1
|
Yang Y, Chen J, Zhao X, Gong F, Liu R, Miao J, Lin M, Ge F, Chen W. Genetic analysis reveals the shared genetic architecture between breast cancer and atrial fibrillation. Front Genet 2025; 16:1450259. [PMID: 40201568 PMCID: PMC11975938 DOI: 10.3389/fgene.2025.1450259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Background Epidemiological studies have observed an association between atrial fibrillation (AF) and breast cancer (BC). However, the underlying mechanisms linking these two conditions remain unclear. This study aims to systematically explore the genetic association between AF and BC. Methods We utilized the largest available genome-wide association study (GWAS) datasets for European individuals, including summary data for AF (N = 1,030,836) and BC (N = 247,173). Multiple approaches were employed to systematically investigate the genetic relationship between AF and BC from the perspectives of pleiotropy and causality. Results Global genetic analysis using LDSC and HDL revealed a genetic correlation between AF and BC (rg = 0.0435, P = 0.039). Mixer predicted genetic overlap between non-MHC regions of the two conditions (n = 125, rg = 0.05). Local genetic analyses using LAVA and GWAS-PW identified 22 regions with potential genetic sharing. Cross-trait meta-analysis by CPASSOC identified one novel pleiotropic SNP and 14 pleiotropic SNPs, which were subsequently annotated. Eight of these SNPs passed Bayesian colocalization tests, including one novel pleiotropic SNP. Further fine-mapping analysis identified a set of causal SNPs for each significant SNP. TWAS analyses using JTI and FOCUS models jointly identified 10 pleiotropic genes. Phenome-wide association study (PheWAS) of novel pleiotropic SNPs identified two eQTLs (PELO, ITGA1). Gene-based PheWAS results showed strong associations with BMI, height, and educational attainment. PCGA methods combining GTEx V8 tissue data and single-cell RNA data identified 16 co-enriched tissue types (including cardiovascular, reproductive, and digestive systems) and 5 cell types (including macrophages and smooth muscle cells). Finally, univariable and multivariable bidirectional Mendelian randomization analyses excluded a causal relationship between AF and BC. Conclusion This study systematically investigated the shared genetic overlap between AF and BC. Several pleiotropic SNPs and genes were identified, and co-enriched tissue and cell types were revealed. The findings highlight common mechanisms from a genetic perspective rather than a causal relationship. This study provides new insights into the AF-BC association and suggests potential experimental targets and directions for future research. Additionally, the results underscore the importance of monitoring the potential risk of one disease in patients diagnosed with the other.
Collapse
Affiliation(s)
- Yang Yang
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Jiayi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - XiaoHua Zhao
- Department of Cardiology, Yan’an Hospital Affiliated To Kunming Medical University, Kunming, China
| | - Fuhong Gong
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Ruimin Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Jingge Miao
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Mengping Lin
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
2
|
Sias F, Zoroddu S, Migheli R, Bagella L. Untangling the Role of MYC in Sarcomas and Its Potential as a Promising Therapeutic Target. Int J Mol Sci 2025; 26:1973. [PMID: 40076599 PMCID: PMC11900228 DOI: 10.3390/ijms26051973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
MYC plays a pivotal role in the biology of various sarcoma subtypes, acting as a key regulator of tumor growth, proliferation, and metabolic reprogramming. This oncogene is frequently dysregulated across different sarcomas, where its expression is closely intertwined with the molecular features unique to each subtype. MYC interacts with critical pathways such as cell cycle regulation, apoptosis, and angiogenesis, amplifying tumor aggressiveness and resistance to standard therapies. Furthermore, MYC influences the tumor microenvironment by modulating cell-extracellular matrix interactions and immune evasion mechanisms, further complicating therapeutic management. Despite its well-established centrality in sarcoma pathogenesis, targeting MYC directly remains challenging due to its "undruggable" protein structure. However, emerging therapeutic strategies, including indirect MYC inhibition via epigenetic modulators, transcriptional machinery disruptors, and metabolic pathway inhibitors, offer new hope for sarcoma treatment. This review underscores the importance of understanding the intricate roles of MYC across sarcoma subtypes to guide the development of effective targeted therapies. Given MYC's central role in tumorigenesis and progression, innovative approaches aiming at MYC inhibition could transform the therapeutic landscape for sarcoma patients, providing a much-needed avenue to overcome therapeutic resistance and improve clinical outcomes.
Collapse
Affiliation(s)
- Fabio Sias
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
| | - Rossana Migheli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
3
|
Gries A, Santhana Kumar K, Kuttler F, Özalp Ö, Akle V, Zhang H, Grotzer MA, Neuhauss SCF, Allalou A, Baumgartner M. Aurora kinase B is required for growth and expansion of medulloblastoma cells in the tissue context. Neoplasia 2025; 59:101078. [PMID: 39514961 PMCID: PMC11584764 DOI: 10.1016/j.neo.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The impact of the tissue context on tumor growth and drug response in medulloblastoma (MB) is poorly understood. To gain insights into the growth and dissemination behavior of the MB tumor cells under treatment, we combined three-dimensional cell culture screening with ex vivo organotypic cerebellum slice co-culture (OCSC), which allowed the assessment of tumor cell behavior in the tissue context. To identify druggable kinase pathways involved in invasion, we screened a panel of 274 kinase inhibitors and identified aurora kinase B (AURKB) as a potential anti-invasion drug target in MB. We validated tumor suppressive activities of the AURKB inhibitor (AURKBi) Barasertib (AZD1152-HQPA) and the structurally unrelated compound GSK-1070916 in cerebellum slice culture models for SHH, and Grp3 MB. Importantly, AURKBi are tumor suppressive in the tissue context, also in MB tumor cells that are in vitro resistant to the same treatment. We confirmed the requirement of AURKB for tumor growth and expansion in the tissue context through genetic suppression of AURKB by siRNA. We revealed that the combination of AURKBi with the SRC/BCR-ABL inhibitor Dasatinib acts synergistically to repress tumor growth and expansion in the highly invasive MB cell model ONS-76, but not in Grp3 MB cells. We demonstrate that tumor growth in the tissue context is suppressed by pharmacological inhibition of AURKB, comparable to the growth reduction observed after X-ray irradiation, which was used as the positive control. Finally, we show that exposure to µM concentrations of Barasertib does not cause developmental toxicity in fish larvae. In conclusion, we demonstrate that AURKB is essential for MB tumor growth and expansion in the tissue context and the inhibition of AURKB is equally efficient as irradiation in repressing tumor cell growth. In patients younger than three years, pharmacological targeting of AURKB may thus constitute a novel means to overcome radiotherapy limitations.
Collapse
Affiliation(s)
- Alexandre Gries
- Pediatric Molecular Neuro-oncology Research, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Karthiga Santhana Kumar
- Pediatric Molecular Neuro-oncology Research, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Fabien Kuttler
- Biomolecular screening Facility, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne, Switzerland
| | - Özgün Özalp
- Department of Molecular Life Sciences, University of Zurich, Switzerland
| | - Veronica Akle
- Department of Molecular Life Sciences, University of Zurich, Switzerland
| | - Hanqing Zhang
- SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden; Department of Information Technology, Division of Visual Information and Interaction, Uppsala University, Uppsala, Sweden
| | - Michael A Grotzer
- Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | | | - Amin Allalou
- DanioReadout, Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden; SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden; Department of Information Technology, Division of Visual Information and Interaction, Uppsala University, Uppsala, Sweden
| | - Martin Baumgartner
- Pediatric Molecular Neuro-oncology Research, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Li M, Li J, He C, Jiang G, Ma D, Guan H, Lin Y, Li M, Jia J, Duan X, Wang Y, Ren F, Li H, Wang X, Cao C, Chang Z. An oncoprotein CREPT functions as a co-factor in MYC-driven transformation and tumor growth. J Biol Chem 2025; 301:108030. [PMID: 39615685 PMCID: PMC11730240 DOI: 10.1016/j.jbc.2024.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024] Open
Abstract
Understanding the mechanisms behind MYC-driven oncogenic transformation could pave the way for identifying novel drug targets. This study explored the role of CREPT in MYC-induced malignancy by generating MYC-transformed mouse embryonic fibroblasts (MEFs) with conditional CREPT deletion. Our results demonstrated that the loss of CREPT significantly impaired MYC-induced colony formation and cell proliferation, indicating that CREPT is essential for the malignant transformation of MEFs. Reintroducing CREPT in CREPT-deficient cells restored malignant properties. Furthermore, CREPT overexpression alone enhanced colony formation upon MYC induction but was insufficient to induce transformation without MYC, suggesting a cooperative interaction between CREPT and MYC in malignant transformation. CREPT deletion resulted in delayed cell cycle progression during the G2/M and S phases. CREPT enhanced the expression of MYC target genes by directly interacting with MYC through the CID domain of CREPT and the PEST domain of MYC. Arginine 34 of CREPT was identified as a critical residue for the interaction with MYC, and its mutation lost the ability of CREPT to promote MYC-driven colony formation and tumor growth in colorectal cancer models. Additionally, CREPT facilitated the recruitment of RNA Polymerase II to MYC-binding promoters, promoting transcriptional initiation of MYC-targeted genes. Our study also revealed a strong correlation between CREPT and MYC expression in various human cancers, particularly in colorectal cancer, where their interaction appears to play a significant role in tumorigenesis. These findings suggest that the CREPT-MYC interaction is crucial for the progression of MYC-driven cancers and presents a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jingya Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Chunhua He
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Guancheng Jiang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Danhui Ma
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Haipeng Guan
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, China
| | - Yuting Lin
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Meng Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Jia
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaolin Duan
- Department of Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
| | - Chenxi Cao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Kumar N, Rangel Ambriz J, Tsai K, Mim MS, Flores-Flores M, Chen W, Zartman JJ, Alber M. Balancing competing effects of tissue growth and cytoskeletal regulation during Drosophila wing disc development. Nat Commun 2024; 15:2477. [PMID: 38509115 PMCID: PMC10954670 DOI: 10.1038/s41467-024-46698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in the Drosophila wing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.
Collapse
Affiliation(s)
- Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Jennifer Rangel Ambriz
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Marycruz Flores-Flores
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, USA.
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Sun L, Guo S, Xie Y, Yao Y. The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med 2023; 21:787. [PMID: 37932738 PMCID: PMC10629185 DOI: 10.1186/s12967-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Integrins, which consist of two non-covalently linked α and β subunits, play a crucial role in cell-cell adhesion and cell-extracellular matrix (ECM) interactions. Among them, integrin β1 is the most common subunit and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the complexity and sometimes contradictory characteristics, targeting integrin β1 for therapeutics has been a challenge. The emerging understanding of the mechanisms regulating by integrin β1 may guide the development of new strategies for anti-cancer therapy. In this review, we summarize the multiple functions of integrin β1 and signaling pathways which underlie the involvement of integrin β1 in several malignant cancers. Our review suggests the possibility of using integrin β1 as a therapeutic target and highlights the need for patient stratification based on expression of different integrin receptors in future clinical studies.
Collapse
Affiliation(s)
- Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China.
| |
Collapse
|
7
|
Bech JM, Terkelsen T, Bartels AS, Coscia F, Doll S, Zhao S, Zhang Z, Brünner N, Lindebjerg J, Madsen GI, Fang X, Mann M, Afonso Moreira JM. Proteomic Profiling of Colorectal Adenomas Identifies a Predictive Risk Signature for Development of Metachronous Advanced Colorectal Neoplasia. Gastroenterology 2023; 165:121-132.e5. [PMID: 36966943 DOI: 10.1053/j.gastro.2023.03.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND & AIMS Colonic adenomatous polyps, or adenomas, are frequent precancerous lesions and the origin of most cases of colorectal adenocarcinoma. However, we know from epidemiologic studies that although most colorectal cancers (CRCs) originate from adenomas, only a small fraction of adenomas (3%-5%) ever progress to cancer. At present, there are no molecular markers to guide follow-up surveillance programs. METHODS We profiled, by mass spectrometry-based proteomics combined with machine learning analysis, a selected cohort of formalin-fixed, paraffin-embedded high-grade (HG) adenomas with long clinical follow-up, collected as part of the Danish national screening program. We grouped subjects in the cohort according to their subsequent history of findings: a nonmetachronous advanced neoplasia group (G0), with no new HG adenomas or CRCs up to 10 years after polypectomy, and a metachronous advanced neoplasia group (G1) where individuals developed a new HG adenoma or CRC within 5 years of diagnosis. RESULTS We generated a proteome dataset from 98 selected HG adenoma samples, including 20 technical replicates, of which 45 samples belonged to the nonmetachronous advanced neoplasia group and 53 to the metachronous advanced neoplasia group. The clear distinction of these 2 groups seen in a uniform manifold approximation and projection plot indicated that the information contained within the abundance of the ∼5000 proteins was sufficient to predict the future occurrence of HG adenomas or development of CRC. CONCLUSIONS We performed an in-depth analysis of quantitative proteomic data from 98 resected adenoma samples using various novel algorithms and statistical packages and found that their proteome can predict development of metachronous advanced lesions and progression several years in advance.
Collapse
Affiliation(s)
- Jacob Mathias Bech
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Sino-Danish Center for Education and Research, Aarhus University, Aarhus, Denmark
| | - Thilde Terkelsen
- Center for Health Data Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Fabian Coscia
- Spatial Proteomics Group, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Siqi Zhao
- Beijing Institute of Genomics, China National Center for Bioinformation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhaojun Zhang
- Beijing Institute of Genomics, China National Center for Bioinformation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nils Brünner
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Lindebjerg
- Department of Pathology, Lillebaelt Hospital, Vejle Hospital, Vejle, Denmark
| | | | - Xiangdong Fang
- Beijing Institute of Genomics, China National Center for Bioinformation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Matthias Mann
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther 2023:108458. [PMID: 37245545 DOI: 10.1016/j.pharmthera.2023.108458] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Integrins are vital surface adhesion receptors that mediate the interactions between the extracellular matrix (ECM) and cells and are essential for cell migration and the maintenance of tissue homeostasis. Aberrant integrin activation promotes initial tumor formation, growth, and metastasis. Recently, many lines of evidence have indicated that integrins are highly expressed in numerous cancer types and have documented many functions of integrins in tumorigenesis. Thus, integrins have emerged as attractive targets for the development of cancer therapeutics. In this review, we discuss the underlying molecular mechanisms by which integrins contribute to most of the hallmarks of cancer. We focus on recent progress on integrin regulators, binding proteins, and downstream effectors. We highlight the role of integrins in the regulation of tumor metastasis, immune evasion, metabolic reprogramming, and other hallmarks of cancer. In addition, integrin-targeted immunotherapy and other integrin inhibitors that have been used in preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Fangfang Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Qiong Wu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zigang Dong
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
9
|
Cook J, Greene ES, Ramser A, Mullenix G, Dridi JS, Liyanage R, Wideman R, Dridi S. Comparative- and network-based proteomic analysis of bacterial chondronecrosis with osteomyelitis lesions in broiler's proximal tibiae identifies new molecular signatures of lameness. Sci Rep 2023; 13:5947. [PMID: 37045932 PMCID: PMC10097873 DOI: 10.1038/s41598-023-33060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.
Collapse
Affiliation(s)
- Jennifer Cook
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Garrett Mullenix
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Jalila S Dridi
- École Universitaire de Kinésithérapie, Université d'Orléans, Rue de Chartres, 45100, Orléans, France
| | - Rohana Liyanage
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Robert Wideman
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
10
|
Heck KA, Lindholm HT, Niederdorfer B, Tsirvouli E, Kuiper M, Flobak Å, Lægreid A, Thommesen L. Characterisation of Colorectal Cancer Cell Lines through Proteomic Profiling of Their Extracellular Vesicles. Proteomes 2023; 11:proteomes11010003. [PMID: 36648961 PMCID: PMC9844407 DOI: 10.3390/proteomes11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers, driven by several factors including deregulations in intracellular signalling pathways. Small extracellular vesicles (sEVs) are nanosized protein-packaged particles released from cells, which are present in liquid biopsies. Here, we characterised the proteome landscape of sEVs and their cells of origin in three CRC cell lines HCT116, HT29 and SW620 to explore molecular traits that could be exploited as cancer biomarker candidates and how intracellular signalling can be assessed by sEV analysis instead of directly obtaining the cell of origin itself. Our findings revealed that sEV cargo clearly reflects its cell of origin with proteins of the PI3K-AKT pathway highly represented in sEVs. Proteins known to be involved in CRC were detected in both cells and sEVs including KRAS, ARAF, mTOR, PDPK1 and MAPK1, while TGFB1 and TGFBR2, known to be key players in epithelial cancer carcinogenesis, were found to be enriched in sEVs. Furthermore, the phosphopeptide-enriched profiling of cell lysates demonstrated a distinct pattern between cell lines and highlighted potential phosphoproteomic targets to be investigated in sEVs. The total proteomic and phosphoproteomics profiles described in the current work can serve as a source to identify candidates for cancer biomarkers that can potentially be assessed from liquid biopsies.
Collapse
Affiliation(s)
- Kathleen A. Heck
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Håvard T. Lindholm
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Barbara Niederdorfer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- The Cancer Clinic, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Liv Thommesen
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence:
| |
Collapse
|
11
|
Tan L, Peng D, Cheng Y. Significant position of C-myc in colorectal cancer: a promising therapeutic target. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2295-2304. [PMID: 35972682 DOI: 10.1007/s12094-022-02910-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/23/2022] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a malignant tumor initiating from the mucosa of the colorectum. According to the 2020 statistics from the World Health Organization, there are 10.0% CRC cases among all 19.3 million new cancers, followed by lung and breast cancer, and 9.4% CRC cases among all 9.9 million cancer deaths, ranking second. The population of CRC patients in China is large, and its incidence and mortality continue to increase each year. Despite the continuous development of surgical methods, chemotherapy, radiotherapy, targeted therapy and immunotherapy, the overall survival of CRC patients remains low. Past research has suggested that c-myc plays a pivotal role in the development of CRC. A higher expression level of c-Myc is a negative prognostic marker in CRC. However, there are few drugs targeting c-myc directly. Therefore, we focused on discovering the mechanism of c-myc in CRC to provide a reference for a better therapy choice for patients.
Collapse
Affiliation(s)
- Li Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yong Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Hou S, Wang J, Li W, Hao X, Hang Q. Roles of Integrins in Gastrointestinal Cancer Metastasis. Front Mol Biosci 2021; 8:708779. [PMID: 34869579 PMCID: PMC8634653 DOI: 10.3389/fmolb.2021.708779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are a large family of heterodimeric transmembrane receptors which mediate cell adhesion and transmit signals to the cell interior. The mechanistic roles of integrins have long been an enigma in cancer, given its complexity in regulating different cellular behaviors. Recently, however, increasing research is providing new insights into its function and the underlying mechanisms, which collectively include the influences of altered integrin expression on the aberrant signaling pathways and cancer progression. Many studies have also demonstrated the potentiality of integrins as therapeutic targets in cancer treatment. In this review, we have summarized these recent reports and put a particular emphasis on the dysregulated expression of integrins and how they regulate related signaling pathways to facilitate the metastatic progression of gastrointestinal cancer, including gastric cancer (GC) and colorectal cancer (CRC), which will address the crucial roles of integrins in gastrointestinal cancer.
Collapse
Affiliation(s)
- Sicong Hou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiaxin Wang
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Wenqian Li
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xin Hao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
13
|
Ruan Y, Kim HN, Ogana HA, Wan Z, Hurwitz S, Nichols C, Abdel-Azim N, Coba A, Seo S, Loh YHE, Gang EJ, Abdel-Azim H, Hsieh CL, Lieber MR, Parekh C, Pal D, Bhojwani D, Durden DL, Kim YM. Preclinical Evaluation of a Novel Dual Targeting PI3Kδ/BRD4 Inhibitor, SF2535, in B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:766888. [PMID: 34926269 PMCID: PMC8671162 DOI: 10.3389/fonc.2021.766888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
The PI3K/Akt pathway—and in particular PI3Kδ—is known for its role in drug resistant B-cell acute lymphoblastic leukemia (B-ALL) and it is often upregulated in refractory or relapsed B-ALL. Myc proteins are transcription factors responsible for transcribing pro-proliferative genes and c-Myc is often overexpressed in cancers. The chromatin regulator BRD4 is required for expression of c-Myc in hematologic malignancies including B-ALL. Previously, combination of BRD4 and PI3K inhibition with SF2523 was shown to successfully decrease Myc expression. However, the underlying mechanism and effect of dual inhibition of PI3Kδ/BRD4 in B-ALL remains unknown. To study this, we utilized SF2535, a novel small molecule dual inhibitor which can specifically target the PI3Kδ isoform and BRD4. We treated primary B-ALL cells with various concentrations of SF2535 and studied its effect on specific pharmacological on-target mechanisms such as apoptosis, cell cycle, cell proliferation, and adhesion molecules expression usingin vitro and in vivo models. SF2535 significantly downregulates both c-Myc mRNA and protein expression through inhibition of BRD4 at the c-Myc promoter site and decreases p-AKT expression through inhibition of the PI3Kδ/AKT pathway. SF2535 induced apoptosis in B-ALL by downregulation of BCL-2 and increased cleavage of caspase-3, caspase-7, and PARP. Moreover, SF2535 induced cell cycle arrest and decreased cell counts in B-ALL. Interestingly, SF2535 decreased the mean fluorescence intensity (MFI) of integrin α4, α5, α6, and β1 while increasing MFI of CXCR4, indicating that SF2535 may work through inside-out signaling of integrins. Taken together, our data provide a rationale for the clinical evaluation of targeting PI3Kδ/BRD4 in refractory or relapsed B-ALL using SF2535.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Heather A. Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Zesheng Wan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Samantha Hurwitz
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Cydney Nichols
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Nour Abdel-Azim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Ariana Coba
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Seyoung Seo
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Yong-Hwee Eddie Loh
- University of Southern California (USC) Libraries Bioinformatics Services, University of Southern California, Los Angeles, CA, United States
| | - Eun Ji Gang
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Hisham Abdel-Azim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Chih-Lin Hsieh
- University of Southern California (USC) Department of Urology, University of Southern California (USC) Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Michael R. Lieber
- University of Southern California (USC) Department of Pathology, University of Southern California (USC) Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Chintan Parekh
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Dhananjaya Pal
- Department of Pediatrics, University of California San Diego, San Diego, CA, United States
| | - Deepa Bhojwani
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Donald L. Durden
- Department of Pediatrics, University of California San Diego, San Diego, CA, United States
- SignalRx Pharmaceuticals Inc., Omaha, NE, United States
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
- *Correspondence: Yong-Mi Kim,
| |
Collapse
|
14
|
Boudjadi S, Pandey PR, Chatterjee B, Nguyen TH, Sun W, Barr FG. A Fusion Transcription Factor-Driven Cancer Progresses to a Fusion-Independent Relapse via Constitutive Activation of a Downstream Transcriptional Target. Cancer Res 2021; 81:2930-2942. [PMID: 33589519 DOI: 10.1158/0008-5472.can-20-1613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Targeted monotherapies usually fail due to development of resistance by a subgroup of cells that evolve into recurrent tumors. Alveolar rhabdomyosarcoma is an aggressive myogenic soft-tissue cancer that is associated with a characteristic PAX3-FOXO1 gene fusion encoding a novel fusion transcription factor. In our myoblast model of PAX3-FOXO1-induced rhabdomyosarcoma, deinduction of PAX3-FOXO1 simulates a targeted therapy that antagonizes the fusion oncoprotein. This simulated therapy results initially in regression of the primary tumors, but PAX3-FOXO1-independent recurrent tumors eventually form after a delay. We report here that upregulation of FGF8, a direct transcriptional target of PAX3-FOXO1, is a mechanism responsible for PAX3-FOXO1-independent tumor recurrence. As a transcriptional target of PAX3-FOXO1, FGF8 promoted oncogenic activity in PAX3-FOXO1-expressing primary tumors that developed in the myoblast system. In the recurrent tumors forming after PAX3-FOXO1 deinduction, FGF8 expression was necessary and sufficient to induce PAX3-FOXO1-independent tumor growth through an autocrine mechanism. FGF8 was also expressed in human PAX3-FOXO1-expressing rhabdomyosarcoma cell lines and contributed to proliferation and transformation. In a human rhabdomyosarcoma cell line with reduced PAX3-FOXO1 expression, FGF8 upregulation rescued oncogenicity and simulated recurrence after PAX3-FOXO1-targeted therapy. We propose that deregulated expression of a PAX3-FOXO1 transcriptional target can generate resistance to therapy directed against this oncogenic transcription factor and postulate that this resistance mechanism may ultimately be countered by therapeutic approaches that antagonize the corresponding downstream pathways. SIGNIFICANCE: In a model of cancer initiated by a fusion transcription factor, constitutive activation of a downstream transcriptional target leads to fusion oncoprotein-independent recurrences, thereby highlighting a novel progression mechanism and therapeutic target.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Puspa Raj Pandey
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Thanh Hung Nguyen
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Wenyue Sun
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Frederic G Barr
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland.
| |
Collapse
|
15
|
Cui D, Liu Y, Ma J, Lin K, Xu K, Lin J. Identification of key genes and pathways in endometriosis by integrated expression profiles analysis. PeerJ 2020; 8:e10171. [PMID: 33354413 PMCID: PMC7727381 DOI: 10.7717/peerj.10171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to integrate the existing expression profile data on endometriosis (EM)-related tissues in order to identify the differentially expressed genes. In this study, three series of raw expression data were downloaded from GEO database. Differentially expressed genes (DEGs) in three tissue types were screened. GO, KEGG pathway enrichment analysis, core differential genes (CDGs) protein–protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA) were performed, finally, the dysregulation of Hippo pathway in ectopic endometrium (EC) was detected by Western blotting. A total of 1,811 DEGs between eutopic (EU) and normal endometrium (NE), 5,947 DEGs between EC and EU, and 3,192 DEGs between EC and NE datasets were identified. After screening, 394 CDGs were obtained, and 5 hub genes identified in the PPI network. CDGs enrichment and WGCNA network analysis revealed cell proliferation, differentiation, migration and other biological processes, Hippo and Wnt signaling pathways, and a variety of tumor-related pathways. Western blotting results showed that YAP/TAZ was upregulated, and MOB1, pMOB1, SAV1, LATS1 and LATS2 were downregulated in EC. Moreover, CDGs, especially the hub genes, are potential biomarkers and therapeutic targets. Finally, the Hippo pathway might play a key role in the development of endometriosis.
Collapse
Affiliation(s)
- Ding Cui
- Department of Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Liu
- Department of Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Ma
- Department of Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaiqing Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaihong Xu
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Wang JF, Wang Y, Zhang SW, Chen YY, Qiu Y, Duan SY, Li BP, Chen JQ. Expression and Prognostic Analysis of Integrins in Gastric Cancer. JOURNAL OF ONCOLOGY 2020; 2020:8862228. [PMID: 33335550 PMCID: PMC7722456 DOI: 10.1155/2020/8862228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Integrins are involved in the biological process of a variety of cancers, but their importance in the diagnosis and prognosis of gastric cancer (GC) is still unclear. Therefore, this study aimed at exploring the significance of ITG gene expression in GC to evaluate its diagnosis and prognosis. METHODS GEPIA data were used to evaluate the mRNA expression of ITG genes in GC patients. The prognostic value of these genes was assessed by analyzing their mRNA expression using the Kaplan-Meier curve. The biological function of ITG genes was evaluated by GC tissue sequencing combined with GSEA bioinformatics. Based on the sequencing data, ITGA5 with the largest expression difference was selected for verification, and RT-PCR was used to verify its mRNA expression level in 40 pairs of GC and normal tissues. RESULTS ITG (A2, A3, A4, A5, A6, A11, AE, AL, AM, AV, AX, B1, B2, B4, B5, B6, and B8) was highly expressed in GC tissues, while ITGA8 was low, compared with their expression in normal tissues. RNA-seq data shows that ITG (A2, A5, A11, AV, and B1) expression was associated with poor prognosis and overall survival. In addition, combined with the results of GC tissue mRNA sequencing, it was further found that the differentially expressed genes in the ITGs genes. ITGA5 was highly expressed in GC tissues compared with its expression in normal tissues, as evaluated by qRT-PCR (P < 0.001) and ROC (P < 0.001, AUC (95% CI) = 0.747 (0.641-0.851)), and confirmed that ITGA5 expression was a potential diagnostic marker for GC. Bioinformatics analysis revealed that the signaling pathway involved in ITGA5 was mainly enriched in focal adhesion, ECM-receptor interaction, and PI3K-AKT and was mainly involved in biological processes such as cell adhesion, extracellular matrix, and cell migration. CONCLUSION This study suggested that ITGs were associated with the diagnosis and prognosis of GC and discovered the prognostic value and biological role of ITGA5 in GC. Thus, ITGA5 might be used as a potential diagnostic marker for GC.
Collapse
Affiliation(s)
- Jun-Fu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Wen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ye-Yang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yue Qiu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shao-Yi Duan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bo-Pei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
17
|
Lehman HL, Kidacki M, Stairs DB. Twist2 is NFkB-responsive when p120-catenin is inactivated and EGFR is overexpressed in esophageal keratinocytes. Sci Rep 2020; 10:18829. [PMID: 33139779 PMCID: PMC7608670 DOI: 10.1038/s41598-020-75866-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most aggressive and fatal cancer types. ESCC classically progresses rapidly and frequently causes mortality in four out of five patients within two years of diagnosis. Yet, little is known about the mechanisms that make ESCC so aggressive. In a previous study we demonstrated that p120-catenin (p120ctn) and EGFR, two genes associated with poor prognosis in ESCC, work together to cause invasion. Specifically, inactivation of p120ctn combined with overexpression of EGFR induces a signaling cascade that leads to hyperactivation of NFkB and a resultant aggressive cell type. The purpose of this present study was to identify targets that are responsive to NFkB when p120ctn and EGFR are modified. Using human esophageal keratinocytes, we have identified Twist2 as an NFkB-responsive gene. Interestingly, we found that when NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation, Twist2 is significantly upregulated. Inhibition of NFkB activity results in nearly complete loss of Twist2 expression, suggesting that this potential EMT-inducing gene, is a responsive target of NFkB. There exists a paucity of research on Twist2 in any cancer type; as such, these findings are important in ESCC as well as in other cancer types.
Collapse
Affiliation(s)
- Heather L Lehman
- Department of Biology, Millersville University, Millersville, PA, 17551, USA
| | - Michal Kidacki
- Department of Internal Medicine, Mercy Catholic Medical Center, Darby, PA, 19023, USA
| | - Douglas B Stairs
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Dr., Mail Code H083, Hershey, PA, 17033, USA.
| |
Collapse
|
18
|
Bourgot I, Primac I, Louis T, Noël A, Maquoi E. Reciprocal Interplay Between Fibrillar Collagens and Collagen-Binding Integrins: Implications in Cancer Progression and Metastasis. Front Oncol 2020; 10:1488. [PMID: 33014790 PMCID: PMC7461916 DOI: 10.3389/fonc.2020.01488] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancers are complex ecosystems composed of malignant cells embedded in an intricate microenvironment made of different non-transformed cell types and extracellular matrix (ECM) components. The tumor microenvironment is governed by constantly evolving cell-cell and cell-ECM interactions, which are now recognized as key actors in the genesis, progression and treatment of cancer lesions. The ECM is composed of a multitude of fibrous proteins, matricellular-associated proteins, and proteoglycans. This complex structure plays critical roles in cancer progression: it functions as the scaffold for tissues organization and provides biochemical and biomechanical signals that regulate key cancer hallmarks including cell growth, survival, migration, differentiation, angiogenesis, and immune response. Cells sense the biochemical and mechanical properties of the ECM through specialized transmembrane receptors that include integrins, discoidin domain receptors, and syndecans. Advanced stages of several carcinomas are characterized by a desmoplastic reaction characterized by an extensive deposition of fibrillar collagens in the microenvironment. This compact network of fibrillar collagens promotes cancer progression and metastasis, and is associated with low survival rates for cancer patients. In this review, we highlight how fibrillar collagens and their corresponding integrin receptors are modulated during cancer progression. We describe how the deposition and alignment of collagen fibers influence the tumor microenvironment and how fibrillar collagen-binding integrins expressed by cancer and stromal cells critically contribute in cancer hallmarks.
Collapse
Affiliation(s)
| | | | | | | | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
19
|
Lei Y, Yuan H, Gai L, Wu X, Luo Z. Uncovering Active Ingredients and Mechanisms of Spica Prunellae in the Treatment of Colon Adenocarcinoma: A Study Based on Network Pharmacology and Bioinformatics. Comb Chem High Throughput Screen 2020; 24:306-318. [PMID: 32748741 DOI: 10.2174/1386207323999200730210536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a well-known herb used in the treatment of colon adenocarcinoma (COAD), Spica Prunellae (SP) shows favorable clinical effect and safety in China for many years, but its active ingredients and therapeutic mechanisms against COAD remain poorly understood. Therefore, this study aims to uncover active ingredients and mechanisms of SP in the treatment of COAD using a combined approach of network pharmacology and bioinformatics. METHODS A comprehensive approach mainly comprised of target prediction, network construction, pathway and functional enrichment analysis, and hub genes verification was adopted in the current study. RESULTS We collected 102 compounds-related genes and 3549 differently expressed genes (DEGs) following treatment with SP, and 64 disease-drug target genes between them were recognized. In addition, a total of 25 active ingredients in SP were identified. Pathway and functional enrichment analyses suggested that the mechanisms of SP against COAD might be to induce apoptosis of colon cancer cells by regulating PI3K-Akt and TNF signaling pathways. Recognition of hub genes and core functional modules was performed by constructing protein-protein interaction (PPI) network, from which TP53, MYC, MAPK8 and CASP3 were found as the hub target genes that might play an important part in therapy for COAD. Subsequently we further compared the differential expression level and assessed the prognostic value of these four hub genes. These result of verification suggested that SP exerted therapeutic effects against COAD via a PPI network involving TP53, MYC, MAPK8 and CASP3. CONCLUSION In this study, active ingredients and mechanisms of SP in the treatment of COAD were systematically discussed, which provided the foundation for further experimental studies and might act to promote its appropriate clinical application.
Collapse
Affiliation(s)
- Yan Lei
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hao Yuan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Liyue Gai
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Xuelian Wu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Zhixiao Luo
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Brubaker DK, Kumar MP, Chiswick EL, Gregg C, Starchenko A, Vega PN, Southard-Smith AN, Simmons AJ, Scoville EA, Coburn LA, Wilson KT, Lau KS, Lauffenburger DA. An interspecies translation model implicates integrin signaling in infliximab-resistant inflammatory bowel disease. Sci Signal 2020; 13:13/643/eaay3258. [PMID: 32753478 DOI: 10.1126/scisignal.aay3258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anti-tumor necrosis factor (anti-TNF) therapy resistance is a major clinical challenge in inflammatory bowel disease (IBD), due, in part, to insufficient understanding of disease-site, protein-level mechanisms. Although proteomics data from IBD mouse models exist, data and phenotype discrepancies contribute to confounding translation from preclinical animal models of disease to clinical cohorts. We developed an approach called translatable components regression (TransComp-R) to overcome interspecies and trans-omic discrepancies between mouse models and human subjects. TransComp-R combines mouse proteomic data with patient pretreatment transcriptomic data to identify molecular features discernable in the mouse data that are predictive of patient response to therapy. Interrogating the TransComp-R models revealed activated integrin pathway signaling in patients with anti-TNF-resistant colonic Crohn's disease (cCD) and ulcerative colitis (UC). As a step toward validation, we performed single-cell RNA sequencing (scRNA-seq) on biopsies from a patient with cCD and analyzed publicly available immune cell proteomics data to characterize the immune and intestinal cell types contributing to anti-TNF resistance. We found that ITGA1 was expressed in T cells and that interactions between these cells and intestinal cell types were associated with resistance to anti-TNF therapy. We experimentally showed that the α1 integrin subunit mediated the effectiveness of anti-TNF therapy in human immune cells. Thus, TransComp-R identified an integrin signaling mechanism with potential therapeutic implications for overcoming anti-TNF therapy resistance. We suggest that TransComp-R is a generalizable framework for addressing species, molecular, and phenotypic discrepancies between model systems and patients to translationally deliver relevant biological insights.
Collapse
Affiliation(s)
- Douglas K Brubaker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA.,Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Manu P Kumar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evan L Chiswick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cecil Gregg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Austin N Southard-Smith
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Liu L, Liu H, Luo S, Patz EF, Glass C, Su L, Lin L, Christiani DC, Wei Q. Novel genetic variants of SYK and ITGA1 related lymphangiogenesis signaling pathway predict non-small cell lung cancer survival. Am J Cancer Res 2020; 10:2603-2616. [PMID: 32905494 PMCID: PMC7471352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023] Open
Abstract
Although lymphangiogenesis is a vital step in lung cancer metastasis, the association between lymphangiogenesis and non-small cell lung cancer (NSCLC) survival remains unclear. Since single-nucleotide polymorphisms (SNPs) have been reported to predict NSCLC survival, we investigated associations between SNPs in lymphangiogenesis-related pathway genes and NSCLC survival in a discovery genotyping dataset of 1,185 patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the findings in another genotyping dataset of 984 patients from the Harvard Lung Cancer Susceptibility Study. We evaluated associations between 34,509 genetic variants (3252 genotyped and 31,257 imputed) in 247 genes involved in lymphangiogenesis-related pathway and NSCLC survival. After validation, we finally identified two independent SNPs (SYK rs11787670 A>G and ITGA1 rs67715745 T>C) to be significantly associated with NSCLC overall survival (OS), with adjusted hazards ratios of 0.77 and 0.83 (95% confidence interval =0.66-0.90, P=7.20×10-4) and 0.84 (95% confidence interval =0.75-0.92, P=3.50×10-4), respectively. Moreover, an increasing number of combined protective alleles of these two SNPs was significantly associated with an improved NSCLC OS and disease-specific survival (DSS) in the PLCO dataset (P trend=0.011 and 0.006, respectively). Furthermore, the addition of these protective alleles to the prediction model for the 5-year survival increased the time-dependent area under the curve both from 87% to 87.67% for OS (P=0.029) and from 88.54% to 89.06% for DSS (P=0.022). Subsequent expression quantitative trait loci (eQTL) functional analysis revealed that the rs11787670 G allele was significantly associated with an elevated SYK mRNA expression in normal tissues. Additional analyses suggested a suppressor role for both SYK and ITGA1 in NSCLC survival. Collectively, these findings indicated that SYK rs11787670 A>G and ITGA1 rs67715745 T>C may be independent prognostic factors for NSCLC survival once further validated.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi 530021, China
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of MedicineDurham, NC 27710, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Radiology, Pharmacology and Cancer Biology, Duke University School of MedicineDurham, NC 27710, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Pathology, Duke University School of MedicineDurham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Epidemiology, Harvard School of Public HealthBoston, MA, 02115 USA
| | - Lijuan Lin
- Departments of Environmental Health and Epidemiology, Harvard School of Public HealthBoston, MA, 02115 USA
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard School of Public HealthBoston, MA, 02115 USA
- Department of Medicine, Massachusetts General HospitalBoston, MA 02114, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
- Department of Medicine, Duke University School of MedicineDurham, NC 27710, USA
| |
Collapse
|
22
|
Iorio J, Duranti C, Lottini T, Lastraioli E, Bagni G, Becchetti A, Arcangeli A. K V11.1 Potassium Channel and the Na +/H + Antiporter NHE1 Modulate Adhesion-Dependent Intracellular pH in Colorectal Cancer Cells. Front Pharmacol 2020; 11:848. [PMID: 32587517 PMCID: PMC7297984 DOI: 10.3389/fphar.2020.00848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence indicates that ion channels and transporters cooperate in regulating different aspects of tumor pathophysiology. In cancer cells, H+/HCO3- transporters usually invert the transmembrane pH gradient typically observed in non-neoplastic cells, which is thought to contribute to cancer malignancy. To what extent the pH-regulating transporters are functionally linked to K+ channels, which are central regulators of cell membrane potential (Vm), is unclear. We thus investigated in colorectal cancer cells the implication of the pH-regulating transporters and KV11.1 (also known as hERG1) in the pH modifications stimulated by integrin-dependent cell adhesion. Colorectal cancer cell lines (HCT 116 and HT 29) were seeded onto β1 integrin-dependent substrates, collagen I and fibronectin. This led to a transient cytoplasmic alkalinization, which peaked at 90 min of incubation, lasted approximately 180 min, and was inhibited by antibodies blocking the β1 integrin. The effect was sensitive to amiloride (10 µM) and cariporide (5 µM), suggesting that it was mainly caused by the activity of the Na+/H+ antiporter NHE1. Blocking KV11.1 with E4031 shows that channel activity contributed to modulate the β1 integrin-dependent pHi increase. Interestingly, both NHE1 and KV11.1 modulated the colorectal cancer cell motility triggered by β1 integrin-dependent adhesion. Finally, the β1 integrin subunit, KV11.1 and NHE1 co-immunoprecipitated in colorectal cancer cells seeded onto Collagen I, suggesting the formation of a macromolecular complex following integrin-mediated adhesion. We conclude that the interaction between KV11.1, NHE1, and β1 integrin contributes to regulate colorectal cancer intracellular pH in relation to the tumor microenvironment, suggesting novel pharmacological targets to counteract pro-invasive and, hence, pro-metastatic behavior in colorectal cancer.
Collapse
Affiliation(s)
- Jessica Iorio
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Duranti
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tiziano Lottini
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Lastraioli
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giacomo Bagni
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milano, Italy
| | - Annarosa Arcangeli
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Raposo TP, Susanti S, Ilyas M. Investigating TNS4 in the Colorectal Tumor Microenvironment Using 3D Spheroid Models of Invasion. ACTA ACUST UNITED AC 2020; 4:e2000031. [PMID: 32390347 DOI: 10.1002/adbi.202000031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
TNS4 (Tensin 4 or Cten) is a putative oncogene in colorectal cancer (CRC) with a role in regulating cell adhesion, motility, invasion, and epithelial to mesenchymal transition (EMT). The objective is to study the role of TNS4 in CRC using more realistic models of the tumor microenvironment. CRC cells expressing TdTomato protein and shTNS4/shLUC hairpin oligos are grown in 3D spheroids with and without cancer-associated fibroblasts (CAFs). Adhesiveness to collagen I and CAFs is assessed in 2D and cell proliferation, volume, and invasion are assessed in 3D conditions. The role of TNS4 knockdown in gefitinib chemosensitivity and epidermal growth factor receptor (EGFR) and Ras protein levels are also tested. In general, TNS4 knockdown increases cell proliferation in cell lines producing compact spheroids. The addition of CAFs in spheroids supports CRC cell proliferation, whereas CAFs themselves do not proliferate, but increases ECM degradation. TNS4 knockdown reduces adhesiveness and 3D invasion and disrupts EGFR signaling which results in increased sensitivity to Gefitinib. In conclusion, in a 3D spheroid model, TNS4 inhibits cell proliferation and promotes cell invasion into the ECM, possibly by adhesion to the ECM and stromal cells. TNS4 knockdown enhances sensitivity to the EGFR inhibitor gefitinib and may be helpful for Kirsten ras oncogene homolog mutant CRC patients.
Collapse
Affiliation(s)
- Teresa P Raposo
- Dr. T. P. Raposo, Dr. S. Susanti, Prof. M. Ilyas, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.,Dr. T. P. Raposo, Dr. S. Susanti, Prof. M. Ilyas, Nottingham Molecular Pathology Node, University of Nottingham, UK
| | - Susanti Susanti
- Dr. T. P. Raposo, Dr. S. Susanti, Prof. M. Ilyas, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.,Dr. T. P. Raposo, Dr. S. Susanti, Prof. M. Ilyas, Nottingham Molecular Pathology Node, University of Nottingham, UK.,Dr. S. Susanti, Deparment of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Muhammadiyah Purwokerto, Banyumas, Central Java, 53182, Indonesia
| | - Mohammad Ilyas
- Dr. T. P. Raposo, Dr. S. Susanti, Prof. M. Ilyas, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.,Dr. T. P. Raposo, Dr. S. Susanti, Prof. M. Ilyas, Nottingham Molecular Pathology Node, University of Nottingham, UK
| |
Collapse
|
24
|
Li H, Wang Y, Rong SK, Li L, Chen T, Fan YY, Wang YF, Yang CR, Yang C, Cho WC, Yang J. Integrin α1 promotes tumorigenicity and progressive capacity of colorectal cancer. Int J Biol Sci 2020; 16:815-826. [PMID: 32071551 PMCID: PMC7019142 DOI: 10.7150/ijbs.37275] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/09/2019] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of death globally. Integrin α1 (ITGA1) belongs to integrin family and involves in regulating cell adhesion, invasion, proliferation and tumorigenicity, its expression is up-regulated in various cancers, including CRC. However, the molecular understanding and clinical relevance of ITGA1 in the development and progression of CRC remain unclear. In the present study, we detected ITGA1 in 50 CRC tissues and adjacent non-cancerous tissues, sera from 100 CRC patients and 50 healthy subjects, and four CRC cell lines using immunohistochemistry staining, enzyme-linked immunosorbent assay and Western blotting. We found that the ITGA1 protein was significantly higher in human CRC tissues and cell lines than both paired non-tumor tissues and normal cells, respectively. In addition, the serum concentration of ITGA1 was also higher in CRC patients compared to the healthy subjects (p<0.01) and was significantly associated with metastatic TNM stages (p<0.0001) and circulating carbohydrate antigen 199 (CA199) (p<0.022). Furthermore, down-regulation of ITGA1 with transfecting LV-shITGA1 inhibited the progressive capacity of cell migration and invasion in CRC SW480 cell line and the tumorgenicity in nude mice. In functional studies, ITGA1 knockdown also inhibited Ras/ERK signaling pathway by decreasing the expression of Ras, p-Erk1/2 and c-Myc in SW480. Contrastly, when evelated expression of ITGA1 in NCM460 coincided with the increased expression of Ras, p-Erk1/2 and c-Myc. Taken together, our findings suggest that ITGA1 is an oncogene with a capability to promote CRC cell migration, invasion and tumorigenicity by activating the Ras/Erk signaling, implying that it may be a novel target for the diagnosis and treatment of CRC, and warrants further investigation.
Collapse
Affiliation(s)
- Hai Li
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yong Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Department of Orthopedics, Shangluo International Medical Center Hospital, Shangluo, Shanxi 726000, China
| | - Shi-kuo Rong
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ling Li
- Department of Occupational and Environmental Health, Public Health and Management School, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Tuo Chen
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ya-yun Fan
- Department of Gynaecology, Jingzhou Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, Hubei 434000, China
| | - Yu-feng Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chun-rong Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan 610072, China
| | - Chun Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Jiali Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
25
|
Saleem S, Tariq S, Aleem I, Sadr-ul Shaheed, Tahseen M, Atiq A, Hassan S, Abu Bakar M, Khattak S, Syed AA, Ahmad AH, Hussain M, Yusuf MA, Sutton C. Proteomics analysis of colon cancer progression. Clin Proteomics 2019; 16:44. [PMID: 31889941 PMCID: PMC6935225 DOI: 10.1186/s12014-019-9264-y;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The aim of this pilot study was to identify proteins associated with advancement of colon cancer (CC). METHODS A quantitative proteomics approach was used to determine the global changes in the proteome of primary colon cancer from patients with non-cancer normal colon (NC), non-adenomatous colon polyp (NAP), non-metastatic tumor (CC NM) and metastatic tumor (CC M) tissues, to identify up- and down-regulated proteins. Total protein was extracted from each biopsy, trypsin-digested, iTRAQ-labeled and the resulting peptides separated using strong cation exchange (SCX) and reverse-phase (RP) chromatography on-line to electrospray ionization mass spectrometry (ESI-MS). RESULTS Database searching of the MS/MS data resulted in the identification of 2777 proteins which were clustered into groups associated with disease progression. Proteins which were changed in all disease stages including benign, and hence indicative of the earliest molecular perturbations, were strongly associated with spliceosomal activity, cell cycle division, and stromal and cytoskeleton disruption reflecting increased proliferation and expansion into the surrounding healthy tissue. Those proteins changed in cancer stages but not in benign, were linked to inflammation/immune response, loss of cell adhesion, mitochondrial function and autophagy, demonstrating early evidence of cells within the nutrient-poor solid mass either undergoing cell death or adjusting for survival. Caveolin-1, which decreased and Matrix metalloproteinase-9, which increased through the three disease stages compared to normal tissue, was selected to validate the proteomics results, but significant patient-to-patient variation obfuscated interpretation so corroborated the contradictory observations made by others. CONCLUSION Nevertheless, the study has provided significant insights into CC stage progression for further investigation.
Collapse
Affiliation(s)
- Saira Saleem
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sahrish Tariq
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Iffat Aleem
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sadr-ul Shaheed
- Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, BD7 1BD UK
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Aribah Atiq
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sadia Hassan
- Clinical Research Office, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Muhammad Abu Bakar
- Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Shahid Khattak
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Aamir Ali Syed
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Asad Hayat Ahmad
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Mudassar Hussain
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Muhammed Aasim Yusuf
- Department of Internal Medicine, Shaukat Khanum Mmemorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Chris Sutton
- Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, BD7 1BD UK
| |
Collapse
|
26
|
Saleem S, Tariq S, Aleem I, Sadr-ul Shaheed, Tahseen M, Atiq A, Hassan S, Abu Bakar M, Khattak S, Syed AA, Ahmad AH, Hussain M, Yusuf MA, Sutton C. Proteomics analysis of colon cancer progression. Clin Proteomics 2019; 16:44. [PMID: 31889941 PMCID: PMC6935225 DOI: 10.1186/s12014-019-9264-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this pilot study was to identify proteins associated with advancement of colon cancer (CC). METHODS A quantitative proteomics approach was used to determine the global changes in the proteome of primary colon cancer from patients with non-cancer normal colon (NC), non-adenomatous colon polyp (NAP), non-metastatic tumor (CC NM) and metastatic tumor (CC M) tissues, to identify up- and down-regulated proteins. Total protein was extracted from each biopsy, trypsin-digested, iTRAQ-labeled and the resulting peptides separated using strong cation exchange (SCX) and reverse-phase (RP) chromatography on-line to electrospray ionization mass spectrometry (ESI-MS). RESULTS Database searching of the MS/MS data resulted in the identification of 2777 proteins which were clustered into groups associated with disease progression. Proteins which were changed in all disease stages including benign, and hence indicative of the earliest molecular perturbations, were strongly associated with spliceosomal activity, cell cycle division, and stromal and cytoskeleton disruption reflecting increased proliferation and expansion into the surrounding healthy tissue. Those proteins changed in cancer stages but not in benign, were linked to inflammation/immune response, loss of cell adhesion, mitochondrial function and autophagy, demonstrating early evidence of cells within the nutrient-poor solid mass either undergoing cell death or adjusting for survival. Caveolin-1, which decreased and Matrix metalloproteinase-9, which increased through the three disease stages compared to normal tissue, was selected to validate the proteomics results, but significant patient-to-patient variation obfuscated interpretation so corroborated the contradictory observations made by others. CONCLUSION Nevertheless, the study has provided significant insights into CC stage progression for further investigation.
Collapse
Affiliation(s)
- Saira Saleem
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sahrish Tariq
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Iffat Aleem
- Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sadr-ul Shaheed
- Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, BD7 1BD UK
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Aribah Atiq
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Sadia Hassan
- Clinical Research Office, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Muhammad Abu Bakar
- Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Shahid Khattak
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Aamir Ali Syed
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Asad Hayat Ahmad
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Mudassar Hussain
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Muhammed Aasim Yusuf
- Department of Internal Medicine, Shaukat Khanum Mmemorial Cancer Hospital and Research Centre, 7-A Block R-3, Johar Town, Lahore, 54000 Pakistan
| | - Chris Sutton
- Institute of Cancer Therapeutics, University of Bradford, Tumbling Hill Street, Bradford, BD7 1BD UK
| |
Collapse
|
27
|
Beaulieu JF. Integrin α6β4 in Colorectal Cancer: Expression, Regulation, Functional Alterations and Use as a Biomarker. Cancers (Basel) 2019; 12:41. [PMID: 31877793 PMCID: PMC7016599 DOI: 10.3390/cancers12010041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
Integrin α6β4 is one of the main laminin receptors and is primarily expressed by epithelial cells as an active component of hemidesmosomes. In this article, after a brief summary about integrins in the gut epithelium in general, I review the knowledge and clinical potential of this receptor in human colorectal cancer (CRC) cells. Most CRC cells overexpress both α6 and β4 subunits, in situ in primary tumours as well as in established CRC cell lines. The mechanisms that lead to overexpression have not yet been elucidated but clearly involve specific transcription factors such as MYC. From a functional point of view, one key element affecting CRC cell behaviour is the relocalization of α6β4 to the actin cytoskeleton, favouring a more migratory and anoikis-resistant phenotype. Another major element is its expression under various molecular forms that have the distinct ability to interact with ligands (α6β4 ± ctd) or to promote pro- or anti-proliferative properties (α6Aβ4 vs. α6Bβ4). The integrin α6β4 is thus involved in most steps susceptible to participation with CRC progression. The potential clinical significance of this integrin has begun to be investigated and recent studies have shown that ITGA6 and ITGB4 can be useful biomarkers for CRC early detection in a non-invasive assay and as a prognostic factor, respectively.
Collapse
Affiliation(s)
- Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; ; Tel.: +1-819-821-8000 (ext. 75269)
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
28
|
Calura E, Ciciani M, Sambugaro A, Paracchini L, Benvenuto G, Milite S, Martini P, Beltrame L, Zane F, Fruscio R, Delle Marchette M, Borella F, Tognon G, Ravaggi A, Katsaros D, Bignotti E, Odicino F, D’Incalci M, Marchini S, Romualdi C. Transcriptional Characterization of Stage I Epithelial Ovarian Cancer: A Multicentric Study. Cells 2019; 8:cells8121554. [PMID: 31805750 PMCID: PMC6952972 DOI: 10.3390/cells8121554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Stage I epithelial ovarian cancer (EOC) represents about 10% of all EOCs. It is characterized by a complex histopathological and molecular heterogeneity, and it is composed of five main histological subtypes (mucinous, endometrioid, clear cell and high, and low grade serous), which have peculiar genetic, molecular, and clinical characteristics. As it occurs less frequently than advanced-stage EOC, its molecular features have not been thoroughly investigated. In this study, using in silico approaches and gene expression data, on a multicentric cohort composed of 208 snap-frozen tumor biopsies, we explored the subtype-specific molecular alterations that regulate tumor aggressiveness in stage I EOC. We found that single genes rather than pathways are responsible for histotype specificities and that a cAMP-PKA-CREB1 signaling axis seems to play a central role in histotype differentiation. Moreover, our results indicate that immune response seems to be, at least in part, involved in histotype differences, as a higher immune-reactive behavior of serous and mucinous samples was observed with respect to other histotypes.
Collapse
Affiliation(s)
- Enrica Calura
- Department of Biology, University of Padova, 35121 Padua, Italy; (E.C.); (A.S.); (G.B.); (S.M.); (P.M.); (C.R.)
| | - Matteo Ciciani
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Povo Trento, Italy;
| | - Andrea Sambugaro
- Department of Biology, University of Padova, 35121 Padua, Italy; (E.C.); (A.S.); (G.B.); (S.M.); (P.M.); (C.R.)
| | - Lara Paracchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (L.P.); (L.B.); (S.M.)
| | - Giuseppe Benvenuto
- Department of Biology, University of Padova, 35121 Padua, Italy; (E.C.); (A.S.); (G.B.); (S.M.); (P.M.); (C.R.)
| | - Salvatore Milite
- Department of Biology, University of Padova, 35121 Padua, Italy; (E.C.); (A.S.); (G.B.); (S.M.); (P.M.); (C.R.)
| | - Paolo Martini
- Department of Biology, University of Padova, 35121 Padua, Italy; (E.C.); (A.S.); (G.B.); (S.M.); (P.M.); (C.R.)
| | - Luca Beltrame
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (L.P.); (L.B.); (S.M.)
| | - Flaminia Zane
- Unit of Biological Adaptation and Ageing UMR8256, Institute of Biology Paris-Seine, Sorbonne University, 75005 Paris, France;
| | - Robert Fruscio
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, 20900 Monza, Italy; (R.F.); (M.D.M.)
| | - Martina Delle Marchette
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, 20900 Monza, Italy; (R.F.); (M.D.M.)
| | - Fulvio Borella
- Department of Surgical Science and Gynecology, Azienda Ospedaliero Universitaria, Città della Salute, presidio S.Anna, University of Torino, 10126 Torino, Italy; (F.B.); (D.K.)
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (E.B.); (F.O.)
| | - Antonella Ravaggi
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, 25123 Brescia, Italy;
- Department of Clinical and Experimental Sciences, Division of Obstetrics and Gynecology, University of Brescia, 25123 Brescia, Italy
| | - Dionyssios Katsaros
- Department of Surgical Science and Gynecology, Azienda Ospedaliero Universitaria, Città della Salute, presidio S.Anna, University of Torino, 10126 Torino, Italy; (F.B.); (D.K.)
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (E.B.); (F.O.)
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST-Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Franco Odicino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (E.B.); (F.O.)
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (L.P.); (L.B.); (S.M.)
- Correspondence:
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (L.P.); (L.B.); (S.M.)
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35121 Padua, Italy; (E.C.); (A.S.); (G.B.); (S.M.); (P.M.); (C.R.)
| |
Collapse
|
29
|
Voutsadakis IA. The pluripotency network in colorectal cancer pathogenesis and prognosis: an update. Biomark Med 2019; 12:653-665. [PMID: 29944017 DOI: 10.2217/bmm-2017-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stemness characteristics are defining properties of cancer initiating cells and are associated with the ability to metastasize and survive in hostile environments. Establishment of the stem cell network depends on the action of a set of core transcription factors that work in concert with other ancillary proteins that are also important during embryonic development. New data consolidate the role of core pluripotency transcription factors OCT4, SOX2 and NANOG as adverse prognostic factors in colorectal cancer. mRNA-binding proteins LIN28 and Musashi, that are associated with stemness, and epigenetic modifiers such as de-acetylase SIRT1 may also have prognostic value in colorectal cancer. This paper provides an update of the stem cell factors in the pathogenesis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada.,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
30
|
Xiao X, Gu Y, Wang G, Chen S. c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma. Int J Biol Macromol 2019; 122:526-537. [DOI: 10.1016/j.ijbiomac.2018.10.207] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
|
31
|
Zhang J, Ren P, Xu D, Liu X, Liu Z, Zhang C, Li Y, Wang L, Du X, Xing B. Human UTP14a promotes colorectal cancer progression by forming a positive regulation loop with c-Myc. Cancer Lett 2019; 440-441:106-115. [DOI: 10.1016/j.canlet.2018.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
32
|
Martín MJ, Gigola G, Zwenger A, Carriquiriborde M, Gentil F, Gentili C. Potential therapeutic targets for growth arrest of colorectal cancer cells exposed to PTHrP. Mol Cell Endocrinol 2018; 478:32-44. [PMID: 30009852 DOI: 10.1016/j.mce.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
Although PTHrP is implicated in several cancers, its role in chemoresistance is not fully elucidated. We found that in CRC cells, PTHrP exerts proliferative and protective effects and induces cell migration. The aim of this work was to further study the effects of PTHrP in CRC cells. Herein we evidenced, for the first time, that PTHrP induces resistance to CPT-11 in Caco-2 and HCT116 cells; although both cell lines responded to the drug through different molecular mechanisms, the chemoresistance by PTHrP in these models is mediated through ERK, which in turn is activated by PCK, Src and Akt. Moreover, continue administration of PTHrP in nude mice xenografts increased the protein levels of this MAPK and of other markers related to tumorigenic events. The understanding of the molecular mechanisms leading to ERK 1/2 activation and the study of ERK targets may facilitate the development of new therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- María Julia Martín
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Graciela Gigola
- Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ariel Zwenger
- Dept. de Oncología, Hospital Provincial de Neuquén, Neuquén, Argentina
| | | | - Florencia Gentil
- Fac. de Cs. Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claudia Gentili
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
33
|
Dorani F, Hu T, Woods MO, Zhai G. Ensemble learning for detecting gene-gene interactions in colorectal cancer. PeerJ 2018; 6:e5854. [PMID: 30397551 PMCID: PMC6211269 DOI: 10.7717/peerj.5854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/28/2018] [Indexed: 11/20/2022] Open
Abstract
Colorectal cancer (CRC) has a high incident rate in both men and women and is affecting millions of people every year. Genome-wide association studies (GWAS) on CRC have successfully revealed common single-nucleotide polymorphisms (SNPs) associated with CRC risk. However, they can only explain a very limited fraction of the disease heritability. One reason may be the common uni-variable analyses in GWAS where genetic variants are examined one at a time. Given the complexity of cancers, the non-additive interaction effects among multiple genetic variants have a potential of explaining the missing heritability. In this study, we employed two powerful ensemble learning algorithms, random forests and gradient boosting machine (GBM), to search for SNPs that contribute to the disease risk through non-additive gene-gene interactions. We were able to find 44 possible susceptibility SNPs that were ranked most significant by both algorithms. Out of those 44 SNPs, 29 are in coding regions. The 29 genes include ARRDC5, DCC, ALK, and ITGA1, which have been found previously associated with CRC, and E2F3 and NID2, which are potentially related to CRC since they have known associations with other types of cancer. We performed pairwise and three-way interaction analysis on the 44 SNPs using information theoretical techniques and found 17 pairwise (p < 0.02) and 16 three-way (p ≤ 0.001) interactions among them. Moreover, functional enrichment analysis suggested 16 functional terms or biological pathways that may help us better understand the etiology of the disease.
Collapse
Affiliation(s)
- Faramarz Dorani
- Department of Computer Science, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Ting Hu
- Department of Computer Science, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Michael O Woods
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Guangju Zhai
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
34
|
Palkina N, Komina A, Aksenenko M, Moshev A, Savchenko A, Ruksha T. miR-204-5p and miR-3065-5p exert antitumor effects on melanoma cells. Oncol Lett 2018; 15:8269-8280. [PMID: 29844810 PMCID: PMC5958817 DOI: 10.3892/ol.2018.8443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR)-204-5p was previously identified to be downregulated in melanoma compared with melanocytic nevi. This observation prompted a functional study on miR-204-5p and the newly-identified miR-3065-5p, two miRNAs suggested to be tumor-suppressive oncomiRs. Application of miR-204-5p mimics or inhibitors resulted in a decrease or increase, respectively, in melanoma cell proliferation and colony formation. miR-204-5p mimics hindered invasion, whereas miR-204-5p inhibitors stimulated cancer cell migration. Modulation of miR-3065-5p led to a decrease in melanoma cell proliferation, altered cell cycle distribution and increased expression levels of its target genes HIPK1 and ITGA1, possibly due to functional modifications identified in these cells. miR-204-5p and miR-3065-5p demonstrated antitumor capacities that may need to be taken into account in the development of melanoma treatment approaches.
Collapse
Affiliation(s)
- Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anna Komina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Maria Aksenenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anton Moshev
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Andrei Savchenko
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| |
Collapse
|
35
|
Moritz MNDO, Eustáquio LMS, Micocci KC, Nunes ACC, Dos Santos PK, de Castro Vieira T, Selistre-de-Araujo HS. Alternagin-C binding to α 2β 1 integrin controls matrix metalloprotease-9 and matrix metalloprotease-2 in breast tumor cells and endothelial cells. J Venom Anim Toxins Incl Trop Dis 2018; 24:13. [PMID: 29713337 PMCID: PMC5917863 DOI: 10.1186/s40409-018-0150-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/05/2018] [Indexed: 01/17/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are key players in tumor progression, helping tumor cells to modify their microenvironment, which allows cell migration to secondary sites. The role of integrins, adhesion receptors that connect cells to the extracellular matrix, in MMP expression and activity has been previously suggested. However, the mechanisms by which integrins control MMP expression are not completely understood. Particularly, the role of α2β1 integrin, one of the major collagen I receptors, in MMP activity and expression has not been studied. Alternagin-C (ALT-C), a glutamate-cysteine-aspartate-disintegrin from Bothrops alternatus venom, has high affinity for an α2β1 integrin. Herein, we used ALT-C as a α2β1 integrin ligand to study the effect of ALT-C on MMP-9 and MMP-2 expression as well as on tumor cells, fibroblats and endothelial cell migration. Methods ALT-C was purified by two steps of gel filtration followed by anion exchange chromatography. The α2β1 integrin binding properties of ALT-C, its dissociation constant (Kd) relative to this integrin and to collagen I (Col I) were determined by surface plasmon resonance. The effects of ALT-C (10, 40, 100 and 1000 nM) in migration assays were studied using three human cell lines: human fibroblasts, breast tumor cell line MDA-MB-231, and microvascular endothelial cells HMEC-1, considering cells found in the tumor microenvironment. ALT-C effects on MMP-9 and MMP-2 expression and activity were analyzed by quantitative PCR and gelatin zymography, respectively. Focal adhesion kinase activation was determined by western blotting. Results Our data demonstrate that ALT-C, after binding to α2β1 integrin, acts by two distinct mechanisms against tumor progression, depending on the cell type: in tumor cells, ALT-C decreases MMP-9 and MMP-2 contents and activity, but increases focal adhesion kinase phosphorylation and transmigration; and in endothelial cells, ALT-C inhibits MMP-2, which is necessary for tumor angiogenesis. ALT-C also upregulates c-Myc mRNA level, which is related to tumor suppression. Conclusion These results demonstrate that α2β1 integrin controls MMP expression and reveal this integrin as a target for the development of antiangiogenic and antimetastatic therapies. Electronic supplementary material The online version of this article (10.1186/s40409-018-0150-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lívia Mara Santos Eustáquio
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Kelli Cristina Micocci
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Ana Carolina Caetano Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Patty Karina Dos Santos
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Tamires de Castro Vieira
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | | |
Collapse
|
36
|
Zhai D, Cui C, Xie L, Cai L, Yu J. Sterol regulatory element-binding protein 1 cooperates with c-Myc to promote epithelial-mesenchymal transition in colorectal cancer. Oncol Lett 2018; 15:5959-5965. [PMID: 29556313 DOI: 10.3892/ol.2018.8058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Metastasis is the primary cause of mortality in colorectal cancer (CRC), the mechanism of which remains unclear. In the present study, by detecting mRNA expression using a reverse transcription-quantitative polymerase chain reaction (qPCR), it was revealed that sterol regulatory element-binding protein 1 (SREBP1) is highly expressed in CRC. Using a cell wound healing assay and a cell invasion assay, a novel metastasis-promoting role for SREBP1 in CRC was identified. Furthermore, snail family transcriptional repressor 1 (SNAIL) was identified as a key downstream effector of SREBP1 in CRC by the use of small interfering RNA against SNAIL. Additionally, using co-immunoprecipitation and chromatin immunoprecipitation-qPCR assays, it was demonstrated that SREBP1 interacts with c-MYC to enhance the binding of c-MYC to the promoter of the mesenchymal gene, SNAIL, thereby increasing SNAIL expression and accelerating epithelial-mesenchymal transition. These results indicated a novel role for SREBP1 and provide insight into the regulatory mechanisms of the c-Myc oncogene in CRC, which may function as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Duanyang Zhai
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Lang Xie
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Lianxu Cai
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| |
Collapse
|
37
|
Groulx JF, Boudjadi S, Beaulieu JF. MYC Regulates α6 Integrin Subunit Expression and Splicing Under Its Pro-Proliferative ITGA6A Form in Colorectal Cancer Cells. Cancers (Basel) 2018; 10:42. [PMID: 29401653 PMCID: PMC5836074 DOI: 10.3390/cancers10020042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
The α6 integrin subunit (ITGA6) pre-mRNA undergoes alternative splicing to form two splicing variants, named ITGA6A and ITGA6B. In primary human colorectal cancer cells, the levels of both ITGA6 and β4 integrin subunit (ITGB4) subunits of the α6β4 integrin are increased. We previously found that the upregulation of ITGA6 is a direct consequence of the increase of the pro-proliferative ITGA6A variant. However, the mechanisms that control ITGA6 expression and splicing into the ITGA6A variant over ITGA6B in colorectal cancer cells remain poorly understood. Here, we show that the promoter activity of the ITGA6 gene is regulated by MYC. Pharmacological inhibition of MYC activity with the MYC inhibitor (MYCi) 10058-F4 or knockdown of MYC expression by short hairpin RNA (shRNA) both lead to a decrease in ITGA6 and ITGA6A levels in colorectal cancer cells, while overexpression of MYC enhances ITGA6 promoter activity. We also found that MYC inhibition decreases the epithelial splicing regulatory protein 2 (ESRP2) splicing factor at both the mRNA and protein levels. Chromatin immunoprecipitation revealed that the proximal promoter sequences of ITGA6 and ESRP2 were occupied by MYC and actively transcribed in colorectal cancer cells. Furthermore, expression studies in primary colorectal tumors and corresponding resection margins confirmed that the up-regulation of the ITGA6A subunit can be correlated with the increase in MYC and ESRP2. Taken together, our results demonstrate that the proto-oncogene MYC can regulate the promoter activation and splicing of the ITGA6 integrin gene through ESRP2 to favor the production of the pro-proliferative ITGA6A variant in colorectal cancer cells.
Collapse
Affiliation(s)
- Jean-François Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
- Laboratory of Pathology, Cancer Molecular Pathology Section, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
38
|
Liu MP, Li W, Dai C, Kei Lam CW, Li Z, Chen JF, Chen ZG, Zhang W, Yao MC. Aqueous extract of Sanguisorba officinalis blocks the Wnt/β-catenin signaling pathway in colorectal cancer cells. RSC Adv 2018; 8:10197-10206. [PMID: 35540488 PMCID: PMC9078833 DOI: 10.1039/c8ra00438b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/05/2018] [Indexed: 11/21/2022] Open
Abstract
Sanguisorba officinalis (the Chinese name is DiYu, DY) exerts significant anti-proliferative activities against colorectal cancer (CRC) cells.
Collapse
Affiliation(s)
- Meng-ping Liu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Wa Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Cong Dai
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Jie-feng Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Zuan-guang Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau Institute for Applied Research in Medicine and Health
- Macau University of Science and Technology
- Taipa
- China
| | - Mei-cun Yao
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| |
Collapse
|
39
|
Sheng W, Chen C, Dong M, Wang G, Zhou J, Song H, Li Y, Zhang J, Ding S. Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis 2017; 8:e3147. [PMID: 29072694 PMCID: PMC5680916 DOI: 10.1038/cddis.2017.547] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Abstract
Our previous study showed that Calreticulin (CRT) promoted the development of pancreatic cancer (PC) through ERK/MAPK pathway. We next investigate whether CRT promotes EGF-induced epithelial-mesenchymal transition (EMT) in PC via Integrin/EGFR-ERK/MAPK signaling, which has not been reported yet to our knowledge. EGF simultaneously induced EMT and activated Integrin/EGFR-ERK/MAPK signaling pathway in 3 PC cells. However, CRT silencing significantly inhibited EGF function, including inhibiting EGF-induced EMT-like cell morphology, EGF-enhanced cell invasion and migration, and EGF induced the decrease of E-cadherin, ZO-1, and β-catenin and the increase of the key proteins in Integrin/EGFR-ERK/MAPK signaling (pEGFR-tyr1173, Fibronectin, Integrinβ1, c-Myc and pERK). Conversely, CRT overexpression rescued the change of EMT-related proteins induced by EGF in CRT silencing PC cells. Additionally, CRT was co-stained with pEGFR1173 (with EGF), Fibronectin and Integrinβ1 by IF under confocal microscopy and was co-immunoprecipitated with Fibronectin, Integrinβ1 and c-Myc in both PC cells, all of which indicating a close interaction of CRT with Integrin/EGFR-ERK/MAPK signaling pathway in PC. In vivo, CRT silencing inhibited subcutaneous tumor growth and liver metastasis of pancreatic tumor. A positive relationship of CRT with Fibronectin, Integrinβ1, c-Myc and pERK and a negative association of CRT with E-cad was also observed in vivo and clinical samples. Meanwhile, overexpression of the above proteins was closely associated with multiple aggressive clinicopathological characteristics and the poor prognosis of PC patients. CRT promotes EGF-induced EMT in PC cells via Integrin/EGFR-ERK/MAPK signaling pathway, which would be a promising therapy target for PC.
Collapse
Affiliation(s)
- Weiwei Sheng
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - Chuanping Chen
- Department of Clinical Laboratory, the Sixth Peoples' hospital of Shenyang, Shenyang 110003, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - Guosen Wang
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - He Song
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang 110001, China
| | - Yang Li
- Department of Cell Biology, China Medical University, Shenyang 110013, China
| | - Jian Zhang
- Department of Cell Biology, China Medical University, Shenyang 110013, China
| | - Shuangning Ding
- Department of Endocrinology and Metabolism in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
40
|
Oh-Hashi K, Matsumoto S, Sakai T, Nomura Y, Okuda K, Nagasawa H, Hirata Y. Elucidating the rapid action of 2-(2-chlorophenyl)ethylbiguanide on HT-29 cells under a serum- and glucose-deprived condition. Cell Biol Toxicol 2017; 34:279-290. [PMID: 28871429 DOI: 10.1007/s10565-017-9410-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
We recently demonstrated the cytotoxic action of a novel phenformin derivative, 2-(2-chlorophenyl)ethylbiguanide (2-Cl-Phen), on HT-29 cells under a serum- and glucose-deprived condition. In that study, we showed that the ATF6 arm of the ER stress pathway and c-Myc expression were downregulated 12 h after the treatment with 2-Cl-Phen. Through characterization of intracellular events at the early phase of the 2-Cl-Phen treatment before noticeable morphological changes, we found rapid fluctuations in the c-Myc and ATF4 proteins but not in their mRNAs in 2-Cl-Phen-treated HT-29 cells under the serum- and glucose-deprived condition. The 2-Cl-Phen-mediated downregulation of ATF4 protein was not paralleled by the phosphorylation status of PERK and eIF2α. Reduction of c-Myc expression by 2-Cl-Phen was more profound than that of ATF4 expression, and phosphorylated c-Myc was downregulated within 2 h. Pharmacological studies on the expression of c-Myc and ATF4 proteins showed that this decrease was mediated through proteasomal degradation but not by autophagy. Interestingly, treatment with lithium chloride, which is a well-known inhibitor of GSK3β, partially recovered the expression of ATF4 protein, but its effect on the level of total c-Myc protein was negligible. Treatment with 2-Cl-Phen increased the expression of phosphorylated AMPK, but Compound C, an AMPK inhibitor, did not influence the expression of c-Myc protein in HT-29 cells. Finally, we observed that 2-Cl-Phen partially attenuated the gene expression of integrin subunit α1 (ITGA1), a downstream target of c-Myc. Taken together, these results show that 2-Cl-Phen rapidly downregulated the expression of c-Myc in addition to ER stress responses in a post-translational manner. Further elucidation and improvement of this multi-target-directed compound will provide new insights for developing therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Shiori Matsumoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takayuki Sakai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu, 501-1196, Japan
| | - Yuki Nomura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kensuke Okuda
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu, 501-1196, Japan.,Laboratory of Bioorganic and Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu, 501-1196, Japan
| | - Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
41
|
Ning YX, Luo X, Xu M, Feng X, Wang J. Let-7d increases ovarian cancer cell sensitivity to a genistein analog by targeting c-Myc. Oncotarget 2017; 8:74836-74845. [PMID: 29088827 PMCID: PMC5650382 DOI: 10.18632/oncotarget.20413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/02/2017] [Indexed: 12/26/2022] Open
Abstract
c-Myc is a key oncogenic transcription factor that participates in tumor pathogenesis. In this study, we found that levels of c-Myc mRNA and protein were higher in early ovarian cancer tissues than normal ovary samples. Increased c-Myc levels correlated positively with clinical stage I (Ia+b/Ic) in ovarian cancer patients. Patients with higher nuclear c-Myc expression had shorter overall survival times than patients with low c-Myc expression. Knocking down c-Myc sensitized ovarian cancer cells to 7-difluoromethoxyl-5,4’-di-n-octylgenistein (DFOG), a novel synthetic genistein analogue that suppressed PI3K/AKT signaling in vitro and in vivo. Finally, c-Myc was confirmed to be a direct target of let-7d, and let-7d-induced suppression of c-Myc increased the DFOG-sensitivity of ovarian cancer cells. These results indicate that nuclear c-Myc expression is an unfavorable factor in early ovarian cancer, and that let-7d increases ovarian cancer cell sensitivity to DFOG by suppressing c-Myc and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ying-Xia Ning
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Luo
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Meng Xu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Feng
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - Jian Wang
- Institute of Reproductive and Stem Cell Engineering, Central South University, National Engineering and Research Center of Human Stem Cell, Changsha, 41007, China
| |
Collapse
|
42
|
Boudjadi S, Bernatchez G, Sénicourt B, Beauséjour M, Vachon PH, Carrier JC, Beaulieu JF. Involvement of the Integrin α1β1 in the Progression of Colorectal Cancer. Cancers (Basel) 2017; 9:96. [PMID: 28933766 PMCID: PMC5575599 DOI: 10.3390/cancers9080096] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Integrins are a family of heterodimeric glycoproteins involved in bidirectional cell signaling that participate in the regulation of cell shape, adhesion, migration, survival and proliferation. The integrin α1β1 is known to be involved in RAS/ERK proliferative pathway activation and plays an important role in fibroblast proliferation. In the small intestine, the integrin α1 subunit is present in the crypt proliferative compartment and absent in the villus. We have recently shown that the integrin α1 protein and transcript (ITGA1) are present in a large proportion of colorectal cancers (CRC) and that their expression is controlled by the MYC oncogenic factor. Considering that α1 subunit/ITGA1 expression is correlated with MYC in more than 70% of colon adenocarcinomas, we postulated that the integrin α1β1 has a pro-tumoral contribution to CRC. In HT29, T84 and SW480 CRC cells, α1 subunit/ITGA1 knockdown resulted in a reduction of cell proliferation associated with an impaired resistance to anoikis and an altered cell migration in HT29 and T84 cells. Moreover, tumor development in xenografts was reduced in HT29 and T84 sh-ITGA1 cells, associated with extensive necrosis, a low mitotic index and a reduced number of blood vessels. Our results show that α1β1 is involved in tumor cell proliferation, survival and migration. This finding suggests that α1β1 contributes to CRC progression.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Gérald Bernatchez
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Blanche Sénicourt
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Marco Beauséjour
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Pierre H Vachon
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
43
|
Inside the Cell: Integrins as New Governors of Nuclear Alterations? Cancers (Basel) 2017; 9:cancers9070082. [PMID: 28684679 PMCID: PMC5532618 DOI: 10.3390/cancers9070082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer cell migration is a complex process that requires coordinated structural changes and signals in multiple cellular compartments. The nucleus is the biggest and stiffest organelle of the cell and might alter its physical properties to allow cancer cell movement. Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix interactions, which regulate numerous intracellular signals and biological functions under physiological conditions. Moreover, integrins orchestrate changes in tumor cells and their microenvironment that lead to cancer growth, survival and invasiveness. Most of the research efforts have focused on targeting integrin-mediated adhesion and signaling. Recent exciting data suggest the crucial role of integrins in controlling internal cellular structures and nuclear alterations during cancer cell migration. Here we review the emerging role of integrins in nuclear biology. We highlight increasing evidence that integrins are critical for changes in multiple nuclear components, the positioning of the nucleus and its mechanical properties during cancer cell migration. Finally, we discuss how integrins are integral proteins linking the plasma membrane and the nucleus, and how they control cell migration to enable cancer invasion and infiltration. The functional connections between these cell receptors and the nucleus will serve to define new attractive therapeutic targets.
Collapse
|
44
|
Boudjadi S, Beaulieu JF. In silico Analysis and Site-directed Mutagenesis of Promoters. Bio Protoc 2017; 7:2181. [PMID: 34458481 PMCID: PMC8376895 DOI: 10.21769/bioprotoc.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/25/2016] [Accepted: 02/27/2017] [Indexed: 11/02/2022] Open
Abstract
In normal as in cancerous cells, gene expression is tightly regulated by transcription factors, which are responsible for up- or down-regulation of thousands of targets involved in different cell processes. Transcription factors can directly regulate the expression of genes by binding to specific DNA sequences known as response elements. Identification of these response elements is important to characterize targets of transcription factors in order to understand their contribution to gene regulation. Here, we describe in silico analysis coupled to selected mutagenesis and promoter gene reporter assay procedures to identify and analyze response elements in the proximal promoter sequence of genes.
Collapse
Affiliation(s)
- Salah Boudjadi
- Cancer Molecular Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Jean-Francois Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
45
|
Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol Sci 2016; 17:ijms17122037. [PMID: 27929432 PMCID: PMC5187837 DOI: 10.3390/ijms17122037] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands depending on their composition and regulate all processes which enable multicellular life. In cancer, integrins trigger and play key roles in all the features that were once described as the Hallmarks of Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings. Further on, given the paramount role of integrins in cancer, we will present novel strategies for integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Matthias Unseld
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
46
|
Sipos F, Firneisz G, Műzes G. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World J Gastroenterol 2016; 22:7938-7950. [PMID: 27672289 PMCID: PMC5028808 DOI: 10.3748/wjg.v22.i35.7938] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be selected for combined regiments. However, due to its context-dependent cellular function, it is clinically essential to consider which cytotoxic drugs are used in combination with c-MYC targeted agents in various tissues. Increasing our knowledge about MYC-dependent pathways might provide direction to novel anti-inflammatory and colorectal cancer therapies.
Collapse
|
47
|
Sénicourt B, Boudjadi S, Carrier JC, Beaulieu JF. Neoexpression of a functional primary cilium in colorectal cancer cells. Heliyon 2016; 2:e00109. [PMID: 27441280 PMCID: PMC4946219 DOI: 10.1016/j.heliyon.2016.e00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
The Hedgehog (HH) signaling pathway is involved in the maintenance of numerous cell types both during development and in the adult. Often deregulated in cancers, its involvement in colorectal cancer has come into view during the last few years, although its role remains poorly defined. In most tissues, the HH pathway is highly connected to the primary cilium (PC), an organelle that recruits functional components and regulates the HH pathway. However, normal epithelial cells of the colon display an inactive HH pathway and lack a PC. In this study, we report the presence of the PC in adenocarcinoma cells of primary colorectal tumors at all stages. Using human colorectal cancer cell lines we found a clear correlation between the presence of the PC and the expression of the final HH effector, GLI1, and provide evidence of a functional link between the two by demonstrating the recruitment of the SMO receptor to the membrane of the primary cilium. We conclude that the primary cilium directly participates in the HH pathway in colorectal cancer cells.
Collapse
Affiliation(s)
- Blanche Sénicourt
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
48
|
Boudjadi S, Beaulieu JF. MYC and integrins interplay in colorectal cancer. Oncoscience 2016; 3:50-1. [PMID: 27014720 PMCID: PMC4789568 DOI: 10.18632/oncoscience.293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Salah Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy & Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy & Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| |
Collapse
|
49
|
Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair? J Cell Sci 2016; 129:653-64. [PMID: 26857815 DOI: 10.1242/jcs.180992] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|