1
|
Contreras-Llanes M, Alguacil J, Capelo R, Gómez-Ariza JL, García-Pérez J, Pérez-Gómez B, Martin-Olmedo P, Santos-Sánchez V. Internal Cumulated Dose of Toxic Metal(loid)s in a Population Residing near Naturally Occurring Radioactive Material Waste Stacks and an Industrial Heavily Polluted Area with High Mortality Rates in Spain. J Xenobiot 2025; 15:29. [PMID: 39997372 PMCID: PMC11857056 DOI: 10.3390/jox15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Huelva is a city in SW Spain with 150,000 inhabitants, located in the proximity of two heavy chemical industry complexes, the highest naturally occurring radioactive material (NORM) waste (phosphogypsum) stacks of Europe and a highly polluted estuary, with elevated cardiovascular disease and cancer mortality rates. This study analyses the association between cumulated exposure levels to 16 metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Tl, U, V, and Zn) measured in the toenail of a sample (n = 55 participants) of the general control population of Huelva City who were involved in the MCC-Spain study and the spatial proximity patterns to the local polluting sources. Residents of the city of Huelva have higher levels of Fe, Ni, Cr, Se, As, and Co in their toenails compared to the levels found in populations with similar characteristics living in non-polluted areas. Moreover, the highest concentrations of As, Pb, Cd, Mo, and Se were found in toenails of participants living near the NORM waste stack, while the highest Cu, Zn, and Al contents corresponded to people residing near the industrial area. The spatial distribution of most of the metal(loid)s studied appears to be mainly controlled by anthropogenic factors.
Collapse
Affiliation(s)
- Manuel Contreras-Llanes
- Research Group in Clinical, Environmental and Epidemiology Social Transformation (EPICAS), Department of Sociology, Social Work and Public Health, University of Huelva, 21007 Huelva, Spain; (M.C.-L.); (J.A.); (R.C.)
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| | - Juan Alguacil
- Research Group in Clinical, Environmental and Epidemiology Social Transformation (EPICAS), Department of Sociology, Social Work and Public Health, University of Huelva, 21007 Huelva, Spain; (M.C.-L.); (J.A.); (R.C.)
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (J.G.-P.); (B.P.-G.)
| | - Rocío Capelo
- Research Group in Clinical, Environmental and Epidemiology Social Transformation (EPICAS), Department of Sociology, Social Work and Public Health, University of Huelva, 21007 Huelva, Spain; (M.C.-L.); (J.A.); (R.C.)
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| | - José Luis Gómez-Ariza
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain
| | - Javier García-Pérez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (J.G.-P.); (B.P.-G.)
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública—CIBERESP), 28029 Madrid, Spain; (J.G.-P.); (B.P.-G.)
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Piedad Martin-Olmedo
- Andalusian School of Public (EASP), 18011 Granada, Spain;
- Biosanitary Research Institute of Granada (Ibs. Granada), 18012 Granada, Spain
| | - Vanessa Santos-Sánchez
- Research Group in Clinical, Environmental and Epidemiology Social Transformation (EPICAS), Department of Sociology, Social Work and Public Health, University of Huelva, 21007 Huelva, Spain; (M.C.-L.); (J.A.); (R.C.)
- Research Centre for Natural Resources, Health and Environment (RENSMA), Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| |
Collapse
|
2
|
Friedman A, Schildroth S, Fruh V, Krengel MH, Tripodis Y, Placidi D, White RF, Lucchini RG, Smith DR, Wright RO, Horton MK, Claus Henn B. Sex-specific associations of a ferroalloy metal mixture with motor function in Italian adolescents. Environ Epidemiol 2024; 8:e321. [PMID: 39022189 PMCID: PMC11254121 DOI: 10.1097/ee9.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Motor function is critical for children's health, yet remains an understudied neurodevelopmental domain. Exposure to metals has been linked with motor function, but no study has examined the joint effects of metal mixtures. Methods We evaluated cross-sectional associations between a metal mixture and motor function among 569 adolescents (10-14 years old) living near the ferroalloy industry. Concentrations of blood lead, hair manganese, hair copper, and hair chromium were quantified using inductively coupled plasma mass spectrometry. Neuropsychologists administered multiple fine motor function assessments: pursuit aiming, finger tapping, visual reaction time (VRT), and subtests from the Luria Nebraska battery. We estimated associations between motor function and the metal mixture using quantile-based g-computation and multivariable linear regression, adjusting for child age, sex, and socioeconomic status. We explored sex-specific associations in stratified models. Results Associations between the metal mixture and motor function were mostly null but were modified by sex. We observed a beneficial association among females: a quartile increase in all metals in the mixture was associated with a 2.6% faster average response time on the VRT (95% confidence interval [CI] = -4.7%, -0.5%), driven by Cu and Cr. In contrast, this association was adverse among males (ß = 1.5% slower response time [95% CI = -0.7%, 3.9%]), driven by Cu and Mn. Conclusions Results suggest that males may be more susceptible to the adverse effects of metal exposure on motor function during adolescence than females. Future studies, particularly prospective study designs, are warranted to further understand the associations of metal mixtures with motor function.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Maxine H. Krengel
- Department of Neurology, Boston University Medical School, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurology, Boston University Medical School, Boston, Massachusetts
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, Florida
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
3
|
Oluyemi K, Rechtman E, Invernizzi A, Gennings C, Renzetti S, Patrono A, Cagna G, Reichenberg A, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK. Sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood. ENVIRONMENTAL RESEARCH 2024; 250:118443. [PMID: 38365053 PMCID: PMC11102844 DOI: 10.1016/j.envres.2024.118443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Externalizing disorders, such as attention-deficit/hyperactivity disorder (ADHD), account for the majority of the child/adolescent referrals to mental health services and increase risk for later-life psychopathology. Although the expression of externalizing disorders is more common among males, few studies have addressed how sex modifies associations between metal exposure and adolescent externalizing symptoms. This study aimed to examine sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood. Among 150 adolescents and young adults (55% female, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study in Brescia, Italy, we measured five metals (manganese (Mn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni)) in four biological matrices (blood, urine, hair, and saliva). Externalizing symptoms were assessed using the Achenbach System of Empirically Based Assessment (ASEBA) Youth Self-Report (YSR) or Adult Self Report (ASR). Using generalized weighted quantile sum (WQS) regression, we investigated the moderating effect of sex (i.e., assigned at birth) on associations between the joint effect of exposure to the metal mixture and externalizing symptoms, adjusting for age and socioeconomic status. We observed that metal mixture exposure was differentially associated with aggressive behavior in males compared to females (β = -0.058, 95% CI [-0.126, -0.009]). In males, exposure was significantly associated with more externalizing problems, and aggressive and intrusive behaviors, driven by Pb, Cu and Cr. In females, exposure was not significantly associated with any externalizing symptoms. These findings suggest that the effect of metal exposure on externalizing symptoms differs in magnitude between the sexes, with males being more vulnerable to increased externalizing symptoms following metal exposure. Furthermore, our findings support the hypothesis that sex-specific vulnerabilities to mixed metal exposure during adolescence/young adulthood may play a role in sex disparities observed in mental health disorders, particularly those characterized by externalizing symptoms.
Collapse
Affiliation(s)
- Kristie Oluyemi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience Icahn School of Medicine at Mount Sinai, New York NY, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Alessandra Patrono
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, USA; Department of Biomedical, Metabolic Sciences and Neurosciences, University of Modena, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Pan K, Jia H, Chen R, Su C, Wang H, Zhang T, Wu Z. Sex-specific, non-linear and congener-specific association between mixed exposure to polychlorinated biphenyls (PCBs) and diabetes in U.S. adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116091. [PMID: 38340600 DOI: 10.1016/j.ecoenv.2024.116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Whether and to what extent the impact of exposure to various polychlorinated biphenyls (PCBs) congeners on diabetes, as well as the important contributors, have remained unclear. OBJECTIVE We aimed to investigate the association patterns between PCBs mixture and diabetes, identify the critical congeners, and explore the potential modifiers. METHODS The present study included 5900 U.S. adults from the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016. Weighted logistic regression, restricted cubic spline regression, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were applied to estimate the linear and non-linear associations of single and mixed PCB exposure with diabetes. Subgroup analyses were also conducted to explore potential sex differences. RESULTS In the weighted logistic regression model, total PCBs were positively associated with diabetes (OR = 1.33, P < 0.025), and significant non-linear associations were observed using RCS analyses. The non-linear positive association between PCBs mixed exposure and diabetes was likewise found in the WQS and BKMR results. PCB180, PCB194, PCB196, and PCB167 were with the highest weights in the WQS, and PCB209 and PCB66 were with the highest posterior inclusion probabilities in the BKMR. Additionally, exposure to total PCBs and most of individual PCB congeners were significantly associated with elevated risk of in females (OR = 1.74; P for trend < 0.001), while fewer significant associations were observed in males. CONCLUSION The present study highlighted the importance of the long-term surveillance of PCBs and the need to enhance protective measures against them. Notably, these associations were non-linear, congener-specific, and significantly stronger in females than males, especially at relatively high levels of PCBs exposure. Further prospective and mechanistic studies were warranted to ascertain the causal effects between PCBs mixture and diabetes.
Collapse
Affiliation(s)
- Keyu Pan
- Department of Biostatistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.; Institute for Medical Dataology, Shandong University, Jinan 250012, China
| | - Huixun Jia
- National Clinical Research Center for Ophthalmic Diseases; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.; Institute for Medical Dataology, Shandong University, Jinan 250012, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Zhenyu Wu
- School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Schildroth S, Kordas K, White RF, Friedman A, Placidi D, Smith D, Lucchini RG, Wright RO, Horton M, Claus Henn B. An Industry-Relevant Metal Mixture, Iron Status, and Reported Attention-Related Behaviors in Italian Adolescents. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27008. [PMID: 38363634 PMCID: PMC10871126 DOI: 10.1289/ehp12988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Exposure to environmental metals has been consistently associated with attention and behavioral deficits in children, and these associations may be modified by coexposure to other metals or iron (Fe) status. However, few studies have investigated Fe status as a modifier of a metal mixture, particularly with respect to attention-related behaviors. METHODS We used cross-sectional data from the Public Health Impact of Metals Exposure study, which included 707 adolescents (10-14 years of age) from Brescia, Italy. Manganese, chromium, and copper were quantified in hair samples, and lead was quantified in whole blood, using inductively coupled plasma mass spectrometry. Concentrations of Fe status markers (ferritin, hemoglobin, transferrin) were measured using immunoassays or luminescence assays. Attention-related behaviors were assessed using the Conners Rating Scales Self-Report Scale-Long Form, Parent Rating Scales Revised-Short Form, and Teacher Rating Scales Revised-Short Form. We employed Bayesian kernel machine regression to examine associations of the metal mixture with these outcomes and evaluate Fe status as a modifier. RESULTS Higher concentrations of the metals and ferritin were jointly associated with worse self-reported attention-related behaviors: metals and ferritin set to their 90th percentiles were associated with 3.0% [β = 0.03 ; 95% credible interval (CrI): - 0.01 , 0.06], 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08), and 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08) higher T -scores for self-reported attention deficit/hyperactivity disorder (ADHD) index, inattention, and hyperactivity, respectively, compared with when metals and ferritin were set to their 50th percentiles. These associations were driven by hair manganese, which exhibited nonlinear associations with all self-reported scales. There was no evidence that Fe status modified the neurotoxicity of the metal mixture. The metal mixture was not materially associated with any parent-reported or teacher-reported scale. CONCLUSIONS The overall metal mixture, driven by manganese, was adversely associated with self-reported attention-related behavior. These findings suggest that exposure to multiple environmental metals impacts adolescent neurodevelopment, which has significant public health implications. https://doi.org/10.1289/EHP12988.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Florida International University, Miami, Florida, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Invernizzi A, Renzetti S, Rechtman E, Ambrosi C, Mascaro L, Corbo D, Gasparotti R, Tang CY, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK, Curtin P. Neuro-environmental interactions: a time sensitive matter. Front Comput Neurosci 2024; 17:1302010. [PMID: 38260714 PMCID: PMC10800942 DOI: 10.3389/fncom.2023.1302010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). Methods We implemented an interpretable XGBoost-shapley additive explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages, 13-25 years) enrolled in the public health impact of metals exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, copper, nickel, and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood, and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Results Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated (p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Discussion Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Claudia Ambrosi
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona, Cremona, Italy
| | | | - Daniele Corbo
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Cheuk Y. Tang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Roberto G. Lucchini
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona, Cremona, Italy
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
7
|
Schildroth S, Valeri L, Kordas K, Shi B, Friedman A, Smith D, Placidi D, Wright RO, Lucchini RG, White RF, Horton M, Claus Henn B. Assessing the mediating role of iron status on associations between an industry-relevant metal mixture and verbal learning and memory in Italian adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167435. [PMID: 37774885 PMCID: PMC10918745 DOI: 10.1016/j.scitotenv.2023.167435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Metals, including lead (Pb), manganese (Mn), chromium (Cr) and copper (Cu), have been associated with neurodevelopment; iron (Fe) plays a role in the metabolism and neurotoxicity of metals, suggesting Fe may mediate metal-neurodevelopment associations. However, no study to date has examined Fe as a mediator of the association between metal mixtures and neurodevelopment. OBJECTIVE We assessed Fe status as a mediator of a mixture of Pb, Mn, Cr and Cu in relation to verbal learning and memory in a cohort of Italian adolescents. METHODS We used cross-sectional data from 383 adolescents (10-14 years) in the Public Health Impact of Metals Exposure Study. Metals were quantified in blood (Pb) or hair (Mn, Cr, Cu) using ICP-MS, and three markers of Fe status (blood hemoglobin, serum ferritin and transferrin) were quantified using luminescence assays or immunoassays. Verbal learning and memory were assessed using the California Verbal Learning Test for Children (CVLT-C). We used Bayesian Kernel Machine Regression Causal Mediation Analysis to estimate four mediation effects: the natural direct effect (NDE), natural indirect effect (NIE), controlled direct effect (CDE) and total effect (TE). Beta (β) coefficients and 95 % credible intervals (CIs) were estimated for all effects. RESULTS The metal mixture was jointly associated with a greater number of words recalled on the CVLT-C, but these associations were not mediated by Fe status. For example, when ferritin was considered as the mediator, the NIE for long delay free recall was null (β = 0.00; 95 % CI = -0.22, 0.23). Conversely, the NDE (β = 0.23; 95 % CI = 0.01, 0.44) indicated a beneficial association of the mixture with recall that operated independently of Fe status. CONCLUSION An industry-relevant metal mixture was associated with learning and memory, but there was no evidence of mediation by Fe status. Further studies in populations with Fe deficiency and greater variation in metal exposure are warranted.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Baoyi Shi
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University, Boston, MA, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
8
|
Schildroth S, Bauer JA, Friedman A, Austin C, Coull BA, Placidi D, White RF, Smith D, Wright RO, Lucchini RG, Arora M, Horton M, Claus Henn B. Early life manganese exposure and reported attention-related behaviors in Italian adolescents. Environ Epidemiol 2023; 7:e274. [PMID: 38912396 PMCID: PMC11189689 DOI: 10.1097/ee9.0000000000000274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 06/25/2024] Open
Abstract
Background Manganese (Mn) is an essential nutrient and neurotoxicant, and the neurodevelopmental effects of Mn may depend on exposure timing. Less research has quantitatively compared the impact of Mn exposure on neurodevelopment across exposure periods. Methods We used data from 125 Italian adolescents (10-14 years) from the Public Health Impact of Metals Exposure Study to estimate prospective associations of Mn in three early life exposure periods with adolescent attention-related behaviors. Mn was quantified in deciduous teeth using laser ablation-inductively coupled plasma-mass spectrometry to represent prenatal (2nd trimester-birth), postnatal (birth ~1.5 years), and childhood (~1.5-6 years) exposure. Attention-related behavior was evaluated using the Conners Behavior Rating Scales in adolescence. We used multivariable linear regression models to quantify associations between Mn in each exposure period, and multiple informant models to compare associations across exposure periods. Results Median tooth Mn levels (normalized to calcium) were 0.4 area under the curve (AUC) 55Mn:43Ca × 104, 0.1 AUC 55Mn:43Ca × 104, and 0.0006 55Mn:43Ca for the prenatal, postnatal, and childhood periods. A doubling in prenatal tooth Mn levels was associated with 5.3% (95% confidence intervals [CI] = -10.3%, 0.0%) lower (i.e., better) teacher-reported inattention scores, whereas a doubling in postnatal tooth Mn levels was associated with 4.5% (95% CI = -9.3%, 0.6%) and 4.6% (95% CI = -9.5%, 0.6%) lower parent-reported inattention and attention deficit/hyperactivity disorder index scores, respectively. Childhood Mn was not beneficially associated with reported attention-related behaviors. Conclusion Protective associations in the prenatal and postnatal periods suggest Mn is beneficial for attention-related behavior, but not in the childhood period.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Julia Anglen Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Brent A. Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurology, Boston University, Boston, Massachusetts
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Roberto G. Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, Florida
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
9
|
Friedman A, Schildroth S, Bauer JA, Coull BA, Smith DR, Placidi D, Cagna G, Krengel MH, Tripodis Y, White RF, Lucchini RG, Wright RO, Horton M, Austin C, Arora M, Claus Henn B. Early-life manganese exposure during multiple developmental periods and adolescent verbal learning and memory. Neurotoxicol Teratol 2023; 100:107307. [PMID: 37832858 PMCID: PMC10834060 DOI: 10.1016/j.ntt.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Manganese (Mn) is both an essential and toxic metal, and associations with neurodevelopment depend on exposure timing. Prospective data examining early life Mn with adolescent cognition are sparse. METHODS We enrolled 140 Italian adolescents (10-14 years old) from the Public Health Impact of Metals Exposure study. Mn in deciduous teeth was measured using laser ablation-mass spectrometry to represent prenatal, postnatal and early childhood exposure. The California Verbal Learning Test for Children (CVLT-C) was administered to assess adolescent verbal learning and memory. Multivariable regression models estimated changes in CVLT-C scores and the odds of making an error per doubling in dentine Mn in each exposure period. Multiple informant models tested for differences in associations across exposure periods. RESULTS A doubling in prenatal dentine Mn levels was associated with lower odds of making an intrusion error (OR = 0.23 [95% CI: 0.09, 0.61]). This beneficial association was not observed in other exposure periods. A doubling in childhood Mn was beneficially associated with short delay free recall: (ß = 0.47 [95% CI: -0.02, 0.97]), which was stronger in males (ß = 0.94 [95% CI: 0.05, 1.82]). Associations were null in the postnatal period. CONCLUSION Exposure timing is critical for understanding Mn-associated changes in cognitive function.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, USA.
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, USA
| | - Julia A Bauer
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Darmouth, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H Chan School of Public Health, Boston, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Maxine H Krengel
- Department of Neurology, Boston University School of Medicine, Boston, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, USA; Department of Neurology, Boston University School of Medicine, Boston, USA
| | - Roberto G Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, USA
| |
Collapse
|
10
|
Gatzke-Kopp LM, Riis JL, Ahmadi H, Piccerillo HL, Granger DA, Blair CB, Thomas EA. Environmental tobacco smoke exposure is associated with increased levels of metals in children's saliva. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:903-910. [PMID: 37147431 PMCID: PMC10733142 DOI: 10.1038/s41370-023-00554-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to environmental tobacco smoke (ETS) has been associated with detectable levels of cotinine (a nicotine metabolite) in children's saliva. However, tobacco smoke also contains toxic and essential trace metals, including chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni) and zinc (Zn). OBJECTIVE The current study examines whether there is a relationship between ETS exposure, as gauged by salivary cotinine, and salivary levels of these metals in a subset (n = 238) of children from the Family Life Project. METHODS Using inductively-coupled-plasma optical emission spectrophotometry, we measured levels of metals in saliva from children at ~90 months of age. Salivary cotinine was measured using a commercial immunoassay. RESULTS We found that Cr, Cu, Mn, and Zn were detected in most samples (85-99%) with lower levels of detection for Pb and Ni (9.3% and 13.9% respectively). There were no significant differences in any of the metal concentrations between males and females, nor were levels associated with body mass index, although significant differences in salivary Cr and Mn by race, state and income-to-needs ratio were observed. Children with cotinine levels >1 ng/ml had higher levels of Zn (b = 0.401, 95% CI: 0.183 to 0.619; p = 0.0003) and Cu (b = 0.655, 95% CI: 0.206 to 1.104; p = 0.004) compared to children with levels <1 ng/ml, after controlling for multiple confounders, including sex, race, BMI and income-to-needs ratio. Further, we show that children whose cotinine levels were >1 μg/L were more likely to have detectable levels of Pb in their saliva (b = 1.40, 95% CI: 0.424 to 2.459; p = 0.006) compared to children with cotinine levels <1 ng/ml, also considering confounders. IMPACT STATEMENT This is the first study to demonstrate significant associations between salivary cotinine and salivary levels of Cu, Zn and Pb, suggesting that environmental tobacco smoke exposure my be one source of increased children's exposure to heavy metals. This study also demonstrates that saliva samples can be used to measure heavy metal exposure, and thus serve as a non-invasive tool for assessing a broader range of risk indicators.
Collapse
Affiliation(s)
- Lisa M Gatzke-Kopp
- Department of Human Development and Family Studies, Penn State University, University Park, PA, 16802, USA
| | - Jenna L Riis
- Department of Psychological Sciences, University of California Irvine, Irvine, CA, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
| | - Hedyeh Ahmadi
- Department of Psychological Sciences, University of California Irvine, Irvine, CA, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
- University Statistical Consulting, LLC, Irvine, CA, USA
| | - Hillary L Piccerillo
- Department of Psychological Sciences, University of California Irvine, Irvine, CA, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
- Johns Hopkins University, Bloomberg School of Public Health, and School of Medicine, Baltimore, MD, USA
| | - Clancy B Blair
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Elizabeth A Thomas
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA.
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Lucchini R, Tieu K. Manganese-Induced Parkinsonism: Evidence from Epidemiological and Experimental Studies. Biomolecules 2023; 13:1190. [PMID: 37627255 PMCID: PMC10452806 DOI: 10.3390/biom13081190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Manganese (Mn) exposure has evolved from acute, high-level exposure causing manganism to low, chronic lifetime exposure. In this latter scenario, the target areas extend beyond the globus pallidus (as seen with manganism) to the entire basal ganglia, including the substantia nigra pars compacta. This change of exposure paradigm has prompted numerous epidemiological investigations of the occurrence of Parkinson's disease (PD), or parkinsonism, due to the long-term impact of Mn. In parallel, experimental research has focused on the underlying pathogenic mechanisms of Mn and its interactions with genetic susceptibility. In this review, we provide evidence from both types of studies, with the aim to link the epidemiological data with the potential mechanistic interpretation.
Collapse
Affiliation(s)
- Roberto Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
India Aldana S, Valvi D, Joshi A, Lucchini RG, Placidi D, Petrick L, Horton M, Niedzwiecki M, Colicino E. Salivary Metabolomic Signatures and Body Mass Index in Italian Adolescents: A Pilot Study. J Endocr Soc 2023; 7:bvad091. [PMID: 37457847 PMCID: PMC10341611 DOI: 10.1210/jendso/bvad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 07/18/2023] Open
Abstract
CONTEXT Obesity surveillance is scarce in adolescents, and little is known on whether salivary metabolomics data, emerging minimally invasive biomarkers, can characterize metabolic patterns associated with overweight or obesity in adolescents. OBJECTIVE This pilot study aims to identify the salivary molecular signatures associated with body mass index (BMI) in Italian adolescents. METHODS Saliva samples and BMI were collected in a subset of n = 74 young adolescents enrolled in the Public Health Impact of Metal Exposure study (2007-2014). A total of 217 untargeted metabolites were identified using liquid chromatography-high resolution mass spectrometry. Robust linear regression was used to cross-sectionally determine associations between metabolomic signatures and sex-specific BMI-for-age z-scores (z-BMI). RESULTS Nearly 35% of the adolescents (median age: 12 years; 51% females) were either obese or overweight. A higher z-BMI was observed in males compared to females (P = .02). One nucleoside (deoxyadenosine) and 2 lipids (18:0-18:2 phosphatidylcholine and dipalmitoyl-phosphoethanolamine) were negatively related to z-BMI (P < .05), whereas 2 benzenoids (3-hydroxyanthranilic acid and a phthalate metabolite) were positively associated with z-BMI (P < .05). In males, several metabolites including deoxyadenosine, as well as deoxycarnitine, hyodeoxycholic acid, N-methylglutamic acid, bisphenol P, and trigonelline were downregulated, while 3 metabolites (3-hydroxyanthranilic acid, theobromine/theophylline/paraxanthine, and alanine) were upregulated in relation to z-BMI (P < .05). In females, deoxyadenosine and dipalmitoyl-phosphoethanolamine were negatively associated with z-BMI while deoxycarnitine and a phthalate metabolite were positively associated (P < .05). A single energy-related pathway was enriched in the identified associations in females (carnitine synthesis, P = .04). CONCLUSION Salivary metabolites involved in nucleotide, lipid, and energy metabolism were primarily altered in relation to BMI in adolescents.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anu Joshi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto G Lucchini
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, FL 33199, USA
| | - Donatella Placidi
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Invernizzi A, Renzetti S, Rechtman E, Ambrosi C, Mascaro L, Corbo D, Gasparotti R, Tang CY, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK, Curtin P. Neuro-Environmental Interactions: a time sensitive matter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539456. [PMID: 37205412 PMCID: PMC10187306 DOI: 10.1101/2023.05.04.539456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The assessment of resting state (rs) neurophysiological dynamics relies on the control of sensory, perceptual, and behavioral environments to minimize variability and rule-out confounding sources of activation during testing conditions. Here, we investigated how temporally-distal environmental inputs, specifically metal exposures experienced up to several months prior to scanning, affect functional dynamics measured using rs functional magnetic resonance imaging (rs-fMRI). We implemented an interpretable XGBoost-Shapley Additive Explanation (SHAP) model that integrated information from multiple exposure biomarkers to predict rs dynamics in typically developing adolescents. In 124 participants (53% females, ages: 13-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of six metals (manganese, lead, chromium, cupper, nickel and zinc) in biological matrices (saliva, hair, fingernails, toenails, blood and urine) and acquired rs-fMRI scans. Using graph theory metrics, we computed global efficiency (GE) in 111 brain areas (Harvard Oxford Atlas). We used a predictive model based on ensemble gradient boosting to predict GE from metal biomarkers, adjusting for age and biological sex. Model performance was evaluated by comparing predicted versus measured GE. SHAP scores were used to evaluate feature importance. Measured versus predicted rs dynamics from our model utilizing chemical exposures as inputs were significantly correlated ( p < 0.001, r = 0.36). Lead, chromium, and copper contributed most to the prediction of GE metrics. Our results indicate that a significant component of rs dynamics, comprising approximately 13% of observed variability in GE, is driven by recent metal exposures. These findings emphasize the need to estimate and control for the influence of past and current chemical exposures in the assessment and analysis of rs functional connectivity.
Collapse
|
14
|
Schildroth S, Friedman A, White RF, Kordas K, Placidi D, Bauer JA, Webster TF, Coull BA, Cagna G, Wright RO, Smith D, Lucchini RG, Horton M, Claus Henn B. Associations of an industry-relevant metal mixture with verbal learning and memory in Italian adolescents: The modifying role of iron status. ENVIRONMENTAL RESEARCH 2023; 224:115457. [PMID: 36773645 PMCID: PMC10117691 DOI: 10.1016/j.envres.2023.115457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Biomarker concentrations of metals are associated with neurodevelopment, and these associations may be modified by nutritional status (e.g., iron deficiency). No prior study on associations of metal mixtures with neurodevelopment has assessed effect modification by iron status. OBJECTIVES We aimed to quantify associations of an industry-relevant metal mixture with verbal learning and memory among adolescents, and to investigate the modifying role of iron status on those associations. METHODS We used cross-sectional data from 383 Italian adolescents (10-14 years) living in proximity to ferroalloy industry. Verbal learning and memory was assessed using the California Verbal Learning Test for Children (CVLT-C), and metals were quantified in hair (manganese, copper, chromium) or blood (lead) using inductively coupled plasma mass spectrometry. Serum ferritin, a proxy for iron status, was measured using immunoassays. Covariate-adjusted associations of the metal mixture with CVLT subtests were estimated using Bayesian Kernel Machine Regression, and modification of the mixture associations by ferritin was examined. RESULTS Compared to the 50th percentile of the metal mixture, the 90th percentile was associated with a 0.12 standard deviation [SD] (95% CI = -0.27, 0.50), 0.16 SD (95% CI = -0.11, 0.44), and 0.11 SD (95% CI = -0.20, 0.43) increase in the number of words recalled for trial 5, long delay free, and long delay cued recall, respectively. For an increase from its 25th to 75th percentiles, copper was beneficially associated the recall trials when other metals were fixed at their 50th percentiles (for example, trial 5 recall: β = 0.31, 95% CI = 0.14, 0.48). The association between copper and trial 5 recall was stronger at the 75th percentile of ferritin, compared to the 25th or 50th percentiles. CONCLUSIONS In this metal mixture, copper was beneficially associated with neurodevelopment, which was more apparent at higher ferritin concentrations. These findings suggest that metal associations with neurodevelopment may depend on iron status, which has important public health implications.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA.
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA; Department of Neurology, Boston University, Boston MA, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Julia A Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston MA, USA
| | - Giuseppa Cagna
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz CA, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami FL, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| |
Collapse
|
15
|
Shaffer RM, Wright JM, Cote I, Bateson TF. Comparative susceptibility of children and adults to neurological effects of inhaled manganese: A review of the published literature. ENVIRONMENTAL RESEARCH 2023; 221:115319. [PMID: 36669586 PMCID: PMC11892012 DOI: 10.1016/j.envres.2023.115319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Manganese (Mn) is neurotoxic in adults and children. Current assessments are based on the more extensive adult epidemiological data, but the potential for greater childhood susceptibility remains a concern. To better understand potential lifestage-based variations, we compared susceptibilities to neurotoxicity in children and adults using Mn biomarker data. METHODS We developed a literature search strategy based on a Population, Exposures, Comparators, and Outcomes statement focusing on inhalation exposures and neurological outcomes in humans. Screening was performed using DistillerSR. Hair biomarker studies were selected for evaluation because studies with air measurements were unavailable or considered inadequate for children. Studies were paired based on concordant Mn source, biomarker, and outcome. Comparisons were made based on reported dose-response slopes (children vs. adults). Study evaluation was conducted to understand the confidence in our comparisons. RESULTS We identified five studies evaluating seven pairings of hair Mn and neurological outcomes (cognition and motor effects) in children and adults matched on sources of environmental Mn inhalation exposure. Two Brazilian studies of children and one of adults reported intelligent quotient (IQ) effects; effects in both comparisons were stronger in children (1.21 to 2.03-fold difference). In paired analyses of children and adults from the United States, children exhibited both stronger and weaker effects compared to adults (0.37 to 1.75-fold differences) on postural sway metrics. CONCLUSION There is limited information on the comparative susceptibility of children and adults to inhaled Mn. We report that children may be 0.37 to 2.03 times as susceptible as adults to neurotoxic effects of Mn, thereby providing a quantitative estimate for some aspects of lifestage variation. Due to the limited number of paired studies available in the literature, this quantitative estimate should be interpreted with caution. Our analyses do not account for other sources of inter-individual variation. Additional studies of Mn-exposed children with direct air concentration measurements would improve the evidence base.
Collapse
Affiliation(s)
- Rachel M Shaffer
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - J Michael Wright
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Ila Cote
- University of Colorado, School of Public Health, Aurora, CO, USA
| | - Thomas F Bateson
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| |
Collapse
|
16
|
Wu B, Guo X, Feng L, Gao J, Xia W, Xie P, Ma S, Liu H, Zhao D, Qu G, Sun C, Lowe S, Bentley R, Sun Y. Combined exposure to multiple dioxins and dioxin-like polychlorinated biphenyls on hypertension among US adults in NHANES: a cross-sectional study under three statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28730-28744. [PMID: 36401011 DOI: 10.1007/s11356-022-24271-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are mainly released as by-products of human activities, often in the form of mixtures, and the potential harm on human health deserves attention. Therefore, our study aimed to analyze the combined effect of dioxins and DL-PCB exposures on hypertension (HTN) among US adults. Data of eligible participants were acquired from the National Health and Nutrition Examination Survey (NHANES). Multiple logistic regression models with adjustment for covariates were applied to explore the associations between 13 persistent organic pollutants (POPs) and HTN. Stratified analyses and interaction analyses were then conducted by age and gender. Finally, the combined effects of dioxins and DL-PCBs on HTN were assessed by the weighted quantile sum (WQS) model and the Bayesian kernel machine regression (BKMR) model. A total of 976 adults were included in our study, of whom 397 had HTN. Spearman correlations indicated positive correlations among 13 POPs. And most of them (except PCB28, PCB66, and 1,2,3,4,7,8,9-hpcdf) had significant effects on HTN. The result of WQS revealed that mixed exposure to dioxins and DL-PCBs was significantly associated with increased risk of HTN (OR: 2.205; 95% CIs: 1.555, 3.127). The BKMR model also presented a positive trend of HTN risk with exposure to multiple dioxins and DL-PCBs. And 1,2,3,4,6,7,8,9-ocdd may be the main factor for this positive association. Considering the limitations of our cross-sectional study with the small sample, further prospective studies are necessary to validate our findings.
Collapse
Affiliation(s)
- Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongdong Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238006, Anhui, China.
| |
Collapse
|
17
|
Invernizzi A, Rechtman E, Oluyemi K, Renzetti S, Curtin P, Colicino E, Ambrosi C, Mascaro L, Patrono A, Corbo D, Cagna G, Gasparotti R, Reichenberg A, Tang CY, Smith DR, Placidi D, Lucchini RG, Wright RO, Horton MK. Topological network properties of resting-state functional connectivity patterns are associated with metal mixture exposure in adolescents. Front Neurosci 2023; 17:1098441. [PMID: 36814793 PMCID: PMC9939635 DOI: 10.3389/fnins.2023.1098441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Adolescent exposure to neurotoxic metals adversely impacts cognitive, motor, and behavioral development. Few studies have addressed the underlying brain mechanisms of these metal-associated developmental outcomes. Furthermore, metal exposure occurs as a mixture, yet previous studies most often consider impacts of each metal individually. In this cross-sectional study, we investigated the relationship between exposure to neurotoxic metals and topological brain metrics in adolescents. Methods In 193 participants (53% females, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of four metals (manganese, lead, copper, and chromium) in multiple biological media (blood, urine, hair, and saliva) and acquired resting-state functional magnetic resonance imaging scans. Using graph theory metrics, we computed global and local efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used weighted quantile sum (WQS) regression models to examine association between metal mixtures and each graph metric (GE or LE), adjusted for sex and age. Results We observed significant negative associations between the metal mixture and GE and LE [βGE = -0.076, 95% CI (-0.122, -0.031); βLE= -0.051, 95% CI (-0.095, -0.006)]. Lead and chromium measured in blood contributed most to this association for GE, while chromium measured in hair contributed the most for LE. Discussion Our results suggest that exposure to this metal mixture during adolescence reduces the efficiency of integrating information in brain networks at both local and global levels, informing potential neural mechanisms underlying the developmental toxicity of metals. Results further suggest these associations are due to combined joint effects to different metals, rather than to a single metal.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristie Oluyemi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Alessandra Patrono
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Daniele Corbo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheuk Y. Tang
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Robert Stempel School of Public Health, Florida International University, Miami, FL, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Smith DR, Strupp BJ. Animal Models of Childhood Exposure to Lead or Manganese: Evidence for Impaired Attention, Impulse Control, and Affect Regulation and Assessment of Potential Therapies. Neurotherapeutics 2023; 20:3-21. [PMID: 36853434 PMCID: PMC10119373 DOI: 10.1007/s13311-023-01345-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 03/01/2023] Open
Abstract
Behavioral disorders involving attention and impulse control dysfunction, such as ADHD, are among the most prevalent disorders in children and adolescents, with significant impact on their lives. The etiology of these disorders is not well understood, but is recognized to be multifactorial, with studies reporting associations with polygenic and environmental risk factors, including toxicant exposure. Environmental epidemiological studies, while good at establishing associations with a variety of environmental and genetic risk factors, cannot establish causality. Animal models of behavioral disorders, when properly designed, can play an essential role in establishing causal relationships between environmental risk factors and a disorder, as well as provide model systems for elucidating underlying neural mechanisms and testing therapies. Here, we review how animal model studies of developmental lead or manganese exposure have been pivotal in (1) establishing a causal relationship between developmental exposure and lasting dysfunction in the domains of attention, impulse control, and affect regulation, and (2) testing the efficacy of specific therapeutic approaches for alleviating the lasting deficits. The lead and manganese case studies illustrate how animal models can advance knowledge in ways that are not possible in human studies. For example, in contrast to the Treatment of Lead Poisoned Children (TLC) human clinical trial evaluating succimer chelation efficacy to improve cognitive functioning in lead-exposed children, our developmental lead exposure animal model showed that succimer chelation can produce lasting cognitive benefits if chelation sufficiently reduces brain lead levels. In addition, this study revealed that succimer treatment in the absence of lead exposure produces lasting cognitive dysfunction, highlighting potential risks of chelation in off-label uses, such as the treatment of autistic children without a history of lead exposure. Our animal model of developmental manganese exposure has demonstrated that manganese can cause lasting attentional and sensorimotor deficits, akin to an ADHD-inattentive behavioral phenotype, thereby providing insights into the role of environmental exposures as contributors to ADHD. These studies have also shown that oral methylphenidate (Ritalin) can fully alleviate the deficits produced by early developmental Mn exposure. Future work should continue to focus on the development and use of animal models that appropriately recapitulate the complex behavioral phenotypes of behavioral disorders, in order to determine the mechanistic basis for the behavioral deficits caused by developmental exposure to environmental toxicants, and the efficacy of existing and emerging therapies.
Collapse
Affiliation(s)
- Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95060, USA.
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Canepari S, Astolfi ML, Drago G, Ruggieri S, Tavormina EE, Cibella F, Perrino C. PM 2.5 elemental composition in indoor residential environments and co-exposure effects on respiratory health in an industrial area. ENVIRONMENTAL RESEARCH 2023; 216:114630. [PMID: 36279913 DOI: 10.1016/j.envres.2022.114630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to identify and characterise indoor sources of particulate matter (PM) in domestic environments. 74 inhabited apartments located in the urban area of Gela (Sicily, Italy), close to a refinery, and in three villages of the hinterland were evaluated, in real-world conditions, for the elemental composition of PM2.5. The samples were collected simultaneously inside and outside each apartment for 48 h. In addition, two of the apartments were simultaneously studied for four weeks. The elemental composition of PM2.5 was determined by applying a chemical fractionation procedure followed by inductively-coupled plasma spectrometry analysis, with both optical emission and mass detection. The extractable, more bio-accessible fraction (ext), and the mineralised residual fraction (res) of each element were determined, thus increasing the selectivity of elements as source tracers. Indoor air in the considered apartments was affected by both outdoor pollution and specific indoor emission sources. The behaviour of each source was studied in detail, identifying a reliable tracer: Tires for soil, Asext for industrial sources, Vext for heavy oil combustion, Ce for cigarette smoking and Mo for the use of vacuum dust cleaners. Asext and Vext showed an excellent infiltration capacity, while the concentration of Tires was affected by a low infiltration capacity and by the contribution of particles re-suspension caused by the residents' movements. In the case of Ce and Mo, indoor concentrations were much higher than outdoor with a high variability among the apartments, due to the inhabitants' habits concerning cigarette smoke and use of electric appliances. To test the overall effect of the concomitant exposure to the identified sources on Wh12 M and on DDA, a WQS analysis was conducted. Cigarette smoking and heavily oil combustion driven the Wh12 M odds increase, while the DDA odds increase was mainly driven by heavily oil combustion and the use of vacuum dust cleaners.
Collapse
Affiliation(s)
- S Canepari
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St. (Rome), 00015, Italy.
| | - M L Astolfi
- Department of Chemistry, Sapienza University of Rome, Rome, 00185, Italy.
| | - G Drago
- C.N.R. Institute for Biomedical Research and Innovation, Palermo, 90146, Italy.
| | - S Ruggieri
- C.N.R. Institute for Biomedical Research and Innovation, Palermo, 90146, Italy.
| | - E E Tavormina
- C.N.R. Institute for Biomedical Research and Innovation, Palermo, 90146, Italy.
| | - F Cibella
- C.N.R. Institute for Biomedical Research and Innovation, Palermo, 90146, Italy.
| | - C Perrino
- C.N.R. Institute of Atmospheric Pollution Research, Monterotondo St. (Rome), 00015, Italy.
| |
Collapse
|
20
|
Markiv B, Ruiz-Azcona L, Expósito A, Santibáñez M, Fernández-Olmo I. Short- and long-term exposure to trace metal(loid)s from the production of ferromanganese alloys by personal sampling and biomarkers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4595-4618. [PMID: 35190915 PMCID: PMC8860625 DOI: 10.1007/s10653-022-01218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 05/06/2023]
Abstract
The environmental exposure to trace metal(loid)s (As, Cd, Cu, Fe, Mn, Pb, and Zn) was assessed near a ferromanganese alloy plant using filters from personal particulate matter (PM) samplers (bioaccessible and non-bioaccessible fine and coarse fractions) and whole blood as short-term exposure markers, and scalp hair and fingernails as long-term biomarkers, collected from volunteers (n = 130) living in Santander Bay (northern Spain). Bioaccessible and non-bioaccessible metal(loid) concentrations in coarse and fine PM from personal samplers were determined by ICP-MS after extraction/digestion. Metal(loid) concentration in biomarkers was measured after alkaline dilution (whole blood) and acid digestion (fingernails and scalp hair) by ICP-MS as well. Results were discussed in terms of exposure, considering the distance to the main Mn source, and sex. In terms of exposure, significant differences were found for Mn in all the studied fractions of PM, As in whole blood, Mn and Cu in scalp hair and Mn and Pb in fingernails, with all concentrations being higher for those living closer to the Mn source, with the exception of Cu in scalp hair. Furthermore, the analysis of the correlation between Mn levels in the studied biomarkers and the wind-weighted distance to the main source of Mn allows us to conclude that scalp hair and mainly fingernails are appropriate biomarkers of long-term airborne Mn exposure. This was also confirmed by the significant positive correlations between scalp hair Mn and bioaccessible Mn in coarse and fine fractions, and between fingernails Mn and all PM fractions. This implies that people living closer to a ferromanganese alloy plant are exposed to higher levels of airborne metal(loid)s, mainly Mn, leading to higher levels of this metal in scalp hair and fingernails, which according to the literature, might affect some neurological outcomes. According to sex, significant differences were observed for Fe, Cu and Pb in whole blood, with higher concentrations of Fe and Pb in males, and higher levels of Cu in females; and for Mn, Cu, Zn, Cd and Pb in scalp hair, with higher concentrations in males for all metal(loid)s except Cu.
Collapse
Affiliation(s)
- B Markiv
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain.
| | - L Ruiz-Azcona
- Departamento de Enfermería, Universidad de Cantabria, Santander, Spain
| | - A Expósito
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - M Santibáñez
- Departamento de Enfermería, Universidad de Cantabria, Santander, Spain
| | - I Fernández-Olmo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
21
|
Shilnikova N, Karyakina N, Farhat N, Ramoju S, Cline B, Momoli F, Mattison D, Jensen N, Terrell R, Krewski D. Biomarkers of environmental manganese exposure. Crit Rev Toxicol 2022; 52:325-343. [PMID: 35894753 DOI: 10.1080/10408444.2022.2095979] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We conducted a critical review on biomarkers of environmental manganese (Mn) exposure to answer the following questions: 1) are there reliable biomarkers of internal Mn exposure (Mn in biological matrices) associated with external metrics of Mn exposure (Mn in environmental media)? and 2) are there accurate reference values (RVs) for Mn in biological matrices? Three bibliographic databases were searched for relevant references and identified references were screened by two independent reviewers. Of the 6342 unique references identified, 86 articles were retained for data abstraction. Our analysis of currently available evidence suggests that Mn levels in blood and urine are not useful biomarkers of Mn exposure in non-occupational settings. The strength of the association between Mn in environmental media and saliva was variable. Findings regarding the utility of hair Mn as a biomarker of environmental Mn exposure are inconsistent. Measurements of Mn in teeth are technically challenging and findings on Mn in tooth components are scarce. In non-occupationally exposed individuals, bone Mn measurements using in vivo neutron activation analysis (IVNAA) are associated with large uncertainties. Findings suggest that Mn in nails may reflect Mn in environmental media and discriminate between groups of individuals exposed to different environmental Mn levels, although more research is needed. Currently, there is no strong evidence for any biological matrix as a valid biomarker of Mn exposure in non-occupational settings. Because of methodological limitations in studies aimed at derivation of RVs for Mn in biological materials, accurate RVs are scarce.
Collapse
Affiliation(s)
- Natalia Shilnikova
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nataliya Karyakina
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nawal Farhat
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| | | | | | - Franco Momoli
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Donald Mattison
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Natalie Jensen
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Rowan Terrell
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
22
|
Belingheri M, Chiu YHM, Renzetti S, Bhasin D, Wen C, Placidi D, Oppini M, Covolo L, Padovani A, Lucchini RG. Relationships of Nutritional Factors and Agrochemical Exposure with Parkinson's Disease in the Province of Brescia, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3309. [PMID: 35328997 PMCID: PMC8954923 DOI: 10.3390/ijerph19063309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]
Abstract
Environmental exposures to agrochemicals and nutritional factors may be associated with Parkinson's Disease (PD). None of the studies to date has examined the combined effects of diet and agricultural chemical exposure together. To address these research gaps, we aimed to assess the association of nutritional factors and agrochemical exposure with the risk of PD. A hospital-based case-control study was conducted. Multivariable logistic regressions were used to estimate the association of nutritional and agrochemical exposures with PD, adjusting for gender, age, socio-economic status, head injury, family history, smoking, metals exposure, and α-synuclein gene polymorphism. Weighted Quantile Sum (WQS) regression was applied to examine the effect of dietary components as a mixture. We recruited 347 cases and 389 controls. Parent history of PD (OR = 4.15, 95%CI: 2.10, 8.20), metals exposure (OR = 2.50, 95%CI: 1.61-3.89), SNCA rs356219 polymorphism (OR = 1.39, 95%CI: 1.04-1.87 for TC vs. TT; OR = 2.17, 95%CI: 1.43-3.28 for CC vs. TT), agrochemical exposures (OR = 2.11, 95%CI: 1.41-3.16), and being born in the Brescia province (OR = 1.83, 95%CI: 1.17-2.90) were significantly associated with PD. Conversely, fish intake and coffee consumption had a protective effect. The study confirmed the role of environmental exposures in the genesis of PD. Fish intake and coffee consumption are protective factors even when agricultural chemical exposures exist. Genetic factors and metals exposure were confirmed as risk factors for PD.
Collapse
Affiliation(s)
- Michael Belingheri
- School of Medicine and Surgery, University of Milano-Bicocca, 20090 Monza, Italy
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Y.-H.M.C.); (C.W.)
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Deepika Bhasin
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Chi Wen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Y.-H.M.C.); (C.W.)
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Manuela Oppini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Loredana Covolo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (S.R.); (D.P.); (M.O.); (L.C.); (R.G.L.)
- Department of Environmental Health Sciences, School of Public Health and Social Work, Florida International University, Miami, FL 11200, USA
| |
Collapse
|
23
|
Conley TE, Richardson C, Pacheco J, Dave N, Jursa T, Guazzetti S, Lucchini RG, Fendorf S, Ritchie RO, Smith DR. Bone manganese is a sensitive biomarker of ongoing elevated manganese exposure, but does not accumulate across the lifespan. ENVIRONMENTAL RESEARCH 2022; 204:112355. [PMID: 34774504 PMCID: PMC10413361 DOI: 10.1016/j.envres.2021.112355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/10/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Studies have established associations between environmental and occupational manganese (Mn) exposure and executive and motor function deficits in children, adolescents, and adults. These health risks from elevated Mn exposure underscore the need for effective exposure biomarkers to improve exposure classification and help detect/diagnose Mn-related impairments. Here, neonate rats were orally exposed to 0, 25, or 50 mg Mn/kg/day during early life (PND 1-21) or lifelong through ∼ PND 500 to determine the relationship between oral Mn exposure and blood, brain, and bone Mn levels over the lifespan, whether Mn accumulates in bone, and whether elevated bone Mn altered the local atomic and mineral structure of bone, or its biomechanical properties. Additionally, we assessed levels of bone Mn compared to bone lead (Pb) in aged humans (age 41-91) living in regions impacted by historic industrial ferromanganese activity. The animal studies show that blood, brain, and bone Mn levels naturally decrease across the lifespan without elevated Mn exposure. With elevated exposure, bone Mn levels were strongly associated with blood Mn levels, bone Mn was more sensitive to elevated exposures than blood or brain Mn, and Mn did not accumulate with lifelong elevated exposure. Elevated early life Mn exposure caused some changes in bone mineral properties, including altered local atomic structure of hydroxyapatite, along with some biomechanical changes in bone stiffness in weanlings or young adult animals. In aged humans, blood Mn ranged from 5.4 to 23.5 ng/mL; bone Mn was universally low, and decreased with age, but did not vary based on sex or female parity history. Unlike Pb, bone Mn showed no evidence of accumulation over the lifespan, and may not be a biomarker of cumulative long-term exposure. Thus, bone may be a useful biomarker of recent ongoing Mn exposure in humans, and may be a relatively minor target of elevated exposure.
Collapse
Affiliation(s)
- Travis E Conley
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA.
| | - Cardius Richardson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Juan Pacheco
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Neil Dave
- Department of Materials Science & Engineering, University of California, Berkeley, CA, 94720, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Stefano Guazzetti
- Department of Occupational and Environmental Medicine, University of Brescia, Spedali Civili 1, 25125, Brescia, Italy
| | - Roberto G Lucchini
- Department of Occupational and Environmental Medicine, University of Brescia, Spedali Civili 1, 25125, Brescia, Italy; Department of Environmental Health, Florida International University, Miami, FL, 33139, USA
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Robert O Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, CA, 94720, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
24
|
Zhao M, Ge X, Xu J, Li A, Mei Y, Yin G, Wu J, Liu X, Wei L, Xu Q. Association between urine metals and liver function biomarkers in Northeast China: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113163. [PMID: 35030523 DOI: 10.1016/j.ecoenv.2022.113163] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND After heavy metals enter the body, they affect a variety of organs, particularly the main metabolic organ, the liver. Moreover, people are more likely to be exposed to multiple metals than to a single metal. We explored the associations between exposure to a heavy metal mixture and liver function biomarkers. METHODS This study involved 1171 residents living in areas with or without heavy metal exposure in northeast China. Urine concentrations of chromium (Cr), cadmium (Cd), lead (Pb), and manganese (Mn) were measured. Total protein (TP), albumin (ALB), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were used as biomarkers of liver function. A generalized linear model (GLM), quantile g-computation, and Bayesian kernel machine regression (BKMR) were used to explore the associations between the four metals and liver function. RESULTS GLM analysis revealed that Cr level was negatively associated with TP (β = - 0.57; 95% CI: - 0.89, - 0.26) and ALB (β = - 0.27; 95% CI: - 0.47, - 0.07) levels, and Cd level was positively associated with AST (β = 1.04; 95% CI: 0.43, 1.65) and ALT (β = 0.94; 95% CI: 0.08, 1.79) levels. ALB (β = 0.26; 95% CI: 0.10, 0.41) and ALT (β = 0.52; 95% CI: 0.02, 1.02) levels were positively associated with urine Mn concentration. The quantile g-computation indicated that exposure to a mixture of the four metals was significantly associated with TP (β = - 0.56; 95% CI: - 0.94, - 0.18) and ALT (β = 0.84; 95% CI: 0.04, 1.63) levels. Among the metals, Cr had the strongest effect on TP and Cd had that on AST. The BKMR model indicated that mixed metal exposure was negatively associated with TP and ALB levels and positively associated with ALT and AST levels. CONCLUSION Exposure to mixtures of heavy metals may influence liver function. Cr and Cd may be the largest contributors.
Collapse
Affiliation(s)
- Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou 121001, Liaoning, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
25
|
Bauer JA, White RF, Coull BA, Austin C, Oppini M, Zoni S, Fedrighi C, Cagna G, Placidi D, Guazzetti S, Yang Q, Bellinger DC, Webster TF, Wright RO, Smith D, Horton M, Lucchini RG, Arora M, Claus Henn B. Critical windows of susceptibility in the association between manganese and neurocognition in Italian adolescents living near ferro-manganese industry. Neurotoxicology 2021; 87:51-61. [PMID: 34478771 PMCID: PMC8595706 DOI: 10.1016/j.neuro.2021.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Understanding the neurodevelopmental effects of manganese (Mn) is complicated due to its essentiality for growth and development. While evidence exists for the harmful effects of excess Mn, pediatric epidemiologic studies have observed inconsistent associations between Mn and child cognition. OBJECTIVE We sought to estimate prospective associations between Mn measured in three different early-life time windows with adolescent cognition using deciduous teeth biomarkers. METHODS Deciduous teeth were collected from 195 participants (ages 10-14 years) of the Public Health Impact of Manganese Exposure (PHIME) study in Brescia, Italy. Measurements of tooth Mn represented prenatal (∼14 weeks gestation - birth), early postnatal (birth - 1.5 years) and childhood (∼1.5 - 6 years) time windows. Neuropsychologists administered the Wechsler Intelligence Scale for Children, 3rd edition (WISC-III), to obtain composite IQ and subtest scores. Associations between tooth Mn at each time window and adolescent WISC-III scores were estimated using multivariable linear regression. We tested differences in associations between Mn and outcomes across time windows using multiple informant models. Sex-specific associations were explored in stratified models. RESULTS Adjusted associations between tooth Mn and composite IQ scores were positive in the prenatal period and negative in the childhood period. Associations were strongest for subtest scores that reflect working memory, problem solving, visuospatial ability and attention: prenatal Mn was positively associated with Digits backward [SD change in score per interquartile range increase in Mn: β = 0.20 (95 % CI: 0.02, 0.38)] and Block design [β = 0.21 (0.01, 0.41)] and early postnatal Mn was positively associated with Digits forward [β = 0.24 (0.09, 0.40)], while childhood Mn was negatively associated with Coding [β = -0.14 (-0.28, -0.001)]. Sex-stratified analyses suggested different Mn-cognition associations for boys and girls and was also dependent on the time window of exposure. CONCLUSION Our results suggest that exposure timing is critical when evaluating Mn associations between Mn and cognition. Higher prenatal Mn was beneficial for adolescent cognition; however, these beneficial associations shifted towards harmful effects in later time windows. Cognitive domains most sensitive to Mn across time windows included visuospatial ability, working memory, attention and problem-solving.
Collapse
Affiliation(s)
- Julia Anglen Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuela Oppini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | - Silvia Zoni
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | - Chiara Fedrighi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| | | | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - David C Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Departments of Neurology and Psychiatry, Boston Children's Hospital, Boston, MA, USA; Departments of Neurology and Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy; School of Public Health, Florida International University, Miami, FL, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
26
|
Yao W, Gallagher DL, Dietrich AM. Risks to children from inhalation of aerosolized aqueous manganese emitted from ultrasonic humidifiers can be greater than for corresponding ingestion. WATER RESEARCH 2021; 207:117760. [PMID: 34800908 DOI: 10.1016/j.watres.2021.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The essential trace element manganese (Mn) can cause neurotoxicity with inhalation acknowledged as a more severe health and cognition threat than ingestion. METHODS Over a range of aqueous Mn concentrations present in tap water, this research characterizes exposures and risks for adults and 0.25, 1, 2.5, and 6 yr old children who ingest the water and inhale respirable particles produced by a room-sized ultrasonic humidifier filled with the same water. Aqueous Mn concentrations evaluated included 50 µg/L USEPA esthetic guideline, 80 µg/L WHO infant guideline, and 120 µg/L Canadian regulatory level. Airborne-particle-bound Mn concentrations were generated for water filling an ultrasonic humidifier under four realistic room conditions (33 m3 small or 72 m3 large) with varying ventilation rates from 0.2/h -1.5/h. Average daily doses (ADD) and reference intake doses were calculated for ingestion and 8-h inhalation of humidified air. Hazard quotients (HQ) compared the intake doses and reference doses. Multi-path particle dosimetry (MPPD) model quantified the particle deposition and deposited dose in children's and adults' respiratory tracts. RESULTS At only 11 µg/L Mn, the resulting humidified air Mn exceeds USEPA's reference concentration of 0.05 µg/m3 Mn in small room with low, energy-efficient ventilation. Inhalation ADD are 2 magnitudes lower than ingestion ADD for identical water Mn concentrations and daily exposure frequency. Even so, ingestion HQs are approximately 0.2 but inhalation risk is significant (HQ>1) for children and adults when breathing Mn-humidified air under most small room conditions at 50, 80 or 120 µg/L Mn. MPPD model indicates inhaled Mn deposits in head and pulmonary regions, with greater Mn dose deposits in children than adults. CONCLUSION Inhalation of Mn-particles produced from ultrasonic humidifiers can pose greater risks than ingestion at the same water concentration, especially for children. Aqueous Mn concentration and room size influence risks. Limiting manganese exposures and setting regulations requires consideration of both ingestion and inhalation of water.
Collapse
Affiliation(s)
- Wenchuo Yao
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Daniel L Gallagher
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States.
| |
Collapse
|
27
|
Martin KV, Sucharew H, Dietrich KN, Parsons PJ, Palmer CD, Wright R, Amarasiriwardena C, Smith DR, Haynes EN. Co-exposure to manganese and lead and pediatric neurocognition in East Liverpool, Ohio. ENVIRONMENTAL RESEARCH 2021; 202:111644. [PMID: 34246641 PMCID: PMC8578304 DOI: 10.1016/j.envres.2021.111644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 05/09/2023]
Abstract
Exposure to metal mixtures may lead to health impacts greater than the effects associated with singular exposures. Two common childhood environmental exposures, manganese (Mn) and lead (Pb), are associated with similar adverse neurodevelopmental effects; however, the effects surrounding concurrent exposure to both metals remain unclear. We study the impact of joint exposure to Mn and Pb on cognitive performance in school-aged children participating in the Communities Actively Researching Exposure Study (CARES) based in East Liverpool, Ohio. Blood Pb levels were measured for each child (geometric mean (GM) = 1.13 μg/dL, range 0.30 μg/dL - 6.64 μg/dL). Mn was measured in participant blood, hair, and toenails with GMs of 10.1 μg/L, 360 ng/g, 0.974 μg/g, respectively. Trained team members administered the Wechsler Intelligence Scale for Children-IV (WISC-IV) to assess intelligence quotient (IQ). The WISC-IV provides scores for Full Scale IQ, Perceptual Reasoning, Processing Speed, Working Memory, and Verbal Comprehension. Interactions between blood Pb and all Mn biomarkers were tested in linear models adjusted for child sex, household income, and serum cotinine. Separate regression models were run for each of the Mn biomarkers. The cohort was comprised of 106 children with a mean age of 8.4 years. Interactions between blood Pb and hair Mn were significant (p < 0.05) for four out of the five IQ domains. The effect of blood Pb on IQ was more pronounced at higher levels of hair and toenail Mn. No significant associations were observed when characterizing the main effect of Mn using blood. Uncovering the health impacts associated with exposure mixtures is critical to understanding the impact of real-life conditions. Our findings suggest that joint exposure to Mn and Pb may produce heightened neurocognitive impacts even at blood Pb levels below the CDC reference concentration of 5 μg/dL.
Collapse
Affiliation(s)
- Kaitlin Vollet Martin
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA.
| | - Heidi Sucharew
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim N Dietrich
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick J Parsons
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University of Albany, Rensselaer, NY, USA
| | - Christopher D Palmer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University of Albany, Rensselaer, NY, USA
| | - Robert Wright
- Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Erin N Haynes
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Ruiz-Azcona L, Markiv B, Expósito A, González-Aramburu I, Sierra M, Fernández-Olmo I, Santibáñez M. Biomonitoring and bioaccessibility of environmental airborne manganese in relation to motor function in a healthy adult population. Neurotoxicology 2021; 87:195-207. [PMID: 34678399 DOI: 10.1016/j.neuro.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIM Santander, the capital of Cantabria, Spain (172,000 inhabitants) is 7 km from an industrial emission source (IES) of Mn located in a 10,000 inhabitants town (Maliaño) (annual air Mn arithmetic mean = 231.8 ng/m3; reference WHO guideline = 150 ng/m3). Our objective was to compare the motor function of adult healthy volunteers living in both places. METHODS Cross-sectional study analyzing 130 consecutive participants. Exposure to Mn was assessed in terms of source distance from the IES, by Personal Environmental Monitors (PEMs) carried for 24 h by participants consisting of a portable impactor connected to a personal pump, and by biomarkers (blood, hair and fingernails). The impactor allowed the separation of fine (PM2.5) and coarse (PM10-2.5) particles and for each particle size in-vitro bioaccessibility tests with biologically active fluids were performed to separate the soluble (bioaccessible) from the insoluble (non-bioaccessible) fraction. Mean Differences (MDs) adjusted for age, sex, and study level, were obtained for motor function tests results. RESULTS Regarding Grooved Pegboard, overall mean time to complete the test was 59.31 and 65.27 seconds (Standard Deviation = 10.11 and 11.69) for dominant and nondominant hands respectively. Statistically significant higher times (indicating worse function) were observed when living near the IES in both hands but MDs of only 1.22 and 2.05 seconds were obtained after adjusting for the predefined confounders (p = 0.373 and 0.221 respectively). Regarding Mn levels in their PEMs (in both bioaccessible and non-bioaccessible coarse&fine fractions) higher times were computed in participants with higher levels for the bioaccessible-fine fraction, with a MD that diminished but still yielded statistical significance after controlling for confounding: adjusted MD = 3.01 more seconds; 95%CI (0.44-5.38), p = 0.022. Poorer results were also observed for fingernails levels. Regarding Finger Tapping Test, no statistically significant differences were found with the exception of Mn fingernails levels. CONCLUSIONS Our results suggest poorer motor function as assessed by Grooved Pegboard test in relation to "proximity to IES", "bioaccessible-fine fraction as determined by PEMs and "Mn fingernails levels". However, our findings were affected by confounding, and only the adjusted MD for the Mn bioaccessible-fine fraction remained of sufficient magnitude to maintain statistical significance.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Isabel González-Aramburu
- Service of Neurology, Hospital Universitario Marqués de Valdecilla (HUMV-IDIVAL), Santander, Spain
| | - María Sierra
- Service of Neurology, Hospital Universitario Marqués de Valdecilla (HUMV-IDIVAL), Santander, Spain
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain.
| |
Collapse
|
29
|
Gbemavo MCJ, Bouchard MF. Concentrations of Lead, Mercury, Selenium, and Manganese in Blood and Hand Grip Strength among Adults Living in the United States (NHANES 2011-2014). TOXICS 2021; 9:toxics9080189. [PMID: 34437507 PMCID: PMC8402359 DOI: 10.3390/toxics9080189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Exposure to lead and mercury can cause deficits in neuromotor function. Selenium and manganese are essential elements, hence both deficiency and excess could result in decreased neuromotor function. We aimed to examine hand grip strength, a marker of neuromotor function, and blood concentrations of lead, mercury, selenium, and manganese in the general U.S. population. We used data from the National Health and Nutrition Examination Survey (NHANES, 2011–2014) on 6199 participants ages 20–79 years. We assessed associations of blood concentration for these elements and grip strength with generalized regression models, and cubic splines to detect possible nonlinear relations, adjusting for confounders. The results showed that mercury and manganese were not associated with grip strength. Lead was associated with weaker grip strength in women (for 10-fold increase in lead, −2.4 kg; 95% CI: −4.2, −0.5), but not in men. Higher selenium was associated with stronger grip strength in women (8.5 kg; 95% CI: 1.9, 15.1) and men (4.6; 95% CI: −11.9, 21.0), although the association was not significant in the latter. In conclusion, lead exposure was associated with weaker grip strength in women, even at the low exposure levels in the population. Furthermore, low blood selenium level was associated with weaker grip strength, suggesting that some individuals might have selenium deficiency manifesting with poorer neuromotor function.
Collapse
Affiliation(s)
- M. Corinaud J. Gbemavo
- Department Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- CHU Sainte-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
| | - Maryse F. Bouchard
- Department Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- CHU Sainte-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
- Correspondence:
| |
Collapse
|
30
|
Di Ciaula A. Bioaccumulation of Toxic Metals in Children Exposed to Urban Pollution and to Cement Plant Emissions. EXPOSURE AND HEALTH 2021; 13:681-695. [PMID: 34189342 PMCID: PMC8229267 DOI: 10.1007/s12403-021-00412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Cement plants located in urban areas can increase health risk. Although children are particularly vulnerable, biomonitoring studies are lacking. Toenail concentration of 24 metals was measured in 366 children (6-10 years), who live and attend school in a city hosting a cement plant. Living addresses and schools were geocoded and attributed to exposed or control areas, according to modeled ground concentrations of PM10 generated by the cement plant. Air levels of PM10 and NO2 were monitored. PM10 levels were higher in the exposed, than in the control area. The highest mean PM10 concentration was recorded close to the cement plant. Conversely, the highest NO2 concentration was in the control area, where vehicular traffic and home heating were the prevalent sources of pollutants. Exposed children had higher concentrations of Nickel (Ni), Cadmium (Cd), Mercury (Hg), and Arsenic (As) than controls. These concentrations correlated each other, indicating a common source. Toenail Barium (Ba) concentration was higher in the control- than in the exposed area. The location of the attended school was a predictor of Cd, Hg, Ni, Ba concentrations, after adjusting for confounders. In conclusion, children living and attending school in an urban area exposed to cement plant emissions show a chronic bioaccumulation of toxic metals, and a significant exposure to PM10 pollution. Cement plants located in populous urban areas seem therefore harmful, and primary prevention policies to protect children health are needed.
Collapse
|
31
|
Stolfi A, Fulk F, Reponen T, Hilbert TJ, Brown D, Haynes EN. AERMOD modeling of ambient manganese for residents living near a ferromanganese refinery in Marietta, OH, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:419. [PMID: 34120251 PMCID: PMC8569639 DOI: 10.1007/s10661-021-09206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Elevated exposure to ambient manganese (Mn) is associated with adverse health outcomes. In Marietta, Ohio, the primary source of ambient Mn exposure is from the longest operating ferromanganese refinery in North America. In this study, the US EPA air dispersion model, AERMOD, was used to estimate ambient air Mn levels near the refinery for the years 2008-2013. Modeled air Mn concentrations for 2009-2010 were compared to concentrations obtained from a stationary air sampler. Census block population data were used to estimate population sizes exposed to an annual average air Mn > 50 ng/m3, the US EPA guideline for chronic exposure, for each year. Associations between modeled air Mn, measured soil Mn, and measured indoor dust Mn in the modeled area were also examined. Median modeled air Mn concentrations ranged from 6.3 to 43 ng/m3 across the years. From 12,000-56,000 individuals, including over 2000 children aged 0-14 years, were exposed to respirable annual average ambient air Mn levels exceeding 50 ng/m3 in five of the six years. For 2009-2010, the median modeled air Mn concentration at the stationary site was 20 ng/m3, compared to 18 ng/m3 measured with the stationary air sampler. All model performance measures for monthly modeled concentrations compared to measured concentrations were within acceptable limits. The study shows that AERMOD modeling of ambient air Mn is a viable method for estimating exposure from refinery emissions and that the Marietta area population was at times exposed to Mn levels that exceeded US EPA guidelines.
Collapse
Affiliation(s)
- Adrienne Stolfi
- Department of Pediatrics, Wright State University, Dayton, OH, USA.
| | - Florence Fulk
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Timothy J Hilbert
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - David Brown
- Department of Biology & Environmental Science, Marietta College, Marietta, OH, USA
| | - Erin N Haynes
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
32
|
Van Horne YO, Farzan SF, Johnston JE. Metal-mixtures in toenails of children living near an active industrial facility in Los Angeles County, California. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:427-441. [PMID: 33935287 PMCID: PMC8893014 DOI: 10.1038/s41370-021-00330-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Children residing in communities near metalworking industries are vulnerable to multiple toxic metal exposures. Understanding biomarkers of exposure to multiple toxic metals is important to characterize cumulative burden and to distinguish potential exposure sources in such environmental justice neighborhoods impacted by industrial operations. Exposure to metal mixtures has not been well-characterized among children residing in the United States, and is understudied in communities of color. METHODS In this study we used toenail clippings, a noninvasive biomarker, to assess exposure to arsenic (As), cadmium (Cd), mercury (Hg), manganese (Mn), lead (Pb), antimony (Sb), selenium (Se), and vanadium (V). We used nonnegative matrix factorization (NMF) to identify "source" signatures and patterns of exposure among predominantly working class Latinx children residing near an industrial corridor in Southeast Los Angeles County. Additionally, we investigated the association between participant demographic, spatial, and dietary characteristics with identified metal signatures. RESULTS Through NMF, we identified three groupings (source factors) for the metal concentrations in children's toenails. A grouping composed of Sb, Pb, As, and Cd, was identified as a potential industrial source factor, reflective of known airborne elemental emissions in the industrial corridor. We further identified a manganese source factor primarily composed of Mn, and a potential dietary source factor driven by Se and Hg. We observed differences in the industrial source factor by age of participants, while the dietary source factor varied by neighborhood. CONCLUSION Utilizing an unsupervised dimension reduction technique (NMF), we identified a "source signature" of contamination in toenail samples from children living near metalworking industry. Investigating patterns and sources of exposures in cumulatively burdened communities is necessary to identify appropriate public health interventions.
Collapse
Affiliation(s)
- Yoshira Ornelas Van Horne
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill E Johnston
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Levin-Schwartz Y, Claus Henn B, Gennings C, Coull BA, Placidi D, Horton MK, Smith DR, Lucchini RG, Wright RO. Integrated measures of lead and manganese exposure improve estimation of their joint effects on cognition in Italian school-age children. ENVIRONMENT INTERNATIONAL 2021; 146:106312. [PMID: 33395951 PMCID: PMC7785864 DOI: 10.1016/j.envint.2020.106312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 05/22/2023]
Abstract
Every day humans are exposed to mixtures of chemicals, such as lead (Pb) and manganese (Mn). An underappreciated aspect of studying the health effects of mixtures is the role that the exposure biomarker media (blood, hair, etc.) may play in estimating the effects of the mixture. Different biomarker media represent different aspects of each chemical's toxicokinetics, thus no single medium can fully capture the toxicokinetic profile for all the chemicals in a mixture. A potential solution to this problem is to combine exposure data across different media to derive integrated estimates of each chemical's internal concentration. This concept, formalized as a multi-media biomarker (MMB) has proven effective for estimating the health impacts of Pb exposure, but may also be useful to estimate mixture effects, such as the joint effects of metals like Pb and Mn, while factoring in how the association changes based upon the biomarker media. Levels of Pb and Mn were quantified in five media: blood, hair, nails, urine, and saliva in the Public Health Impact of Metals Exposure (PHIME) project, a study of Italian adolescents aged 10-14 years. MMBs were derived for both metals using weighted quantile sum (WQS) regression across the five media. Age-adjusted Wechsler Intelligence Scale for Children (WISC) IQ scores, measured at the same time as the exposure measures, were the primary outcome and models were adjusted for sex and socioeconomic status. The levels Pb and Mn were relatively low, with median blood Pb of 1.27 (IQR: 0.84) μg/dL and median blood Mn of 1.09 (IQR: 0.45) μg/dL. Quartile increases in a Pb-Mn combination predicted decreased Full Scale IQ of 1.9 points (95% CI: 0.3, 3.5) when Pb and Mn exposure levels were estimated using MMBs, while individual regressions for each metal were not associated with Full Scale IQ. Additionally, a quartile increase in the WQS index of Pb and Mn, measured using MMBs, were associated with reductions in Verbal IQ by 2.8 points (1.0, 4.5). Weights that determine the contributions of the metals to the joint effect highlighted that the contribution of the Pb-Mn was 72-28% for Full Scale IQ and 42-58% for Verbal IQ. We found that the joint effects of Pb and Mn are strongly affected by the medium used to measure exposure and that the joint effects of the Pb and Mn MMBs on cognition were the stronger than any individual biomarker. Thus, increase power and accuracy for measuring mixture effects compared to individual biomarkers. As the number of chemicals in mixtures increases, appropriate biomarker selection will become increasingly important and MMBs are a natural way to reduce bias in such analyses.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA.
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Donatella Placidi
- Occupational and Environmental Health, University of Brescia, Brescia, Italy
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA; Occupational and Environmental Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Xu J, White AJ, Niehoff NM, O'Brien KM, Sandler DP. Airborne metals exposure and risk of hypertension in the Sister Study. ENVIRONMENTAL RESEARCH 2020; 191:110144. [PMID: 32898563 PMCID: PMC7658027 DOI: 10.1016/j.envres.2020.110144] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Hypertension-related disease burden is a major challenge globally, with an estimated 1.56 billion adults expected to be affected by hypertension by 2025. Environmental factors, such as metals, could be risk factors for hypertension, but the relationship between airborne metals and hypertension is rarely studied. METHODS Census-tract airborne metal concentrations (arsenic, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and antimony) from the U.S. Environmental Protection Agency 2005 National Air Toxics Assessment database were linked to enrollment residential addresses of 47,595 women in the Sister Study cohort. Hypertension was defined as high systolic (≥140 mm Hg) or diastolic (≥90 mm Hg) blood pressure measured by trained examiners at enrollment or taking anti-hypertensive medications. Multivariable log binomial regression was used to estimate adjusted prevalence ratios (PRs) and 95% confidence intervals (CIs) for the association between individual metals and hypertension, with and without co-adjustment for other metals. Quantile-based g-computation was used to estimate the joint effect of the overall metal mixture. RESULTS Comparing the highest to lowest quartiles, risk of hypertension was higher among women with higher residential exposure to arsenic (PR = 1.05, 95%CI = 1.02,1.09), lead (PR = 1.04, 95%CI = 1.01,1.08), chromium (PR = 1.03, 95%CI = 1.00,1.06), cobalt (PR = 1.03, 95%CI = 1.00,1.07), and manganese (PR = 1.03, 95%CI = 1.00,1.06). Selenium was associated with lower risk of hypertension (PR = 0.96, 95%CI = 0.93,0.99). Results were similar with mutual adjustment for all other metals. The associations varied by race/ethnicity, with greater PRs in other races/ethnicities (Hispanic, black, and other participants) compared to non-Hispanic white participants. The joint effect of a quartile increase in exposure to all the metals was 1.02 (95%CI = 0.99,1.04). CONCLUSION We found that living in areas of higher exposure to arsenic, lead, chromium, cobalt, and manganese was related to higher risk of hypertension, whereas living in areas with higher selenium was inversely related to the risk of hypertension.
Collapse
Affiliation(s)
- Jing Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA; Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA
| | - Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
35
|
Rechtman E, Curtin P, Papazaharias DM, Renzetti S, Cagna G, Peli M, Levin-Schwartz Y, Placidi D, Smith DR, Lucchini RG, Wright RO, Horton MK. Sex-specific associations between co-exposure to multiple metals and visuospatial learning in early adolescence. Transl Psychiatry 2020; 10:358. [PMID: 33087698 PMCID: PMC7578810 DOI: 10.1038/s41398-020-01041-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
The predisposition, severity, and progression of many diseases differ between males and females. Sex-related differences in susceptibility to neurotoxicant exposures may provide insight into the cause of the observed discrepancy. Early adolescence, a period of substantial structural and functional brain changes, may present a critical window of vulnerability to environmental exposures. This study aimed to examine sex-specific associations between co-exposure to multiple metals and visuospatial memory in early adolescence. Manganese (Mn), lead (Pb), chromium (Cr), and copper (Cu) were measured in blood, urine, hair, nails, and saliva of 188 participants (88 girls; 10-14 years of age). Visuospatial memory skills were assessed using a computerized maze task, the virtual radial arm maze (VRAM). Using generalized weighted quantile sum regression, we investigated sex-specific associations between the combined effect of exposure to the metal mixture and visuospatial working memory and determined the contribution of each component to the outcome. The results suggest that sex moderates the association between the metal mixture and visuospatial learning for all outcomes measured. In girls, exposure was associated with slower visuospatial learning and driven by Mn and Cu. In boys, exposure was associated with faster visuospatial learning, and driven by Cr. These results suggest that (a) the effect of metal co-exposure on learning differs in magnitude, and in the direction between sexes, and (b) early adolescence may be a sensitive developmental period for metal exposure.
Collapse
Affiliation(s)
- Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Demetrios M Papazaharias
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Brescia, Italy
| | - Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
- School of Public Health, Florida International University, Miami, FL, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
36
|
Bauer JA, Devick KL, Bobb JF, Coull BA, Bellinger D, Benedetti C, Cagna G, Fedrighi C, Guazzetti S, Oppini M, Placidi D, Webster TF, White RF, Yang Q, Zoni S, Wright RO, Smith DR, Lucchini RG, Claus Henn B. Associations of a Metal Mixture Measured in Multiple Biomarkers with IQ: Evidence from Italian Adolescents Living near Ferroalloy Industry. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97002. [PMID: 32897104 PMCID: PMC7478128 DOI: 10.1289/ehp6803] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Research on the health effects of chemical mixtures has focused mainly on early life rather than adolescence, a potentially important developmental life stage. OBJECTIVES We examined associations of a metal mixture with general cognition in a cross-sectional study of adolescents residing near ferromanganese industry, a source of airborne metals emissions. METHODS We measured manganese (Mn), lead (Pb), copper (Cu), and chromium (Cr) in hair, blood, urine, nails, and saliva from 635 Italian adolescents 10-14 years of age. Full-scale, verbal, and performance intelligence quotient (FSIQ, VIQ, PIQ) scores were assessed using the Wechsler Intelligence Scale for Children-III. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to estimate associations of the metal mixture with IQ. In secondary analyses, we used BKMR's hierarchical variable selection option to inform biomarker selection for Mn, Cu, and Cr. RESULTS Median metal concentrations were as follows: hair Mn, 0.08 μ g / g ; hair Cu, 9.6 μ g / g ; hair Cr, 0.05 μ g / g ; and blood Pb, 1.3 μ g / dL . Adjusted models revealed an inverted U-shaped association between hair Cu and VIQ, consistent with Cu as an essential nutrient that is neurotoxic in excess. At low levels of hair Cu (10th percentile, 5.4 μ g / g ), higher concentrations (90th percentiles) of the mixture of Mn, Pb, and Cr (0.3 μ g / g , 2.6 μ g / dL , and 0.1 μ g / g , respectively) were associated with a 2.9 (95% CI: - 5.2 , - 0.5 )-point decrease in VIQ score, compared with median concentrations of the mixture. There was suggestive evidence of interaction between Mn and Cu. In secondary analyses, saliva Mn, hair Cu, and saliva Cr were selected as the biomarkers most strongly associated with VIQ score. DISCUSSION Higher adolescent levels of Mn, Pb, and Cr were associated with lower IQ scores, especially at low Cu levels. Findings also support further investigation into Cu as both beneficial and toxic for neurobehavioral outcomes. https://doi.org/10.1289/EHP6803.
Collapse
Affiliation(s)
- Julia A. Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katrina L. Devick
- Division of Biomedical Statistics and Informatics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Jennifer F. Bobb
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Departments of Neurology and Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiara Benedetti
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Chiara Fedrighi
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | | | - Manuela Oppini
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Thomas F. Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University Medical School, Boston, Massachusetts, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Silvia Zoni
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Zhao M, Xu J, Li A, Mei Y, Ge X, Liu X, Wei L, Xu Q. Multiple exposure pathways and urinary chromium in residents exposed to chromium. ENVIRONMENT INTERNATIONAL 2020; 141:105753. [PMID: 32417613 DOI: 10.1016/j.envint.2020.105753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Environmental hexavalent chromium contamination in northeast China has been ongoing for over 60 years and health outcomes related with chromium (Cr) pollution were observed in polluted arears, but exposure pathways remains unclear. This study aims to evaluate the association between Cr exposure dose through multiple exposure pathways and Cr concentration in urine, and identify the most contributed pathway. METHODS We used risk assessment tools with individual exposure parameters to estimate eight individual Cr exposure doses (CD) for three exposure routes (inhalation, ingestion, and dermal contact) with four environmental media (underground water, soil, household dust, and PM10 in ambient air) in 134 residents living in three chromium polluted villages. We used the covariate-adjusted standardized urinary Cr concentration (casUCr) as the internal Cr exposure biomarker. Ridge Regression, Weighted Quantile Sum Regression (WQS) and Bayesian Kernel Machine Regression (BKMR) models were used to assess the effect of overall eight CDs on urine Cr concentration and compare the contribution of each CD. RESULTS In the ridge regression analysis, Cr exposure through ingestion of dust (βstd = 0.418, p-value = 0.009), inhalation of dust (βstd = 0.384, p = 0.031) and dermal contact with soil (βstd = 0.264, p = 0.192) had the highest impact on casUCr. In the WQS model, the overall CDs demonstrated a non-significant positive association with casUCr. CDs of dust ingestion, air inhalation and dust inhalation had the largest contribution on casUCr when fitted in the WQS model. In the BKMR model, the hierarchical variable selection showed that casUCr was mainly affected by CDs of household dust and dermal contact with soil. CD of dermal contact with soil exhibited a negative association with casUCr, while CDs of dust showed positive or non-linear trend. CONCLUSIONS This research proposed a new method to calculate individual Cr exposure dose of multi-pathway and applied different statistical methods to identify predominant pathway. For this study, Cr exposure through dust has the strongest effect on Cr concentration in urine. The results could help conduct target interventions to reduce Cr intake, such as blocking dust exposure to reduce Cr uptake for villagers living in these contaminated areas.
Collapse
Affiliation(s)
- Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou 121001, Liaoning, China.
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
38
|
Levin-Schwartz Y, Gennings C, Claus Henn B, Coull BA, Placidi D, Lucchini R, Smith DR, Wright RO. Multi-media biomarkers: Integrating information to improve lead exposure assessment. ENVIRONMENTAL RESEARCH 2020; 183:109148. [PMID: 32004829 PMCID: PMC7167344 DOI: 10.1016/j.envres.2020.109148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 05/03/2023]
Abstract
Exposure assessment traditionally relies on biomarkers that measure chemical concentrations in individual biological media (i.e., blood, urine, etc.). However, chemicals distribute unevenly among different biological media; thus, each medium provides incomplete information about body burden. We propose that machine learning and statistical approaches can create integrated exposure estimates from multiple biomarker matrices that better represent the overall body burden, which we term multi-media biomarkers (MMBs). We measured lead (Pb) in blood, urine, hair and nails from 251 Italian adolescents aged 11-14 years from the Public Health Impact of Metals Exposure (PHIME) cohort. We derived aggregated MMBs from the four biomarkers and then tested their association with Wechsler Intelligence Scale for Children (WISC) IQ scores. We used three approaches to derive the Pb MMB: one supervised learning technique, weighted quantile sum regression (WQS), and two unsupervised learning techniques, independent component analysis (ICA) and non-negative matrix factorization (NMF). Overall, the Pb MMB derived using WQS was most consistently associated with IQ scores and was the only method to be statistically significant for Verbal IQ, Performance IQ and Total IQ. A one standard deviation increase in the WQS MMB was associated with lower Verbal IQ (β [95% CI] = -2.2 points [-3.7, -0.6]), Performance IQ (-1.9 points [-3.5, -0.4]) and Total IQ (-2.1 points [-3.8, -0.5]). Blood Pb was negatively associated with only Verbal IQ, with a one standard deviation increase in blood Pb being associated with a -1.7 point (95% CI: [-3.3, -0.1]) decrease in Verbal IQ. Increases of one standard deviation in the ICA MMB were associated with lower Verbal IQ (-1.7 points [-3.3, -0.1]) and lower Total IQ (-1.7 points [-3.3, -0.1]). Similarly, an increase of one standard deviation in the NMF MMB was associated with lower Verbal IQ (-1.8 points [-3.4, -0.2]) and lower Total IQ (-1.8 points [-3.4, -0.2]). Weights highlighting the contributions of each medium to the MMB revealed that blood Pb was the largest contributor to most MMBs, although the weights varied from more than 80% for the ICA and NMF MMBs to between 30% and 54% for the WQS-derived MMBs. Our results suggest that MMBs better reflect the total body burden of a chemical that may be acting on target organs than individual biomarkers. Estimating MMBs improved our ability to estimate the full impact of Pb on IQ. Compared with individual Pb biomarkers, including blood, a Pb MMB derived using WQS was more strongly associated with IQ scores. MMBs may increase statistical power when the choice of exposure medium is unclear or when the sample size is small. Future work will need to validate these methods in other cohorts and for other chemicals.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA.
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Roberto Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA; Department of Occupational Health, University of Brescia, Italy
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
39
|
Di Ciaula A, Gentilini P, Diella G, Lopuzzo M, Ridolfi R. Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:1919. [PMID: 32187971 PMCID: PMC7143875 DOI: 10.3390/ijerph17061919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The impact of waste incinerators is usually examined by measuring environmental pollutants. Biomonitoring has been limited, until now, to few metals and to adults. We explored accumulation of a comprehensive panel of metals in children free-living in an urban area hosting two waste incinerators. Children were divided by georeferentiation in exposed and control groups, and toenail concentrations of 23 metals were thereafter assessed. The percentage of children having toenail metal concentrations above the limit of detection was higher in exposed children than in controls for Al, Ba, Mn, Cu, and V. Exposed children had higher absolute concentrations of Ba, Mn, Cu, and V, as compared with those living in the reference area. The Tobit regression identified living in the exposed area as a significant predictor of Ba, Ni, Cu, Mn, and V concentrations, after adjusting for covariates. The concentrations of Ba, Mn, Ni, and Cu correlated with each other, suggesting a possible common source of emission. Exposure to emissions derived from waste incinerators in an urban setting can lead to body accumulation of specific metals in children. Toenail metal concentration should be considered a noninvasive and adequate biomonitoring tool and an early warning indicator which should integrate the environmental monitoring of pollutants.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine, Hospital of Bisceglie (ASL BAT), 76011 Bisceglie, Italy
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Patrizia Gentilini
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, University of Study of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (M.L.)
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Study of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (M.L.)
| | - Ruggero Ridolfi
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
| |
Collapse
|
40
|
Broberg K, Taj T, Guazzetti S, Peli M, Cagna G, Pineda D, Placidi D, Wright RO, Smith DR, Lucchini RG, Wahlberg K. Manganese transporter genetics and sex modify the association between environmental manganese exposure and neurobehavioral outcomes in children. ENVIRONMENT INTERNATIONAL 2019; 130:104908. [PMID: 31233999 PMCID: PMC6682429 DOI: 10.1016/j.envint.2019.104908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 05/05/2023]
Abstract
There is increasing evidence that environmental manganese (Mn) exposure early in life can have negative effects on children's neurodevelopment and increase the risk of behavioral problems, including attention deficit hyperactivity disorder (ADHD). Factors that may contribute to differences in sensitivity to Mn exposure are sex and genetic variation of proteins involved in the regulation of Mn concentrations. Here we investigate if sex and polymorphisms in Mn transporter genes SLC30A10 and SLC39A8 influence the association between Mn exposure and ADHD-related behavioral problems in children. The SNPs rs1776029 and rs12064812 in SLC30A10, and rs13107325 in SLC39A8 were genotyped by TaqMan PCR or pyrosequencing in a population of Italian children (aged 11-14 years; n = 645) with a wide range of environmental Mn exposure. Mn in surface soil was measured in situ using XRF technology or modeled by geospatial analysis. Linear regression models or generalized additive models (GAM) were used for analyzing associations between soil Mn and neurobehavioral problems assessed by the Conners' behavior rating scales (self-, and parent-reported). Gene-environment interactions (Mn transporter genotype x soil Mn) were evaluated using a genetic score in which genotypes for the three SNPs were combined based on their association with blood Mn, as an indication of their influence on Mn regulation. We observed differences in associations between soil Mn and neurobehavior between sexes. For several self-reported Conners' scales, girls showed U-shaped relationships with higher (worse) Conners' scoring at higher soil Mn levels, and several parent-reported scales showed positive linear relationships between increasing soil Mn and higher Conner's scores. For boys, we observed a positive linear relationship with soil Mn for one Conner's outcome only (hyperactivity, parent-reported). We also observed some interactions between soil Mn and the genetic score on Conner's scales in girls and girls with genotypes linked to high blood Mn showed particularly strong positive associations between soil Mn and parent-reported Conners' scales. Our results indicate that sex and polymorphisms in Mn transporter genes contribute to differences in sensitivity to Mn exposure from the environment and that girls that are genetically less efficient at regulating Mn, may be a particularly vulnerable group.
Collapse
Affiliation(s)
- Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Klinikgatan 21, 221 85 Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 65 Solna, Sweden
| | - Tahir Taj
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Marco Peli
- Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa, 11, 25123 Brescia, BS, Italy
| | - Giuseppa Cagna
- Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa, 11, 25123 Brescia, BS, Italy
| | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Lund University, Klinikgatan 21, 221 85 Lund, Sweden
| | - Donatella Placidi
- Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa, 11, 25123 Brescia, BS, Italy
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Roberto G Lucchini
- Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa, 11, 25123 Brescia, BS, Italy; Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA
| | - Karin Wahlberg
- Division of Occupational and Environmental Medicine, Lund University, Klinikgatan 21, 221 85 Lund, Sweden.
| |
Collapse
|
41
|
de Water E, Papazaharias DM, Ambrosi C, Mascaro L, Iannilli E, Gasparotti R, Lucchini RG, Austin C, Arora M, Tang CY, Smith DR, Wright RO, Horton MK. Early-life dentine manganese concentrations and intrinsic functional brain connectivity in adolescents: A pilot study. PLoS One 2019; 14:e0220790. [PMID: 31412061 PMCID: PMC6693851 DOI: 10.1371/journal.pone.0220790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Maturational processes in the developing brain are disrupted by exposure to environmental toxicants, setting the stage for deviant developmental trajectories. Manganese (Mn) is an essential nutrient that is neurotoxic at high levels of exposure, particularly affecting the basal ganglia and prefrontal cortex. Both the intensity and timing of exposure matter; deciduous teeth can be used to retrospectively and objectively determine early-life windows of vulnerability. The aim of this pilot study was to examine associations between prenatal, early postnatal and childhood dentine Mn concentrations and intrinsic functional connectivity (iFC) of adolescents' brains. 14 adolescents (12-18 years; 6 girls) from northern Italian regions with either current, historic or no Mn contamination, completed a 10-minute resting state functional Magnetic Resonance Imaging (MRI) scan in an 1.5T MRI scanner. We estimated prenatal, early postnatal and childhood Mn concentrations in deciduous teeth using laser ablation-inductively coupled plasma-mass spectrometry. We performed seed-based correlation analyses, focusing on six subcortical seeds (left and right caudate, putamen, pallidum) and one cortical seed (bilateral middle frontal gyrus) from Harvard-Oxford atlases. We examined linear and quadratic correlations between log-transformed Mn concentrations and seed-based iFC (Bonferroni-corrected p<0.0023), controlling for either socio-economic status, sex or age. Dentine Mn concentrations (Mn:Calcium ratio) were highest during the prenatal period (median = 0.48) and significantly declined during the early postnatal (median = 0.14) and childhood periods (median = 0.006). Postnatal Mn concentrations were associated with: 1) increased iFC between the middle frontal gyrus and medial prefrontal cortex; 2) decreased iFC between the right putamen and pre- and postcentral gyrus. Together, these findings suggest that early postnatal Mn concentrations are associated with increased iFC within cognitive control brain areas, but decreased iFC between motor areas in adolescents. Future studies should replicate these findings in larger samples, and link brain connectivity measures to cognitive and motor outcomes.
Collapse
Affiliation(s)
- Erik de Water
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | | | | | | | | | | | - Roberto G. Lucchini
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- University of Brescia, Brescia, Italy
| | - Christine Austin
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Manish Arora
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Cheuk Y. Tang
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Donald R. Smith
- University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Robert O. Wright
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Megan K. Horton
- Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
42
|
Ou CY, He YH, Sun Y, Yang L, Shi WX, Li SJ. Effects of Sub-Acute Manganese Exposure on Thyroid Hormone and Glutamine (Gln)/Glutamate (Glu)-γ- Aminobutyric Acid (GABA) Cycle in Serum of Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122157. [PMID: 31216744 PMCID: PMC6616488 DOI: 10.3390/ijerph16122157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Excessive manganese (Mn) exposure may adversely affect the central nervous system, and cause an extrapyramidal disorder known as manganism. The glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) cycle and thyroid hormone system may be involved in Mn-induced neurotoxicity. However, the effect of Mn on the Gln/Glu-GABA cycle in the serum has not been reported. Herein, the present study aimed to investigate the effects of sub-acute Mn exposure on the Gln/Glu-GABA cycle and thyroid hormones levels in the serum of rats, as well as their relationship. The results showed that sub-acute Mn exposure increased serum Mn levels with a correlation coefficient of 0.733. Furthermore, interruption of the Glu/Gln-GABA cycle in serum was found in Mn-exposed rats, as well as thyroid hormone disorder in the serum via increasing serum Glu levels, and decreasing serum Gln, GABA, triiodothyronine (T3) and thyroxine (T4) levels. Additionally, results of partial correlation showed that there was a close relationship between serum Mn levels and the detected indicators accompanied with a positive association between GABA and T3 levels, as well as Gln and T4 levels in the serum of Mn-exposed rats. Unexpectedly, there was no significant correlation between serum Glu and the serum T3 and T4 levels. In conclusion, the results demonstrated that both the Glu/Gln-GABA cycle and thyroid hormone system in the serum may play a potential role in Mn-induced neurotoxicity in rats. Thyroid hormone levels, T3 and T4, have a closer relationship with GABA and Gln levels, respectively, in the serum of rats.
Collapse
Affiliation(s)
- Chao-Yan Ou
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Yong-Hua He
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Yi Sun
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Lin Yang
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Wen-Xiang Shi
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|