 28153853 PMCID: PMC5363709 DOI: 10.1124/mol.116.106567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/31/2017] [Indexed: 11/22/2022] Open
Abstract
Since the discovery of μ-opioid receptor (MOR) gene two decades ago, various regulatory factors have been shown to interact with the MOR promoter and modulate transcript levels. However, the majority of early transcriptional studies on MOR gene have not addressed how intracellular signaling pathways mediate extracellular modulators. In this study, we demonstrate that MOR epigenetic regulation requires multiple coordinated signals converging at the MOR promoter, involving mitogen-activated protein kinase (MAPK) activation and mitogen- and stress-activated protein kinase 1 (MSK1)-ranges of intracellular signaling pathways similar to those activated by opioid agonists. Inhibiting p38 MAPK or extracellular signal-regulated kinase (ERK) 1/2 MAPK (upstream activators of MSK1) reduced MOR expression levels; accordingly, the functional role of MSK1, but not MSK2, was demonstrated using genetic approaches. However, for maximal MSK1 effect, an open chromatin configuration was required, because in vitro CpG methylation of the MOR promoter abolished MSK1 activity. Finally, endogenous MSK1 levels concomitantly increased to regulate MOR gene expression during neuronal differentiation of P19 cells, suggesting a conserved role of this kinase in the epigenic activation of MOR in neurons. Taken together, our findings indicate that the expression of MOR gene requires the activity of intracellular signaling pathways that have been implicated in the behavioral outcomes of opioid drugs, which suggests that an autoregulatory mechanism may function in opioid systems.
Collapse
Affiliation(s)
- Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
17
|
Torres-Pérez JV, Sántha P, Varga A, Szucs P, Sousa-Valente J, Gaal B, Sivadó M, Andreou AP, Beattie S, Nagy B, Matesz K, C Arthur JS, Jancsó G, Nagy I. Phosphorylated Histone 3 at Serine 10 Identifies Activated Spinal Neurons and Contributes to the Development of Tissue Injury-Associated Pain. Sci Rep 2017; 7:41221. [PMID: 28120884 PMCID: PMC5264160 DOI: 10.1038/srep41221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Transcriptional changes in superficial spinal dorsal horn neurons (SSDHN) are essential in the development and maintenance of prolonged pain. Epigenetic mechanisms including post-translational modifications in histones are pivotal in regulating transcription. Here, we report that phosphorylation of serine 10 (S10) in histone 3 (H3) specifically occurs in a group of rat SSDHN following the activation of nociceptive primary sensory neurons by burn injury, capsaicin application or sustained electrical activation of nociceptive primary sensory nerve fibres. In contrast, brief thermal or mechanical nociceptive stimuli, which fail to induce tissue injury or inflammation, do not produce the same effect. Blocking N-methyl-D-aspartate receptors or activation of extracellular signal-regulated kinases 1 and 2, or blocking or deleting the mitogen- and stress-activated kinases 1 and 2 (MSK1/2), which phosphorylate S10 in H3, inhibit up-regulation in phosphorylated S10 in H3 (p-S10H3) as well as fos transcription, a down-stream effect of p-S10H3. Deleting MSK1/2 also inhibits the development of carrageenan-induced inflammatory heat hyperalgesia in mice. We propose that p-S10H3 is a novel marker for nociceptive processing in SSDHN with high relevance to transcriptional changes and the development of prolonged pain.
Collapse
Affiliation(s)
- Jose Vicente Torres-Pérez
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| | - Péter Sántha
- Department of Physiology, University of Szeged, Szeged, H-6720, Hungary
| | - Angelika Varga
- MTA-DE-NAP B-Pain Control Research Group, University of Debrecen, Debrecen, H-4012, Hungary
| | - Peter Szucs
- MTA-DE-NAP B-Pain Control Research Group, University of Debrecen, Debrecen, H-4012, Hungary.,Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, H-4012, Hungary
| | - Joao Sousa-Valente
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| | - Botond Gaal
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, H-4012, Hungary
| | - Miklós Sivadó
- MTA-DE-NAP B-Pain Control Research Group, University of Debrecen, Debrecen, H-4012, Hungary.,Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, H-4012, Hungary
| | - Anna P Andreou
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| | - Sara Beattie
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| | - Bence Nagy
- The Ipswich Hospital, Ipswich, IP4 5PD, United Kingdom
| | - Klara Matesz
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, H-4012, Hungary
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Szeged, H-6720, Hungary
| | - Istvan Nagy
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, SW10 9NH, United Kingdom
| |
Collapse
|
18
|
Biphasic reduction of histone H3 phosphorylation in response to N-nitroso compounds induced DNA damage. Biochim Biophys Acta Gen Subj 2016; 1860:1836-44. [DOI: 10.1016/j.bbagen.2016.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/08/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
|
19
|
Swepson C, Ranjan A, Balasubramaniam M, Pandhare J, Dash C. Cocaine Enhances HIV-1 Transcription in Macrophages by Inducing p38 MAPK Phosphorylation. Front Microbiol 2016; 7:823. [PMID: 27375565 PMCID: PMC4899462 DOI: 10.3389/fmicb.2016.00823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
Cocaine is a commonly used illicit drug among HIV-1 infected individuals and is known to increase HIV-1 replication in permissive cells including PBMCs, CD4(+) T cells, and macrophages. Cocaine's potentiating effects on HIV-1 replication in macrophages- the primary targets of the virus in the central nervous system, has been suggested to play an important role in HIV-1 neuro-pathogenesis. However, the mechanism by which cocaine enhances HIV-1 replication in macrophages remain poorly understood. Here, we report the identification of cocaine-induced signaling events that lead to enhanced HIV-1 transcription in macrophages. Treatment of physiologically relevant concentrations of cocaine enhanced HIV-1 transcription in a dose-dependent manner in infected THP-1 monocyte-derived macrophages (THP-1macs) and primary monocyte-derived macrophages (MDMs). Toward decoding the underlying mechanism, results presented in this report demonstrate that cocaine induces the phosphorylation of p38 mitogen activated protein kinase (p38 MAPK), a known activator of HIV-1 transcription. We also present data suggesting that the p38 MAPK-driven HIV-1 transcription is dependent on the induction of mitogen- and stress-activated protein kinase 1 (MSK1). Consequently, MSK1 mediates the phosphorylation of serine 10 residue of histone 3 (H3 Ser10), which is known to activate transcription of genes including that of HIV-1 in macrophages. Importantly, our results show that inhibition of p38 MAPK/MSK1 signaling by specific pharmacological inhibitors abrogated the positive effect of cocaine on HIV-1 transcription. These results validate the functional link between cocaine and p38 MAPK/MSK1 pathways. Together, our results demonstrate for the first time that the p38 MAPK/MSK1 signaling pathway plays a critical role in the cocaine-induced potentiating effects on HIV-1 infection, thus providing new insights into the interplay between cocaine abuse and HIV-1 neuro-pathogenesis.
Collapse
Affiliation(s)
- Chelsie Swepson
- Center for AIDS Health Disparities Research, Meharry Medical College, NashvilleTN, USA; Department of Biochemistry and Cancer Biology, Meharry Medical College, NashvilleTN, USA
| | - Alok Ranjan
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville TN, USA
| | | | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, NashvilleTN, USA; School of Graduate Studies and Research, Meharry Medical College, NashvilleTN, USA; Department of Microbiology and Immunology, Meharry Medical College, NashvilleTN, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, NashvilleTN, USA; Department of Biochemistry and Cancer Biology, Meharry Medical College, NashvilleTN, USA; School of Graduate Studies and Research, Meharry Medical College, NashvilleTN, USA
| |
Collapse
|
20
|
Kim JE, Lee KW. Silkworm Thorn Stem Extract Targets RSK2 and Suppresses Solar UV-Induced Cyclooxygenase-2 Expression. Int J Mol Sci 2015; 16:25096-107. [PMID: 26506342 PMCID: PMC4632792 DOI: 10.3390/ijms161025096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/30/2015] [Accepted: 10/10/2015] [Indexed: 12/27/2022] Open
Abstract
Excessive exposure to solar UV (sUV) is associated with numerous human skin disorders, such as carcinogenesis, skin photoaging and skin inflammation. Silkworm Thorn (Cudraniatricuspidata, SW) is a plant belonging to the Moraceae family and widely present throughout Korea, China, and Japan. Most parts of the tree (including the fruit, leaf, stem, root, and bark) is consumable as a functional food or tea. In this study, we found that SW extract (SWE) inhibited the elevated expression of sUV-induced cyclooxygenase (COX)-2 levels in both HaCaT and JB6 cells. Levels of nuclear factor-κB and activator protein-1, two crucial transcription factors involved in COX-2 expression, were elevated by sUV treatment. Treatment with SWE abolished this activation. SWE also inhibited sUV-induced histone H3 phosphorylation. However, sUV-induced phosphorylation of Akt, c-Jun N-terminal kinase and p38 kinase remained unchanged in the presence of SWE. SWE inhibited RSK2 activity, and pull-down assays using SWE-Sepharose beads revealed that SWE binds directly with RSK2 in an ATP-competitive manner. These results suggest a potential for SWE to be developed as a cosmeceutical material and functional food constituent for the promotion of skin health.
Collapse
Affiliation(s)
- Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea.
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Korea.
| |
Collapse
|
21
|
Schick S, Fournier D, Thakurela S, Sahu SK, Garding A, Tiwari VK. Dynamics of chromatin accessibility and epigenetic state in response to UV damage. J Cell Sci 2015; 128:4380-94. [PMID: 26446258 DOI: 10.1242/jcs.173633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms determine the access of regulatory factors to DNA during events such as transcription and the DNA damage response. However, the global response of histone modifications and chromatin accessibility to UV exposure remains poorly understood. Here, we report that UV exposure results in a genome-wide reduction in chromatin accessibility, while the distribution of the active regulatory mark H3K27ac undergoes massive reorganization. Genomic loci subjected to epigenetic reprogramming upon UV exposure represent target sites for sequence-specific transcription factors. Most of these are distal regulatory regions, highlighting their importance in the cellular response to UV exposure. Furthermore, UV exposure results in an extensive reorganization of super-enhancers, accompanied by expression changes of associated genes, which may in part contribute to the stress response. Taken together, our study provides the first comprehensive resource for genome-wide chromatin changes upon UV irradiation in relation to gene expression and elucidates new aspects of this relationship.
Collapse
Affiliation(s)
- Sandra Schick
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
23
|
Wang P, Peng C, Liu X, Liu H, Chen Y, Zheng L, Han B, Pei H. OGT mediated histone H2B S112 GlcNAcylation regulates DNA damage response. J Genet Genomics 2015; 42:467-75. [PMID: 26408091 DOI: 10.1016/j.jgg.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 01/18/2023]
Abstract
O-GlcNAcylation is an important post-translational modification and has been implicated in many fundamental cellular processes. Recent studies showed that O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) mediated O-GlcNAcylation of histone H2B Ser 112 (H2B S112 GlcNAcylation) plays an important role in gene transcription. However, the role of this histone modification in DNA damage response has not been studied yet. In this study, we found that OGT and OGT mediated H2B S112 GlcNAcylation are involved in DNA damage response for maintaining genomic stability and are required for resistance to many DNA-damaging and replication stress-inducing agents. OGT mediated H2B S112 GlcNAcylation increased locally upon the induction of double-strand breaks (DSBs), and depletion of OGT or overexpression of H2B S112A mutant impaired homologous recombination (HR) and nonhomologous end-joining (NHEJ). Mechanistically, H2B S112 GlcNAcylation could bind Nijmegen breakage syndrome 1 (NBS1) and regulate NBS1 foci formation. Taken together, our results demonstrate a new function of histone O-GlcNAcylation in DNA damage response (DDR).
Collapse
Affiliation(s)
- Panfei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Nursing and Medical Technology, Jianghan University, Wuhan 430056, China
| | - Changmin Peng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Nursing and Medical Technology, Jianghan University, Wuhan 430056, China
| | - Xia Liu
- Department of Radiotherapy, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China; School of Nursing and Medical Technology, Jianghan University, Wuhan 430056, China
| | - Hailong Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yali Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Zheng
- School of Nursing and Medical Technology, Jianghan University, Wuhan 430056, China
| | - Baolin Han
- Department of Radiotherapy, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China.
| | - Huadong Pei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
24
|
Homocysteine Induces Collagen I Expression by Downregulating Histone Methyltransferase G9a. PLoS One 2015; 10:e0130421. [PMID: 26192994 PMCID: PMC4508059 DOI: 10.1371/journal.pone.0130421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) leads to several clinical manifestations including hepatic fibrosis. Excess deposition of extracellular matrix (ECM) components including collagen is the eponymous lesion of liver fibrosis. In this study, we demonstrated that elevated concentration of Hcy induced the expression of collagen type I in cultured human liver cells as well as in liver tissue of HHcy mice. Meanwhile, Hcy inhibited the expression of histone methyltransferase G9a. Mechanistically, silencing endogenous G9a by siRNA enhanced the promoter activity of COL1A1 in LO2 cells. Conversely, overexpressing G9a inhibited the promoter activity of COL1A1. CHIP assay demonstrated that G9a binds to the neuron-restrictive silencer element (NRSE) on the promoter of COL1A1. Hcy treatment decreased the binding of G9a on NRSE, which in turn decreased the level of H3K9me2 on the promoter of COL1A1, led to upregulation of COL1A1. Taken together, these results provide a novel mechanism on explaining how HHcy promotes ECM production.
Collapse
|
25
|
Bermudez Y, Stratton SP, Curiel-Lewandrowski C, Warneke J, Hu C, Bowden GT, Dickinson SE, Dong Z, Bode AM, Saboda K, Brooks CA, Petricoin EF, Hurst CA, Alberts DS, Einspahr JG. Activation of the PI3K/Akt/mTOR and MAPK Signaling Pathways in Response to Acute Solar-Simulated Light Exposure of Human Skin. Cancer Prev Res (Phila) 2015; 8:720-8. [PMID: 26031292 DOI: 10.1158/1940-6207.capr-14-0407] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
The incidence of skin cancer is higher than all other cancers and continues to increase, with an average annual cost over $8 billion in the United States. As a result, identifying molecular pathway alterations that occur with UV exposure to strategize more effective preventive and therapeutic approaches is essential. To that end, we evaluated phosphorylation of proteins within the PI3K/Akt and MAPK pathways by immunohistochemistry in sun-protected skin after acute doses of physiologically relevant solar-simulated ultraviolet light (SSL) in 24 volunteers. Biopsies were performed at baseline, 5 minutes, 1, 5, and 24 hours after SSL irradiation. Within the PI3K/Akt pathway, we found activation of Akt (serine 473) to be significantly increased at 5 hours while mTOR (serine 2448) was strongly activated early and was sustained over 24 hours after SSL. Downstream, we observed a marked and sustained increase in phospho-S6 (serine 235/S236), whereas phospho-4E-BP1 (threonines 37/46) was increased only at 24 hours. Within the MAPK pathway, SSL-induced expression of phospho-p38 (threonine 180/tyrosine 182) peaked at 1 to 5 hours. ERK 1/2 was observed to be immediate and sustained after SSL irradiation. Phosphorylation of histone H3 (serine 10), a core structural protein of the nucleosome, peaked at 5 hours after SSL irradiation. The expression of both p53 and COX-2 was increased at 5 hours and was maximal at 24 hours after SSL irradiation. Apoptosis was significantly increased at 24 hours as expected and indicative of a sunburn-type response to SSL. Understanding the timing of key protein expression changes in response to SSL will aid in development of mechanistic-based approaches for the prevention and control of skin cancers.
Collapse
Affiliation(s)
- Yira Bermudez
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona
| | - Steven P Stratton
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona
| | - Clara Curiel-Lewandrowski
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona
| | - James Warneke
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona. Department of Surgery, University of Arizona, Tucson, Arizona
| | - Chengcheng Hu
- The University of Arizona Cancer Center, Tucson, Arizona
| | | | | | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | | | | | - Craig A Hurst
- College of Medicine, University of Arizona, Tucson, Arizona. Department of Surgery, University of Arizona, Tucson, Arizona
| | - David S Alberts
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona
| | - Janine G Einspahr
- College of Medicine, University of Arizona, Tucson, Arizona. The University of Arizona Cancer Center, Tucson, Arizona.
| |
Collapse
|
26
|
Zhao X, Ibuki Y. Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5003-5012. [PMID: 25815977 DOI: 10.1021/acs.est.5b00542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Post-translational modification of histones is linked to a variety of biological processes and disease states. This paper focuses on phosphorylation of histone H3 at serine 10 (p-H3S10), induced by silver nanoparticles (AgNPs) and discusses the usefulness of p-H3S10 as a marker to evaluate the toxicity of AgNPs. Cultured human cells showed remarkable p-H3S10 immediately after treatment with AgNPs but not with Ag microparticles. p-H3S10 lasts up to 24 h and strongly depends upon the cellular uptake of AgNPs. Removal of Ag ions suppressed p-H3S10, while adding an excess of Ag ions augmented p-H3S10. We expected that p-H3S10 requires two events: cellular uptake of AgNPs and continuous release of Ag ions from intracellular AgNPs. AgNPs enhanced the expression of the proto-oncogene c-jun, and p-H3S10 increased in the promoter sites of the gene, indicating that p-H3S10 might indicate a biological reaction related to carcinogenesis. We previously showed that side-scattered light from flow cytometry could be used to measure the uptake potential of nanoparticles [ Suzuki , H. ; Toyooka , T. ; Ibuki , Y. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis . Environ. Sci. Technol. 2007 , 41 ( 8 ), 3018 - 3024 ]. Our current findings suggest that p-H3S10 can be used to evaluate the toxicity of AgNPs and Ag ion release in combination with detection of side-scattered light from flow cytometry.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga, Shizuoka, Shizuoka 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
27
|
Chandra V, Hong KM. Effects of deranged metabolism on epigenetic changes in cancer. Arch Pharm Res 2015; 38:321-37. [PMID: 25628247 DOI: 10.1007/s12272-015-0561-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/09/2015] [Indexed: 12/17/2022]
Abstract
The concept of epigenetics is now providing the mechanisms by which cells transfer their new environmental-change-induced phenotypes to their daughter cells. However, how extracellular or cytoplasmic environmental cues are connected to the nuclear epigenome remains incompletely understood. Recently emerging evidence suggests that epigenetic changes are correlated with metabolic changes via chromatin remodeling. As many human complex diseases including cancer harbor both epigenetic changes and metabolic dysregulation, understanding the molecular processes linking them has huge implications for disease pathogenesis and therapeutic intervention. In this review, the impacts of metabolic changes on cancer epigenetics are discussed, along with the current knowledge on cancer metabolism and epigenetics.
Collapse
Affiliation(s)
- Vishal Chandra
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 410-769, Korea
| | | |
Collapse
|
28
|
Yoshida I, Ibuki Y. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes. Mutat Res 2014; 770:9-18. [PMID: 25771866 DOI: 10.1016/j.mrfmmm.2014.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.
Collapse
Affiliation(s)
- Ikuma Yoshida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
29
|
Kang JS, Chin YW, Lee K, Kim YW, Choi BY, Keum YS. Identification of 4′- O -β- d -glucosyl-5- O -methylvisamminol as a novel epigenetic suppressor of histone H3 phosphorylation at Ser10 and its interaction with 14-3-3ε. Bioorg Med Chem Lett 2014; 24:4763-4767. [DOI: 10.1016/j.bmcl.2014.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/08/2014] [Accepted: 07/01/2014] [Indexed: 12/21/2022]
|
30
|
Šmerdová L, Svobodová J, Kabátková M, Kohoutek J, Blažek D, Machala M, Vondráček J. Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. Carcinogenesis 2014; 35:2534-43. [DOI: 10.1093/carcin/bgu190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
31
|
Yao K, Chen H, Liu K, Langfald A, Yang G, Zhang Y, Yu DH, Kim MO, Lee MH, Li H, Bae KB, Kim HG, Ma WY, Bode AM, Dong Z, Dong Z. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer. Cancer Prev Res (Phila) 2014; 7:958-967. [PMID: 24994661 PMCID: PMC4154980 DOI: 10.1158/1940-6207.capr-14-0126] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Solar UV (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the United States. The MAPK cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress-activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAPK cascades. In this study, phosphorylation of RSK and MSK1 was upregulated in human squamous cell carcinoma (SCC) and SUV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples, and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate SUV-induced phosphorylation of cAMP-responsive element binding protein (CREB) and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of SUV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in SUV-induced phosphorylation of CREB, c-Fos, and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against SUV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1.
Collapse
Affiliation(s)
- Ke Yao
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
- Pathophysiology Department, Basic Medical College, Zhengzhou University, No.100 Kexue Road, Henan, China, 450001
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Kangdong Liu
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
- Pathophysiology Department, Basic Medical College, Zhengzhou University, No.100 Kexue Road, Henan, China, 450001
| | - Alyssa Langfald
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Ge Yang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
- Pathophysiology Department, Basic Medical College, Zhengzhou University, No.100 Kexue Road, Henan, China, 450001
| | - Yi Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
- Pathophysiology Department, Basic Medical College, Zhengzhou University, No.100 Kexue Road, Henan, China, 450001
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Myoung Ok Kim
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Haitao Li
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Ki Beom Bae
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Hong-Gyum Kim
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Wei-Ya Ma
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| | - Ziming Dong
- Pathophysiology Department, Basic Medical College, Zhengzhou University, No.100 Kexue Road, Henan, China, 450001
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912
| |
Collapse
|
32
|
Choi WJ. The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression. Biomol Ther (Seoul) 2014; 22:308-13. [PMID: 25143809 PMCID: PMC4131526 DOI: 10.4062/biomolther.2014.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 12/21/2022] Open
Abstract
Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma (HP1γ) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates HP1γ, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-3ε. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.
Collapse
Affiliation(s)
- Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang 410-820, Republic of Korea
| |
Collapse
|
33
|
Xu Q, Yang C, Du Y, Chen Y, Liu H, Deng M, Zhang H, Zhang L, Liu T, Liu Q, Wang L, Lou Z, Pei H. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res 2014; 42:5594-604. [PMID: 24692660 PMCID: PMC4027166 DOI: 10.1093/nar/gku236] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Histone H2B O-GlcNAcylation is an important post-translational modification of chromatin during gene transcription. However, how this epigenetic modification is regulated remains unclear. Here we found that the energy-sensing adenosine-monophosphate-activated protein kinase (AMPK) could suppress histone H2B O-GlcNAcylation. AMPK directly phosphorylates O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT). Although this phosphorylation does not regulate the enzymatic activity of OGT, it inhibits OGT-chromatin association, histone O-GlcNAcylation and gene transcription. Conversely, OGT also O-GlcNAcylates AMPK and positively regulates AMPK activity, creating a feedback loop. Taken together, these results reveal a crosstalk between the LKB1-AMPK and the hexosamine biosynthesis (HBP)-OGT pathways, which coordinate together for the sensing of nutrient state and regulation of gene transcription.
Collapse
Affiliation(s)
- Qiuran Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Caihong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Du
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yali Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hailong Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Min Deng
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Haoxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Lei Zhang
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Tongzheng Liu
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Liewei Wang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Huadong Pei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
34
|
Ibuki Y, Toyooka T, Zhao X, Yoshida I. Cigarette sidestream smoke induces histone H3 phosphorylation via JNK and PI3K/Akt pathways, leading to the expression of proto-oncogenes. Carcinogenesis 2014; 35:1228-37. [PMID: 24398671 DOI: 10.1093/carcin/bgt492] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Post-translational modifications in histones have been associated with cancer. Although cigarette sidestream smoke (CSS) as well as mainstream smoke are carcinogens, the relationship between carcinogenicity and histone modifications has not yet been clarified. Here, we demonstrated that CSS induced phosphorylation of histones, involving a carcinogenic process. Treatment with CSS markedly induced the phosphorylation of histone H3 at serine 10 and 28 residues (H3S10 and H3S28), which was independent from the cell cycle, in the human pulmonary epithelial cell model, A549 and normal human lung fibroblasts, MRC-5 and WI-38. Using specific inhibitors and small interfering RNA, the phosphorylation of H3S10 was found to be mediated by c-jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. These pathways were different from that of the CSS-induced phosphorylation of histone H2AX (γ-H2AX) mediated by Ataxia telangiectasia-mutated (ATM) and ATM-Rad3-related (ATR) protein kinases. A chromatin immunoprecipitation assay revealed that the phosphorylation of H3S10 was increased in the promoter sites of the proto-oncogenes, c-fos and c-jun, which indicated that CSS plays a role in tumor promotion. Because the phosphorylation of H3S10 was decreased in the aldehyde-removed CSS and was significantly induced by treatment with formaldehyde, aldehydes are suspected to partially contribute to this phosphorylation. These findings suggested that any chemicals in CSS, including aldehydes, phosphorylate H3S10 via JNK and PI3K/Akt pathways, which is different from the DNA damage response, resulting in tumor promotion.
Collapse
Affiliation(s)
- Yuko Ibuki
- Institute for Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsushi Toyooka
- Institute for Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Xiaoxu Zhao
- Institute for Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ikuma Yoshida
- Institute for Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
35
|
Thongrakard V, Ruangrungsi N, Ekkapongpisit M, Isidoro C, Tencomnao T. Protection from UVB Toxicity in Human Keratinocytes by Thailand Native Herbs Extracts. Photochem Photobiol 2014; 90:214-24. [PMID: 23931284 DOI: 10.1111/php.12153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
Thai traditional medicine employs a wide range of indigenous herbs in the forms of tincture or tea for the cure of skin and systemic inflammatory diseases. The protection by Thai plants extracts against UVB DNA damage and cytotoxicity was investigated in human keratinocytes. Petroleum ether, dichloromethane and ethanol extracts were prepared from 15 Thai herb species, and the total phenolic and flavonoid contents, the antioxidant and UV-absorbing properties were assessed by standard procedures. Cytoprotective effects were evaluated on the basis of cell survival, caspase-3 activity and pyrimidine dimers determination. High total phenolic and flavonoid contents were found in the ethanol and dichloromethane fractions. Dichloromethane extract of turmeric was shown to possess the highest antioxidant activity. The maximum UV absorptions were found in the ethanol extract of turmeric and in the dichloromethane extract of ginger. These extracts stimulated the synthesis of Thioredoxin 1, an antioxidant protein, and could protect human HaCaT keratinocytes from UV-induced DNA damage and cytotoxicity. The present data support the utilization of turmeric and ginger extracts in anti-UV cosmetic pharmaceuticals.
Collapse
Affiliation(s)
- Visa Thongrakard
- Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Nijsiri Ruangrungsi
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Maneerat Ekkapongpisit
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Ciro Isidoro
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Tewin Tencomnao
- Center for Excellence in Omics-Nano Medical Technology Development Project, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
36
|
Lim TG, Kim JE, Jung SK, Li Y, Bode AM, Park JS, Yeom MH, Dong Z, Lee KW. MLK3 is a direct target of biochanin A, which plays a role in solar UV-induced COX-2 expression in human keratinocytes. Biochem Pharmacol 2013; 86:896-903. [PMID: 23948065 PMCID: PMC4241970 DOI: 10.1016/j.bcp.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
Abstract
Solar UV (sUV) is an important environmental carcinogen. Recent studies have shown that sUV is associated with numerous human skin disorders, such as wrinkle formation and inflammation. In this study, we found that the isoflavone, biochanin A, inhibited the expression of sUV-induced COX-2, which is a well-characterized sUV-induced enzyme, in both human HaCaT keratinocytes and JB6 P+ mouse skin epidermal cells. Several studies have demonstrated the beneficial effects of biochanin A. However, its direct molecular target is unknown. We found that biochanin A inhibited sUV-induced phosphorylation of MKK4/JNK/c-Jun and MKK3/6/p38/MSK1. Mixed-lineage kinase 3 (MLK3) is an upstream kinase of MKK4 and MKK3/6. Thus, we evaluated the effect of biochanin A on MLK3. We found that sUV-induced MLK3 phosphorylation was not affected, whereas MLK3 kinase activity was significantly suppressed by biochanin A. Furthermore, direct binding of biochanin A in the MLK3 ATP-binding pocket was detected using pull-down assays. Computer modeling supported our observation that MLK3 is a novel target of biochanin A. These results suggest that biochanin A exerts chemopreventive effects by suppressing sUV-induced COX-2 expression mediated through MLK3 inhibition.
Collapse
Affiliation(s)
- Tae-Gyu Lim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jong-Eun Kim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sung Keun Jung
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Yan Li
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Jun-Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 341-1, Republic of Korea
| | - Myeong Hun Yeom
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 341-1, Republic of Korea
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|