1
|
Nieto Ramirez LM, Mehaffy C, Dobos KM. Systematic review of innate immune responses against Mycobacterium tuberculosis complex infection in animal models. Front Immunol 2025; 15:1467016. [PMID: 39949719 PMCID: PMC11821578 DOI: 10.3389/fimmu.2024.1467016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) complex (MTBC) includes ten species that affect mammals and pose a significant global health concern. Upon infection, Mtb induces various stages in the host, including early bacterial elimination, which may or may not involve memory responses. Deciphering the role of innate immune responses during MTBC infection is crucial for understanding disease progression or protection. Over the past decade, there has been growing interest in the innate immune response to Mtb, with new preclinical models emerging. Methods We conducted a systematic review following PRISMA guidelines, focused on innate immune mediators linked to protection or disease progression in animal models of MTBC infection. We searched two databases: National Library of Medicine and Web of Science. Two researchers independently extracted data based on specific inclusion and exclusion criteria. Results Eighty-three articles were reviewed. Results were categorized in four groups: MTBC species, animal models, soluble factors and innate pathways, and other molecules (metabolites and drugs). Mtb and M. bovis were the only species studied. P2X7R receptor's role in disease progression and higher macrophage recruitment were observed differentially after infection with hypervirulent Mtb strains. Mice and non-human primates (NHPs) were the most used mammals, with emerging models like Galleria mellonella and planarians also studied. NHPs provided insights into age-dependent immunity and markers for active tuberculosis (ATB). Key innate immune factors/pathways identified included TNF-α, neutrophil recruitment, ROS/RNS responses, autophagy, inflammasomes, and antimicrobial peptides, with homologous proteins identified in insects. Metabolites like vitamin B5 and prostaglandin E2 were associated with protection. Immunomodulatory drugs targeting autophagy and other mechanisms were studied, exhibiting their potential as therapeutic alternatives. Conclusion Simpler, physiologically relevant, and ethically sound models, such as G. mellonella, are needed for studying innate responses in MTBC infection. While insects lack adaptive immunity, they could provide insights into "pure" innate immune responses. The dissection of "pure," "sustained" (later than 7 days post-infection), and trained innate immunity presents additional challenges that require high-resolution temporospatial analytical methods. Identifying early innate immune mediators and targetable pathways in the blood and affected tissues could identify biomarkers for immunization efficiency, disease progression, and potential synergistic therapies for ATB.
Collapse
Affiliation(s)
- Luisa Maria Nieto Ramirez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | | | - Karen Marie Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Wu H, Ma W, Zhu L, Peng L, Huang X, Zhong L, Yang R, Li B, Ma W, Gao L, Wu X, Song J, Luo S, Bao F, Liu A. The association of gut microbiota, immunocyte dynamics, and protein-protein ratios with tuberculosis susceptibility: a Mendelian randomization analysis. Sci Rep 2025; 15:2931. [PMID: 39849060 PMCID: PMC11757989 DOI: 10.1038/s41598-025-87160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
This study focused on the relationships among gut microbiota, plasma protein ratios, and tuberculosis. Given the unclear causal relationship between gut microbiota and tuberculosis and the scarcity of research on relevant plasma protein ratios in tuberculosis, Mendelian randomization analysis (MR) was employed for in-depth exploration. By analyzing the GWAS data of individuals with European ancestry (the FinnGen dataset included 409,568 controls and 2613 cases), using the two-sample MR method, we focused on evaluating the impact of immunocyte-mediated gut microbiota on tuberculosis and the associations between 2821 plasma protein-to-protein ratios and tuberculosis. Particularly, the mediation effect was emphasized in the exploration. The results showed that 19 gut microbiotas were associated with tuberculosis. An7 indirectly affected tuberculosis through immunocyte (CD4 on CM CD4+), with a masking effect ratio of 0.008, demonstrating immune cells' mediating role in the association between gut microbiota and tuberculosis. Meanwhile, the MR analysis revealed that 127 plasma protein-to-protein ratios were associated with tuberculosis. In conclusion, this study not only confirmed the impact of immunocyte-mediated gut microbiota on tuberculosis and clarified the mediating mechanism therein but also identified plasma protein-to-protein ratios related to tuberculosis, providing novel and valuable ideas for diagnosing and treating tuberculosis.
Collapse
Affiliation(s)
- Hanxin Wu
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Weijie Ma
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liangyu Zhu
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Li Peng
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xun Huang
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lei Zhong
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Rui Yang
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Bingxue Li
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Weijiang Ma
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Li Gao
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xinya Wu
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jieqin Song
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Suyi Luo
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Fukai Bao
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming, 650500, China.
| | - Aihua Liu
- Yunnan Provincial Key Laboratory of Children's Major Diseases Research, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China.
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
3
|
Seo H, Kim S, Beck S, Song HY. Perspectives on Microbiome Therapeutics in Infectious Diseases: A Comprehensive Approach Beyond Immunology and Microbiology. Cells 2024; 13:2003. [PMID: 39682751 PMCID: PMC11640688 DOI: 10.3390/cells13232003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Although global life expectancy has increased over the past 20 years due to advancements in managing infectious diseases, one-fifth of people still die from infections. In response to this ongoing threat, significant efforts are underway to develop vaccines and antimicrobial agents. However, pathogens evolve resistance mechanisms, complicating their control. The COVID-19 pandemic has underscored the limitations of focusing solely on the pathogen-killing strategies of immunology and microbiology to address complex, multisystemic infectious diseases. This highlights the urgent need for practical advancements, such as microbiome therapeutics, that address these limitations while complementing traditional approaches. Our review emphasizes key outcomes in the field, including evidence of probiotics reducing disease severity and insights into host-microbiome crosstalk that have informed novel therapeutic strategies. These findings underscore the potential of microbiome-based interventions to promote physiological function alongside existing strategies aimed at enhancing host immune responses and pathogen destruction. This narrative review explores microbiome therapeutics as next-generation treatments for infectious diseases, focusing on the application of probiotics and their role in host-microbiome interactions. While offering a novel perspective grounded in a cooperative defense system, this review also addresses the practical challenges and limitations in translating these advancements into clinical settings.
Collapse
Affiliation(s)
- Hoonhee Seo
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
| | - Samuel Beck
- Center for Aging Research, Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, J-607, 609 Albany, Boston, MA 02118, USA
| | - Ho-Yeon Song
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Cheonan-si 31151, Chungnam-do, Republic of Korea
| |
Collapse
|
4
|
Su H, Weng S, Luo L, Sun Q, Lin T, Ma H, He Y, Wu J, Wang H, Zhang W, Xu Y. Mycobacterium tuberculosis hijacks host macrophages-derived interleukin 16 to block phagolysosome maturation for enhancing intracellular growth. Emerg Microbes Infect 2024; 13:2322663. [PMID: 38380651 PMCID: PMC10911244 DOI: 10.1080/22221751.2024.2322663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
The discovery of promising cytokines and clarification of their immunological mechanisms in controlling the intracellular fate of Mycobacterium tuberculosis (Mtb) are necessary to identify effective diagnostic biomarkers and therapeutic targets. To escape immune clearance, Mtb can manipulate and inhibit the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. In this study, we found that interleukin 16 (IL-16) is elevated in the serum samples of Tuberculosis (TB) patients and can serve as a specific target for treatment TB. There was a significant difference in IL-16 levels among active TB, latent TB infection (LTBI), and non-TB patients. This study first revealed that macrophages are the major source of IL-16 production in response to Mtb infection, and elucidated that IL-16 can promote Mtb intracellular survival by inhibiting phagosome maturation and suppressing the expression of Rev-erbα which can inhibit IL-10 secretion. The experiments using zebrafish larvae infected with M. marinum and mice challenged with H37Rv demonstrated that reducing IL-16 levels resulted in less severe pathology and improved survival, respectively. In conclusion, this study provided direct evidence that Mtb hijacks the host macrophages-derived interleukin 16 to enhance intracellular growth. It is suggesting the immunosuppressive role of IL-16 during Mtb infection, supporting IL-16 as a promising therapeutic target.
Collapse
Affiliation(s)
- Haibo Su
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Intensive Care Unit, the Second Affiliated Hospital, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
| | - Liulin Luo
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qin Sun
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Taiyue Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huixia Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yumo He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jing Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wenhong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Li W, Huang Y, Tong S, Wan C, Wang Z. The characteristics of the gut microbiota in patients with pulmonary tuberculosis: A systematic review. Diagn Microbiol Infect Dis 2024; 109:116291. [PMID: 38581928 DOI: 10.1016/j.diagmicrobio.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Increasing evidence has indicated dysbiosis of the gut microbiota in patients with pulmonary tuberculosis (PTB). However, the change in the intestinal microbiota varies between different studies. This systematic review was conducted to investigate the characteristics of the gut microbiota in PTB patients. The MBASE, MEDLINE, Web of Science, and Cochrane Library electronic databases were systematically searched, and the quality of the retrieved studies was evaluated using the Newcastle-Ottawa scale. A total of 12 studies were finally included in the systematic review. Compared with healthy controls, the index reflecting α-diversity including the richness and/or diversity index decreased in 6 studies, while β-diversity presented significant differences in PTB patients in 10 studies. Although the specific gut microbiota alterations were inconsistent, short-chain fatty acid-producing bacteria (including Lachnospiraceae, Ruminococcus, Blautia, Dorea, and Faecalibacterium), bacteria associated with an inflammatory state (e.g., Prevotellaceae and Prevotella), and beneficial bacteria (e.g., Bifidobacteriaceae and Bifidobacterium) were commonly noted. Our systematic review identifies key evidence for gut microbiota alterations in PTB patients, in comparison with healthy controls; however, no consistent conclusion could be drawn, due to the inconsistent results and heterogeneous methodologies of the enrolled studies. Therefore, more well-designed research with standard methodologies and large sample sizes is required.
Collapse
Affiliation(s)
- Weiran Li
- Department of Pediatrics, West China Second Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology (Sichuan University), China
| | - Yunfei Huang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Shuai Tong
- Department of Pediatrics, West China Second Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology (Sichuan University), China
| | - Chaomin Wan
- Department of Pediatrics, West China Second Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology (Sichuan University), China
| | - Zhiling Wang
- Department of Pediatrics, West China Second Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology (Sichuan University), China.
| |
Collapse
|
6
|
Kim H, Song EJ, Choi E, Kwon KW, Park JH, Shin SJ. Adjunctive administration of parabiotic Lactobacillus sakei CVL-001 ameliorates drug-induced toxicity and pulmonary inflammation during antibiotic treatment for tuberculosis. Int Immunopharmacol 2024; 132:111937. [PMID: 38569427 DOI: 10.1016/j.intimp.2024.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Tuberculosis (TB) treatment requires a long therapeutic duration and induces adverse effects such as hepatotoxicity, causing discontinuation of treatment. Reduced adherence to TB medications elevates the risk of recurrence and the development of drug resistance. Additionally, severe cavitary TB with a high burden of Mycobacterium tuberculosis (Mtb) and inflammation-mediated tissue damage may need an extended treatment duration, resulting in a higher tendency of drug-induced toxicity. We previously reported that the administration of Lactobacillus sakei CVL-001 (L. sakei CVL-001) regulates inflammation and improves mucosal barrier function in a murine colitis model. Since accumulating evidence has reported the functional roles of probiotics in drug-induced liver injury and pulmonary inflammation, we employed a parabiotic form of the L. sakei CVL-001 to investigate whether this supplement may provide beneficial effects on the reduction in drug-induced liver damage and pulmonary inflammation during chemotherapy. Intriguingly, L. sakei CVL-001 administration slightly reduced Mtb burden without affecting lung inflammation and weight loss in both Mtb-resistant and -susceptible mice. Moreover, L. sakei CVL-001 decreased T cell-mediated inflammatory responses and increased regulatory T cells along with an elevated antigen-specific IL-10 production, suggesting that this parabiotic may restrain excessive inflammation during antibiotic treatment. Furthermore, the parabiotic intervention significantly reduced levels of alanine aminotransferase, an indicator of hepatotoxicity, and cell death in liver tissues. Collectively, our data suggest that L. sakei CVL-001 administration has the potential to be an adjunctive therapy by reducing pulmonary inflammation and liver damage during anti-TB drug treatment and may benefit adherence to TB medication in lengthy treatment.
Collapse
Affiliation(s)
- Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Jung Song
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jong-Hwan Park
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea; Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Chen JX, Dong HM, Cai YX, Tian LX, Yang ZC. Synthesis of narrow-spectrum anti-mycobacterial molecules without effect on the diversity of gut microbiota in mice based on the structure of rifampicin. Bioorg Chem 2024; 146:107282. [PMID: 38537334 DOI: 10.1016/j.bioorg.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Rifampicin (RIF) is a broad-spectrum antimicrobial agent that is also a first-line drug for treating tuberculosis (TB). Based on the naphthyl ring structure of RIF this study synthesized 16 narrow-spectrum antimicrobial molecules that were specifically anti-Mycobacterium tuberculosis (Mtb). The most potent candidate was 2-((6-hydroxynaphthalen-2-yl) methylene) hydrazine-1-carbothioamide (compound 3c) with minimum inhibitory concentration (MIC) of 1 μg/mL against Mtb. Synergistic anti-Mtb test indicated that none of the combinations of 3c with the major anti-TB drugs are antagonistic. Consistent with RIF, compound 3c induced large amounts of reactive oxygen radicals (ROS) in the cells of Mtb. The killing kinetics of compound 3c and RIF are very similar. Furthermore, molecular docking showed that compound 3c was able to access the RIF binding pocket of the β subunit of Mtb RNA polymerase (RNAP). Experiments in mice showed that compound 3c increased the variety of intestinal flora in mice, while RIF significantly decreased the diversity of intestinal flora in mice. In addition, compound 3c is non-toxic to animal cells with a selection index (SI) much more than 10. The evidence from this study suggests that the further development of 3c could contribute to the development of novel drug for TB treatment.
Collapse
Affiliation(s)
- Jun-Xian Chen
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Hong-Mei Dong
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Yu-Xiang Cai
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Li-Xia Tian
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Zai-Chang Yang
- College of Pharmacy, Guizhou University, Guiyang 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| |
Collapse
|
8
|
Sawaswong V, Chanchaem P, Klomkliew P, Rotcheewaphan S, Meesawat S, Kemthong T, Kaewparuehaschai M, Noradechanon K, Ekatat M, Kanitpun R, Srilohasin P, Warit S, Chaiprasert A, Malaivijitnond S, Payungporn S. Full-length 16S rDNA sequencing based on Oxford Nanopore Technologies revealed the association between gut-pharyngeal microbiota and tuberculosis in cynomolgus macaques. Sci Rep 2024; 14:3404. [PMID: 38337025 PMCID: PMC10858278 DOI: 10.1038/s41598-024-53880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis complex (Mtbc), which develops from asymptomatic latent TB to active stages. The microbiome was purposed as a potential factor affecting TB pathogenesis, but the study was limited. The present study explored the association between gut-pharyngeal microbiome and TB stages in cynomolgus macaques using the full-length 16S rDNA amplicon sequencing based on Oxford Nanopore Technologies. The total of 71 macaques was divided into TB (-) control, TB (+) latent and TB (+) active groups. The differential abundance analysis showed that Haemophilus hemolyticus was decreased, while Prevotella species were increased in the pharyngeal microbiome of TB (+) macaques. In addition, Eubacterium coprostanoligenes in the gut was enriched in TB (+) macaques. Alteration of these bacteria might affect immune regulation and TB severity, but details of mechanisms should be further explored and validated. In summary, microbiota may be associated with host immune regulation and affect TB progression. The findings suggested the potential mechanisms of host-microbes interaction, which may improve the understanding of the role of microbiota and help develop therapeutics for TB in the future.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Prangwalai Chanchaem
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Pavit Klomkliew
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Suwatchareeporn Rotcheewaphan
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suthirote Meesawat
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mutchamon Kaewparuehaschai
- Wildlife Conservation Office, Department of National Parks Wildlife and Plant Conservation, Bangkok, 10900, Thailand
| | - Kirana Noradechanon
- Wildlife Conservation Office, Department of National Parks Wildlife and Plant Conservation, Bangkok, 10900, Thailand
| | - Monya Ekatat
- National Institute of Animal Health (NIAH), Bangkok, 10900, Thailand
| | - Reka Kanitpun
- National Institute of Animal Health (NIAH), Bangkok, 10900, Thailand
| | - Prapaporn Srilohasin
- Office for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Angkana Chaiprasert
- Office for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Zhang W, Jia Q, Han M, Zhang X, Guo L, Sun S, Yin W, Bo C, Han R, Sai L. Bifidobacteria in disease: from head to toe. Folia Microbiol (Praha) 2024; 69:1-15. [PMID: 37644256 DOI: 10.1007/s12223-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.
Collapse
Affiliation(s)
- Weiliang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Limin Guo
- Rongcheng Municipal Hospital of Traditional Chinese Medicine, Rongcheng, Shandong, China
| | - Shichao Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine Doctoral candidate Class of 2022, Jinan, Shandong, China
| | - Wenhui Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ru Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
10
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
11
|
Chen Z, Liu Y, Huang W. Alveolar macrophage modulation via the gut-lung axis in lung diseases. Front Immunol 2023; 14:1279677. [PMID: 38077401 PMCID: PMC10702770 DOI: 10.3389/fimmu.2023.1279677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Several studies have demonstrated great potential implications for the gut-lung axis in lung disease etiology and treatment. The gut environment can be influenced by diet, metabolites, microbiotal composition, primary diseases, and medical interventions. These changes modulate the functions of alveolar macrophages (AMs) to shape the pulmonary immune response, which greatly impacts lung health. The immune modulation of AMs is implicated in the pathogenesis of various lung diseases. However, the mechanism of the gut-lung axis in lung diseases has not yet been determined. This mini-review aimed to shed light on the critical nature of communication between the gut and AMs during the development of pulmonary infection, injury, allergy, and malignancy. A better understanding of their crosstalk may provide new insights into future therapeutic strategies targeting the gut-AM interaction.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
12
|
Gupta SK, Vyavahare S, Duchesne Blanes IL, Berger F, Isales C, Fulzele S. Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Exp Gerontol 2023; 183:112319. [PMID: 37898179 DOI: 10.1016/j.exger.2023.112319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The intricate interplay between gut microbiota and the host is pivotal in maintaining homeostasis and health. Dietary tryptophan (TRP) metabolism initiates a cascade of essential endogenous metabolites, including kynurenine, kynurenic acid, serotonin, and melatonin, as well as microbiota-derived Trp metabolites like tryptamine, indole propionic acid (IPA), and other indole derivatives. Notably, tryptamine and IPA, among the indole metabolites, exert crucial roles in modulating immune, metabolic, and neuronal responses at both local and distant sites. Additionally, these metabolites demonstrate potent antioxidant and anti-inflammatory activities. The levels of microbiota-derived TRP metabolites are intricately linked to the gut microbiota's health, which, in turn, can be influenced by age-related changes. This review aims to comprehensively summarize the cellular and molecular impacts of tryptamine and IPA on health and aging-related complications. Furthermore, we explore the levels of tryptamine and IPA and their corresponding bacteria in select diseased conditions, shedding light on their potential significance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ian L Duchesne Blanes
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ford Berger
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
13
|
Martinez-Martinez YB, Huante MB, Chauhan S, Naqvi KF, Bharaj P, Endsley JJ. Helper T cell bias following tuberculosis chemotherapy identifies opportunities for therapeutic vaccination to prevent relapse. NPJ Vaccines 2023; 8:165. [PMID: 37898618 PMCID: PMC10613213 DOI: 10.1038/s41541-023-00761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Therapeutic vaccines have promise as adjunctive treatment for tuberculosis (TB) or as preventives against TB relapse. An important development challenge is the limited understanding of T helper (Th) cell roles during these stages of disease. A murine model of TB relapse was used to identify changes in Th populations and cytokine microenvironment. Active TB promoted expansion of Th1, Th2, Th17, and Th22 cells and cytokines in the lung. Following drug therapy, pulmonary Th17 and Th22 cells contracted, Th1 cells remained elevated, while Th cells producing IL-4 or IL-10 expanded. At relapse, Th22 cells failed to re-expand in the lung despite a moderate re-expansion of Th1 and Th17 cells and an increase in Th cytokine polyfunctionality. The dynamics of Th populations further differed by tissue compartment and disease presentation. These outcomes identify immune bias by Th subpopulations during TB relapse as candidate mechanisms for pathogenesis and targets for therapeutic vaccination.
Collapse
Affiliation(s)
- Yazmin B Martinez-Martinez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Preeti Bharaj
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
14
|
Pant A, Das B, Arimbasseri GA. Host microbiome in tuberculosis: disease, treatment, and immunity perspectives. Front Microbiol 2023; 14:1236348. [PMID: 37808315 PMCID: PMC10559974 DOI: 10.3389/fmicb.2023.1236348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Tuberculosis (TB), an airborne pulmonary disease caused by Mycobacterium tuberculosis (M. tb), poses an unprecedented health and economic burden to most of the developing countries. Treatment of TB requires prolonged use of a cocktail of antibiotics, which often manifest several side effects, including stomach upset, nausea, and loss of appetite spurring on treatment non-compliance and the emergence of antibiotic resistant M. tb. The anti-TB treatment regimen causes imbalances in the composition of autochthonous microbiota associated with the human body, which also contributes to major side effects. The microbiota residing in the gastrointestinal tract play an important role in various physiological processes, including resistance against colonization by pathogens, boosting host immunity, and providing key metabolic functions. In TB patients, due to prolonged exposure to anti-tuberculosis drugs, the gut microbiota significantly loses its diversity and several keystone bacterial taxa. This loss may result in a significant reduction in the functional potency of the microbiota, which is a probable reason for poor treatment outcomes. In this review, we discuss the structural and functional changes of the gut microbiota during TB and its treatment. A major focus of the review is oriented to the gut microbial association with micronutrient profiles and immune cell dynamics during TB infection. Furthermore, we summarize the acquisition of anti-microbial resistance in M. tb along with the microbiome-based therapeutics to cure the infections. Understanding the relationship between these components and host susceptibility to TB disease is important to finding potential targets that may be used in TB prevention, progression, and cure.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | | |
Collapse
|
15
|
Boicean A, Bratu D, Fleaca SR, Vasile G, Shelly L, Birsan S, Bacila C, Hasegan A. Exploring the Potential of Fecal Microbiota Transplantation as a Therapy in Tuberculosis and Inflammatory Bowel Disease. Pathogens 2023; 12:1149. [PMID: 37764957 PMCID: PMC10535282 DOI: 10.3390/pathogens12091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This review explores the potential benefits of fecal microbiota transplantation (FMT) as an adjunct treatment in tuberculosis (TB), drawing parallels from its efficacy in inflammatory bowel disease (IBD). FMT has shown promise in restoring the gut microbial balance and modulating immune responses in IBD patients. Considering the similarities in immunomodulation and dysbiosis between IBD and TB, this review hypothesizes that FMT may offer therapeutic benefits as an adjunct therapy in TB. Methods: We conducted a systematic review of the existing literature on FMT in IBD and TB, highlighting the mechanisms and potential implications of FMT in the therapeutic management of both conditions. The findings contribute to understanding FMT's potential role in TB treatment and underscore the necessity for future research in this direction to fully leverage its clinical applications. Conclusion: The integration of FMT into the comprehensive management of TB could potentially enhance treatment outcomes, reduce drug resistance, and mitigate the side effects of conventional therapies. Future research endeavors should focus on well-designed clinical trials to develop guidelines concerning the safety and short- and long-term benefits of FMT in TB patients, as well as to assess potential risks.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Dan Bratu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Gligor Vasile
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Leeb Shelly
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| |
Collapse
|
16
|
Enjeti A, Sathkumara HD, Kupz A. Impact of the gut-lung axis on tuberculosis susceptibility and progression. Front Microbiol 2023; 14:1209932. [PMID: 37485512 PMCID: PMC10358729 DOI: 10.3389/fmicb.2023.1209932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Tuberculosis (TB) has remained at the forefront of the global infectious disease burden for centuries. Concerted global efforts to eliminate TB have been hindered by the complexity of Mycobacterium tuberculosis (Mtb), the emergence of antibiotic resistant Mtb strains and the recent impact of the ongoing pandemic of coronavirus disease 2019 (COVID19). Examination of the immunomodulatory role of gastrointestinal microbiota presents a new direction for TB research. The gut microbiome is well-established as a critical modulator of early immune development and inflammatory responses in humans. Recent studies in animal models have further substantiated the existence of the 'gut-lung axis', where distal gastrointestinal commensals modulate lung immune function. This gut microbiome-lung immune crosstalk is postulated to have an important correlation with the pathophysiology of TB. Further evaluation of this gut immunomodulation in TB may provide a novel avenue for the exploration of therapeutic targets. This mini-review assesses the proposed mechanisms by which the gut-lung axis impacts TB susceptibility and progression. It also examines the impact of current anti-TB therapy on the gut microbiome and the effects of gut dysbiosis on treatment outcomes. Finally, it investigates new therapeutic targets, particularly the use of probiotics in treatment of antibiotic resistant TB and informs future developments in the field.
Collapse
Affiliation(s)
- Aditya Enjeti
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Harindra Darshana Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
17
|
Wu Y, Pernet E, Touqui L. Modulation of Airway Expression of the Host Bactericidal Enzyme, sPLA2-IIA, by Bacterial Toxins. Toxins (Basel) 2023; 15:440. [PMID: 37505708 PMCID: PMC10467128 DOI: 10.3390/toxins15070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Host molecules with antimicrobial properties belong to a large family of mediators including type-IIA secreted phospholipase A2 (sPLA2-IIA). The latter is a potent bactericidal agent with high selectivity against Gram-positive bacteria, but it may also play a role in modulating the host inflammatory response. However, several pathogen-associated molecular patterns (PAMPs) or toxins produced by pathogenic bacteria can modulate the levels of sPLA2-IIA by either inducing or inhibiting its expression in host cells. Thus, the final sPLA2-IIA concentration during the infection process is determined by the orchestration between the levels of toxins that stimulate and those that downregulate the expression of this enzyme. The stimulation of sPLA2-IIA expression is a process that participates in the clearance of invading bacteria, while inhibition of this expression highlights a mechanism by which certain bacteria can subvert the immune response and invade the host. Here, we will review the major functions of sPLA2-IIA in the airways and the role of bacterial toxins in modulating the expression of this enzyme. We will also summarize the major mechanisms involved in this modulation and the potential consequences for the pulmonary host response to bacterial infection.
Collapse
Affiliation(s)
- Yongzheng Wu
- Unité de Biologie Cellulaire de l’Infection Microbionne, CNRS UMR3691, Institut Pasteur, Université de Paris Cité, 75015 Paris, France;
| | - Erwan Pernet
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Lhousseine Touqui
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Institut Pasteur, Université de Paris Cité, Mucoviscidose et Bronchopathies Chroniques, 75015 Paris, France
| |
Collapse
|
18
|
Pelosi U, Pintus R, Savasta S, Fanos V. Pulmonary Tuberculosis in Children: A Forgotten Disease? Microorganisms 2023; 11:1722. [PMID: 37512894 PMCID: PMC10385511 DOI: 10.3390/microorganisms11071722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Even today, tuberculosis in childhood is a disease that is often undiagnosed and undertreated. In the absence of therapy with antituberculosis drugs, children in the first years of life have a high degree of severe forms and mortality. In these children, symptoms are often not very specific and can easily be confused with other diseases of bacterial, viral or fungal etiology, making diagnosis more difficult. Nevertheless, the introduction of new diagnostic techniques has allowed a more rapid identification of the infection. Indeed, Interferon gamma release assay (IGRA) is preferred to the Mantoux, albeit with obvious limitations in children aged <2 years. While the Xpert Mtb/RIF Ultra test is recommended as an initial diagnostic investigation of the gastric aspirate and/or stools in children with signs and symptoms of pulmonary tuberculosis. The drugs used in the treatment of susceptible and resistant TB are the same as those used in adults but doses and combinations are different in the pediatric age. In children, brief therapy is preferable in both the latent infection and the active disease, as a significant reduction in side effects is obtained.
Collapse
Affiliation(s)
- Umberto Pelosi
- Pediatric Unit, Santa Barbara Hospital, 09016 Iglesias, Italy
| | - Roberta Pintus
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, AOU Cagliari, 09124 Cagliari, Italy
| | - Salvatore Savasta
- Department of Pediatrics and Rare Diseases, Ospedale Microcitemico Antonio Cao, University of Cagliari, 09124 Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, AOU Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
19
|
Bryukhacheva EO, Zakharova YV, Otdushkina LY, Pyanzova TV. Characteristics of the intestinal microflora in children receiving anti-tuberculosis therapy. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-cot-2037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The progress in investigating microbiome in children and adolescents as well as its impact on maintaining health is considered one of the most significant achievements of modern medicine. In children with various diseases, the qualitative and quantitative indicators of the intestinal microflora change, which causes the development of dysbiosis. The assessing changes in intestinal microflora in children during treatment with anti- tuberculosis drugs has retained its importance and relevance due to insufficient data in the field, which requires a more detailed understanding of this problem. The presented article assesses the state of gut microbial biocenosis in children receiving anti-tuberculosis treatment. The purpose of the study: to study the microbial landscape of the colonic contents in children receiving anti-tuberculosis therapy. Materials and methods. The study included 24 children with verified tuberculosis of the respiratory organs receiving treatment in a 24-hour hospital of the Kuzbass Clinical Phthisiopulmonological Medical Center named after I.F. Kopylova. The study of intestinal microflora was carried out by a quantitative bacteriological method. The material of the study was feces collected in a sterile disposable container, which was delivered to the Department of Microbiology, Immunology and Virology of the Federal State Budgetary Educational Institution of the Russian Ministry of Health. Results. Dysbiosis with predominance of microecological disorders of II (41.7%) and III (37.3%) degrees was detected in all children receiving anti-tuberculosis therapy. The microbial landscape of the intestine was characterized by a decrease in the quantitative content of representatives of the obligate flora Bifidobacterium spp. in 66.7% of children and Lactobacillus spp. in 45.8%, an increase in the number of facultative microorganisms: E. coli lac+ and Citrobacter freundii in 12.5%. Maintaining a full-fledged and active intestinal normobiota is possible by ensuring its dynamic control in children with tuberculosis during treatment. The results of studying the characteristics of the microbiota suggest that patients need probiotic therapy during the treatment of tuberculosis. Conclusion. Microecological disorders in children with tuberculosis therapy were characterized by a decrease in the quantitative content of representatives of obligate flora and an increase in the number of facultative microorganisms. Also in the material, various types of fungi of the genus Candida were identified.
Collapse
|
20
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
21
|
Kim YM, Choi JO, Cho YJ, Hong BK, Shon HJ, Kim BJ, Park JH, Kim WU, Kim D. Mycobacterium potentiates protection from colorectal cancer by gut microbial alterations. Immunology 2023; 168:493-510. [PMID: 36183156 DOI: 10.1111/imm.13586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Not only are many Mycobacteria pathogens, but they can act as strong non-specific immunopotentiators, generating beneficial effects on the pathogenesis of some diseases. However, there has been no direct evidence of the effect of mycobacterial species on colorectal cancer (CRC). Herein, we showed that there may be a meaningful inverse correlation between the incidence of tuberculosis and CRC based on global statistics and that heat-killed Mycobacterial tuberculosis and live Mycobacterium bovis (Bacillus Calmette-Guérin strain) could ameliorate CRC development. In particular, using a faecal microbiota transplantation and a comparison between separate housing and cohousing, we demonstrated that the gut microbiota is involved in the protective effects. The microbial alterations can be elucidated by the modulation of antimicrobial activities including those of the Reg3 family genes. Furthermore, interleukin-22 production by T helper cells contributed to the anti-inflammatory activity of Mycobacteria. Our results revealed a novel role of Mycobacteria involving gut microbial alterations in dampening inflammation-associated CRC and an immunological mechanism underlying the interaction between microbes and host immunity.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Ouk Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute for Basic Science, Seoul, Republic of Korea
| | - Bong-Ki Hong
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hoh-Jeong Shon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
22
|
Eribo OA, Naidoo CC, Theron G, Walzl G, du Plessis N, Chegou NN. An Archetypical Model for Engrafting Bacteroides fragilis into Conventional Mice Following Reproducible Antibiotic Conditioning of the Gut Microbiota. Microorganisms 2023; 11:microorganisms11020451. [PMID: 36838416 PMCID: PMC9966493 DOI: 10.3390/microorganisms11020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bacteroides fragilis is a commonly investigated commensal bacterium for its protective role in host diseases. Here, we aimed to develop a reproducible antibiotic-based model for conditioning the gut microbiota and engrafting B. fragilis into a conventional murine host. Initially, we selected different combinations of antibiotics, including metronidazole, imipenem, and clindamycin, and investigated their efficacy in depleting the mouse Bacteroides population. We performed 16S rRNA sequencing of DNA isolated from fecal samples at different time points. The α-diversity was similar in mice treated with metronidazole (MET) and differed only at weeks 1 (p = 0.001) and 3 (p = 0.009) during metronidazole/imipenem (MI) treatment. Bacteroides compositions, during the MET and MI exposures, were similar to the pre-antibiotic exposure states. Clindamycin supplementation added to MET or MI regimens eliminated the Bacteroides population. We next repeated metronidazole/clindamycin (MC) treatment in two additional independent experiments, followed by a B. fragilis transplant. MC consistently and reproducibly eliminated the Bacteroides population. The depleted Bacteroides did not recover in a convalescence period of six weeks post-MC treatment. Finally, B. fragilis was enriched for ten days following engraftment into Bacteroides-depleted mice. Our model has potential use in gut microbiota studies that selectively investigate Bacteroides' role in diseases of interest.
Collapse
Affiliation(s)
- Osagie A. Eribo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Charissa C. Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- Correspondence:
| |
Collapse
|
23
|
Baral T, Kurian SJ, Thomas L, Udyavara Kudru C, Mukhopadhyay C, Saravu K, Manu MK, Singh J, Munisamy M, Kumar A, Khandelwal B, Rao M, Sekhar Miraj S. Impact of tuberculosis disease on human gut microbiota: a systematic review. Expert Rev Anti Infect Ther 2023; 21:175-188. [PMID: 36564016 DOI: 10.1080/14787210.2023.2162879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION This systematic review evaluates the gut microbiota (GM) status in tuberculosis (TB) patients compared to healthy volunteers due to the disease or its treatment. AREAS COVERED We conducted a systematic review of all articles published in PubMed, Web of Science, and Embase that assessed the impact of TB disease and anti-tubercular therapy (ATT) on GM from inception till January 2022 (Protocol registration number in PROSPERO: CRD42021261884). Regarding the microbial diversity indices and taxonomy, we found a significant difference in GM status between the TB and healthy control (HC) groups. We found an overabundance of Phylum Proteobacteria and depletion of some short-chain fatty acid-producing bacteria genera like Bifidobacteria, Roseburia, and Ruminococcus in the TB group. We found that ATT exacerbates the degree of dysbiosis caused by Mycobacteria tuberculosis disease. EXPERT OPINION The modulation of GM in TB patients in clinical practice may serve as a promising target to reverse the dysbiosis caused. Moreover, this can optimistically change the TB treatment outcome. We expect that appropriate probiotic supplementation with antimycobacterial treatment during tuberculosis disease will help stabilize the GM throughout the treatment phase and protect the GM from dysbiosis.
Collapse
Affiliation(s)
- Tejaswini Baral
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kavitha Saravu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India.,Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mohan K Manu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India.,Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Amit Kumar
- Department of Laboratory Medicine, Rajendra Institute of Medical Sciences, Ranchi, India
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, India.,Director, Directorate of Research, Sikkim Manipal University, Gangtok, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
24
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
25
|
Yu Z, Shen X, Wang A, Hu C, Chen J. The gut microbiome: A line of defense against tuberculosis development. Front Cell Infect Microbiol 2023; 13:1149679. [PMID: 37143744 PMCID: PMC10152471 DOI: 10.3389/fcimb.2023.1149679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
The tuberculosis (TB) burden remains a significant global public health concern, especially in less developed countries. While pulmonary tuberculosis (PTB) is the most common form of the disease, extrapulmonary tuberculosis, particularly intestinal TB (ITB), which is mostly secondary to PTB, is also a significant issue. With the development of sequencing technologies, recent studies have investigated the potential role of the gut microbiome in TB development. In this review, we summarized studies investigating the gut microbiome in both PTB and ITB patients (secondary to PTB) compared with healthy controls. Both PTB and ITB patients show reduced gut microbiome diversity characterized by reduced Firmicutes and elevated opportunistic pathogens colonization; Bacteroides and Prevotella were reported with opposite alteration in PTB and ITB patients. The alteration reported in TB patients may lead to a disequilibrium in metabolites such as short-chain fatty acid (SCFA) production, which may recast the lung microbiome and immunity via the "gut-lung axis". These findings may also shed light on the colonization of Mycobacterium tuberculosis in the gastrointestinal tract and the development of ITB in PTB patients. The findings highlight the crucial role of the gut microbiome in TB, particularly in ITB development, and suggest that probiotics and postbiotics might be useful supplements in shaping a balanced gut microbiome during TB treatment.
Collapse
Affiliation(s)
- Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Aiyao Wang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- *Correspondence: Jianyong Chen,
| |
Collapse
|
26
|
Wu C, Yi H, Hu Y, Luo D, Tang Z, Wen X, Zhang Y, Tang M, Zhang L, Wu S, Chen M. Effects of second-line anti-tuberculosis drugs on the intestinal microbiota of patients with rifampicin-resistant tuberculosis. Front Cell Infect Microbiol 2023; 13:1127916. [PMID: 37187470 PMCID: PMC10178494 DOI: 10.3389/fcimb.2023.1127916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To determine the effects of second-line anti-tuberculosis (TB) drugs on the composition and functions of intestinal microbiota in patients with rifampicin-resistant TB (RR-TB). Methods In this cross-sectional study, stool samples and relevant clinical information were collected from patients with RR-TB admitted to the Drug-resistant Specialty Department at Hunan Chest Hospital (Hunan Institute For Tuberculosis Control). The composition and functions of intestinal microbiota were analyzed using metagenomic sequencing and bioinformatics methods. Results Altered structural composition of the intestinal microbiota was found when patients from the control, intensive phase treatment, and continuation phase treatment groups were compared (P<0.05). Second-line anti-TB treatment resulted in a decrease in the relative abundance of species, such as Prevotella copri, compared with control treatment. However, the relative abundance of Escherichia coli, Salmonella enterica, and 11 other conditionally pathogenic species increased significantly in the intensive phase treatment group. Based on differential functional analysis, some metabolism-related functions, such as the biosynthesises of phenylalanine, tyrosine, and tryptophan, were significantly inhibited during second-line anti-TB drug treatment, while other functions, such as phenylalanine metabolism, were significantly promoted during the intensive phase of treatment. Conclusion Second-line anti-TB drug treatment caused changes in the structural composition of the intestinal microbiota in patients with RR-TB. In particular, this treatment induced a significant increase in the relative abundance of 11 conditionally pathogenic species, including Escherichia coli. Functional analysis revealed significantly decreased biosynthesises of phenylalanine, tyrosine, and tryptophan and significantly increased phenylalanine metabolism.
Collapse
Affiliation(s)
- Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hengzhong Yi
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
- *Correspondence: Hengzhong Yi,
| | - Yanmei Hu
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Danlin Luo
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Zhigang Tang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Xinmin Wen
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Yong Zhang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Mi Tang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Lizhi Zhang
- Orthopedics and integration Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Shu Wu
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, Grondin JA, Kang A, D'Agostino MR, Yao Y, Jain S, Zganiacz A, Kroezen Z, Shanmuganathan M, Singh R, Dvorkin-Gheva A, Britz-McKibbin P, Khan WI, Xing Z. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat Immunol 2022; 23:1687-1702. [PMID: 36456739 PMCID: PMC9747617 DOI: 10.1038/s41590-022-01354-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Immunology, Zhejiang University, Zhejiang, China
| | - Shreya Jain
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
28
|
Arrigoni R, Ballini A, Topi S, Bottalico L, Jirillo E, Santacroce L. Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. Antibiotics (Basel) 2022; 11:antibiotics11101431. [PMID: 36290089 PMCID: PMC9598247 DOI: 10.3390/antibiotics11101431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). TB treatment is based on the administration of three major antibiotics: isoniazid, rifampicin, and pyrazinamide. However, multi-drug resistant (MDR) Mtb strains are increasing around the world, thus, allowing TB to spread around the world. The stringent response is demonstrated by Mtb strains in order to survive under hostile circumstances, even including exposure to antibiotics. The stringent response is mediated by alarmones, which regulate bacterial replication, transcription and translation. Moreover, the Mtb cell wall contributes to the mechanism of antibiotic resistance along with efflux pump activation and biofilm formation. Immunity over the course of TB is managed by M1-macrophages and M2-macrophages, which regulate the immune response against Mtb infection, with the former exerting inflammatory reactions and the latter promoting an anti-inflammatory profile. T helper 1 cells via secretion of interferon (IFN)-gamma, play a protective role in the course of TB, while T regulatory cells secreting interleukin 10, are anti-inflammatory. Alternative therapeutic options against TB require further discussion. In view of the increasing number of MDR Mtb strains, attempts to replace antibiotics with natural and biological products have been object of intensive investigation. Therefore, in this review the anti-Mtb effects exerted by probiotics, polyphenols, antimicrobial peptides and IFN-gamma will be discussed. All the above cited compounds are endowed either with direct antibacterial activity or with anti-inflammatory and immunomodulating characteristics.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
- Correspondence:
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
29
|
Deng Y, Luo X, Li X, Xiao Y, Xu B, Tong H. Screening of Biomarkers and Toxicity Mechanisms of Rifampicin-Induced Liver Injury Based on Targeted Bile Acid Metabolomics. Front Pharmacol 2022; 13:925509. [PMID: 35754491 PMCID: PMC9226894 DOI: 10.3389/fphar.2022.925509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Rifampicin (RIF) is a critical first-line drug for tuberculosis. However, long-term or high-dose treatment with RIF can induce severe liver injury; the underlying mechanism of this effect has not yet been clarified. This study was performed to screen reliable and sensitive biomarkers in serum bile acids (BAs) using targeted BA metabolomics and evaluate the toxicity mechanisms underlying RIF-induced liver injury through the farnesoid x receptor (Fxr)-multidrug resistance-associated proteins (Mrps) signaling pathway. Thirty-two Institute of Cancer Research mice were randomly divided into four groups, and normal saline, isoniazid 75 mg/kg + RIF 177 mg/kg (RIF-L), RIF-L, or RIF 442.5 mg/kg (RIF-H) was orally administered by gavage for 21 days. After treatment, changes in serum biochemical parameters, hepatic pathological conditions, BA levels, Fxr expression, and BA transporter levels were measured. RIF caused notable liver injury and increased serum cholic acid (CA) levels. Decline in the serum secondary BAs (deoxycholic acid, lithocholic acid, taurodeoxycholic acid, and tauroursodeoxycholic acid) levels led to liver injury in mice. Serum BAs were subjected to metabolomic assessment using partial least squares discriminant and receiver operating characteristic curve analyses. CA, DCA, LCA, TDCA, and TUDCA are potential biomarkers for early detection of RIF-induced liver injury. Furthermore, RIF-H reduced hepatic BA levels and elevated serum BA levels by suppressing the expression of Fxr and Mrp2 messenger ribonucleic acid (mRNA) while inducing that of Mrp3 and Mrp4 mRNAs. These findings provide evidence for screening additional biomarkers based on targeted BA metabolomics and provide further insights into the pathogenesis of RIF-induced liver injury.
Collapse
Affiliation(s)
- Yang Deng
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Xilin Luo
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Yisha Xiao
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Huan Tong
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| |
Collapse
|
30
|
Long-distance relationships - regulation of systemic host defense against infections by the gut microbiota. Mucosal Immunol 2022; 15:809-818. [PMID: 35732817 DOI: 10.1038/s41385-022-00539-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023]
Abstract
Despite compartmentalization within the lumen of the gastrointestinal tract, the gut microbiota has a far-reaching influence on immune cell development and function throughout the body. This long-distance relationship is crucial for immune homeostasis, including effective host defense against invading pathogens that cause systemic infections. Herein, we review new insights into how commensal microbes that are spatially restricted to the gut lumen can engage in long-distance relationships with innate and adaptive immune cells at systemic sites to fortify host defenses against infections. In addition, we explore the consequences of intestinal dysbiosis on impaired host defense and immune-mediated pathology during infections, including emerging evidence linking dysbiosis with aberrant systemic inflammation and immune-mediated organ damage in sepsis. As such, therapeutic modification of the gut microbiota is an emerging target for interventions to prevent and/or treat systemic infections and sepsis by harnessing the long-distance relationships between gut microbes and systemic immunity.
Collapse
|
31
|
Targeting the Pulmonary Microbiota to Fight against Respiratory Diseases. Cells 2022; 11:cells11050916. [PMID: 35269538 PMCID: PMC8909000 DOI: 10.3390/cells11050916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system of the respiratory tract possesses an effective “defense barrier” against the invading pathogenic microorganisms; therefore, the lungs of healthy organisms are considered to be sterile for a long time according to the strong pathogens-eliminating ability. The emergence of next-generation sequencing technology has accelerated the studies about the microbial communities and immune regulating functions of lung microbiota during the past two decades. The acquisition and maturation of respiratory microbiota during childhood are mainly determined by the birth mode, diet structure, environmental exposure and antibiotic usage. However, the formation and development of lung microbiota in early life might affect the occurrence of respiratory diseases throughout the whole life cycle. The interplay and crosstalk between the gut and lung can be realized by the direct exchange of microbial species through the lymph circulation, moreover, the bioactive metabolites produced by the gut microbiota and lung microbiota can be changed via blood circulation. Complicated interactions among the lung microbiota, the respiratory viruses, and the host immune system can regulate the immune homeostasis and affect the inflammatory response in the lung. Probiotics, prebiotics, functional foods and fecal microbiota transplantation can all be used to maintain the microbial homeostasis of intestinal microbiota and lung microbiota. Therefore, various kinds of interventions on manipulating the symbiotic microbiota might be explored as novel effective strategies to prevent and control respiratory diseases.
Collapse
|
32
|
Chen L, Zhang G, Li G, Wang W, Ge Z, Yang Y, He X, Liu Z, Zhang Z, Mai Q, Chen Y, Chen Z, Pi J, Yang S, Cui J, Liu H, Shen L, Zeng L, Zhou L, Chen X, Ge B, Chen ZW, Zeng G. Ifnar gene variants influence gut microbial production of palmitoleic acid and host immune responses to tuberculosis. Nat Metab 2022; 4:359-373. [PMID: 35288721 DOI: 10.1038/s42255-022-00547-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Both host genetics and the gut microbiome have important effects on human health, yet how host genetics regulates gut bacteria and further determines disease susceptibility remains unclear. Here, we find that the gut microbiome pattern of participants with active tuberculosis is characterized by a reduction of core species found across healthy individuals, particularly Akkermansia muciniphila. Oral treatment of A. muciniphila or A. muciniphila-mediated palmitoleic acid strongly inhibits tuberculosis infection through epigenetic inhibition of tumour necrosis factor in mice infected with Mycobacterium tuberculosis. We use three independent cohorts comprising 6,512 individuals and identify that the single-nucleotide polymorphism rs2257167 'G' allele of type I interferon receptor 1 (encoded by IFNAR1 in humans) contributes to stronger type I interferon signalling, impaired colonization and abundance of A. muciniphila, reduced palmitoleic acid production, higher levels of tumour necrosis factor, and more severe tuberculosis disease in humans and transgenic mice. Thus, host genetics are critical in modulating the structure and functions of gut microbiome and gut microbial metabolites, which further determine disease susceptibility.
Collapse
Affiliation(s)
- Lingming Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guoliang Zhang
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guobao Li
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Wei Wang
- Department of Clinical Laboratory, Foshan Fourth People's Hospital, Foshan, China
| | - Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xing He
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhi Liu
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyi Zhang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiongdan Mai
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zixu Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiang Pi
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shuai Yang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lingchan Zeng
- Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- Guangdong Center for Tuberculosis Control, National Clinical Research Center for Tuberculosis, Guangzhou, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Wang Y, Chen Y, Wu C, Yang X. Informatic analysis of the pulmonary microecology in non-cystic fibrosis bronchiectasis at three different stages. Open Life Sci 2022; 17:107-120. [PMID: 35291562 PMCID: PMC8886608 DOI: 10.1515/biol-2022-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
This study explored the impact of pulmonary microecological changes on disease progression in non-cystic fibrosis bronchiectasis (nCFB). A careful search of the NCBI BioProject database revealed the 16S rRNA-based microbiological testing results of 441 pulmonary sputum samples from patients in the relatively stable (baseline), acute exacerbation, or recovery stage. After preliminary analysis and screening, we selected 152 samples for further analyses, including determination of the operational taxonomic unit (OTU) distribution at the phylum, class, order, family and genus levels, community structure, alpha diversity, beta diversity, microbial multivariables, correlations, and community structure after the abundances of intragroup samples were averaged. The recovery group showed significant differences in pulmonary microbiological changes (P < 0.05) compared with the other groups. There were 30 differentially abundant OTUs, with 27 and 7 at the genus and phylum levels, respectively. The Chao1 value of the recovery group was comparable to that of the baseline group, and the Shannon and Simpson values of the recovery group were the highest. Rhodococcus in Actinobacteria was positively correlated with Ochrobactrum in Firmicutes. The differences in pulmonary microecological changes at different nCFB stages may serve as a biologically predictive indicator of nCFB progression.
Collapse
Affiliation(s)
- Yuchao Wang
- Graduate School, Xinjiang Medical University , 830001 Urumqi , China
| | - Ying Chen
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region , No. 91 Tianchi Road, Tianshan District , Urumqi 830001 , China
| | - Chao Wu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region , No. 91 Tianchi Road, Tianshan District , Urumqi 830001 , China
| | - Xiaohong Yang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region , No. 91 Tianchi Road, Tianshan District , Urumqi 830001 , China
| |
Collapse
|
34
|
Baral T, Kurian SJ, Sekhar M. S, Munisamy M, Kudru CU, Khandelwal B, Banerjee M, Mukhopadhyay C, Saravu K, Singh J, Singh S, Rao M. Role of the gut microbiome and probiotics for prevention and management of tuberculosis. MICROBIOME, IMMUNITY, DIGESTIVE HEALTH AND NUTRITION 2022:361-371. [DOI: 10.1016/b978-0-12-822238-6.00036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Yang Y, Wang Y. Autocrine, Paracrine, and Endocrine Signals That Can Alter Alveolar Macrophages Function. Rev Physiol Biochem Pharmacol 2022; 186:177-198. [PMID: 36472676 DOI: 10.1007/112_2022_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar macrophages (AMs) are extremely versatile cells with complex functions involved in health or diseases such as pneumonia, asthma, and pulmonary alveolar proteinosis. In recent years, it has been widely identified that the different functions and states of macrophages are the results from the complex interplay between microenvironmental signals and macrophage lineage. Diverse and complicated signals to which AMs respond are mentioned when they are described individually or in a particular state of AMs. In this review, the microenvironmental signals are divided into autocrine, paracrine, and endocrine signals based on their secreting characteristics. This new perspective on classification provides a more comprehensive and systematic introduction to the complex signals around AMs and is helpful for understanding the roles of AMs affected by physiological environment. The existing possible treatments of AMs are also mentioned in it. The thorough understanding of AMs signals modulation may be contributed to the development of more effective therapies for AMs-related lung diseases.
Collapse
Affiliation(s)
- Yue Yang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
36
|
TrpNet: Understanding Tryptophan Metabolism across Gut Microbiome. Metabolites 2021; 12:metabo12010010. [PMID: 35050132 PMCID: PMC8777792 DOI: 10.3390/metabo12010010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Crosstalk between the gut microbiome and the host plays an important role in animal development and health. Small compounds are key mediators in this host–gut microbiome dialogue. For instance, tryptophan metabolites, generated by biotransformation of tryptophan through complex host–microbiome co-metabolism can trigger immune, metabolic, and neuronal effects at local and distant sites. However, the origin of tryptophan metabolites and the underlying tryptophan metabolic pathway(s) are not well characterized in the current literature. A large number of the microbial contributors of tryptophan metabolism remain unknown, and there is a growing interest in predicting tryptophan metabolites for a given microbiome. Here, we introduce TrpNet, a comprehensive database and analytics platform dedicated to tryptophan metabolism within the context of host (human and mouse) and gut microbiome interactions. TrpNet contains data on tryptophan metabolism involving 130 reactions, 108 metabolites and 91 enzymes across 1246 human gut bacterial species and 88 mouse gut bacterial species. Users can browse, search, and highlight the tryptophan metabolic pathway, as well as predict tryptophan metabolites on the basis of a given taxonomy profile using a Bayesian logistic regression model. We validated our approach using two gut microbiome metabolomics studies and demonstrated that TrpNet was able to better predict alterations in in indole derivatives compared to other established methods.
Collapse
|
37
|
Abstract
Patients with pulmonary tuberculosis (TB) undergoing anti-tuberculosis (anti-TB) treatment were previously reported to present gut bacterial microbiota dysbiosis, but the role of the mycobiota has not been reported. Here, we conducted a follow-up study of 29 naive TB patients who received first-line anti-TB drug treatment; we collected their fecal samples at different time points, as well as 22 fecal samples from healthy subjects. Fungal ITS2 and bacterial 16S rRNA amplicon sequencing were used to analyze the effects of active TB and anti-TB treatment on the gut microbiota. We found that naive TB patients had bacterial and fungal dysbiosis with altered community composition and a decreased density of the transkingdom correlation network. Anti-TB drug treatment significantly decreased the diversity of bacteria and fungi with altered composition. Notably, we observed that the abundance of Purpureocillium lilacinum tended to decrease and Nakaseomyces spp. tended to increase in the anti-TB treatment, and all of them had increased proportions in the three TB groups compared with healthy subjects. We found that the fungal-bacterial transkingdom network was severely altered in TB patients after 2 months of treatment, and new fungal-enriched connections that were not observed in other groups after 6 months of treatment. This study provides the first detailed analysis of dysbiosis of the gut mycobiota due to active TB and anti-TB treatment. The results suggest that fungi play an important role in the balance of the gut microbiota and may be associated with the progression of TB, influencing the microbiota and immunity homeostasis in those receiving anti-TB treatment. IMPORTANCE Numerous studies have shown that the gut bacterial microbiota is altered in active TB patients and that anti-TB drugs have profound and long-term impacts. However, as an integral part of the microbiota, fungi have rarely been studied. The need to investigate both the bacterial and fungal microbiota, as well as the relationship between them is apparent. The significance of our study is in our examination of the changes in the bacterial and fungal microbiota simultaneously in both active TB and patients receiving anti-TB treatment. We found that fungi play an important role in the bacterial-fungal transkingdom network, especially during the anti-TB therapy. These findings underscore the importance of fungi in gut microbiota dysbiosis during active TB and anti-TB treatment processes. In addition, our findings suggest it is meaningful to research potential adjunctive therapies that reduce fungal expansion and increase commensal bacterial abundance after anti-TB treatment, which would help the recovery of TB patients.
Collapse
|
38
|
Reprogramming Mycobacterium tuberculosis CRISPR System for Gene Editing and Genome-wide RNA Interference Screening. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 20:1180-1196. [PMID: 34923124 DOI: 10.1016/j.gpb.2021.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/29/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), which is still the leading cause of mortality from a single infectious disease worldwide. The development of novel anti-TB drugs and vaccines is severely hampered by the complicated and time-consuming genetic manipulation techniques for M. tuberculosis. Here, we harnessed an endogenous type III-A CRISPR/Cas10 system of M. tuberculosis for efficient gene editing and RNA interference (RNAi). This simple and easy method only needs to transform a single mini-CRISPR array plasmid, thus avoiding the introduction of exogenous protein and minimizing proteotoxicity. We demonstrated that M. tuberculosis genes can be efficiently and specifically knocked in/out by this system as confirmed by DNA high-throughput sequencing. This system was further applied to single- and multiple-gene RNAi. Moreover, we successfully performed genome-wide RNAi screening to identify M. tuberculosis genes regulating in vitro and intracellular growth. This system can be extensively used for exploring the functional genomics of M. tuberculosis and facilitate the development of novel anti-TB drugs and vaccines.
Collapse
|
39
|
Willers M, Viemann D. Role of the gut microbiota in airway immunity and host defense against respiratory infections. Biol Chem 2021; 402:1481-1491. [PMID: 34599869 DOI: 10.1515/hsz-2021-0281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.
Collapse
Affiliation(s)
- Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, D-30625 Hannover, Germany
- Department of Pediatrics, Translational Pediatrics, University Hospital Würzburg, Zinklesweg 10, D-97078 Würzburg, Germany
| |
Collapse
|
40
|
Comberiati P, Di Cicco M, Paravati F, Pelosi U, Di Gangi A, Arasi S, Barni S, Caimmi D, Mastrorilli C, Licari A, Chiera F. The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212220. [PMID: 34831976 PMCID: PMC8623605 DOI: 10.3390/ijerph182212220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Tuberculosis is one of the most common infectious diseases and infectious causes of death worldwide. Over the last decades, significant research effort has been directed towards defining the understanding of the pathogenesis of tuberculosis to improve diagnosis and therapeutic options. Emerging scientific evidence indicates a possible role of the human microbiota in the pathophysiology of tuberculosis, response to therapy, clinical outcomes, and post-treatment outcomes. Although human studies on the role of the microbiota in tuberculosis are limited, published data in recent years, both from experimental and clinical studies, suggest that a better understanding of the gut-lung microbiome axis and microbiome-immune crosstalk could shed light on the specific pathogenetic mechanisms of Mycobacterium tuberculosis infection and identify new therapeutic targets. In this review, we address the current knowledge of the host immune responses against Mycobacterium tuberculosis infection, the emerging evidence on how gut and lung microbiota can modulate susceptibility to tuberculosis, the available studies on the possible use of probiotic-antibiotic combination therapy for the treatment of tuberculosis, and the knowledge gaps and future research priorities in this field.
Collapse
Affiliation(s)
- Pasquale Comberiati
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Correspondence:
| | - Maria Di Cicco
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
| | - Francesco Paravati
- Department of Pediatrics, San Giovanni di Dio Hospital, 88900 Crotone, Italy; (F.P.); (F.C.)
| | - Umberto Pelosi
- Pediatric Unit, Santa Barbara Hospital, 09016 Iglesias, Italy;
| | - Alessandro Di Gangi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
| | - Stefania Arasi
- Area of Translational Research in Pediatric Specialities, Allergy Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Simona Barni
- Allergic Unit, Department of Pediatric, Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Davide Caimmi
- Allergy Unit, CHU de Montpellier, Université de Montpellier, 34295 Montpellier, France;
- IDESP, UMR A11, Université de Montpellier, 34093 Montpellier, France
| | - Carla Mastrorilli
- Department of Pediatrics, University Hospital Consortium Corporation Polyclinic of Bari, Pediatric Hospital Giovanni XXIII, 70124 Bari, Italy;
| | - Amelia Licari
- Pediatric Clinic, Pediatrics Department, Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Fernanda Chiera
- Department of Pediatrics, San Giovanni di Dio Hospital, 88900 Crotone, Italy; (F.P.); (F.C.)
| |
Collapse
|
41
|
Shah T, Shah Z, Baloch Z, Cui X. The role of microbiota in respiratory health and diseases, particularly in tuberculosis. Biomed Pharmacother 2021; 143:112108. [PMID: 34560539 DOI: 10.1016/j.biopha.2021.112108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Trillions of beneficial and hostile microorganisms live in the human respiratory and gastrointestinal tracts, which act as gatekeepers in maintaining human health, i.e., protecting the body from pathogens by colonizing mucosal surfaces with microbiota-derived antimicrobial metabolites such as short-chain fatty acids or host-derived cytokines and chemokines. It is widely accepted that the microbiome interacts with each other and with the host in a mutually beneficial relationship. Microbiota in the respiratory tract may also play a crucial role in immune homeostasis, maturation, and maintenance of respiratory physiology. Anti-TB antibiotics may cause dysbiosis in the lung and intestinal microbiota, affecting colonization resistance and making the host more susceptible to Mycobacterium tuberculosis (M. tuberculosis) infection. This review discusses recent advances in our understanding of the lung microbiota composition, the lungs and intestinal microbiota related to respiratory health and diseases, microbiome sequencing and analysis, the bloodstream, and the lymphatic system that underpin the gut-lung axis in M. tuberculosis-infected humans and animals. We also discuss the gut-lung axis interactions with the immune system, the role of the microbiome in TB pathogenesis, and the impact of anti-TB antibiotic therapy on the microbiota in animals, humans, and drug-resistant TB individuals.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China; Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, PR China
| | - Zahir Shah
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar 25120, Pakistan
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China.
| | - XiuMing Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, PR China; Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, PR China.
| |
Collapse
|
42
|
THE INTESTINAL COMMENSAL, Bacteroides fragilis, MODULATES HOST RESPONSES TO VIRAL INFECTION AND THERAPY: LESSONS FOR EXPLORATION DURING Mycobacterium tuberculosis INFECTION. Infect Immun 2021; 90:e0032121. [PMID: 34606367 DOI: 10.1128/iai.00321-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota has emerged as a critical player in host health. Bacteroides fragilis is a prominent member of the gut microbiota within the phyla Bacteroidetes. This commensal bacterium produces unique capsular polysaccharides processed by antigen-presenting cells and activates CD4+ T cells to secrete inflammatory cytokines. Indeed, due to their immunomodulatory functions, B. fragilis and its capsular polysaccharide-A (PSA) are arguably the most explored single commensal microbiota/symbiotic factor. B. fragilis/PSA has been shown to protect against colitis, encephalomyelitis, colorectal cancer, pulmonary inflammation, and asthma. Here, we review (1) recent data on the immunomodulatory role of B. fragilis/PSA during viral infections and therapy, (2) B. fragilis PSA's dual ability to mediate pro-and anti-inflammatory processes, and the potential for exploring this unique characteristic during intracellular bacterial infections such as with Mycobacterium tuberculosis (3) discuss the protective roles of single commensal-derived probiotic species including B. fragilis in lung inflammation and respiratory infections that may provide essential cues for possible exploration of microbiota based/augmented therapies in tuberculosis (TB). Available data on the relationship between B. fragilis/PSA, the immune system, and disease suggest clinical relevance for developing B. fragilis into a next-generation probiotic or, possibly, the engineering of PSA into a potent carbohydrate-based vaccine.
Collapse
|
43
|
Song Y, Yang C, Wang H. Tuberculosis in an infant with Hirschsprung-associated enterocolitis: a case report. J Int Med Res 2021; 49:3000605211043412. [PMID: 34551624 PMCID: PMC8485295 DOI: 10.1177/03000605211043412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hirschsprung-associated enterocolitis (HAEC) is a serious and life-threatening condition, and atypical tuberculosis (TB) associated with HAEC is even more serious. A male newborn aged 4 days was diagnosed with Hirschsprung disease and transanal Soave pull-through was performed at 4 months old. Six months later, he suffered from enterocolitis. Although he was treated with multiple broad-spectrum antibiotics for 2 weeks, he developed a fever without any other symptoms for TB infection. We found numerous, bilateral, uniformly distributed, small pulmonary nodules in the lower lobes in an abdominal radiograph by chance. He was then discharged with complete resolution of all symptoms after anti-TB therapy. Early diagnosis and treatment of TB can effectively improve the prognosis of children with HAEC.
Collapse
Affiliation(s)
- Yue Song
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Changqiang Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| |
Collapse
|
44
|
Wang H, Hussain T, Yao J, Li J, Sabir N, Liao Y, Liang Z, Wang Y, Liu Y, Zhao D, Zhou X. Koumiss promotes Mycobacterium bovis infection by disturbing intestinal flora and inhibiting endoplasmic reticulum stress. FASEB J 2021; 35:e21777. [PMID: 34403519 DOI: 10.1096/fj.202002485rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis and also responsible for serious threat to public health. Koumiss is a fermented mare's milk product, used as traditional drink. Here, we explored the effect of koumiss on gut microbiota and the host immune response against M bovis infection. Therefore, mice were treated with koumiss and fresh mare milk for 14 days before M bovis infection and continue for 5 weeks after infection. The results showed a clear change in the intestinal flora of mice treated with koumiss, and the lungs of mice treated with koumiss showed severe edema, inflammatory infiltration, and pulmonary nodules in M bovis-infected mice. Notably, we found that the content of short-chain fatty acids was significantly lower in the koumiss-treated group compared with the control group. However, the expression of endoplasmic reticulum stress and apoptosis-related proteins in the lungs of koumiss-treated mice were significantly decreased. Collectively, these findings suggest that koumiss treatment disturb the intestinal flora of, which is associated with disease severity and the possible mechanism that induces lungs pathology. Our current findings can be exploited further to establish the "gut-lung" axis which might be a novel strategy for the control of tuberculosis.
Collapse
Affiliation(s)
- Haoran Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tariq Hussain
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Naveed Sabir
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, Pakistan
| | - Yi Liao
- Animal Husbandry and Veterinary College, Southwest University for Nationalities, Cheng Du, China
| | - Zhengmin Liang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yiduo Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Karo-Atar D, Khan N, Divangahi M, King IL. Helminth-mediated disease tolerance in TB: A role for microbiota? PLoS Pathog 2021; 17:e1009690. [PMID: 34265025 PMCID: PMC8282059 DOI: 10.1371/journal.ppat.1009690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Danielle Karo-Atar
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University Health Centre, Quebec, Canada
| | - Nargis Khan
- Meakins-Christie Laboratories, Departments of Medicine, Microbiology and Immunology, Pathology McGill University, McGill International TB Centre, McGill University Health Centre, Quebec, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Departments of Medicine, Microbiology and Immunology, Pathology McGill University, McGill International TB Centre, McGill University Health Centre, Quebec, Canada
- * E-mail: (MD); (ILK)
| | - Irah L. King
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University Health Centre, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- * E-mail: (MD); (ILK)
| |
Collapse
|
46
|
Palma Albornoz SP, Fraga-Silva TFDC, Gembre AF, de Oliveira RS, de Souza FM, Rodrigues TS, Kettelhut IDC, Manca CS, Jordao AA, Ramalho LNZ, Ribolla PEM, Carlos D, Bonato VLD. Obesity-Induced Dysbiosis Exacerbates IFN-γ Production and Pulmonary Inflammation in the Mycobacterium tuberculosis Infection. Cells 2021; 10:1732. [PMID: 34359902 PMCID: PMC8303177 DOI: 10.3390/cells10071732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
The microbiota of the gut-lung axis affects local and far-reaching immune responses and might also trigger chronic and inflammatory diseases. We hypothesized that gut dysbiosis induced by obesity, which coexists in countries with a high tuberculosis burden, aggravates the host susceptibility and the pulmonary damage tolerance. To assess our hypothesis, we used a model of high-fat diet (HFD)-induced obesity, followed by infection of C57BL/6 mice with Mycobacterium tuberculosis. We showed that obesity increased the susceptibility, the pulmonary inflammation and IFN-γ levels in M. tuberculosis-infected mice. During the comorbidity obesity and tuberculosis, there is an increase of Bacteroidetes and Firmicutes in the lungs, and an increase of Firmicutes and butyrate in the feces. Depletion of gut microbiota by antibiotic treatment in the obese infected mice reduced the frequencies of CD4+IFN-γ+IL-17- cells and IFN-γ levels in the lungs, associated with an increase of Lactobacillus. Our findings reinforce the role of the gut-lung axis in chronic infections and suggest that the gut microbiota modulation may be a potential host-directed therapy as an adjuvant to treat TB in the context of IFN-γ-mediated immunopathology.
Collapse
Affiliation(s)
- Sandra Patricia Palma Albornoz
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Rômulo Silva de Oliveira
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Fernanda Mesquita de Souza
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
| | - Isis do Carmo Kettelhut
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Camila Sanches Manca
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | - Alceu Afonso Jordao
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil;
| | | | - Daniela Carlos
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (S.P.P.A.); (T.F.d.C.F.-S.); (R.S.d.O.); (F.M.d.S.); (T.S.R.); (D.C.)
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil; (A.F.G.); (I.d.C.K.)
| |
Collapse
|
47
|
Liu Y, Wang J, Wu C. Microbiota and Tuberculosis: A Potential Role of Probiotics, and Postbiotics. Front Nutr 2021; 8:626254. [PMID: 34026804 PMCID: PMC8138307 DOI: 10.3389/fnut.2021.626254] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis attacking the lungs and other organs, is one of the most common infectious disease worldwide. According to the WHO's 2020 report, a quarter of the world's population were infected with M. tuberculosis, and ~1.4 million people died of TB. Therefore, TB is a significant public health concern, which requires cost-effective strategies for prevention and treatment. The microbiota has been considered as a “forgotten organ” and a complex dynamic ecosystem, which plays a significant role in many physiological processes, and its dysbiosis is closely associated with infectious disease. Recently, a few studies have indicated associations between TB and microbiota. This review summarizes studies concerning the alterations of the gut and respiratory microbiota in TB, and their relationship with host susceptibility to M. tuberculosis infection, indicating that microbiota signatures in different stages in TB progression could be considered as biomarkers for TB diagnosis and control. In addition, the potential role of probiotics and postbiotics in TB treatment was discussed.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiaqi Wang
- Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
48
|
Abstract
Tuberculosis (TB) remains an infectious disease of global significance and a
leading cause of death in low- and middle-income countries. Significant effort
has been directed towards understanding Mycobacterium
tuberculosis genomics, virulence, and pathophysiology within the
framework of Koch postulates. More recently, the advent of “-omics” approaches
has broadened our appreciation of how “commensal” microbes have coevolved with
their host and have a central role in shaping health and susceptibility to
disease. It is now clear that there is a diverse repertoire of interactions
between the microbiota and host immune responses that can either sustain or
disrupt homeostasis. In the context of the global efforts to combatting TB, such
findings and knowledge have raised important questions: Does microbiome
composition indicate or determine susceptibility or resistance to
M. tuberculosis infection? Is the
development of active disease or latent infection upon M.
tuberculosis exposure influenced by the microbiome? Does
microbiome composition influence TB therapy outcome and risk of reinfection with
M. tuberculosis? Can the microbiome be
actively managed to reduce risk of M.
tuberculosis infection or recurrence of TB? Here, we
explore these questions with a particular focus on microbiome-immune
interactions that may affect TB susceptibility, manifestation and progression,
the long-term implications of anti-TB therapy, as well as the potential of the
host microbiome as target for clinical manipulation.
Collapse
Affiliation(s)
- Giorgia Mori
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
49
|
Abbasi A, Rad AH, Ghasempour Z, Sabahi S, Kafil HS, Hasannezhad P, Rahbar Saadat Y, Shahbazi N. The biological activities of postbiotics in gastrointestinal disorders. Crit Rev Food Sci Nutr 2021; 62:5983-6004. [PMID: 33715539 DOI: 10.1080/10408398.2021.1895061] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to outcomes from clinical studies, an intricate relationship occurs between the beneficial microbiota, gut homeostasis, and the host's health status. Numerous studies have confirmed the health-promoting effects of probiotics, particularly in gastrointestinal diseases. On the other hand, the safety issues regarding the consumption of some probiotics are still a matter of debate, thus to overcome the problems related to the application of live probiotic cells in terms of clinical, technological, and economic aspects, microbial-derived biomolecules (postbiotics) were introducing as a potential alternative agent. Presently scientific literature confirms that the postbiotic components can be used as promising tools for both prevention and treatment strategies in gastrointestinal disorders with less undesirable side-effects, particularly in infants and children. Future head-to-head trials are required to distinguish appropriate strains of parent cells, optimal dosages of postbiotics, and assessment of the cost-effectiveness of postbiotics compared to alternative drugs. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the treatment of some important gastrointestinal disorders.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutritional Sciences, School of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayyer Shahbazi
- Faculty of Agriculture Engineering, Department of Food Science, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
50
|
Kim J, Im JP, Yim JJ, Lee CK, Park DI, Eun CS, Jung SA, Shin JE, Lee KM, Cheon JH. Clinical Features and Outcomes of Tuberculosis in Inflammatory Bowel Disease Patients Treated with Anti-tumor Necrosis Factor Therapy. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2020; 75:29-38. [PMID: 31986571 DOI: 10.4166/kjg.2020.75.1.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Background/Aims Anti-tumor necrosis factor (TNF) therapy is used widely for the treatment of inflammatory bowel disease (IBD). In the present study, the characteristics and outcomes of tuberculosis (TB) in IBD patients treated with anti-TNF therapy were compared with those of non-IBD TB patients. Methods Twenty-five IBD patients who initially developed TB during anti-TNF therapy were enrolled in this study. Seventy-five ageand gender-matched non-IBD TB patients were selected as controls in a 1:3 ratio. Results The proportion of non-respiratory symptoms was higher in the IBD patients than in the non-IBD patients (12 [48.0%] in the IBD patients vs. 15 [20.0%] in the non-IBD patients; p=0.009). Eight (32.0%) IBD patients and 19 (25.3%) non-IBD patients had extra- pulmonary lesions (p=0.516). The frequency of positive smear results for acid-fast bacilli (AFB) was significantly higher in the non-IBD patients than in the IBD patients (three [12.0%] IBD patients vs. 27 [36.0%] non-IBD patients; p=0.023). Active TB was cured in 24 (96.0%) patients in the IBD group and in 70 (93.3%) patients in the non-IBD group (p=0.409). The TB-related mortality rates were 4.0% and 1.3% in the IBD patients and non-IBD patients, respectively (p=0.439). Conclusions The rate of extrapulmonary involvement, side effects of anti-TB medications, and clinical outcomes did not differ between the IBD patients who initially developed TB during anti-TNF therapy and non-IBD patients with TB. On the other hand, the IBD patients had a lower rate of AFB smear positivity and a higher proportion of non-respiratory symptoms.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Joon Yim
- Department of Internal Medicine and Lung Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Kyun Lee
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Dong Il Park
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jeong Eun Shin
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Kang-Moon Lee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|