1
|
Wang H, Zhang J, Cheng P, Yu L, Li C, Wang Y. Integrating transcriptomics and hybrid machine learning enables high-accuracy diagnostic modeling for nasopharyngeal carcinoma. Discov Oncol 2025; 16:1067. [PMID: 40504346 PMCID: PMC12162433 DOI: 10.1007/s12672-025-02932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 06/05/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) lacks biomarkers demonstrating both high specificity and sensitivity for early diagnosis. This study aimed to develop robust machine learning (ML)-driven diagnostic models and identify key biomarkers through integrated analysis of multi-cohort transcriptomic data. METHODS Seven NPC transcriptomic datasets (GSE12452, GSE40290, GSE53819, and GSE64634 were merged to form the training cohort, while GSE13597, GSE34573, and GSE61218 served as independent external validation sets) were integrated and preprocessed using ComBat for batch effect correction. Differential expression analysis identified 293 differentially expressed genes (DEGs). Twelve ML algorithms (including Stepglm, glmBoost, and RF) were systematically combined into 113 distinct models to classify NPC versus normal tissues. Top-performing models underwent external validation. Immune infiltration patterns and functional enrichment were analyzed using CIBERSORT and GSEA/GSVA, respectively. RESULTS The Stepglm[both]-RF hybrid model demonstrated exceptional performance with AUCs of 0.999 (training set; 95% CI: 0.997-1.000), 1.000 (GSE61218/GSE34573 validation), and 0.960 (GSE13597 validation). The glmBoost-RF model showed comparable efficacy, achieving AUCs of 1.000 (training), 0.950 (GSE61218), 1.000 (GSE34573), and 0.947 (GSE13597). Single-gene analysis identified RCN1 as a promising diagnostic marker (AUC = 0.953), with elevated expression levels correlating with poor prognosis in head and neck squamous cell carcinoma (HNSCC; p < 0.05). Immune profiling revealed significant enrichment of M1 macrophages and concomitant reduction of memory B cells in NPC. Functional enrichment analysis associated RCN1 with cell cycle regulation and immune-related pathways. CONCLUSION This study establishes two high-performance ML models (Stepglm[both]-RF and glmBoost-RF) with low variability for NPC diagnosis and identifies RCN1 as a dual-function biomarker with diagnostic and prognostic potential. The findings provide a scalable framework for early NPC detection and novel insights into immune microenvironment dysregulation.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Junge Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Peng Cheng
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lujie Yu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chunlin Li
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Yaowen Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Matsumori H, Dinh TQ, Miyoshi SI, Morita M, Kim HS. The antimalarial activity of transdermal N-89 mediated by inhibiting ERC gene expression in P. Berghei-infected mice. Parasitol Int 2025; 106:103026. [PMID: 39740755 DOI: 10.1016/j.parint.2024.103026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients. The td N-89 or artemisinin (ART) formulation was transdermally administered to P. berghei-infected mice with 0.2-0.4 % parasitemia, twice daily for four days, at an effective dose of 90 % for malaria. Parasitemia was decreased in td N-89 and td ART groups during the drug treatment; then, three of the eight mice in td N-89 group were completely cured without relapse. Additionally, abnormal trophozoites in td N-89 group were observed 8 h after administration and increased up to 24 h. To study the change in endoplasmic reticulum-resident calcium-binding protein (ERC) gene expression with td N-89, we investigated the gene expression of P. berghei ERC (PbERC) after td N-89 treatment. PbERC gene expression was increased time-dependently in control group, and was statistically decreased at 4 and 8 h and then increased similar to that of control group at 12 h in td ART group. In contrast, the expression in td N-89 group was almost steady starting from 0 h. We also studied parasite egress-related genes expression after td N-89 treatment, plasmepsin X, subtilisin-like protease 1 and merozoite surface protein 1, were suppressed at 12 h compared to control group. These results suggest that N-89 affects function of endoplasmic reticulum via regulating gene suppression and subsequently parasite growth is inhibited.
Collapse
Affiliation(s)
- Hiroaki Matsumori
- Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Thi Quyen Dinh
- Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shin-Ichi Miyoshi
- Research Center for Intestinal Health Science, Okayama University, Okayama 700-8530, Japan
| | - Masayuki Morita
- Department of Anatomy, Kawasaki Medical School, Okayama 701-0192, Japan
| | - Hye-Sook Kim
- Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
3
|
Li Z, Ran Q, Qu C, Hu S, Cui S, Zhou Y, Shen B, Yang B. Sigma-1 receptor activation attenuates DOX-induced cardiotoxicity by alleviating endoplasmic reticulum stress and mitochondrial calcium overload via PERK and IP3R-VDAC1-MCU signaling pathways. Biol Direct 2025; 20:23. [PMID: 40001213 PMCID: PMC11853590 DOI: 10.1186/s13062-025-00617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an anthracycline with potent antitumor properties and rare yet serious cardiotoxic side effects that limit its clinical application. The sigma-1 receptor is a stress-triggered chaperone often dysregulated in diseases and has known cardioprotective effects. Although its anti-oxidative stress and anti-apoptotic effects have been demonstrated, its effectiveness in DOX-induced cardiotoxicity has never been explored. This study investigated the potential role of the activated sigma-1 receptor in a DOX-induced murine cardiotoxicity model to elucidate the receptor's mechanism of action. METHODS We established the model in C57BL/6 mice by daily intraperitoneal injections of fluvoxamine (Flv) for 4 consecutive weeks to activate the receptor and by weekly intraperitoneal injections of DOX at 5 mg/kg for 3 weeks. We performed in vitro experiments using cardiomyocytes of neonatal Sprague-Dawley rats to verify the protective effect of the sigma-1 receptor. RESULTS We found that sigma-1 expression in the heart decreased in the DOX-treated mice, and activating the receptor with Flv improved cardiac function. Moreover, Flv pretreatment inhibited cardiomyocyte apoptosis and endoplasmic reticulum stress and increased the expression of the Bcl2 apoptosis regulator (Bcl2), effectively alleviating the pathophysiological manifestations in mice. In addition, activating the receptor exerted cardioprotective effects by modulating endoplasmic reticulum stress through the PRKR-like endoplasmic reticulum kinase (PERK) signaling pathway. It also reduced mitochondrial and endoplasmic reticulum contact and alleviated mitochondrial calcium overload through the IP3R-VDAC1-MCU signaling pathway. CONCLUSION In conclusion, our study emphasizes the therapeutic potential of activating sigma-1 receptors against DOX-induced cardiotoxicity, suggesting sigma-1 receptors as potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Qian Ran
- Department of Cardiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - You Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
4
|
Choudhary MK, Pancholi B, Kumar M, Babu R, Garabadu D. A review on endoplasmic reticulum-dependent anti-breast cancer activity of herbal drugs: possible challenges and opportunities. J Drug Target 2025; 33:206-231. [PMID: 39404107 DOI: 10.1080/1061186x.2024.2417189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.
Collapse
Affiliation(s)
- Mayank Kumar Choudhary
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Bhaskaranand Pancholi
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Manoj Kumar
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Raja Babu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
5
|
Bartkowiak K, Mohammadi PM, Nissen P, Werner S, Agorku D, Andreas A, Geffken M, Peine S, Verpoort K, Deutsch TM, Michel LL, Schneeweiss A, Thewes V, Trumpp A, Hardt O, Müller V, Riethdorf S, Schlüter H, Pantel K. Discovery of a sushi domain-containing protein 2-positive phenotype in circulating tumor cells of metastatic breast cancer patients. Sci Rep 2025; 15:3913. [PMID: 39890941 PMCID: PMC11785953 DOI: 10.1038/s41598-025-87122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Cell lines derived from circulating tumor cells (CTCs) in the blood provide important biological information on cancer metastasis. CTC-ITB-01 is a CTC cell line derived from a patient with metastatic estrogen receptor-alpha (ER-alpha) positive breast cancer two months before the death of the patient. After a LC-MC/MS based proteomics analysis of CTC-ITB-01, we found extraordinary high levels of the poorly characterized protein SUSD2 (sushi domain-containing protein 2) in CTC-ITB-01. Expression of SUSD2 on subsets of CTCs was validated on clinical blood samples of patients with metastatic breast cancer. SUSD2-positive CTCs could be captured specifically by a MACS-based approach. We overexpressed SUSD2 in the poorly-metastatic cell line MCF-7. This resulted in upregulation of ER-alpha, the tumor progression protein GRP78 (78-kDa glucose-regulated protein) and downregulation of the tumor suppressor protein PDCD4 (programmed cell death protein 4). We observed downregulation of SUSD2 and PDCD4 after hypoxia and simulation of re-oxygenation in the blood in MCF-7 and MDA-MB-468, while in CTC-ITB-01 SUSD2 levels remained unchanged, and only PDCD4 was downregulated under hypoxia. In conclusion, we show, for the first time, that SUSD2 is expressed in CTCs and appears to affect key proteins in tumor progression and survival.
Collapse
Affiliation(s)
- Kai Bartkowiak
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Parinaz Mossahebi Mohammadi
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Paula Nissen
- Section Mass Spectrometry and Proteomics, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan Werner
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - David Agorku
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Antje Andreas
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maria Geffken
- Department of Transfusion Medicine, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Karl Verpoort
- Superregional group practice for hematology and oncology, Hohe Weide 17 b, 20295, Hamburg, Germany
| | - Thomas M Deutsch
- Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Laura L Michel
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Verena Thewes
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ- ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sabine Riethdorf
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Hao R, Gao X, Lu Q, Zhao T, Lu X, Zhang F, Pei Y, Lang J, Liu H, Song J, Zhang Z. CUMS induces depressive-like behaviors and cognition impairment by activating the ERS-NLRP3 signaling pathway in mice. J Affect Disord 2025; 369:547-558. [PMID: 39378914 DOI: 10.1016/j.jad.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/31/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Endoplasmic reticulum stress (ERS), as a primary defense mechanism against stress, is closely related to mental disorders, but its pathogenesis is still unclear. This research seeks to explore the influence of ERS-nucleotide-bound oligomerized domain-like receptor protein 3 (NLRP3) signaling on mice's depressive-like behaviors and cognitive impairment. DESIGN AND METHOD We carried out a study on 32 male C57BL/6J mice to investigate how chronic unpredictable mild stress (CUMS) can give rise to depressive-like behaviors and cognitive dysfunction, randomly dividing them into control, model, inhibitor, and agonist groups. We utilized ELISA to quantify dopamine (DA) and 5-hydroxytryptamine (5-HT) levels. Using Nissl and hematoxylin and eosin (H&E) staining, we assessed the number and morphology of hippocampal neurons and cells. Western blot and immunofluorescence staining detected the changes in ERS and inflammation-related pathways in the hippocampus. RESULTS CUMS could induce ERS and activate NLRP3 inflammasome, causing neuronal damage and histopathological changes, eventually leading to depressive-like behaviors and cognitive impairment in mice. The abnormal activation of NLRP3 inflammasome could be restored by ERS blocker 4-phenyl butyric acid (PBA), thus reducing neuronal damage, and ameliorating depressive-like behaviors and cognitive disorder in mice. CONCLUSION Our study demonstrates a previously unknown link between ERS and NLRP3 inflammasome in CUMS mice. The ERS-NLRP3 signaling pathway may be activated by CUMS, potentially resulting in mice exhibiting depressive-like behaviors and cognitive dysfunction. Theoretical foundations for elucidating the pathogenesis of depression, as well as its prevention and treatment, will be established through the results.
Collapse
Affiliation(s)
- Ran Hao
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Xiaolei Gao
- School of Nursing, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Qi Lu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China
| | - Tong Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Xinxin Lu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Yanjiao Pei
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Jiqing Lang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China.
| |
Collapse
|
7
|
Zhang X, Cao Y, Liu J, Wang W, Yan Q, Wang Z. Comprehensive Analysis of m6A-Related Programmed Cell Death Genes Unveils a Novel Prognostic Model for Lung Adenocarcinoma. J Cell Mol Med 2025; 29:e70255. [PMID: 39828988 PMCID: PMC11743404 DOI: 10.1111/jcmm.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025] Open
Abstract
Lung adenocarcinoma (LUAD) involves complex dysregulated cellular processes, including programmed cell death (PCD), influenced by N6-methyladenosine (m6A) RNA modification. This study integrates bulk RNA and single-cell sequencing data to identify 43 prognostically valuable m6A-related PCD genes, forming the basis of a 13-gene risk model (m6A-related PCD signature [mPCDS]) developed using machine-learning algorithms, including CoxBoost and SuperPC. The mPCDS demonstrated significant predictive performance across multiple validation datasets. In addition to its prognostic accuracy, mPCDS revealed distinct genomic profiles, pathway activations, associations with the tumour microenvironment and potential for predicting drug sensitivity. Experimental validation identified RCN1 as a potential oncogene driving LUAD progression and a promising therapeutic target. The mPCDS offers a new approach for LUAD risk stratification and personalised treatment strategies.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yaolin Cao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiatao Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiuyue Yan
- Department of Respiratory DiseasesThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anJiangsuChina
| | - Zhibo Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Liu W, Zhang Q, Guo S, Wang H. The role of microRNAs regulation of endoplasmic reticulum stress in ischemia-reperfusion injury: A review. Int J Biol Macromol 2024; 283:137566. [PMID: 39542287 DOI: 10.1016/j.ijbiomac.2024.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle in eukaryotic cells, responsible for a range of biological functions such as the secretion, modification and folding of proteins, maintaining Ca2+ homeostasis and the synthesis of steroids/lipids, secreted proteins and membrane proteins. When cells are affected by internal or external factors, including abnormal energy metabolism, disrupted Ca2+ balance, altered glycosylation, drug toxicity, and so on, the unfolded or misfolded proteins accumulate in the ER, leading to the unfolded protein response (UPR) and ER stress. The abnormal ER stress has been reported to be involved in various pathological processes. MicroRNAs (miRNAs) are non-coding RNAs with the length of approximately 19-25 nucleotides. They control the expression of multiple genes through posttranscriptional gene silencing in eukaryotes or some viruses. Increasing evidence indicates that miRNAs are involved in various cellular functions and biological processes, such as cell proliferation and differentiation, growth and development, and metabolic homeostasis. Hence, miRNAs participate in multiple pathological processes. Recently, many studies have shown that miRNAs play an important role by regulating ER stress in ischemia-reperfusion (I/R) injury, but the relevant mechanisms are not fully understood. In this review, we reviewed the current understanding of ER stress, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ER stress in I/R injury, with the aim of providing new targets for the treatment of I/R injury.
Collapse
Affiliation(s)
- Wanying Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
9
|
Li L, Jin RJ, Ji L. Pachymic acid ameliorates bleomycin-induced pulmonary fibrosis through inhibiting endoplasmic reticulum stress in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:5382-5390. [PMID: 37163307 DOI: 10.1002/tox.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
The effect of pachymic acid (PA) on pulmonary fibrosis in rats was expected to be investigated in this study. Firstly, bleomycin (BLM) was used to establish pulmonary fibrosis rat model, then PA (10, 20, or 40 mg/kg) was intragastrically administered to the rats for 14 days. Subsequently, a variety of tests was performed to observe changes in sample tissues after different treatments. Briefly, the degree of pulmonary edema in rats was assessed through dry/wet weight ratio. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were used to observe the pathological injury and fibrosis of lung tissue. Biochemical kits were applied to measure the levels of hydroxyproline (Hyp), transforming growth factor beta-1 (TGFβ-1), malondialdehyde (MDA), reactive oxygen species (ROS), and adenosine triphosphate (ATP) and the activities of superoxide dismutase (SOD) and catalase (CAT) in rat lung tissues of each group. The mitochondrial DNA (mtDNA) copy number in rat lung tissue was tested using qRT-PCR. Additionally, the western blot was employed to detect the expression levels of pulmonary fibrosis-related proteins and endoplasmic reticulum (ER) stress-related proteins in each group of rat lung tissue. By virtue of experimental verification above, PA was discovered to alleviate BLM-induced pulmonary edema, pulmonary fibrosis and histopathological damage. On the one hand, PA treatment decreased Hyp and TGF-β1 levels and down-regulated pulmonary fibrosis-related protein expression [collagen I, α-smooth muscle actin (α-SMA), and fibronectin] in the lung tissue of BLM rats. On the other hand, it significantly increased the levels of SOD, CAT and ATP while decreased the activities of MDA and ROS in BLM rat lung tissues. In addition, the expression levels of ER stress-related proteins [glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), Caspase 9, and activating transcription factor 4 (ATF4)] were significantly down-regulated in the lung tissue of BLM rats after PA treatment. Collectively, PA may ameliorate BLM-induced pulmonary fibrosis and histopathological damage in rats through inhibiting ER stress and improving mitochondrial function.
Collapse
Affiliation(s)
- Lin Li
- Respiratory department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Rong-Jie Jin
- Department of security, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lu Ji
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
Liu DD, Ding W, Cheng JT, Wei Q, Lin Y, Zhu TY, Tian J, Sun K, Zhang L, Lu P, Yang F, Liu C, Tang S, Yang B. Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids. Nat Commun 2024; 15:5221. [PMID: 38890329 PMCID: PMC11189575 DOI: 10.1038/s41467-024-49517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Latent bioreactive unnatural amino acids (Uaas) have been widely used in the development of covalent drugs and identification of protein interactors, such as proteins, DNA, RNA and carbohydrates. However, it is challenging to perform high-throughput identification of Uaa cross-linking products due to the complexities of protein samples and the data analysis processes. Enrichable Uaas can effectively reduce the complexities of protein samples and simplify data analysis, but few cross-linked peptides were identified from mammalian cell samples with these Uaas. Here we develop an enrichable and multiple amino acids reactive Uaa, eFSY, and demonstrate that eFSY is MS cleavable when eFSY-Lys and eFSY-His are the cross-linking products. An identification software, AixUaa is developed to decipher eFSY mass cleavable data. We systematically identify direct interactomes of Thioredoxin 1 (Trx1) and Selenoprotein M (SELM) with eFSY and AixUaa.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenlong Ding
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin-Tao Cheng
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiushi Wei
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yinuo Lin
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Tian-Yi Zhu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Tian
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Long Zhang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Chao Liu
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Shibing Tang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Bing Yang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
11
|
Liu Z, Mao H, Chu D, Qin L, Wang J. Clinical Implications of a Six-Protein Signature in Bone Metastasis of Renal Cell Carcinoma. J Cancer 2024; 15:3034-3044. [PMID: 38706914 PMCID: PMC11064255 DOI: 10.7150/jca.88612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/19/2023] [Indexed: 05/07/2024] Open
Abstract
Bone metastases is prevalent from renal cell carcinoma (RCC) with poor quality of life and prognosis. Our previous proteomics analysis identified dysregulated proteins in the bone-tropism RCC cells. In this study, we further examined the clinical implications of these proteins using multiple clinical cohorts. We identified 6 proteins with significant upregulation in RCC tumor tissue in comparing to tumor adjacent normal tissue (p<0.05). High expression of these 6 protein-encoding genes significantly correlates with a poor survival in the TCGA-KIRC (Kidney renal clear cell carcinoma) cohort (log-rank test p=2.7e-05), and they all individually had a reverse-correlation with the gene expression of VHL and PBRM1 (p<0.001), and positive-correlation with the expression of VEGFA (p<0.001). Further gene set variation analysis (GSVA) revealed positive correlation with Th17 cells enrichment and negative CD8 T cell infiltration in the RCC tumor microenvironment. High expression of these 6 genes in pretreatment tumors favors longer overall survival (OS)(p=0.027) in anti-PDL1 treated patients (n=428). We treated one humeral metastases RCC patient with the anti-PDL1 antibody drug atezolizumab after examined the elevated expression of the 6 proteins in his nephrectomy tumor tissue, the tumor at the fracture site shrunk remarkably after four courses of treatment. These results altogether suggest a clinical implication of the 6-protein signature in RCC bone metastasis prognosis and response to immune-checkpoint inhibitor treatment.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Oncology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, P.R. China
| | - Hanwen Mao
- Department of Oncology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, P.R. China
| | - Dinggai Chu
- Department of Oncology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, P.R. China
| | - Liang Qin
- Department of Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Wang
- Department of Orthopedic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
12
|
Das S, Adiody S, Varghese J, Vanditha M, Maria E, John M. Exploring the novel duo of Reticulocalbin, and Sideroflexin as future biomarker candidates for Exacerbated Chronic Obstructive Pulmonary Disease. Clin Proteomics 2024; 21:10. [PMID: 38355435 PMCID: PMC10865594 DOI: 10.1186/s12014-024-09459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND COPD is a complex respiratory disorder with high morbidity and mortality rates. Even with the current conventional diagnostic methods, including circulating inflammatory biomarkers, underdiagnosis rates in COPD remain as high as 70%. Our study was a comparative cross-sectional study that aimed to address the diagnostic challenges by identifying future biomarker candidates in COPD variants. METHODS This study used a label-free plasma proteomics approach that combined mass spectrometric data with bioinformatics to shed light on the functional roles of differentially expressed proteins in the COPD lung microenvironment. The predictive capacity of the screened proteins was assessed using Receiver Operating Characteristic (ROC) curves, with Western blot analysis validating protein expression patterns in an independent cohort. RESULTS Our study identified three DEPs-reticulocalbin-1, sideroflexin-4, and liprinα-3 that consistently exhibited altered expression in COPD exacerbation. ROC analysis indicated strong predictive potential, with AUC values of 0.908, 0.715, and 0.856 for RCN1, SFXN4, and LIPα-3, respectively. Validation through Western blot analysis confirmed their expression patterns in an independent validation cohort. CONCLUSIONS Our study discovered a novel duo of proteins reticulocalbin-1, and sideroflexin-4 that showed potential as valuable future biomarkers for the diagnosis and clinical management of COPD exacerbations.
Collapse
Affiliation(s)
- Sonu Das
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
- Department of Zoology, St. Thomas College, Kozhencherry, Affiliated to Mahatma Gandhi University, Kerala, India
| | - Supriya Adiody
- Department of Pulmonary Medicine, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Jinsu Varghese
- Department of Zoology, St. Thomas College, Kozhencherry, Affiliated to Mahatma Gandhi University, Kerala, India
| | - M Vanditha
- Department of Biochemistry, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Evelyn Maria
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Mathew John
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| |
Collapse
|
13
|
Ichimura A, Miyazaki Y, Nagatomo H, Kawabe T, Nakajima N, Kim GE, Tomizawa M, Okamoto N, Komazaki S, Kakizawa S, Nishi M, Takeshima H. Atypical cell death and insufficient matrix organization in long-bone growth plates from Tric-b-knockout mice. Cell Death Dis 2023; 14:848. [PMID: 38123563 PMCID: PMC10733378 DOI: 10.1038/s41419-023-06285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
TRIC-A and TRIC-B proteins form homotrimeric cation-permeable channels in the endoplasmic reticulum (ER) and nuclear membranes and are thought to contribute to counterionic flux coupled with store Ca2+ release in various cell types. Serious mutations in the TRIC-B (also referred to as TMEM38B) locus cause autosomal recessive osteogenesis imperfecta (OI), which is characterized by insufficient bone mineralization. We have reported that Tric-b-knockout mice can be used as an OI model; Tric-b deficiency deranges ER Ca2+ handling and thus reduces extracellular matrix (ECM) synthesis in osteoblasts, leading to poor mineralization. Here we report irregular cell death and insufficient ECM in long-bone growth plates from Tric-b-knockout embryos. In the knockout growth plate chondrocytes, excess pro-collagen fibers were occasionally accumulated in severely dilated ER elements. Of the major ER stress pathways, activated PERK/eIF2α (PKR-like ER kinase/ eukaryotic initiation factor 2α) signaling seemed to inordinately alter gene expression to induce apoptosis-related proteins including CHOP (CCAAT/enhancer binding protein homologous protein) and caspase 12 in the knockout chondrocytes. Ca2+ imaging detected aberrant Ca2+ handling in the knockout chondrocytes; ER Ca2+ release was impaired, while cytoplasmic Ca2+ level was elevated. Our observations suggest that Tric-b deficiency directs growth plate chondrocytes to pro-apoptotic states by compromising cellular Ca2+-handling and exacerbating ER stress response, leading to impaired ECM synthesis and accidental cell death.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroki Nagatomo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Takaaki Kawabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nobuhisa Nakajima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Ga Eun Kim
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Masato Tomizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Naoki Okamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
14
|
Deng S, Pan Y, An N, Chen F, Chen H, Wang H, Xu X, Liu R, Yang L, Wang X, Du X, Zhang Q. Downregulation of RCN1 promotes pyroptosis in acute myeloid leukemia cells. Mol Oncol 2023; 17:2584-2602. [PMID: 37746742 DOI: 10.1002/1878-0261.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Reticulocalbin-1 (RCN1) is expressed aberrantly and at a high level in various tumors, including acute myeloid leukemia (AML), yet its impact on AML remains unclear. In this study, we demonstrate that RCN1 knockdown significantly suppresses the viability of bone marrow mononuclear cells (BMMNCs) from AML patients but does not affect the viability of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cells (PBSCs) from healthy donors in vitro. Downregulation of RCN1 also reduces the viability of AML cell lines. Further studies showed that the RCN1 knockdown upregulates type I interferon (IFN-1) expression and promotes AML cell pyroptosis through caspase-1 and gasdermin D (GSDMD) signaling. Deletion of the mouse Rcn1 gene inhibits the viability of mouse AML cell lines but not the hematopoiesis of mouse bone marrow. In addition, RCN1 downregulation in human AML cells significantly inhibited tumor growth in the NSG mouse xenograft model. Taken together, our results suggest that RCN1 may be a potential target for AML therapy.
Collapse
Affiliation(s)
- Sisi Deng
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Yuming Pan
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Na An
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Fengyi Chen
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
- Department of Physiology, School of Basic Medical Sciences, International Cancer Center, Shenzhen University Health Sciences Center, China
| | - Huan Chen
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Heng Wang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
- Department of Hematology, Shenzhen Longhua District Central Hospital, China
| | - Xiaojing Xu
- China National GeneBank, BGI-Shenzhen, China
| | - Rui Liu
- China National GeneBank, BGI-Shenzhen, China
| | - Linlin Yang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, International Cancer Center, Shenzhen University Health Sciences Center, China
| | - Xin Du
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| | - Qiaoxia Zhang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University Health Sciences Center, China
| |
Collapse
|
15
|
Sushma, Mishra S, Kanchan S, Divakar A, Jha G, Sharma D, Kapoor R, Kumar Rath S. Alcohol induces ER stress and apoptosis by inducing oxidative stress and disruption of calcium homeostasis in glial cells. Food Chem Toxicol 2023; 182:114192. [PMID: 37980976 DOI: 10.1016/j.fct.2023.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Alcohol has teratogenic effects that can cause developmental abnormalities and alter anatomical and functional characteristics of the developed brain and other organs. Glial cells play a crucial role in alcohol metabolism and protect neurons from toxic effects of alcohol. However, chronic alcohol exposure can lead to uncontrollable levels of reactive oxygen species, resulting in the death of glial cells and exposing neuronal cells to the toxic effects of alcohol. The exact molecular mechanism of alcohol-induced glial cell death has not been fully explored. This study reported that different concentrations of alcohol induce different expressions of ER stress markers in glial cells, focusing on the role of endoplasmic reticulum (ER) stress. Alcohol-induced concentration-dependent toxicity in both cells also induced oxidative stress, leading to mitochondrial damage. The expression of p53 and apoptotic proteins was significantly up-regulated after alcohol exposure, while Bcl2 (anti-apoptotic) was down-regulated. The signalling pathway for ER stress was activated and up-regulated marker proteins in a concentration-dependent manner. Cells pre-treated with BAPTA-AM and NAC showed significant resistance against alcohol assault compared to other cells. These in vitro findings will prove valuable for defining the mechanism by which alcohol modulates oxidative stress, mitochondrial and ER damage leading to glial cell death.
Collapse
Affiliation(s)
- Sushma
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Sonam Kanchan
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Gaurav Jha
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Radhika Kapoor
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226001, India.
| |
Collapse
|
16
|
Muse O, Patell R, Peters CG, Yang M, El-Darzi E, Schulman S, Falanga A, Marchetti M, Russo L, Zwicker JI, Flaumenhaft R. The unfolded protein response links ER stress to cancer-associated thrombosis. JCI Insight 2023; 8:e170148. [PMID: 37651191 PMCID: PMC10629814 DOI: 10.1172/jci.insight.170148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombosis is a common complication of advanced cancer, yet the cellular mechanisms linking malignancy to thrombosis are poorly understood. The unfolded protein response (UPR) is an ER stress response associated with advanced cancers. A proteomic evaluation of plasma from patients with gastric and non-small cell lung cancer who were monitored prospectively for venous thromboembolism demonstrated increased levels of UPR-related markers in plasma of patients who developed clots compared with those who did not. Release of procoagulant activity into supernatants of gastric, lung, and pancreatic cancer cells was enhanced by UPR induction and blocked by antagonists of the UPR receptors inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Release of extracellular vesicles bearing tissue factor (EVTFs) from pancreatic cancer cells was inhibited by siRNA-mediated knockdown of IRE1α/XBP1 or PERK pathways. Induction of UPR did not increase tissue factor (TF) synthesis, but rather stimulated localization of TF to the cell surface. UPR-induced TF delivery to EVTFs was inhibited by ADP-ribosylation factor 1 knockdown or GBF1 antagonism, verifying the role of vesicular trafficking. Our findings show that UPR activation resulted in increased vesicular trafficking leading to release of prothrombotic EVTFs, thus providing a mechanistic link between ER stress and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Oluwatoyosi Muse
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Rybarski M, Mrohs D, Osenberg K, Hemmersbach M, Pfeffel K, Steinkamp J, Schmidt D, Violou K, Schäning R, Schmidtke K, Bader V, Andriske M, Bohne P, Mark MD, Winklhofer KF, Lübbert H, Zhu XR. Loss of parkin causes endoplasmic reticulum calcium dyshomeostasis by upregulation of reticulocalbin 1. Eur J Neurosci 2023; 57:739-761. [PMID: 36656174 DOI: 10.1111/ejn.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Increasing evidence suggests that astrocytes play an important role in the progression of Parkinson's disease (PD). Previous studies on our parkin knockout mouse demonstrated a higher accumulation of damaged mitochondria in astrocytes than in surrounding dopaminergic (DA) neurons, suggesting that Parkin plays a crucial role regarding their interaction during PD pathogenesis. In the current study, we examined primary mesencephalic astrocytes and neurons in a direct co-culture system and discovered that the parkin deletion causes an impaired differentiation of mesencephalic neurons. This effect required the parkin mutation in astrocytes as well as in neurons. In Valinomycin-treated parkin-deficient astrocytes, ubiquitination of Mitofusin 2 was abolished, whereas there was no significant degradation of the outer mitochondrial membrane protein Tom70. This result may explain the accumulation of damaged mitochondria in parkin-deficient astrocytes. We examined differential gene expression in the substantia nigra region of our parkin-KO mouse by RNA sequencing and identified an upregulation of the endoplasmic reticulum (ER) Ca2+ -binding protein reticulocalbin 1 (RCN1) expression, which was validated using qPCR. Immunostaining of the SN brain region revealed RCN1 expression mainly in astrocytes. Our subcellular fractionation of brain extract has shown that RCN1 is located in the ER and in mitochondria-associated membranes (MAM). Moreover, a loss of Parkin function reduced ATP-stimulated calcium-release in ER mesencephalic astrocytes that could be attenuated by siRNA-mediated RCN1 knockdown. Our results indicate that RCN1 plays an important role in ER-associated calcium dyshomeostasis caused by the loss of Parkin function in mesencephalic astrocytes, thereby highlighting the relevance of astrocyte function in PD pathomechanisms.
Collapse
Affiliation(s)
- Max Rybarski
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - David Mrohs
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Osenberg
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Biofrontera Pharmaceuticals AG, Leverkusen, Germany
| | - Maren Hemmersbach
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Pfeffel
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Joy Steinkamp
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - David Schmidt
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Karina Violou
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Ruth Schäning
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katja Schmidtke
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Andriske
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Pauline Bohne
- Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Melanie D Mark
- Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Biofrontera Pharmaceuticals AG, Leverkusen, Germany
| | - Xin-Ran Zhu
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| |
Collapse
|
18
|
Wu N, Zhu D, Li J, Li X, Zhu Z, Rao Q, Hu B, Wang H, Zhu Y. CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma. J Endocrinol Invest 2023:10.1007/s40618-023-02010-w. [PMID: 36853491 DOI: 10.1007/s40618-023-02010-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/09/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Prolactinomas are one of the most common pituitary neuroendocrine tumors (PitNETs), accounting for approximately 50% of all pituitary tumors. Dopamine agonists are the main treatment for prolactinoma, but a small number of patients are still resistant to pharmacotherapy. Recent discoveries have revealed that ferroptosis is involved in regulating tumor drug resistance. However, the role of ferroptosis in prolactinoma has not been reported. In this study, we aimed to explore the mechanism of a circRNA in ferroptosis in prolactinoma. METHODS The expression of circOMA1 in prolactinoma tissues was examined by quantitative reverse transcription PCR (qRT-PCR). The biological function of circOMA1 was evaluated in vitro and in vivo. To explore the role of ferroptosis in prolactinoma, we used qRT-PCR and western blotting. Glutamate-cysteine ligase, modifier subunit (GCLM) was predicted to be a direct target gene of miR-145-5p by bioinformatics analysis, which was confirmed by luciferase reporter assays. RESULTS circOMA1 was overexpressed in drug-resistant prolactinoma tissues compared with sensitive prolactinoma samples. We further found that circOMA1 promoted MMQ cells growth in vivo and in vitro. In addition, GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and xCT, and circOMA1 attenuated CAB-induced ferroptosis in MMQ cells in vivo and in vitro. CONCLUSION The present study demonstrates that circOMA1 attenuates CAB efficacy through ferroptosis resistance and may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Collapse
Affiliation(s)
- N Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - D Zhu
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - J Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - X Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Z Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Q Rao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - B Hu
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - H Wang
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Y Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
19
|
Liu H, Ding S, Nie H, Shi Y, Lai W, Liu X, Li K, Tian L, Xi Z, Lin B. PM 2.5 exposure at different concentrations and modes induces reproductive toxicity in male rats mediated by oxidative and endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114042. [PMID: 36087467 DOI: 10.1016/j.ecoenv.2022.114042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms of PM2.5 exposure in the male reproductive system, have scarcely been studied. Here, we demonstrate the possible relationship and molecular mechanisms between endoplasmic reticulum stress (ERS), oxidative stress, and reproductive toxicity caused by PM2.5. A "PM2.5 real-time online concentrated animal whole-body exposure system" was employed to expose male Wistar rats to PM2.5 for 12 weeks, which could induce sperm quality decline, apoptosis, inflammation, oxidative stress, ERS, and histopathological damage in the testis. In vitro study on cultured primary testicular spermatogonia and Leydig cells confirmed that treatment with PM2.5 (0-320 μg/mL) for 24 h decreased cell survival rate, increased reactive oxygen species, lactate dehydrogenase and 8-hydroxydeoxyguanosine levels, induced DNA damage, ERS and apoptosis, and inhibit the secretion and synthesis of testosterone in Leydig cells. These results clarified that ERS pathways triggered by oxidative stress could significantly induce CHOP and caspase-12 activation, which are significantly associated with cell apoptosis. However, oxidative stress and ERS inhibitors significantly inhibited the occurrence of these injuries. In conclusion, PM2.5 triggers the ERS pathway and induces DNA damage in rat testicular cells through oxidative stress, ultimately leading to cellular apoptosis. Furthermore, high-concentration intermittent inhalation was more harmful than low-concentration continuous inhalation when the total mass of PM2.5 exposure was the same.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Susu Ding
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
20
|
Genetic variation as a long-distance modulator of RAD21 expression in humans. Sci Rep 2022; 12:13035. [PMID: 35906355 PMCID: PMC9338076 DOI: 10.1038/s41598-022-15081-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Somatic mutations and changes in expression of RAD21 are common in many types of cancer. Moreover, sub-optimal levels of RAD21 expression in early development can result in cohesinopathies. Altered RAD21 levels can result directly from mutations in the RAD21 gene. However, whether DNA variants outside of the RAD21 gene could control its expression and thereby contribute to cancer and developmental disease is unknown. In this study, we searched for genomic variants that modify RAD21expression to determine their potential to contribute to development or cancer by RAD21 dysregulation. We searched 42,953,834 genomic variants for a spatial-eQTL association with the transcription of RAD21. We identified 123 significant associations (FDR < 0.05), which are local (cis) or long-distance (trans) regulators of RAD21 expression. The 123 variants co-regulate a further seven genes (AARD, AKAP11, GRID1, KCNIP4, RCN1, TRIOBP, and USP32), enriched for having Sp2 transcription factor binding sites in their promoter regions. The Sp2 transcription factor and six of the seven genes had previously been associated with cancer onset, progression, and metastasis. Our results suggest that genome-wide variation in non-coding regions impacts on RAD21 transcript levels in addition to other genes, which then could impact on oncogenesis and the process of ubiquitination. This identification of distant co-regulation of oncogenes represents a strategy for discovery of novel genetic regions influencing cancer onset and a potential for diagnostics.
Collapse
|
21
|
Liu J, Yang C, Zhang H, Hu W, Bergquist J, Wang H, Deng T, Yang X, Zhang C, Zhu Y, Chi X, Mi J, Wang Y. Quantitative proteomics approach reveals novel biomarkers and pathological mechanism of keloid. Proteomics Clin Appl 2022; 16:e2100127. [PMID: 35435317 PMCID: PMC9541363 DOI: 10.1002/prca.202100127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/01/2022] [Accepted: 04/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Keloid is a pathological skin scar formation with complex and unclear molecular pathology mechanism. Novel biomarkers and associated mechanisms are needed to improve current therapies. OBJECTIVES To identify novel biomarkers and underlying pathological mechanisms of keloids. METHODS Six pairs of keloid scar tissues and corresponding normal skin tissues were quantitatively analyzed by a high-resolution label-free mass spectrometry-based proteomics approach. Differential protein expression data was further analyzed by a comprehensive bioinformatics approach to identify novel biomarkers and mechanistic pathways for keloid formation. Candidate biomarkers were validated experimentally. RESULTS In total, 1359 proteins were identified by proteomic analysis. Of these, 206 proteins exhibited a significant difference in expression between keloid scar and normal skin tissues. RCN3 and CALU were significantly upregulated in keloids. RCN1 and PDGFRL were uniquely expressed in keloids. Pathway analysis suggested that the XBP1-mediated unfolded protein response (UPR) pathway was involved in keloid formation. Moreover, a PDGFRL centric gene coexpression network was constructed to illustrate its function in skin. CONCLUSIONS AND CLINICAL RELEVANCE Our study proposed four novel biomarkers and highlighted the role of XBP1-mediated UPR pathway in the pathology of keloids. It provided novel biological insights that contribute to develop novel therapeutic strategies for keloids.
Collapse
Affiliation(s)
- Jian Liu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanShandongChina,Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and wound RepairJinanShandongChina
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Huayu Zhang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanShandongChina,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and wound RepairJinanShandongChina
| | - Wei Hu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Jonas Bergquist
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina,Department of Chemistry – BMC, Analytical Chemistry and NeurochemistryUppsala UniversityUppsalaSweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, BMCUppsala UniversityUppsalaSweden
| | - Tingzhi Deng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Xueling Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Chao Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Yanping Zhu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of PharmacyBinzhou Medical UniversityYantaiShandongChina
| | - Yibing Wang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanShandongChina,Department of Plastic SurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and wound RepairJinanShandongChina
| |
Collapse
|
22
|
Xu Y, Chen J, Chen J, Teng J. EI24 promotes cell adaption to ER stress by coordinating IRE1 signaling and calcium homeostasis. EMBO Rep 2022; 23:e51679. [PMID: 35005829 PMCID: PMC8892245 DOI: 10.15252/embr.202051679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) is a subcellular organelle crucial for protein folding and calcium storage. Accumulation of unfolded proteins or calcium depletion causes ER stress. Deficiency of ER stress adaptation leads to apoptosis, which is associated with several human disorders. Here, we reveal that ER transmembrane protein EI24 promotes cell adaptation to ER stress by coordinating the IRE1 branch of the unfolded protein response (UPR) and calcium signaling. Under nonstressed conditions, EI24 binds to the kinase domain of IRE1 to inhibit its activation. Upon ER stress, EI24 disassociates from IRE1 to permit UPR activation, and meanwhile targets IP3R1 to prevent ER calcium depletion, which together promote cell adaptation to ER stress. EI24 knockout causes failure of ER stress adaptation and apoptosis. Thus, EI24 is a novel anti-apoptotic factor implicated in ER stress signaling.
Collapse
Affiliation(s)
- Yiwei Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijingChina,Postdoctoral ProgrammeGuosen SecuritiesShenzhenChina
| | - Jie Chen
- Institute of Molecular MedicinePeking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijingChina,Center for Quantitative BiologyPeking UniversityBeijingChina
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
23
|
Chen C, Yan S, Geng Z, Wang Z. Fracture repair by IOX2: Regulation of the hypoxia inducible factor-1α signaling pathway and BMSCs. Eur J Pharmacol 2022; 921:174864. [PMID: 35219731 DOI: 10.1016/j.ejphar.2022.174864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The treatment of fracture delayed union and nonunion has become a challenging problem. Hypoxia inducible factor-1α (HIF-1α) is reported to be a key factor in fracture healing, and is degraded by hydroxylation of prolyl hydroxylase (PHDs) under normal oxygen. Small molecules could inhibit the activity of PHDs, stabilize HIF-1α protein, regulate the expression of downstream target genes of HIF-1α, and make the body adapt to hypoxia. The migration and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is the most promising candidate for the treatment of fracture nonunion. Here we reported that IOX2, an HIF-1α PHD inhibitor, markedly improved the proliferation and migration of BMSCs by upregulating intracellular Ca2+ and concomitant decreasing reactive oxygen species (ROS) in vitro, and facilitated the repair of bone fracture by increasing the number of BMSCs and cartilage formation in vivo. No significant influence of IOX2 on the proliferation and migration of BMSCs after silencing of the HIF-1α. Together, our findings indicated that IOX2 promoted the proliferation and migration of BMSCs via the HIF-1α pathway and further accelerated fracture healing. These results provide a deeper understanding of the mechanism by which HIF promotes fracture healing.
Collapse
Affiliation(s)
- Chunxia Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Department of Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Bugliani M, Tavarini S, Grano F, Tondi S, Lacerenza S, Giusti L, Ronci M, Maidecchi A, Marchetti P, Tesi M, Angelini LG. Protective effects of Stevia rebaudiana extracts on beta cells in lipotoxic conditions. Acta Diabetol 2022; 59:113-126. [PMID: 34499239 PMCID: PMC8758658 DOI: 10.1007/s00592-021-01793-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
AIMS Stevia rebaudiana Bertoni leaf extracts have gained increasing attention for their potential protection against type 2 diabetes. In this study, we have evaluated the possible beneficial effects of Stevia rebaudiana leaf extracts on beta-cells exposed to lipotoxicity and explored some of the possible mechanisms involved. METHODS Extracts, deriving from six different chemotypes (ST1 to ST6), were characterized in terms of steviol glycosides, total phenols, flavonoids, and antioxidant activity. INS-1E beta cells and human pancreatic islets were incubated 24 h with 0.5 mM palmitate with or without varying concentrations of extracts. Beta-cell/islet cell features were analyzed by MTT assay, activated caspase 3/7 measurement, and/or nucleosome quantification. In addition, the proteome of INS-1E cells was assessed by bi-dimensional electrophoresis (2-DE). RESULTS The extracts differed in terms of antioxidant activity and stevioside content. As expected, 24 h exposure to palmitate resulted in a significant decrease of INS-1E cell metabolic activity, which was counteracted by all the Stevia extracts at 200 μg/ml. However, varying stevioside only concentrations were not able to protect palmitate-exposed cells. ST3 extract was also tested with human islets, showing an anti-apoptotic effect. Proteome analysis showed several changes in INS-1E beta-cells exposed to ST3, mainly at the endoplasmic reticulum and mitochondrial levels. CONCLUSIONS Stevia rebaudiana leaf extracts have beneficial effects on beta cells exposed to lipotoxicity; this effect does not seem to be mediated by stevioside alone (suggesting a major role of the leaf phytocomplex as a whole) and might be due to actions on the endoplasmic reticulum and the mitochondrion.
Collapse
Affiliation(s)
- Marco Bugliani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvia Tavarini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesca Grano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvia Tondi
- Aboca SpA Società Agricola, Sansepolcro, Tuscany, Italy
| | | | - Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maurizio Ronci
- Department of Pharmacy and Centre for Advanced Studies and Technologies (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Department of Pharmacy and Centre for Advanced Studies and Technologies (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luciana G Angelini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Centro Interdipartimentale NUTRAFOOD, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Competitive binding and molecular crowding regulate the cytoplasmic interactome of non-viral polymeric gene delivery vectors. Nat Commun 2021; 12:6445. [PMID: 34750370 PMCID: PMC8576037 DOI: 10.1038/s41467-021-26695-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
In contrast to the processes controlling the complexation, targeting and uptake of polycationic gene delivery vectors, the molecular mechanisms regulating their cytoplasmic dissociation remains poorly understood. Upon cytosolic entry, vectors become exposed to a complex, concentrated mixture of molecules and biomacromolecules. In this report, we characterise the cytoplasmic interactome associated with polycationic vectors based on poly(dimethylaminoethyl methacrylate) (PDMAEMA) and poly(2-methacrylolyloxyethyltrimethylammonium chloride) (PMETAC) brushes. To quantify the contribution of different classes of low molar mass molecules and biomacromolecules to RNA release, we develop a kinetics model based on competitive binding. Our results identify the importance of competition from highly charged biomacromolecules, such as cytosolic RNA, as a primary regulator of RNA release. Importantly, our data indicate the presence of ribosome associated proteins, proteins associated with translation and transcription factors that may underly a broader impact of polycationic vectors on translation. In addition, we bring evidence that molecular crowding modulates competitive binding and demonstrate how the modulation of such interactions, for example via quaternisation or the design of charge-shifting moieties, impacts on the long-term transfection efficiency of polycationic vectors. Understanding the mechanism regulating cytosolic dissociation will enable the improved design of cationic vectors for long term gene release and therapeutic efficacy. Factors controlling release of loaded cargo from polycationic gene delivery vectors are still poorly understood. Here, the authors report on a study of mechanisms of RNA release, highlighting the role of competitive binding, and characterise the interactome associated with vectors upon cytosolic entry.
Collapse
|
26
|
Fu H, Chen R, Wang Y, Xu Y, Xia C, Zhang B. Reticulocalbin 1 is required for proliferation and migration of non-small cell lung cancer cells regulated by osteoblast-conditioned medium. J Cell Mol Med 2021; 25:11198-11211. [PMID: 34747128 PMCID: PMC8650041 DOI: 10.1111/jcmm.17040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023] Open
Abstract
Reticulocalbin1 (RCN1) is implicated in tumorigenesis and tumour progression. However, whether RCN1‐mediated bone metastasis of non‐small cell lung cancer (NSCLC) cells was elusive. Here, we assessed the effect of osteoblast‐conditioned medium (CM) on proliferation and migration of NSCLC cell line, NCI‐H1299 and NCI‐H460 cells, and identified the soluble mediators in CMs from osteoblasts and NSCLC cells using MTT, Clonogenicity, Transwell, wound healing, RT‐PCR, and Western blotting assays, and LC‐MS/MS analysis, respectively. Furthermore, the role of RCN1 was investigated in NSCLC cells cultured with or without osteoblast‐CM. Tumour growth and bone resorption were measured in a nude mouse model bearing NCI‐H1299 cells transduced with shRNA/RCN1 vector using in vivo imaging technique and micro‐CT. The results showed that RCN1 with a higher abundance in osteoblast‐CM, which was present in extracellular vesicles (EVs), enhanced RCN1 expression in NSCLC cells. Osteoblast‐CM partially offset the inhibitory effect of RCN1 depletion on proliferation and migration of NSCLC cells. RCN1 depletion‐induced endoplasmic reticulum (ER) stress caused by increasing GRP78, CHOP, IRE1α, p‐IRE1α, p‐PERK and p‐JNK, which was positively regulated by self‐induced autophagy, contributed to suppression of proliferation and migration in NCI‐H1299 cells. Therefore, osteoblasts produced RCN1 to transfer into NSCLC cells partially through EVs, facilitating proliferation and migration of NSCLC cells via blocking ER stress. RCN1 could be required for proliferation and migration of NSCLC cells regulated by osteoblast‐CM.
Collapse
Affiliation(s)
- Haijing Fu
- Cancer Research Center, School of Medicine, Xiamen University, Fujian, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, Fujian, China
| | - Yue Wang
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yang Xu
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Chun Xia
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Bing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Fujian, China
| |
Collapse
|
27
|
Lu W, Chen H, Liang B, Ou C, Zhang M, Yue Q, Xie J. Integrative Analyses and Verification of the Expression and Prognostic Significance for RCN1 in Glioblastoma Multiforme. Front Mol Biosci 2021; 8:736947. [PMID: 34722631 PMCID: PMC8548715 DOI: 10.3389/fmolb.2021.736947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma multiform is a lethal primary brain tumor derived from astrocytic, with a poor prognosis in adults. Reticulocalbin-1 (RCN1) is a calcium-binding protein, dysregulation of which contributes to tumorigenesis and progression in various cancers. The present study aimed to identify the impact of RCN1 on the outcomes of patients with Glioblastoma multiforme (GBM). The study applied two public databases to require RNA sequencing data of Glioblastoma multiform samples with clinical data for the construction of a training set and a validation set, respectively. We used bioinformatic analyses to determine that RCN1 could be an independent factor for the overall survival of Glioblastoma multiform patients. In the training set, the study constructed a predictive prognostic model based on the combination of RCN1 with various clinical parameters for overall survival at 0.5-, 1.0-, and 1.5-years, as well as developed a nomogram, which was further validated by validation set. Pathways analyses indicated that RCN1 was involved in KEAS and MYC pathways and apoptosis. In vitro experiments indicated that RCN1 promoted cell invasion of Glioblastoma multiform cells. These results illustrated the prognostic role of RCN1 for overall survival in Glioblastoma multiform patients, indicated the promotion of RCN1 in cell invasion, and suggested the probability of RCN1 as a potential targeted molecule for treatment in Glioblastoma multiform.
Collapse
Affiliation(s)
- Weicheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Hong Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Chaopeng Ou
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Mingwei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qiuyuan Yue
- Department of Radiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jingdun Xie
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| |
Collapse
|
28
|
RCN1 induces sorafenib resistance and malignancy in hepatocellular carcinoma by activating c-MYC signaling via the IRE1α-XBP1s pathway. Cell Death Discov 2021; 7:298. [PMID: 34663798 PMCID: PMC8523720 DOI: 10.1038/s41420-021-00696-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
The increasing incidence of hepatocellular carcinoma (HCC) is of great concern globally, but the molecular pathogenesis of these tumors remains unclear. Sorafenib is a first-line drug for the treatment of advanced HCC. However, the efficacy of sorafenib in improving patient survival is limited, and most patients inevitably develop resistance to this drug. Recent studies have demonstrated that the activation of the IRE1α–XBP1s pathway might play a protective role in the response to sorafenib and contribute to malignancy in HCC. Here, we found that RCN1, an endoplasmic reticulum resident protein, is significantly upregulated in sorafenib-resistant HCC cells and promotes tumor progression. Our analysis showed that RCN1 may be an independent predictor of tumor recurrence and overall survival. Mechanistically, RCN1 promotes the dissociation of GRP78 from IRE1α in sorafenib-resistant cells by interacting with GRP78 through its EFh1/2 domain. Subsequently, the IRE1α–XBP1s pathway, a branch of the unfolded protein response, is sustainably activated. Interestingly, IRE1α–XBP1s pathway activity is required for c-MYC signaling, one of the most highly activated oncogenic pathways in HCC. These results suggest that RCN1-targeted therapy might be a feasible strategy for the treatment of HCC.
Collapse
|
29
|
Ham J, Lim W, Song G. Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116835. [PMID: 33706242 DOI: 10.1016/j.envpol.2021.116835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Pendimethalin (PDM) is a dinitroaniline crop pesticide that is extensively utilized worldwide. However, the reproductive toxicity and cellular mechanisms of PDM have not been identified. Therefore, we elucidated the adverse effects of PDM on the reproductive system using mouse testicular Leydig and Sertoli cells (TM3 and TM4 cells, respectively). Our results demonstrated that PDM suppressed the viability and proliferation of TM3 and TM4 cells. Additionally, PDM induced cytosolic calcium upregulation and permeabilization of mitochondrial membrane potential in both TM3 and TM4 cells. We also verified that PDM activates the endoplasmic reticulum (ER) stress pathway and autophagy. Furthermore, we confirmed that activation of ER stress and autophagy were blocked by 2-aminoethoxydiphenyl borate (2-APB) treatment. Finally, we confirmed PDM-induced cell cycle arrest and apoptosis in TM3 and TM4 cells. Thus, we first demonstrated that PDM impedes the survival of testis cells, and further, their function.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Emodin-Induced Oxidative Inhibition of Mitochondrial Function Assists BiP/IRE1 α/CHOP Signaling-Mediated ER-Related Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8865813. [PMID: 33968299 PMCID: PMC8084644 DOI: 10.1155/2021/8865813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Cassiae Semen is a widely used herbal medicine and a popular edible variety in many dietary or health beverage. Emerging evidence disclosed that improper administration of Cassiae Semen could induce obvious liver injury, which is possibly attributed to emodin, one of the bioactive anthraquinone compounds in Cassiae Semen, which caused hepatotoxicity, but the underlying mechanisms are not completely understood. Hence, the present study firstly explored the possible role of oxidative stress-mediated mitochondrial dysfunction and ER stress in emodin-cause apoptosis of L02 cells, aiming to elaborate possible toxic mechanisms involved in emodin-induced hepatotoxicity. Our results showed that emodin-induced ROS activated ER stress and the UPR via the BiP/IRE1α/CHOP signaling pathway, followed by ER Ca2+ release and cytoplasmic Ca2+ overloading. At the same time, emodin-caused redox imbalance increased mtROS while decreased MMP and mitochondrial function, resulting in the leaks of mitochondrial-related proapoptotic factors. Interestingly, blocking Ca2+ release from ER by 2-APB could inhibit emodin-induced apoptosis of L02, but the restored mitochondrial function did not reduce the apoptosis rates of emodin-treated cells. Besides, tunicamycin (TM) and doxorubicin (DOX) were used to activate ER stress and mitochondrial injury at a dosage where obvious apoptosis was not observed, respectively. We found that cotreatment with TM and DOX significantly induced apoptosis of L02 cells. Thus, all the results indicated that emodin-induced excessive ROS generation and redox imbalance promoted apoptosis, which was mainly associated with BiP/IRE1α/CHOP signaling-mediated ER stress and would be enhanced by oxidative stress-mediated mitochondrial dysfunction. Altogether, this finding has implicated that redox imbalance-mediated ER stress could be an alternative target for the treatment of Cassiae Semen or other medicine-food homologous varieties containing emodin-induced liver injury.
Collapse
|
31
|
EGFRvIII Promotes Cell Survival during Endoplasmic Reticulum Stress through a Reticulocalbin 1-Dependent Mechanism. Cancers (Basel) 2021; 13:cancers13061198. [PMID: 33801941 PMCID: PMC7999088 DOI: 10.3390/cancers13061198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary A key molecule, EGFRvIII has been shown to provide several growth advantages for brain tumors. However, we have found a new mechanism in which the EGFRvIII provides increased survival to brain cancer cells when under sub-optimal conditions. Specifically, we have found that the EGFRvIII drives the expression of a molecule called Reticulocalbin 1 (RCN1) and that RCN1 blocks cell stress and cell death, thereby allowing cells to survive and proliferate. Importantly, these findings will allow for the generation of drugs that block the function of EGFRvIII and RCN1 with the hope that these drugs will induce brain cancer cell death. Abstract Reticulocalbin 1 (RCN1) is an endoplasmic reticulum (ER)-residing protein, involved in promoting cell survival during pathophysiological conditions that lead to ER stress. However, the key upstream receptor tyrosine kinase that regulates RCN1 expression and its potential role in cell survival in the glioblastoma setting have not been determined. Here, we demonstrate that RCN1 expression significantly correlates with poor glioblastoma patient survival. We also demonstrate that glioblastoma cells with expression of EGFRvIII receptor also have high RCN1 expression. Over-expression of wildtype EGFR also correlated with high RCN1 expression, suggesting that EGFR and EGFRvIII regulate RCN1 expression. Importantly, cells that expressed EGFRvIII and subsequently showed high RCN1 expression displayed greater cell viability under ER stress compared to EGFRvIII negative glioblastoma cells. Consistently, we also demonstrated that RCN1 knockdown reduced cell viability and exogenous introduction of RCN1 enhanced cell viability following induction of ER stress. Mechanistically, we demonstrate that the EGFRvIII-RCN1-driven increase in cell survival is due to the inactivation of the ER stress markers ATF4 and ATF6, maintained expression of the anti-apoptotic protein Bcl-2 and reduced activity of caspase 3/7. Our current findings identify that EGFRvIII regulates RCN1 expression and that this novel association promotes cell survival in glioblastoma cells during ER stress.
Collapse
|
32
|
Lan T, Bai M, Chen X, Wang Y, Li Y, Tian Y, He Y, Wu Z, Yu H, Chen Z, Chen C, Yu Y, Cheng K, Xie P. iTRAQ-based proteomics implies inflammasome pathway activation in the prefrontal cortex of CSDS mice may influence resilience and susceptibility. Life Sci 2020; 262:118501. [PMID: 32991880 DOI: 10.1016/j.lfs.2020.118501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
AIMS Major depressive disorder, as a destructive mental health disorder, is a major contributor to disability and death. Numerous studies have illustrated that activation of inflammation and fluctuating immune reactions play a crucial role in the physiopathology of depression. The effectiveness of antidepressants is affected by the intensity of the inflammatory response. Thus, we aim to reveal the correlation of inflammatory factors and depression. MAIN METHODS Isobaric tags for relative and absolute quantitation (iTRAQ™)-based proteomics was applied to verify the quantitation of target proteins in the PFC of chronic social defeat stress (CSDS) model mice. Ingenuity pathway analysis (IPA) was performed to explore related pathways, and the involvement of molecules was validated by western blotting and real time-quantitative polymerase chain reaction (RT-qPCR). KEY FINDINGS According to the IPA results, CSDS-susceptible mice and CSDS-resilient mice both exhibited alterations of the inflammasome pathway in the PFC. Compared with control mice, susceptible mice subjected to CSDS showed an increased ATP-activated purinergic receptor P2X7 (also known as P2RX7) protein level. Nevertheless, the expression levels of cysteinyl aspartate-specific protease 1 (Caspase 1) and apoptosis-associated speck-like protein containing a CARD (ASC) were reduced in CSDS mice, and downregulation of interleukin-1β (IL-1β) was found in susceptible mice. Moreover, no significant difference was found in nuclear factor-κB levels among the three groups. SIGNIFICANCE CSDS administration leads to dysfunctions of key molecules in the inflammasome pathway, promoting depressive-like behaviors in mice.
Collapse
Affiliation(s)
- Tianlan Lan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Mengge Bai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiangyu Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yu Tian
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yong He
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Heming Yu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yaping Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cheng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
33
|
|
34
|
Huang ZH, Qiao J, Feng YY, Qiu MT, Cheng T, Wang J, Zheng CF, Lv ZQ, Wang CH. Reticulocalbin-1 knockdown increases the sensitivity of cells to Adriamycin in nasopharyngeal carcinoma and promotes endoplasmic reticulum stress-induced cell apoptosis. Cell Cycle 2020; 19:1576-1589. [PMID: 32436770 PMCID: PMC7469451 DOI: 10.1080/15384101.2020.1733750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/09/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) mainly appears in southeastern Asian countries, including China. Adriamycin (ADM), a type of antitumor drug, is widely applied in treatments against various cancers. Nevertheless, cancer cells will eventually develop drug resistance to ADM. The present study aims to explore the potential role of reticulocalbin-1 (RCN1) in NPC cells resistance to ADM. Microarray-based analysis was used to screen NPC-related genes, with RCN1 acquired for this current study. RCN1 expression in NPC tissues and cells was determined. The biological function of RCN1 on NPC cell apoptosis was evaluated via gain- and loss-of-function experiments in 5-8 F/ADM and 5-8 F cells by delivering si-RCN1 and RCN1-vector. The function of endoplasmic reticulum (ER) stress on cell apoptosis was measured with the involvement of the PERK-CHOP signaling pathway. Furthermore, tumor formation in nude mice was performed to evaluate the survival condition and RCN1 effects in vivo. RCN1 was highly expressed in NPC tissues and cell lines. The increased expression of ER-related proteins ATF4, CHOP, and the extents of IRE1 and PERK phosphorylation were observed. RCN1 knockdown was found to reduce resistance of NPC cells/tissues to ADM while activating ER stress through the activated PERK-CHOP signaling pathway, which further promoted NPC cell apoptosis. These in vitro findings were detected in vivo on tumor formation in nude mice. In conclusion, the present study provides evidence that RCN1 knockdown stimulates ADM sensitivity in NPC by promoting ER stress-induced cell apoptosis, highlighting a theoretical basis for NPC treatment.
Collapse
Affiliation(s)
- Ze-Hao Huang
- Department of Head & Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Jun Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | | | - Meng-Ting Qiu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Chao-Feng Zheng
- Linfen Meternity & Child Healthcare Hospital, Linfen, P.R. China
| | - Zhi-Qin Lv
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Cai-Hong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| |
Collapse
|
35
|
Franco DP, de Biazi BI, Zanetti TA, Marques LA, de Lima L, Lepri SR, Mantovani MS. Apoptotic and cell cycle response to homoharringtonine and harringtonine in wild and mutant p53 hepatocarcinoma cells. Hum Exp Toxicol 2020; 39:1405-1416. [PMID: 32431164 DOI: 10.1177/0960327120926257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the modes of action of harringtonine (HT) and homoharringtonine (HHT) alkaloids in cell with wild (HepG2/C3A) and mutant p53 (HuH-7.5). We performed assays for cytotoxicity, genotoxicity, induction of apoptosis, cell cycle phase, and membrane integrity. Obtained data were compared with the relative expression of mRNA of genes related to proliferation, apoptosis, cell cycle control, metabolism of xenobiotics, and reticulum endoplasmic stress. The relative expression of the genes showed an increase in apoptosis-inducing mRNAs, such as TNF and BBC3, as well as a reduction in BCL2 and BAK. The mRNAs of CYP2E1 and CYP2C19 xenobiotic metabolism genes increased in both lineages, while CYP3A4 increased only in the HuH-7.5 lineage. The mRNA expression of endoplasmic reticulum (ER) stress genes (ERN1 and EIF2AK3) was shown to increase in HHT and HT treatments. A similar increase was recorded in the mRNA expression of the TRAF2 gene. The changes observed in this study support the hypothesis that ER stress was more strongly associated with TNF induction, causing cell death by apoptosis in p53 mutant cells. This result with wild and mutant p53 cells may have clinical implications in the use of these compounds.
Collapse
Affiliation(s)
- D P Franco
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - B I de Biazi
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - T A Zanetti
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - L A Marques
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Lva de Lima
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - S R Lepri
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - M S Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
36
|
Lei Z, Yang L, Yang Y, Yang J, Niu Z, Zhang X, Song Q, Lei Y, Wu H, Guo J. Activation of Wnt/β-catenin pathway causes insulin resistance and increases lipogenesis in HepG2 cells via regulation of endoplasmic reticulum stress. Biochem Biophys Res Commun 2020; 526:764-771. [PMID: 32265032 DOI: 10.1016/j.bbrc.2020.03.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Wnt/β-catenin signaling is involved in glucose and lipid metabolism, but the mechanism is not clear yet. AIM The objective is to study mechanisms of Wnt/β-catenin signaling on regulating hepatocytes metabolism. METHODS Real-time qPCR, Western blot, and Oil-red O staining methods were used. RESULTS The Wnt/β-catenin signaling was activated in hepatocytes by CP21R7, and the level of phosphorylated IRS-1 (Ser307) and TRB3 were significantly increased, while the levels of phosphorylated IRS-1 (Tyr612) and phosphorylated Akt were decreased. Moreover, the expression of FGF21, FAS, SCD1, PPARγ and ADRP was significantly increased. The expression of ATF4, ATF5, eIF2α, GRP78, CHOP and phosphorylated level of PERK were also increased. The expression of FGF21 and TRB3 was significantly down-regulated, and the lipid droplets were notably reduced after the ER stress was inhibited by TUDCA. The expression of FGF21 was significantly decreased when the IRE1 pathway of the UPR was inhibited by STF-083010. CONCLUSIONS Activation of Wnt/β-catenin signaling pathway could cause insulin resistance and lipogenesis in hepatocytes via regulation of the IRE1 pathway of the ER stress and UPR, providing new targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Lanxiang Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou, 510080, PR China
| | - Jing Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Zhenpeng Niu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Xueying Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Qi Song
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Huijuan Wu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
37
|
Cheng Y, Luo W, Li Z, Cao M, Zhu Z, Han C, Dai X, Zhang W, Wang J, Yao H, Chao J. CircRNA-012091/PPP1R13B-mediated Lung Fibrotic Response in Silicosis via Endoplasmic Reticulum Stress and Autophagy. Am J Respir Cell Mol Biol 2020; 61:380-391. [PMID: 30908929 DOI: 10.1165/rcmb.2019-0017oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Silicosis is a progressive fibrotic disease of lung tissue caused by long-term inhalation of SiO2. However, relatively few studies of the direct effects of SiO2 on lung fibroblasts have been performed. PPP1R13B is a major member of the apoptosis-stimulating proteins of the p53 family, but its role in pulmonary fibrosis is unclear. To elucidate the role of PPP1R13B in the pathological process of silicosis, we explored the molecular mechanisms related to PPP1R13B and the functional effects of proliferation and migration of fibroblasts. Through lentivirus transfection, Western blotting, and fluorescent in situ hybridization experiments, we found that SiO2 downregulated circRNA-012091 (circ-012091) expression in lung fibroblasts and induced upregulation of downstream PPP1R13B. Transfection of L929 cells with PPP1R13B CRISPR NIC plasmid inhibited the upregulation of endoplasmic reticulum stress (ERS) and autophagy-related protein expression in lung fibroblasts treated with SiO2, and induced decreases in cell proliferation, migration, and viability. Transfection of L929 cells with the PPP1R13B CRISPR ACT plasmid induced increases in cell proliferation, migration, and viability. In addition, the ERS inhibitor salubrinal and the autophagy inhibitor 3-methyladenine inhibited the increased migration of L929 cells transfected with the PPP1R13B CRISPR ACT plasmid. These results suggest that PPP1R13B regulated by circ-012091 promotes the proliferation and migration of lung fibroblasts through ERS and autophagy, and plays a crucial role in the development of pulmonary fibrosis in silicosis.
Collapse
Affiliation(s)
- Yusi Cheng
- Department of Physiology.,Department of Respiration, Zhongda Hospital, and.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | | | | | | | | | | | | | | | - Honghong Yao
- Department of Pharmacology, School of Medicine, and
| | - Jie Chao
- Department of Physiology.,Department of Respiration, Zhongda Hospital, and.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
38
|
An Endoplasmic Reticulum CREC Family Protein Regulates the Egress Proteolytic Cascade in Malaria Parasites. mBio 2020; 11:mBio.03078-19. [PMID: 32098818 PMCID: PMC7042697 DOI: 10.1128/mbio.03078-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is thought to play an essential role during egress of malaria parasites because the ER is assumed to be required for biogenesis and secretion of egress-related organelles. However, no proteins localized to the parasite ER have been shown to play a role in egress of malaria parasites. In this study, we generated conditional mutants of the Plasmodium falciparum endoplasmic reticulum-resident calcium-binding protein (PfERC), a member of the CREC family. Knockdown of the PfERC gene showed that this gene is essential for asexual growth of P. falciparum Analysis of the intraerythrocytic life cycle revealed that PfERC is essential for parasite egress but is not required for protein trafficking or calcium storage. We found that PfERC knockdown prevents the rupture of the parasitophorous vacuole membrane. This is because PfERC knockdown inhibited the proteolytic maturation of the subtilisin-like serine protease SUB1. Using double mutant parasites, we showed that PfERC is required for the proteolytic maturation of the essential aspartic protease plasmepsin X, which is required for SUB1 cleavage. Further, we showed that processing of substrates downstream of the proteolytic cascade is inhibited by PfERC knockdown. Thus, these data establish that the ER-resident CREC family protein PfERC is a key early regulator of the egress proteolytic cascade of malaria parasites.IMPORTANCE The divergent eukaryotic parasites that cause malaria grow and divide within a vacuole inside a host cell, which they have to break open once they finish cell division. The egress of daughter parasites requires the activation of a proteolytic cascade, and a subtilisin-like protease initiates a proteolytic cascade to break down the membranes blocking egress. It is assumed that the parasite endoplasmic reticulum plays a role in this process, but the proteins in this organelle required for egress remain unknown. We have identified an early ER-resident regulator essential for the maturation of the recently discovered aspartic protease in the egress proteolytic cascade, plasmepsin X, which is required for maturation of the subtilisin-like protease. Conditional loss of PfERC results in the formation of immature and inactive egress proteases that are unable to breakdown the vacuolar membrane barring release of daughter parasites.
Collapse
|
39
|
Ham J, Lim W, You S, Song G. Butylated hydroxyanisole induces testicular dysfunction in mouse testis cells by dysregulating calcium homeostasis and stimulating endoplasmic reticulum stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134775. [PMID: 31710847 DOI: 10.1016/j.scitotenv.2019.134775] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), has been used as a food additive. However, BHA acts as an environmental hormone, i.e., endocrine disruptor. Here, we investigated BHA-induced male reproductive dysfunction in mouse Leydig and Sertoli cells. We found that BHA suppressed proliferation and induced cell cycle arrest in TM3 and TM4 cells. Furthermore, we investigated mitochondrial permeabilization, expression profiles of pro-apoptotic and anti-apoptotic proteins, calcium influx, and endoplasmic reticulum (ER) stress in testicular cells after BHA treatment. The results indicated that BHA-mediated calcium dysregulation and ER stress downregulated steroidogenesis- and spermatogenesis-related genes in mouse testis cell lines. Additionally, proliferation of both TM3 and TM4 cells in response to BHA treatment was regulated via the Mapk and Akt signaling pathways. Therefore, constant BHA exposure may lead to testicular toxicity via mitochondrial dysfunction, ER stress, and abnormal calcium levels in the testis.
Collapse
Affiliation(s)
- Jiyeon Ham
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
40
|
Ma X, Sun J, Zhong L, Wang Y, Huang Q, Liu X, Jin S, Zhang J, Liang XJ. Evaluation of Turning-Sized Gold Nanoparticles on Cellular Adhesion by Golgi Disruption in Vitro and in Vivo. NANO LETTERS 2019; 19:8476-8487. [PMID: 31711283 DOI: 10.1021/acs.nanolett.9b02826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In contrast to the booming production and application of nanomaterials, research on the toxicological impacts and possible hazards of nanoparticles to tissues and organs is still in its infancy. Golgi apparatus is one of the most important organelles in cells and plays a key role in intracellular protein processing. The structural integrity of Golgi is vital for its normal function, and Golgi disturbance could result in a wide range of diseases and disorders. In this study, for the first time we found gold nanoparticles (Au NPs) induced size-dependent cytoplasmic calcium increase and Golgi fragmentation, which hampers normal Golgi functions, leads to abnormal protein processing, and causes cellular adhesion decrease, while cell viability was not significantly compromised. Additionally, early renal pathological changes were induced in vivo. This work is significant to nanoparticle research because it illustrates the important role of size on Au NP-induced changes in Golgi morphology and their consequences in vitro and in vivo, which has important implications for the biological applications of nanomaterials.
Collapse
Affiliation(s)
- Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P.R. China
- Beijing Municipal Institute of Labour Protection No. 55 Taoranting Road , Xicheng District, Beijing 100054 , P.R. China
| | - Jiadong Sun
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , P.R. China
| | - Lin Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P.R. China
| | - Yufei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | | | - Xiaoli Liu
- The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , China
| | - Shubin Jin
- Beijing Municipal Institute of Labour Protection No. 55 Taoranting Road , Xicheng District, Beijing 100054 , P.R. China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , P.R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P.R. China
| |
Collapse
|
41
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
Yuan L, Lin J, Xu Y, Peng Y, Clark JM, Gao R, Park Y, Sun Q. Deltamethrin promotes adipogenesis via AMPKα and ER stress-mediated pathway in 3T3- L1 adipocytes and Caenorhabditis elegans. Food Chem Toxicol 2019; 134:110791. [PMID: 31476344 DOI: 10.1016/j.fct.2019.110791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022]
Abstract
Previous research has shown that deltamethrin, a Type-II pyrethroid, increases fat accumulation in adipocytes and Caenorhabditis elegans. The underlying mechanisms on how deltamethrin promotes fat accumulation, however, are unknown. The aim of the current study was therefore to determine the possible mechanisms through which deltamethrin increases fat accumulation in mouse 3T3-L1 adipocytes and C. elegans. Deltamethrin (10 μM) significantly increased fat accumulation, and the expression of adipogenic regulators, such as CCAAT/enhancer-binding protein (C/EBPα) and fatty acid synthase (FAS). Deltamethrin significantly decreased the phosphorylation of AMP-activated kinase α (AMPKα), while it increased protein expression of endoplasmic reticulum (ER) stress markers in 3T3-L1 adipocytes and C. elegans. The activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the inhibition of ER stress with 4-phenylbutyrate (4-PBA) abolished the effects of deltamethrin on adipogenesis. Further study reveals that 4-PBA recovered the decreased AMPK phosphorylation induced by deltamethrin. These results suggest that deltamethrin promotes adipogenesis through an ER stress-AMPKα mediated pathway.
Collapse
Affiliation(s)
- Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jie Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yuejia Xu
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Ye Peng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China; Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
43
|
Xu P, Yao Y, Zhou J. Particulate matter with a diameter of ≤2.5 μm induces and enhances bleomycin-induced pulmonary fibrosis by stimulating endoplasmic reticulum stress in rat. Biochem Cell Biol 2019; 97:357-363. [PMID: 31059283 DOI: 10.1139/bcb-2018-0053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was designed to investigate the effect of particulate matter with a diameter of ≤2.5 μm (PM2.5) on bleomycin (BLM) induced pulmonary fibrosis. Thirty-two Sprague Dawley rats were assigned into four groups (intratracheal instillation of 500 μL of PBS (control), 2 mg/kg PM2.5, 3.5 mg/kg BLM A5, and BLM plus 2.0 mg/kg PM2.5) and were fed for 14 days. All rats were sacrificed after the study. Lung tissues and bronchoalveolar lavage fluid were prepared for histological and biological analysis. We found that PM2.5 caused dose-trend pulmonary alveolitis and fibrosis. Histological scores, expression of α-SMA and Collagen I as well as contents of TNF-α and IL-6 in lung tissues were upregulated by treatment of PM2.5. PM2.5 did not change the percentage of neutrophils and macrophages. The expression of endoplasmic reticulum (ER) stress markers Chop and GRP78 was upregulated by treatment of PM2.5. In comparison with either PM2.5 or BLM treatment, BLM plus PM2.5 treatment induced higher histological scores, higher expression of α-SMA, collagen I, TNF-α, IL-6, Chop, and GRP78, with increased neutrophil counts and decreased macrophage counts. We concluded that PM2.5 instillation caused pulmonary alveolitis and fibrosis by stimulating ER stress responses in rat. PM2.5 also showed a synergistic effect on BLM-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Panfeng Xu
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Yake Yao
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| |
Collapse
|
44
|
Janker L, Mayer RL, Bileck A, Kreutz D, Mader JC, Utpatel K, Heudobler D, Agis H, Gerner C, Slany A. Metabolic, Anti-apoptotic and Immune Evasion Strategies of Primary Human Myeloma Cells Indicate Adaptations to Hypoxia. Mol Cell Proteomics 2019; 18:936-953. [PMID: 30792264 PMCID: PMC6495257 DOI: 10.1074/mcp.ra119.001390] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple Myeloma (MM) is an incurable plasma cell malignancy primarily localized within the bone marrow (BM). It develops from a premalignant stage, monoclonal gammopathy of undetermined significance (MGUS), often via an intermediate stage, smoldering MM (SMM). The mechanisms of MM progression have not yet been fully understood, all the more because patients with MGUS and SMM already carry similar initial mutations as found in MM cells. Over the last years, increased importance has been attributed to the tumor microenvironment and its role in the pathophysiology of the disease. Adaptations of MM cells to hypoxic conditions in the BM have been shown to contribute significantly to MM progression, independently from the genetic predispositions of the tumor cells. Searching for consequences of hypoxia-induced adaptations in primary human MM cells, CD138-positive plasma cells freshly isolated from BM of patients with different disease stages, comprising MGUS, SMM, and MM, were analyzed by proteome profiling, which resulted in the identification of 6218 proteins. Results have been made fully accessible via ProteomeXchange with identifier PXD010600. Data previously obtained from normal primary B cells were included for comparative purposes. A principle component analysis revealed three clusters, differentiating B cells as well as MM cells corresponding to less and more advanced disease stages. Comparing these three clusters pointed to the alteration of pathways indicating adaptations to hypoxic stress in MM cells on disease progression. Protein regulations indicating immune evasion strategies of MM cells were determined, supported by immunohistochemical staining, as well as transcription factors involved in MM development and progression. Protein regulatory networks related to metabolic adaptations of the cells became apparent. Results were strengthened by targeted analyses of a selected panel of metabolites in MM cells and MM-associated fibroblasts. Based on our data, new opportunities may arise for developing therapeutic strategies targeting myeloma disease progression.
Collapse
Affiliation(s)
- Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Rupert L Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dominique Kreutz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Johanna C Mader
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kirsten Utpatel
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Hermine Agis
- Department of Oncology, University Clinic for Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria;.
| |
Collapse
|
45
|
Jin J, Shi X, Li Y, Zhang Q, Guo Y, Li C, Tan P, Fang Q, Ma Y, Ma RZ. Reticulocalbin 3 Deficiency in Alveolar Epithelium Exacerbated Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2019; 59:320-333. [PMID: 29676583 DOI: 10.1165/rcmb.2017-0347oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum (ER) lumen protein localized to the secretory pathway. We have reported that Rcn3 plays a critical role in alveolar epithelial type II cell maturation during perinatal lung development, but its biological role in the adult lung is largely unknown. In this study, we found marked induction of Rcn3 expression in alveolar epithelium during bleomycin-induced pulmonary fibrosis, which is most obvious in alveolar epithelial type II cells (AECIIs). To further examine Rcn3 in pulmonary injury remodeling, we generated transgenic mice to selectively delete Rcn3 in AECIIs in adulthood. Although Rcn3 deletion did not cause obvious abnormalities in the lung architecture and mechanics, the exposure of Rcn3-deleted mice to bleomycin led to exacerbated pulmonary fibrosis and reduced lung mechanics. These Rcn3-deleted mice also displayed enhanced alveolar epithelial cell (AEC) apoptosis and ER stress after bleomycin treatment, which was confirmed by in vitro studies both in primary AECIIs and mouse lung epithelial cells. Consistently, Rcn3 deficiency also enhanced ER stress and apoptosis induced by ER stress inducers, tunicamycin and thapsigargin. In addition, Rcn3 deficiency caused blunted wound closure capability of AECs, but not altered proliferation and bleomycin-induced epithelial-mesenchymal transition process. Collectively, these findings indicate that bleomycin-induced upregulation of Rcn3 in AECIIs appears to contribute to AECII survival and wound healing. These observations, for the first time, suggest a novel role of Rcn3 in regulating pulmonary injury remodeling, and shed additional light on the mechanism of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiawei Jin
- 1 The Clinical Research Center, and.,4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Shi
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,5 The University of Chinese Academy of Sciences, Beijing, China
| | - Yongchao Li
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,2 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qianyu Zhang
- 3 Key Laboratory of Reproduction and Genetics, Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Yu Guo
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,5 The University of Chinese Academy of Sciences, Beijing, China
| | - Chaokun Li
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,5 The University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Tan
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiuhong Fang
- 3 Key Laboratory of Reproduction and Genetics, Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Yingmin Ma
- 3 Key Laboratory of Reproduction and Genetics, Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Runlin Z Ma
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,5 The University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Proteomic characterization of early lung response to breast cancer metastasis in mice. Exp Mol Pathol 2019; 107:129-140. [PMID: 30763573 DOI: 10.1016/j.yexmp.2019.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The tumor-promoting rearrangement of the lungs facilitates the process of cancer cell survival in a foreign microenvironment and enables their protection against immune defense. The study aimed to define the fingerprint of the early rearrangement of the lungs via the proteomic profiling of the lung tissue in the experimental model of tumor metastasis in a murine 4T1 mammary adenocarcinoma. MATERIALS AND METHODS The studies were performed on 7-8-week-old BALB/c female mice. Viable 4T1 cancer cells were orthotopically inoculated into the right mammary fat pad. The experiment was performed in the early phase of the tumor metastasis one and two weeks after cancer cell inoculation. The comparative analysis of protein profiles was carried out with the aid of the two-dimensional difference in gel electrophoresis (2D-DIGE). Proteins, of which expression differed significantly, were identified using nano-liquid chromatography coupled to a high-resolution mass spectrometry (nanoLC/hybrid ion trap- Orbitrap XL Discovery). RESULTS Palpable primary tumors were noted in the 2nd week after cancer cell inoculation. The investigated period preceded the formation of numerous macrometastases in the lungs, however the metastasis-promoting changes were visible very early. Primary tumor-induced inflammation developed in the lungs as early as after the 1st week and progressed during the 2nd week, accompanied by increased concentration of 2-OH-E+, an oxidative stress marker, and imbalance in nitric oxide metabolites, pointing to endothelium dysfunction. The early proteomic changes in the lungs in the 1st week after 4T1 cell inoculation resulted in the reorganization of lung tissue structure [actin, cytoplasmic 1 (Actb), tubulin beta chain (Tubb5), lamin-B1 (Lmnb1), serine protease inhibitor A3K (Serpina3k)] and activation of defense mechanisms [selenium-binding protein 1 (Selenbp1), endoplasmin (Hsp90b1), stress 70 protein, mitochondrial (Hspa9), heat shock protein HSP 90-beta (Hsp90ab1)], but also modifications in metabolic pathways [glucose-6-phosphate 1-dehydrogenase X (G6pdx), ATP synthase subunit beta, mitochondrial (Atp5b), L-lactate dehydrogenase B chain (Ldhb)]. Further development of the solid tumor after the 2nd week following cancer cell inoculation, secretion of prolific tumor-derived factors as well as the presence of the increasing number of circulating cancer cells and extravasation processes further impose reorganization of the lung tissue [Actb, vimentin (Vim), clathrin light chain A (Clta)], altering additional metabolic pathways [annexin A5 (Anxa5), Rho GDP-dissociation inhibitor 2 (Arhgdib), complement 1 Q subcomponent-binding protein, mitochondrial (C1qbp), 14-3-3 protein zeta/delta (Ywhaz), peroxiredoxin-6 (Prdx6), chitinase-like protein 4 (Chi3l4), reticulocalbin-1 (Rcn1), EF-hand domain-containing protein D2 (Efhd2), calumenin (Calu)]. Interestingly, many of differentially expressed proteins were involved in calcium homeostasis (Rcn1, Efhd2, Calu, Actb, Vim, Lmnb1, Clta, Tubb5, Serpina3k, Hsp90b1, Hsp90ab1, Hspa9. G6pdx, Atp5b, Anxa5, Arhgdib, Ywhaz). CONCLUSION The analysis enabled revealing the importance of calcium signaling during the early phase of metastasis development, early cytoskeleton and extracellular matrix reorganization, activation of defense mechanisms and metabolic adaptations. It seems that the tissue response is an interplay between pro- and anti-metastatic mechanisms accompanied by inflammation, oxidative stress and dysfunction of the barrier endothelial cells.
Collapse
|
47
|
Yao B, Zhang M, Leng X, Zhao D. Proteomic analysis of the effects of antler extract on chondrocyte proliferation, differentiation and apoptosis. Mol Biol Rep 2019; 46:1635-1648. [DOI: 10.1007/s11033-019-04612-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023]
|
48
|
Yin D, Chen Y, Lu R, Fan B, Zhu S, Xu X, Xu Z. Translocation Associated Membrane Protein 1 Contributes to Chronic Constriction Injury-Induced Neuropathic Pain in the Dorsal Root Ganglion and Spinal Cord in Rats. J Mol Neurosci 2018; 66:535-546. [PMID: 30338452 DOI: 10.1007/s12031-018-1187-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/25/2018] [Indexed: 11/30/2022]
Abstract
Neuropathic pain is a severe debilitating state caused by injury or dysfunction of somatosensory nervous system, and the clinical treatment is still challenging. Translocation associated membrane protein 1 (TRAM1), an adapter protein, participates in a variety of transduction pathways and mediates the biological functions such as cell proliferation, activation, and differentiation. However, whether TRAM1 is involved in the pathogenesis of neuropathic pain is still unclear. In our study, we reported the role of TRAM1 in the maintenance of neuropathic pain induced by chronic constriction injury (CCI) on rats. By western blot and staining, we found that TRAM1 increased in the dorsal root ganglion (DRG) neurons and spinal cord (SC) neurons after CCI. Being similar to IB4-, CGRP-positive expressed area, TRAM1 also expressed in the superficial laminae of the spinal cord dorsal horn (SCDH), suggesting it was related to the innervations of the primary afferents. Moreover, intrathecal injection of TRAM1 siRNA or Toll-like receptor 4 (TLR4) inhibitor induced low expression of TRAM1 in SC, which alleviated the pain response induced by CCI. The upregulation of p-NF-κB expression was reversed by TRAM1 siRNA in SC and DRG, and intrathecal injection of p-NF-κB inhibitor relieved neuropathic pain. All the data indicated that TRAM1 could take part in CCI-induced pain and might be a potential treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Dekun Yin
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Funing County, 224400, Jiangsu Province, China
| | - Yonglin Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongxiang Lu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Bingbing Fan
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China
| | - Xingguo Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
49
|
Sukumaran P, Sun Y, Zangbede FQ, da Conceicao VN, Mishra B, Singh BB. TRPC1 expression and function inhibit ER stress and cell death in salivary gland cells. FASEB Bioadv 2018; 1:40-50. [PMID: 31111119 PMCID: PMC6524637 DOI: 10.1096/fba.1021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Disturbances in endoplasmic reticulum (ER) Ca2+ homeostasis have been associated with many diseases including loss of salivary glands. Although significant progress has been accomplished which led to the increase in our understanding of the cellular responses to ER stress, the factors/ion channels that could inhibit ER stress are not yet identified. Here we show that TRPC1 (transient receptor potential canonical 1) is involved in regulating Ca2+ homeostasis and loss of TRPC1 decreased ER Ca2+ levels, inhibited the unfolded protein response (UPR), that induced loss of salivary gland cells. We provide further evidence that ER stress inducing agents (Tunicamycin and Brefeldin A) disrupts Ca2+ homeostasis by directly inhibiting TRPC1-mediated Ca2+ entry, which led to ER stress in salivary gland cells. Moreover, induction of ER stress lead to an increase in CHOP expression, which decreased TRPC1 expression and subsequently attenuated autophagy along with increased apoptosis. Importantly, TRPC1-/- mice showed increased ER stress, increased immune cell infiltration, loss of Ca2+ homeostasis, decreased saliva secretion, and decreased salivary gland survival. Finally, restoration of TRPC1 not only maintained Ca2+ homeostasis, but inhibited ER stress that induced cell survival. Overall these results suggest a significant role of TRPC1 Ca2+ channels in ER stress and homeostatic function/survival of salivary gland cells.
Collapse
Affiliation(s)
- Pramod Sukumaran
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Fredice Quenum Zangbede
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201
| | | | - Bibhuti Mishra
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center, San Antonio, TX 78229.,Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201
| |
Collapse
|
50
|
Roest G, La Rovere RM, Bultynck G, Parys JB. IP 3 Receptor Properties and Function at Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:149-178. [PMID: 29594861 DOI: 10.1007/978-3-319-55858-5_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|