1
|
Yamamoto H, Matano T. SIV-specific neutralizing antibody induction following selection of a PI3K drive-attenuated nef variant. eLife 2025; 12:RP88849. [PMID: 40029304 PMCID: PMC11875539 DOI: 10.7554/elife.88849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
HIV and simian immunodeficiency virus (SIV) infections are known for impaired neutralizing antibody (NAb) responses. While sequential virus-host B cell interaction appears to be basally required for NAb induction, driver molecular signatures predisposing to NAb induction still remain largely unknown. Here we describe SIV-specific NAb induction following a virus-host interplay decreasing aberrant viral drive of phosphoinositide 3-kinase (PI3K). Screening of seventy difficult-to-neutralize SIVmac239-infected macaques found nine NAb-inducing animals, with seven selecting for a specific CD8+ T-cell escape mutation in viral nef before NAb induction. This Nef-G63E mutation reduced excess Nef interaction-mediated drive of B-cell maturation-limiting PI3K/mammalian target of rapamycin complex 2 (mTORC2). In vivo imaging cytometry depicted preferential Nef perturbation of cognate Envelope-specific B cells, suggestive of polarized contact-dependent Nef transfer and corroborating cognate B-cell maturation post-mutant selection up to NAb induction. Results collectively exemplify a NAb induction pattern extrinsically reciprocal to human PI3K gain-of-function antibody-dysregulating disease and indicate that harnessing the PI3K/mTORC2 axis may facilitate NAb induction against difficult-to-neutralize viruses including HIV/SIV.
Collapse
Grants
- JP24fk0410066 Japan Agency for Medical Research and Development
- JP21jk0210002 Japan Agency for Medical Research and Development
- 24K21287 Ministry of Education, Culture, Sports, Science and Technology
- 21H02745 Ministry of Education, Culture, Sports, Science and Technology
- JP22wm0325006 Japan Agency for Medical Research and Development
- JP19fm0208017 Japan Agency for Medical Research and Development
- JP20fk0410022 Japan Agency for Medical Research and Development
- JP18fk0410003 Japan Agency for Medical Research and Development
- JP20fk0410011 Japan Agency for Medical Research and Development
- JP20fk0108125 Japan Agency for Medical Research and Development
- JP20jm0110012 Japan Agency for Medical Research and Development
- JP21fk0410035 Japan Agency for Medical Research and Development
- 17H02185 Ministry of Education, Culture, Sports, Science and Technology
- 18K07157 Ministry of Education, Culture, Sports, Science and Technology
- Takeda Science Foundation
- Imai Memorial Trust for AIDS Research
- Mitsui Sumitomo Insurance Welfare Foundation
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Department of Biomedicine, University Hospital BaselBaselSwitzerland
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
2
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
3
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
4
|
Andres-Martin F, James C, Catalfamo M. IL-27 expression regulation and its effects on adaptive immunity against viruses. Front Immunol 2024; 15:1395921. [PMID: 38966644 PMCID: PMC11222398 DOI: 10.3389/fimmu.2024.1395921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-27 has antiviral activities and modulates both innate and adaptive immune responses against viruses. The role of IL-27 in the setting of viral infections is not well defined and both pro-inflammatory and anti-inflammatory functions have been described. Here, we discuss the latest advancements in the role of IL-27 in several viral infection models of human disease. We highlight important aspects of IL-27 expression regulation, the critical cell sources at different stages of the infection and their impact in cell mediated immunity. Lastly, we discuss the need to better define the antiviral and modulatory (pro-inflammatory vs anti-inflammatory) properties of IL-27 in the context of human chronic viral infections.
Collapse
Affiliation(s)
| | | | - Marta Catalfamo
- Department of Microbiology Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
5
|
Xu WD, Wang DC, Zhao M, Huang AF. An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol 2024; 15:1366377. [PMID: 38566992 PMCID: PMC10985211 DOI: 10.3389/fimmu.2024.1366377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Interleukin-27 (IL-27) is a member of the IL-12 family. The gene encoding IL-27 is located at chromosome 16p11. IL-27 is considered as a heterodimeric cytokine, which consists of Epstein-Barr virus (EBV)-induced gene 3 (Ebi3) and IL-27p28. Based on the function of IL-27, it binds to receptor IL-27rα or gp130 and then regulates downstream cascade. To date, findings show that the expression of IL-27 is abnormal in different inflammatory autoimmune diseases (including systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, Behcet's disease, inflammatory bowel disease, multiple sclerosis, systemic sclerosis, type 1 diabetes, Vogt-Koyanagi-Harada, and ankylosing spondylitis). Moreover, in vivo and in vitro studies demonstrated that IL-27 is significantly in3volved in the development of these diseases by regulating innate and adaptive immune responses, playing either an anti-inflammatory or a pro-inflammatory role. In this review, we comprehensively summarized information about IL-27 and autoimmunity based on available evidence. It is hoped that targeting IL-27 will hold great promise in the treatment of inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Azarias Da Silva M, Nioche P, Soudaramourty C, Bull-Maurer A, Tiouajni M, Kong D, Zghidi-Abouzid O, Picard M, Mendes-Frias A, Santa-Cruz A, Carvalho A, Capela C, Pedrosa J, Castro AG, Loubet P, Sotto A, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Tran TA, Tokunaga K, Silvestre R, Corbeau P, Mammano F, Estaquier J. Repetitive mRNA vaccination is required to improve the quality of broad-spectrum anti-SARS-CoV-2 antibodies in the absence of CXCL13. SCIENCE ADVANCES 2023; 9:eadg2122. [PMID: 37540749 PMCID: PMC10403221 DOI: 10.1126/sciadv.adg2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Since the initial spread of severe acute respiratory syndrome coronavirus 2 infection, several viral variants have emerged and represent a major challenge for immune control, particularly in the context of vaccination. We evaluated the quantity, quality, and persistence of immunoglobulin G (IgG) and IgA in individuals who received two or three doses of messenger RNA (mRNA) vaccines, compared with previously infected vaccinated individuals. We show that three doses of mRNA vaccine were required to match the humoral responses of preinfected vaccinees. Given the importance of antibody-dependent cell-mediated immunity against viral infections, we also measured the capacity of IgG to recognize spike variants expressed on the cell surface and found that cross-reactivity was also strongly improved by repeated vaccination. Last, we report low levels of CXCL13, a surrogate marker of germinal center activation and formation, in vaccinees both after two and three doses compared with preinfected individuals, providing a potential explanation for the short duration and low quality of Ig induced.
Collapse
Affiliation(s)
| | - Pierre Nioche
- INSERM-U1124, Université Paris Cité, Paris, France
- Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | | | | | - Mounira Tiouajni
- INSERM-U1124, Université Paris Cité, Paris, France
- Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Dechuan Kong
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Santa-Cruz
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Alexandre Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paul Loubet
- Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Albert Sotto
- Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Laurent Muller
- Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | | | - Claire Roger
- Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | | | - Sandra Duvnjak
- Service de Gérontologie et Prévention du Vieillissement, CHU de Nîmes, Nîmes, France
| | - Tu-Anh Tran
- Service de Pédiatrie, CHU de Nîmes, Nîmes, France
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pierre Corbeau
- Institut de Génétique Humaine, UMR9002 CNRS-Université de Montpellier, Montpellier, France
- Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France
| | - Fabrizio Mammano
- INSERM-U1124, Université Paris Cité, Paris, France
- Université de Tours, INSERM, UMR1259 MAVIVH, Tours, France
| | - Jérôme Estaquier
- INSERM-U1124, Université Paris Cité, Paris, France
- CHU de Québec-Université Laval Research Center, Québec City, Québec, Canada
| |
Collapse
|
8
|
Mattathil JG, Volz A, Onabajo OO, Maynard S, Bixler SL, Shen XX, Vargas-Inchaustegui D, Robert-Guroff M, Lebranche C, Tomaras G, Montefiori D, Sutter G, Mattapallil JJ. Direct intranodal tonsil vaccination with modified vaccinia Ankara vaccine protects macaques from highly pathogenic SIVmac251. Nat Commun 2023; 14:1264. [PMID: 36882405 PMCID: PMC9990026 DOI: 10.1038/s41467-023-36907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a mucosally transmitted virus that causes immunodeficiency and AIDS. Developing efficacious vaccines to prevent infection is essential to control the epidemic. Protecting the vaginal and rectal mucosa, the primary routes of HIV entry has been a challenge given the significant compartmentalization between the mucosal and peripheral immune systems. We hypothesized that direct intranodal vaccination of mucosa associated lymphoid tissue (MALT) such as the readily accessible palatine tonsils could overcome this compartmentalization. Here we show that rhesus macaques primed with plasmid DNA encoding SIVmac251-env and gag genes followed by an intranodal tonsil MALT boost with MVA encoding the same genes protects from a repeated low dose intrarectal challenge with highly pathogenic SIVmac251; 43% (3/7) of vaccinated macaques remained uninfected after 9 challenges as compared to the unvaccinated control (0/6) animals. One vaccinated animal remained free of infection even after 22 challenges. Vaccination was associated with a ~2 log decrease in acute viremia that inversely correlated with anamnestic immune responses. Our results suggest that a combination of systemic and intranodal tonsil MALT vaccination could induce robust adaptive and innate immune responses leading to protection from mucosal infection with highly pathogenic HIV and rapidly control viral breakthroughs.
Collapse
Affiliation(s)
- Jeffy G Mattathil
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Sean Maynard
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Sandra L Bixler
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU, Munich, Germany
| | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
9
|
Zhang XY, Qin XY, Shen HH, Liu KT, Wang CJ, Peng T, Wu JN, Zhao SM, Li MQ. IL-27 deficiency inhibits proliferation and invasion of trophoblasts via the SFRP2/Wnt/β-catenin pathway in fetal growth restriction. Int J Med Sci 2023; 20:392-405. [PMID: 36860682 PMCID: PMC9969501 DOI: 10.7150/ijms.80684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Background: Fetal growth restriction (FGR) is characterized by restricted fetal growth and dysregulated placental development. The etiology and pathogenesis still remain elusive. IL-27 shows multiple roles in regulating various biological processes, however, how IL-27 involves in placentation in FGR pregnancy hasn't been demonstrated. Methods: The levels of IL-27 and IL-27RA in FGR and normal placentae were determined by immunohistochemistry, western blot and RT-PCR. HTR-8/SVneo cells and Il27ra-/- murine models have been adopted to evaluate the effects of IL-27 on the bio-functions of trophoblast cells. GO enrichment and GSEA analysis were performed to explore the underlying mechanism. Findings: IL-27 and IL-27RA was lowly expressed in FGR placentae and administration of IL-27 on HTR-8/SVneo could promote its proliferation, migration and invasion. Comparing with wildtypes, Il27ra-/- embryos were smaller and lighter, and the placentae from which were poorly developed. In mechanism, the molecules of canonical Wnt/β-catenin pathway (CCND1, CMYC, SOX9) were downregulated in Il27ra-/- placentae. In contrast, the expression of SFRP2 (negative regulator of Wnt) was increased. Overexpression of SFRP2 in vitro could impair trophoblast migration and invasion capacity. Interpretation: IL-27/IL-27RA negatively regulates SFRP2 to activate Wnt/β-catenin, and thus promotes migration and invasion of trophoblasts during pregnancy. However, IL-27 deficiency may contribute to the development of FGR by restricting the Wnt activity.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ke-Tong Liu
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Cheng-Jie Wang
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Ting Peng
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, People's Republic of China
| | - Shi-Min Zhao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
10
|
Smedley JV, Bochart RM, Fischer M, Funderburgh H, Kelly V, Crank H, Armantrout K, Shiel O, Robertson-LeVay M, Sternberger N, Schmaling B, Roberts S, Sekiguchi V, Reusz M, Schwartz T, Meyer KA, Webb G, Gilbride RM, Dambrauskas N, Andrade D, Wood M, Labriola C, Axthelm M, Derby N, Varco-Merth B, Fukazawa Y, Hansen S, Sacha JB, Sodora DL, Sather DN. Optimization and use of near infrared imaging to guide lymph node collection in rhesus macaques (Macaca mulatta). J Med Primatol 2022; 51:270-277. [PMID: 35841132 PMCID: PMC9474636 DOI: 10.1111/jmp.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022]
Abstract
Background Identification of lymph nodes (LNs) draining a specific site or in obese macaques can be challenging. Methods Indocyanine Green (ICG) was administered intradermal (ID), intramuscular, in the oral mucosa, or subserosal in the colon followed by Near Infrared (NIR) imaging. Results After optimization to maximize LN identification, intradermal ICG was successful in identifying 50–100% of the axillary/inguinal LN at a site. Using NIR, collection of peripheral and mesenteric LNs in obese macaques was 100% successful after traditional methods failed. Additionally, guided collection of LNs draining the site of intraepithelial or intramuscular immunization demonstrated significantly increased numbers of T follicular helper (Tfh) cells in germinal centers of draining compared to nondraining LNs. Conclusion These imaging techniques optimize our ability to evaluate immune changes within LNs over time, even in obese macaques. This approach allows for targeted serial biopsies that permit confidence that draining LNs are being harvested throughout the study.
Collapse
Affiliation(s)
- Jeremy V Smedley
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Rachele M Bochart
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Miranda Fischer
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Heidi Funderburgh
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Vanessa Kelly
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Hugh Crank
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Kim Armantrout
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Oriene Shiel
- Infectious Disease Resource, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Mitchell Robertson-LeVay
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Nikki Sternberger
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Brian Schmaling
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Sheila Roberts
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Vicki Sekiguchi
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael Reusz
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Tiah Schwartz
- Surgical Services Unit, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Kimberly A Meyer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Gabriela Webb
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Daniela Andrade
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Matthew Wood
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Caralyn Labriola
- Experimental Pathology Unit, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael Axthelm
- Experimental Pathology Unit, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Nina Derby
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ben Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Scott Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Donald L Sodora
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Rascle P, Jacquelin B, Petitdemange C, Contreras V, Planchais C, Lazzerini M, Dereuddre-Bosquet N, Le Grand R, Mouquet H, Huot N, Müller-Trutwin M. NK-B cell cross talk induces CXCR5 expression on natural killer cells. iScience 2021; 24:103109. [PMID: 34622162 PMCID: PMC8479784 DOI: 10.1016/j.isci.2021.103109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023] Open
Abstract
B cell follicles (BCFs) in lymph nodes (LNs) are generally exempt of CD8+ T and NK cells. African green monkeys (AGMs), a natural host of simian immunodeficiency virus (SIV), display NK cell-mediated viral control in BCF. NK cell migration into BCF in chronically SIVagm-infected AGM is associated with CXCR5+ NK cells. We aimed to identify the mechanism leading to CXCR5 expression on NK cells. We show that CXCR5+ NK cells in LN were induced following SIVagm infection. CXCR5+ NK cells accumulated preferentially in BCF with proliferating B cells. Autologous NK-B cell co-cultures in transwell chambers induced CXCR5+ NK cells. Transcriptome analysis of CXCR5+ NK cells revealed expression of bcl6 and IL6R. IL-6 induced CXCR5 on AGM and human NK cells. IL6 mRNA was detected in LN at higher levels during SIVagm than SIVmac infection and often produced by plasma cells. Our study reveals a mechanism of B cell-dependent NK cell regulation. IL-6 can induce CXCR5 on NK cells CXCR5+ NK cells expressed high levels of bcl6 and IL6R More IL-6+ plasmablast/plasma cells in lymph nodes in SIVagm than SIVmac infection B cells participate in the regulation of NK cell migration into BCF
Collapse
Affiliation(s)
- Philippe Rascle
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Béatrice Jacquelin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Caroline Petitdemange
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Vanessa Contreras
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Cyril Planchais
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Roger Le Grand
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Nicolas Huot
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
12
|
The dual role of IL-27 in CD4+T cells. Mol Immunol 2021; 138:172-180. [PMID: 34438225 DOI: 10.1016/j.molimm.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
Interleukin-27 (IL-27), a member of the IL-6/IL-12 family, has diverse regulatory functions in various immune responses, and is recognised as a potent agonist and antagonist of CD4+T cells in different contexts. However, this dual role and underlying mechanisms have not been completely defined. In the present review, we summarise the dual role of IL-27 in CD4+T cells. In particular, we aimed to decipher its mechanism to better understand the context-dependent function of IL-27 in CD4+T cells. Furthermore, we propose a possible mechanism for the dual role of IL-27. This may be helpful for the development of appropriate IL-27 treatments in various clinical settings.
Collapse
|
13
|
Onabajo OO, Lewis MG, Mattapallil JJ. GALT CD4 +PD-1 hi T follicular helper (Tfh) cells repopulate after anti-retroviral therapy. Cell Immunol 2021; 366:104396. [PMID: 34157462 DOI: 10.1016/j.cellimm.2021.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are characterized by dramatic alterations in the mucosal CD4 T cell compartment. Though viremia is effectively suppressed, and peripheral CD4 T cell numbers recover to near healthy levels after highly active anti-retroviral therapy (HAART), some of the dysfunctional consequences of HIV infection continue to persist during therapy. We hypothesized that CD4 T follicular helper (Tfh) cell deficiencies may play a role in this process. Using the macaque model we show that SIV infection was associated with a significant loss of Tfh cells in the GALT that drain the mesentery lining the gastrointestinal tract (GIT). Loss of Tfh cells significantly correlated with the depletion of the overall memory CD4 T cell compartment; most Tfh cells in the GALT expressed a CD95+CD28+ memory phenotype suggesting that infection of the memory compartment likely drives the loss of GALT Tfh cells during infection. Continuous anti-retroviral therapy (cART) was accompanied by a significant repopulation of Tfh cells in the GALT to levels similar to those of uninfected animals. Repopulating Tfh cells displayed significantly higher capacity to produce IL-21 as compared to SIV infected animals suggesting that cART fully restores Tfh cells that are functionally capable of supporting GC reactions in the GALT.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | | | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
14
|
Wood MP, Jones CI, Lippy A, Oliver BG, Walund B, Fancher KA, Fisher BS, Wright PJ, Fuller JT, Murapa P, Habib J, Mavigner M, Chahroudi A, Sather DN, Fuller DH, Sodora DL. Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques. PLoS Pathog 2021; 17:e1009575. [PMID: 33961680 PMCID: PMC8133453 DOI: 10.1371/journal.ppat.1009575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques. Despite significant reductions in vertical HIV transmission, nearly 100,000 children succumb to AIDS-related illnesses each year. Indeed, infants face a disproportionately higher risk of progressing to AIDS, with roughly half of HIV+ infants exhibiting a rapid progression to AIDS-associated morbidity and mortality. Here, we evaluated immunological and virological parameters in 25 simian immunodeficiency virus (SIV)-infected infant rhesus macaques to assess the factors that influence a rapid disease outcome. Infant macaques were infected with simian immunodeficiency virus (SIV) and divided into either typical (TypP) or rapid (RP) progressor groups. RP infants exhibited low levels of plasma anti-SIV antibody and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype with some exhibiting AIDS-related symptoms. This study provides evidence that the low levels of anti-SIV antibodies are associated with impairments to both B and T cells in both blood and lymphoid tissues. These changes are associated with the prolonged expression of type 1 interferons which may be impeding development of a healthy humoral immune response in these rapidly progressing SIV-infected infant macaques. These findings have implications regarding potential therapeutic approaches to prevent rapid progression in HIV infected infants.
Collapse
Affiliation(s)
- Matthew P. Wood
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chloe I. Jones
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Adriana Lippy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brynn Walund
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bridget S. Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Piper J. Wright
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - James T. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Patience Murapa
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Jakob Habib
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maud Mavigner
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
15
|
Onabajo OO, Mattapallil JJ. Gut Microbiome Homeostasis and the CD4 T- Follicular Helper Cell IgA Axis in Human Immunodeficiency Virus Infection. Front Immunol 2021; 12:657679. [PMID: 33815419 PMCID: PMC8017181 DOI: 10.3389/fimmu.2021.657679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus (SIV) are associated with severe perturbations in the gut mucosal environment characterized by massive viral replication and depletion of CD4 T cells leading to dysbiosis, breakdown of the epithelial barrier, microbial translocation, immune activation and disease progression. Multiple mechanisms play a role in maintaining homeostasis in the gut mucosa and protecting the integrity of the epithelial barrier. Among these are the secretory IgA (sIgA) that are produced daily in vast quantities throughout the mucosa and play a pivotal role in preventing commensal microbes from breaching the epithelial barrier. These microbe specific, high affinity IgA are produced by IgA+ plasma cells that are present within the Peyer’s Patches, mesenteric lymph nodes and the isolated lymphoid follicles that are prevalent in the lamina propria of the gastrointestinal tract (GIT). Differentiation, maturation and class switching to IgA producing plasma cells requires help from T follicular helper (Tfh) cells that are present within these lymphoid tissues. HIV replication and CD4 T cell depletion is accompanied by severe dysregulation of Tfh cell responses that compromises the generation of mucosal IgA that in turn alters barrier integrity leading to commensal bacteria readily breaching the epithelial barrier and causing mucosal pathology. Here we review the effect of HIV infection on Tfh cells and mucosal IgA responses in the GIT and the consequences these have for gut dysbiosis and mucosal immunopathogenesis.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Joseph J Mattapallil
- F. E. Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
16
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol 2020; 13:149-160. [PMID: 31723251 PMCID: PMC6914669 DOI: 10.1038/s41385-019-0221-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Whereas antiretroviral therapy (ART) suppresses viral replication, ART discontinuation results in viral rebound, indicating the presence of viral reservoirs (VRs) established within lymphoid tissues. Herein, by sorting CD4 T-cell subsets from the spleen, mesenteric and peripheral lymph nodes (LNs) of SIVmac251-infected rhesus macaques (RMs), we demonstrate that effector memory (TEM) and follicular helper (TFH) CD4+ T cells harbor the highest frequency of viral DNA and RNA, as well of early R-U5 transcripts in ART-naïve RMs. Furthermore, our results highlight that these two CD4 T cells subsets harbor viral DNA and early R-U5 transcripts in the spleen and mesenteric LNs (but not in peripheral LN) of RMs treated with ART at day 4 post infection suggesting that these two anatomical sites are important for viral persistence. Finally, after ART interruption, we demonstrate the rapid and, compared to peripheral LNs, earlier seeding of SIV in spleen and mesenteric LNs, thereby emphasizing the importance of these two anatomical sites for viral replication dynamics. Altogether our results advance understanding of early viral seeding in which visceral lymphoid tissues are crucial in maintaining TEM and TFH VRs.
Collapse
|
18
|
Differential Dynamics of Regulatory T-Cell and Th17 Cell Balance in Mesenteric Lymph Nodes and Blood following Early Antiretroviral Initiation during Acute Simian Immunodeficiency Virus Infection. J Virol 2019; 93:JVI.00371-19. [PMID: 31315987 PMCID: PMC6744245 DOI: 10.1128/jvi.00371-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
Tregs contribute to SIV/HIV disease progression by inhibition of antiviral specific responses and effector T-cell proliferation. Tregs also cause tissue fibrosis via transforming growth factor β1 production and collagen deposition, which are associated with microbial translocation and generalized immune activation. Early ARV initiation upon viral exposure is recommended globally and results in improved immune function recovery and reduced viral persistence. Here, using an acute SIV infection model of rhesus macaques, we demonstrated for the first time that despite clear improvements in mucosal CD4 T cells, in contrast to blood, Treg frequencies in MLNs remained elevated following early ARV initiation. The particular Th17/Treg balance observed in MLNs can contribute, in part, to the maintenance of mucosal fibrosis during suppressive ARV treatment. Our results provide a better understanding of gut mucosal immune dynamics following early ARV initiation. These findings suggest that Treg-based treatments could serve as a novel immunotherapeutic approach to decrease gut mucosal damage during SIV/HIV infections. Increased frequencies of immunosuppressive regulatory T cells (Tregs) are associated with gut lymphoid tissue fibrosis and dysfunction which, in turn, contribute to disease progression in chronic simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) infection. Mesenteric lymph nodes (MLNs), which drain the large and small intestine, are critical sites for the induction and maintenance of gut mucosal immunity. However, the dynamics of Tregs in MLNs are not well understood due to the lack of accessibility to these tissues in HIV-infected individuals. Here, the dynamics of Tregs in blood and MLNs were assessed in SIV-infected rhesus macaques (RMs) following early antiretroviral drug (ARV) initiation. Early ARV initiation reduced T-cell immune activation, as assessed by HLA-DR/CD39 expression, and prevented the depletion of memory CCR6+ Th17 cells in both blood and MLNs. Untreated animals showed higher frequencies of Tregs, CD39+ Tregs, thymic Tregs, and new memory CD4 populations sharing similarity with Tregs as CTLA4+ PD1– and CTLA4+ PD1– FoxP3+ T cells. Despite early ARV treatment, the frequencies of these Treg subsets remained unchanged within the MLNs and, in contrast to blood normalization, the Th17/Treg ratio remained distorted in MLNs. Furthermore, our results highlighted that the expressions of IDO-1, TGFβ1 and collagen-1 mRNA remained unchanged in MLN of ARV-treated RMs. ARV interruption did not affect T-cell immune activation and Th17/Treg ratios in MLN. Altogether, our data demonstrated that early ARV initiation within the first few days of SIV infection is unable to reduce the frequencies and homing of various subsets of Tregs within the MLNs which, in turn, may result in tissue fibrosis, impairment in MLN function, and HIV persistence. IMPORTANCE Tregs contribute to SIV/HIV disease progression by inhibition of antiviral specific responses and effector T-cell proliferation. Tregs also cause tissue fibrosis via transforming growth factor β1 production and collagen deposition, which are associated with microbial translocation and generalized immune activation. Early ARV initiation upon viral exposure is recommended globally and results in improved immune function recovery and reduced viral persistence. Here, using an acute SIV infection model of rhesus macaques, we demonstrated for the first time that despite clear improvements in mucosal CD4 T cells, in contrast to blood, Treg frequencies in MLNs remained elevated following early ARV initiation. The particular Th17/Treg balance observed in MLNs can contribute, in part, to the maintenance of mucosal fibrosis during suppressive ARV treatment. Our results provide a better understanding of gut mucosal immune dynamics following early ARV initiation. These findings suggest that Treg-based treatments could serve as a novel immunotherapeutic approach to decrease gut mucosal damage during SIV/HIV infections.
Collapse
|