1
|
Wang P, Wang R, Zhao W, Zhao Y, Wang D, Zhao S, Ge Z, Ma Y, Zhao X. Gut microbiota-derived 4-hydroxyphenylacetic acid from resveratrol supplementation prevents obesity through SIRT1 signaling activation. Gut Microbes 2025; 17:2446391. [PMID: 39725607 DOI: 10.1080/19490976.2024.2446391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as Akkermansia, Bacteroides and Blautia. The critical role of gut microbiota in RSV-mediated anti-obesity effects was confirmed through antibiotic-induced microbiome depletion and fecal microbiota transplantation (FMT), which showed that RSV treatment effectively mitigates body weight, histopathological damage, glucose dysregulation and systematic inflammation associated with HFD. Metabolomics analysis revealed that RSV supplementation significantly increases the levels of the gut microbial flavonoid catabolite 4-hydroxyphenylacetic acid (4-HPA). Notably, 4-HPA was sufficient to reverse obesity and glucose intolerance in HFD-fed mice. Mechanistically,4-HPA treatment markedly regulates SIRT1 signaling pathways and induces the expression of beige fat and thermogenesis-specific markers in white adipose tissue (WAT). These beneficial effects of 4-HPA are partially abolished by EX527, a known SIRT1 inhibitor. Collectively, our findings indicate that RSV improve obesity through a gut microbiota-derived 4-HPA-SIRT1 axis, highlighting gut microbiota metabolites as a promising target for obesity prevention.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruiqi Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenting Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuanyuan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shuang Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwen Ge
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaoyan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
2
|
Ma Y, Boycott C, Zhang J, Gomilar R, Yang T, Stefanska B. SIRT1/DNMT3B-mediated epigenetic gene silencing in response to phytoestrogens in mammary epithelial cells. Epigenetics 2025; 20:2473770. [PMID: 40029260 PMCID: PMC11881848 DOI: 10.1080/15592294.2025.2473770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
We performed an integrated analysis of genome-wide DNA methylation and expression datasets in normal cells and healthy animals exposed to polyphenols with estrogenic activity (i.e. phytoestrogens). We identified that phytoestrogens target genes linked to disrupted cellular homeostasis, e.g. genes limiting DNA break repair (RNF169) or promoting ribosomal biogenesis (rDNA). Existing evidence suggests that DNA methylation may be governed by sirtuin 1 (SIRT1) deacetylase via interactions with DNA methylating enzymes, specifically DNMT3B. Since SIRT1 was reported to be regulated by phytoestrogens, we test whether phytoestrogens suppress genes related to disrupted homeostasis via SIRT1/DNMT3B-mediated transcriptional silencing. Human MCF10A mammary epithelial cells were treated with phytoestrogens, pterostilbene (PTS) or genistein (GEN), followed by analysis of cell growth, DNA methylation, gene expression, and SIRT1/DNMT3B binding. SIRT1 occupancy at the selected phytoestrogen-target genes, RNF169 and rDNA, was accompanied by consistent promoter hypermethylation and gene downregulation in response to GEN, but not PTS. GEN-mediated hypermethylation and SIRT1 binding were linked to a robust DNMT3B enrichment at RNF169 and rDNA promoters. This was not observed in cells exposed to PTS, suggesting a distinct mechanism of action. Although both SIRT1 and DNMT3B bind to RNF169 and rDNA promoters upon GEN, the two proteins do not co-occupy the regions. Depletion of SIRT1 abolishes GEN-mediated decrease in rDNA expression, suggesting SIRT1-dependent epigenetic suppression of rDNA by GEN. These findings enhance our understanding of the role of SIRT1-DNMT3B interplay in epigenetic mechanisms mediating the impact of phytoestrogens on cell biology and cellular homeostasis.
Collapse
Affiliation(s)
- Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jiaxi Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Rekha Gomilar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Peng J, Zou J, Zhao J, Chen A. Genome-wide identification and expression analysis of the SIRT gene family in Nile tilapia (Oreochromis niloticus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101425. [PMID: 39889587 DOI: 10.1016/j.cbd.2025.101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
The sirtuin (SIRT) family is a nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylase, which is widely involved in numerous physiological processes of organisms, such as metabolism, reproduction, and immunity. Here, based on the genomics database, comprehensive analysis of the SIRT gene in Nile tilapia (Oreochromis niloticus) was analyzed using bioinformatics methods and quantitative real-time PCR. The nine SIRT genes of O. niloticus (OnSIRT) were distributed on eight chromosomes. The OnSIRTs contain distinct sequences from 3 exons in OnSIRT4 to 16 exons in OnSIRT2, however, they share conserved domains and protein motifs. Phylogenetic analysis shows that the OnSIRTs belong to four subfamilies and are highly conserved in teleosts, and evolution is characterized primarily by purification selection. The OnSIRT genes showed diversified expression patterns in fourteen tissues of O. niloticus. OnSIRT2, OnSIRT3, OnSIRT3.2, OnSIRT6, and OnSIRT7 are mainly expressed in the gonads, especially in the ovary. OnSIRT1 and OnSIRT4 are mainly expressed in the kidney. OnSIRT5a is mainly expressed in the stomach, however, OnSIRT5b is mainly expressed in the liver and spleen. The results of this study provide a basis information for further exploration of the function and molecular mechanism of the SIRT gene family in teleosts.
Collapse
Affiliation(s)
- Jiabao Peng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaqi Zou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Zhao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| | - Aqin Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2025; 25:307-327. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
5
|
Zhang D, Liang Q, Jiang J, Liu W, Chu Y, Chen Z, Li B, Chen T, Tsao JR, Hu K. SIRT3 mitigates dry eye disease through the activation of autophagy by deacetylation of FOXO1. Exp Eye Res 2025; 254:110328. [PMID: 40064414 DOI: 10.1016/j.exer.2025.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Dry eye disease (DED) is a complex ocular condition characterized by oxidative stress, inflammation, and apoptosis. An increasing number of studies suggest that Sirtuin3 (SIRT3), a mitochondrial deacetylase, may offer protection against related pathologies. Despite these indications, the precise function and underlying mechanisms of SIRT3 in the context of DED have not been fully elucidated. Here, we observed a decline in SIRT3 expression in human corneal epithelial cells (HCE-Ts) and the corneal conjunctiva of mice as the disease advanced. Overexpression of SIRT3 in HCE-Ts reduced the accumulation of reactive oxygen species (ROS), inflammatory cytokines, and the rate of apoptosis, while its inhibition had the opposite effect. Importantly, the function of SIRT3 was exerted through the enhancement of autophagic flux. Further studies have shown that chloroquine-induced inhibition of autophagy neutralized the beneficial effects of SIRT3. In our in vivo experiments, the application of eye drops containing a SIRT3 agonist ameliorated the symptoms of DED and increased corneal autophagy in mice. Mechanistically, our study identified that the deacetylation and nuclear translocation of FOXO1 (Forkhead box O1) are pivotal for the SIRT3-mediated enhancement of autophagic flux. These findings posit that SIRT3 as an encouraging therapeutic target for DED, offering new insights into the disease's underlying mechanisms.
Collapse
Affiliation(s)
- Di Zhang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Qi Liang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, Zhejiang China
| | - Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Wei Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, China
| | - Yiran Chu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Zeying Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Boda Li
- Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, China
| | - Taige Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Jia-Ruei Tsao
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|
6
|
Wang S, Li H, Lin Y, Cheng N. A Novel Aptamer-Based Fluorescent Biosensor for Imaging SIRT2 in Live Cells and Screening Its Modulators. Anal Chem 2025; 97:8411-8418. [PMID: 40200675 DOI: 10.1021/acs.analchem.5c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Sirtuin 2 (SIRT2) is involved in the pathological processes of many diseases and is especially regarded as a potential therapeutic target for diabetes and neurodegenerative diseases. Imaging SIRT2 protein in live cells has important value for rapidly detecting SIRT2 and high-throughput screening SIRT2 modulators. As far as we know, there has been no method for imaging SIRT2 in live cells up to now. Here, we present a novel aptamer (Apt)-based "turn-on" fluorescent biosensor for imaging SIRT2 in live cells. To develop the recognition element of the biosensor, our work first discovered 12 aptamers (Apt) with high affinity to SIRT2 (Kd = 123.3-154.5 nM) using the magnetic beads-based systemic evolution of ligands by exponential enrichment (MB-SELEX) and selected Apt 45 (Kd = 123.3 nM) to fabricate the "turn-on" fluorescent biosensor, FAM-Apt 45/Black Hole Quencher1 (BHQ1)-cDNA/Au nanospheres, which had excellent specificity and low cytotoxicity. The experiment results demonstrated that the biosensor could image SIRT2 in three different cell lines, including Schwann, H9c2, and HUVECs cells. Further, we established a platform for screening SIRT2 modulators with the biosensor and discovered three SIRT2 modulators (astragaloside II, chlorogenic acid, and tanshinone IIA) that could increase SIRT2 levels in Schwann cells damaged by high glucose and lipid. This work provides an aptamer-based fluorescent biosensor for high-throughput screening of protein modulators at the cellular level, which could be a universal approach to screening aimed protein modulators by replacing the corresponding aptamer.
Collapse
Affiliation(s)
- Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321016, China
| | - Haoran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yugang Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ningtao Cheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Bishr A, Atwa AM, El-Mokadem BM, El-Din MN. Canagliflozin potentially promotes renal protection against glycerol-induced acute kidney injury by activating the AMPK/SIRT1/FOXO-3a/PGC-1α and Nrf2/HO-1 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04017-x. [PMID: 40257493 DOI: 10.1007/s00210-025-04017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
The reno-protective potential of canagliflozin (Cana), an inhibitor of the sodium glucose-linked co-transporter-2 (SGLT-2), has been demonstrated in different models of kidney injury. However, its potential role in preventing glycerol (Gly)-induced acute kidney injury (AKI) remains to be divulged. Therefore, the aim of this study is to investigate the potential reno-protective effect of Cana and its underlying mechanism in a rat model of Gly-induced AKI. Rats were randomly allocated into five groups: normal, Gly, Gly pretreated with 10 mg/kg Cana, Gly pretreated with Cana 25 mg/kg, and normal pretreated with Cana 25 mg/kg for 14 consecutive days. Pretreatment with Cana improved renal structure and enhanced kidney functions manifested by reducing serum creatinine and blood urea nitrogen, as well as renal contents of neutrophil gelatinase-associated lipocalin and kidney injury molecule. Moreover, Cana signified its anti-inflammatory effect by reducing the Gly-induced elevation in renal contents of nuclear factor-κB and interleuκin-6. Additionally, Cana augmented the defense enzymatic antioxidants superoxide dismutase (SOD), manganese-SOD, and heme oxygenase-1, besides increasing the protein expression of the antioxidant transcription factor nuclear factor erythroid 2-related factor 2 to point for its ability to correct redox balance. Cana also upregulated the protein expression of the 5' adenosine monophosphate-activated protein kinase (AMPK), Sirtuin1 (SIRT1), Forkhead box protein O3 (FOXO-3a), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), as well as the transcriptional activity of growth arrest and DNA damage-inducible protein alpha (GAAD45a). In conclusion, Cana demonstrated potentially novel reno-protective mechanisms and mitigated the consequences of AKI through its antioxidant and anti-inflammatory properties, partially by activating the AMPK/SIRT1/FOXO-3a/PGC-1α pathway.
Collapse
Affiliation(s)
- Abeer Bishr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
| | - Bassant M El-Mokadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| |
Collapse
|
8
|
Chaqour B, Rossman JB, Meng M, Dine KE, Ross AG, Shindler KS. SIRT1-based therapy targets a gene program involved in mitochondrial turnover in a model of retinal neurodegeneration. Sci Rep 2025; 15:13585. [PMID: 40253451 PMCID: PMC12009334 DOI: 10.1038/s41598-025-97456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Neurodegenerative diseases of the eye such as optic neuritis (ON) are hallmarked by retinal ganglion cell (RGC) loss and optic nerve degeneration leading to irreversible blindness. Therapeutic interventions enhancing expression or activity of SIRT1, an NAD+-dependent deacetylase, support, at least in part, survival of RGCs in the face of injury. Herein, we used mice with experimental autoimmune encephalomyelitis (EAE) which recapitulates axonal and neuronal damages characteristic of ON to identify gene regulatory networks affected by constitutive ubiquitous Sirt1 expression in SIRT1 knock-in mice and wild-type mice upon targeted adeno-associated virus (AAV)-mediated SIRT1 expression in RGCs. RNA seq data analysis showed that the most upregulated genes in EAE mouse retinas include those involved in inflammation, immune response, apoptosis, and mitochondrial turnover. The latter includes genes regulating mitophagy (e.g., Atg4), mitochondrial transport (e.g., Ipo- 6, Xpo- 6), and mitochondrial localization (e.g., Chrna4, Scn9a). The constitutive or RGC-targeted SIRT1 overexpression in EAE mice upregulated the expression of non-mitochondrial genes such as Ecel1 and downregulated the expression of mitophagy genes (e.g., Atg2b, Arifip1) which were upregulated by EAE alone. Thus, SIRT1 induces neuroprotection by, at least in part, balancing mitochondrial biogenesis and mitophagy and/or enhancing mitochondrial self-repair to preserve the bioenergetic capacity of RGCs.
Collapse
MESH Headings
- Animals
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Mice
- Mitochondria/metabolism
- Mitochondria/genetics
- Retinal Ganglion Cells/metabolism
- Retinal Ganglion Cells/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Retinal Degeneration/genetics
- Retinal Degeneration/therapy
- Retinal Degeneration/pathology
- Retinal Degeneration/metabolism
- Mitophagy/genetics
- Mice, Inbred C57BL
- Genetic Therapy
- Gene Regulatory Networks
- Female
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Jacob B Rossman
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miranda Meng
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimberly E Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Liu YF, Li F, Xu CY, Chen Y, Tu WP, Huang C. SETDB1 recruits CBX3 to regulate the SIRT4/PTEN axis, inhibiting autophagy and promoting ischemia-reperfusion-induced kidney injury. FASEB J 2025; 39:e70509. [PMID: 40197868 DOI: 10.1096/fj.202403024r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Ischemia-reperfusion (I/R) injury is a significant factor in the development of acute kidney injury (AKI), particularly in clinical scenarios, such as kidney transplantation, cardiac surgery, and severe hypotension. Autophagy, a critical process that eliminates damaged cellular components, has been shown to mitigate I/R injury by reducing oxidative stress and enhancing cell survival. However, when autophagy is disrupted, it can exacerbate kidney damage. Elucidating the role of autophagy in I/R injury is essential for uncovering the molecular mechanisms driving AKI and could facilitate the development of autophagy-based therapies. Protein expression levels were analyzed through western blot, immunohistochemistry (IHC), and immunofluorescence (IF) staining techniques. Interactions between SIRT4, SETDB1, and CBX3 were explored using chromatin immunoprecipitation (ChIP), sequential ChIP (ChIP-reChIP), and co-immunoprecipitation (Co-IP) assays. The association between SIRT4 and PTEN was also examined via Co-IP. Transmission electron microscopy (TEM) was employed to visualize autophagosomes. Furthermore, an in vivo rat model of I/R injury was developed for validation of the findings. Sirtuin 4 (SIRT4) expression was reduced, and autophagy was impaired during I/R injury. Moreover, SIRT4 interacted with phosphatase and tensin homolog (PTEN) to regulate its expression. Furthermore, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) mediated histone H3 lysine 9 trimethylation (H3K9me3) modifications and recruited chromobox protein homolog 3 (CBX3) to the SIRT4 promoter, leading to the repression of SIRT4 expression in kidney proximal tubular cells. Importantly, SETDB1 knockdown upregulated SIRT4, decreased PTEN expression, promoted autophagy, and protected rats against I/R injury in vivo. SETDB1 recruits CBX3 to regulate the SIRT4/PTEN axis, inhibiting autophagy and promoting I/R-induced kidney injury. These results suggest that targeting the SETDB1-SIRT4 axis could offer a novel therapeutic strategy to mitigate renal damage in I/R-induced AKI.
Collapse
Affiliation(s)
- Yuan-Fei Liu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fan Li
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Cheng-Yun Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei-Ping Tu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
10
|
Li Y, Wang Y, Yao H, Li Z, Wang L, Song S, Li J, Li Y, Yang M, Zhang K, Han Y, Zhao Y, Yao S, Li Q, Ma Z, Xu D, Zhao Z. Acetylation of Hsc70 at K512 inhibits goat ovarian granulosa cell senescence by restoring chaperone-mediated autophagy. Int J Biol Macromol 2025:143119. [PMID: 40222521 DOI: 10.1016/j.ijbiomac.2025.143119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Nonhistone acetylation plays a crucial role in key cellular processes associated with ageing, such as autophagy. Heat shock cognate protein 70 (Hsc70), a vital chaperone protein for chaperone-mediated autophagy (CMA), exerts a molecular chaperone function that is regulated by its acetylation status. However, the effects of this acetylation on CMA and granulosa cell senescence remain unclear. This study investigated the effects of Hsc70 acetylation on CMA activity and senescence in goat ovarian granulosa cells (GCs). Notably, Hsc70 acetylation was found to mitigate granulosa cell senescence and promote CMA activity. Mass spectrometry analysis identified Hsc70 K512 as the acetylation site, and Sirtuin 2 (Sirt2) was found to catalyze the deacetylation of this site. In addition, Hsc70 expression and CMA activity were significantly reduced in ageing ovaries and under oxidative stress conditions. Subsequent experiments revealed that deacetylated Hsc70 increased the early and late apoptotic rates of GCs and inhibited CMA activity. Functionally, acetylation of the Hsc70 K512 site alleviates the ageing of GCs. In conclusion, this study elucidates the molecular mechanism through which Hsc70 K512 acetylation alleviates cell senescence by enhancing CMA activity in goat ovarian GCs, providing novel insights and potential intervention targets for female mammalian reproduction.
Collapse
Affiliation(s)
- Yawen Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Yukun Wang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Hui Yao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Ziyuan Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Lei Wang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Shuaifei Song
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Jiayue Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaru Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Mingzhi Yang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Ke Zhang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yanguo Han
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Yongju Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Shiyi Yao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qiuyan Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zihan Ma
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhongquan Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Wei L, Kang M, Zhang G, Meng Y, Qin H. SIRT6 Overexpression Enhances Diabetic Foot Ulcer Healing via Nrf2 Pathway Activation. Inflammation 2025:10.1007/s10753-025-02297-2. [PMID: 40199836 DOI: 10.1007/s10753-025-02297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Sirtuin-6 (SIRT6) has a pivotal role in a wide array of cellular biological functions and is linked to the progression of various diseases. Previous findings have identified SIRT6 as a protective modulator against numerous diabetic complications. However, whether SIRT6 exerts a protective role in diabetic foot ulcer (DFU) remains unstudied. This work established a rat model of DFU and evaluated the possible role of SIRT6 in mediating the wound healing in DFU. Marked reductions in SIRT6 levels were observed in wound samples from DFU patients and rats. Increasing SIRT6 expression in wound tissues remarkably decreased wound area, accelerated epithelialisation, increased collagen deposition and improved angiogenesis. Moreover, up-modulation of SIRT6 relieved the oxidative stress and inflammation in DFU rats. The increase of SIRT6 in cultured vascular endothelial cells restrained cell apoptosis, oxidative stress and inflammation elicited by high glucose (HG). HG-impaired migration capacity and angiogenesis of vascular endothelial cells was also recovered by increasing SIRT6 expression. Mechanism research revealed that SIRT6 overexpression reinforced the activation of the Nrf2 pathway in wound tissues of DFU rats and HG-exposed vascular endothelial cells. Pharmacological suppression of Nrf2 reversed the protective effect of SIRT6 overexpression on HG-triggered endothelial dysfunction. The findings of this work indicate that the positive role of SIRT6 in DFU wound healing is related to Nrf2 activation which contributes to the suppression of oxidative stress and inflammation and the improvement of angiogenesis in vascular endothelial cells. This study highlights the previously unaddressed role of SIRT6 in DFU wound healing, providing novel insights into its protective functions. The findings hold significant clinical value by identifying SIRT6 as a promising therapeutic target for improving DFU wound healing.
Collapse
Affiliation(s)
- Li Wei
- Department of Anesthesiology and Operation, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mengyang Kang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Guofeng Zhang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan Meng
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hao Qin
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
12
|
Wang G, Zhang L, Tan J, Li F, Jin Y, He L, Yang X. Activation of SIRT1 Reduces Renal Tubular Epithelial Cells Fibrosis in Hypoxia Through SIRT1-FoxO1-FoxO3-Autophagy Pathway. Adv Biol (Weinh) 2025:e2400583. [PMID: 40197776 DOI: 10.1002/adbi.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/10/2025] [Indexed: 04/10/2025]
Abstract
Heart failure-induced renal tubular epithelial cell fibrosis is an important pathological process that leads to chronic kidney disease. This study is to investigate the regulatory mechanism of over-expression or knock-down SIRT1 gene, alleviating hypoxia-induced HK2 cell fibrosis in heart failure. The focus is on the SIRT1-FoxO1-FoxO3-Autophagy pathway. In vitro experiments are performed by HK2cell line to simulate the normal oxygen state (Normoxia) and the hypoxia state (Hypoxia) caused by heart failure, SIRT1 gene over-expression by transfected vectors, knock-down and Rapamycin (RAPA)-induced cellular autophagy, and the cell models are divided into four subgroups, named control group, oeSIRT1, siSIRT1 and siSIRT1+RAPA. Western blotting (WB), real-time qPCR, immunofluorescence (IF), ELISA, and transmission electron microscopy are used to quantitatively or semi-quantitatively analyze the expression of FoxO1, FoxO3, SIRT1, Beclin1, LC-3, α-SMA, E- Cadherin, and collagen-I in cells or supernatants. It is demonstrated that activation of SIRT1 regulates the expression and activity of FoxO1 and FoxO3, thereby affecting autophagy. This modulation leads to a reduction in HK2 fibrosis markers (α-SMA and E-cadherin) and extracellular matrix deposition (collagen I), which ultimately attenuates renal tubular epithelial cell fibrosis. These findings provide new insights into potential therapeutic strategies for treating heart failure-induced renal tubular epithelial cell fibrosis by targeting the SIRT1-FoxO1-FoxO3-Autophagy pathway.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Endocrinology, Putuo People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Lijuan Zhang
- Department of Endocrinology, Putuo People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Jiaorong Tan
- Department of Endocrinology, Putuo People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Fei Li
- Department of Endocrinology, Putuo People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Yishan Jin
- Department of Endocrinology, Putuo People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Limei He
- Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200050, China
| | - Xin Yang
- Department of Endocrinology, Putuo People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200060, China
| |
Collapse
|
13
|
Cao Z, Zhang C, Liu L, Lei H, Zhang H, He Y, Li X, Xiang Q, Wang YF, Zhang L, Chen G. Microbiota-derived indole acetic acid extends lifespan through the AhR-Sirt2 pathway in Drosophila. mSystems 2025:e0166524. [PMID: 40197001 DOI: 10.1128/msystems.01665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Disruption of aryl hydrocarbon receptor (AhR) signaling and aberrant tryptophan metabolism have been shown to be highly associated with aging and age-related disorders. However, the underlying molecular mechanisms by which the AhR-mediated signaling pathway contributes to the aging process remain largely unknown. In this study, we find that aged Drosophila exhibits markedly reduced tryptophan metabolism leading to impaired AhR ligands, especially indole acetic acid (IAA), compared with their young controls. Supplementation with IAA, produced from Lactobacillus spp., dose-dependently extends the lifespan of Drosophila and improves healthy aging with resistance to starvation and oxidative stress. Mechanistically, activation of AhR by IAA markedly enhances Sirt2 activity by binding to its promoter, thereby inhibiting downstream TOR signaling and related fatty acid and amino acid metabolism. Both Ahr and Sirt2 mutant flies with IAA supplementation display a negligible lifespan extension, suggesting that AhR-mediated Sirt2 signaling contributes to lifespan extension in flies upon IAA supplementation. From the perspective of host metabolism, IAA supplementation significantly increases unsaturated fatty acids (UFAs) in aged flies, which are regarded to be beneficial for healthy status. These findings provide new insights into the physiological functions of AhR involved in the aging process by mediating Sirt2 signaling. IMPORTANCE Disruption of aryl hydrocarbon receptor (AhR) signaling and aberrant tryptophan metabolism contribute to aging and age-related disorders, but the underlying molecular mechanisms are largely unknown. Using multiomics analyses combined with biochemical assays, this study reveals that AhR activation by indole acetic acid (IAA) effectively extends the lifespan accompanied by improved healthy aging in Drosophila via the AhR-Sirt2 pathway.
Collapse
Affiliation(s)
- Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huabao Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Yanmeng He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhi Li
- School of Pharmacy, Faculty of Medicine, Laboratory for Drug Discovery from Natural Resource, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Qingwei Xiang
- Hubei Shizhen Laboratory, Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gang Chen
- Hubei Shizhen Laboratory, Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
14
|
Li H, Yao W, Yang C, Zhang W, Wang Y, Lin Y, Du Z, Zhang C, Huang L, Zhang M, Fan H, Zhu J, Xiang H. SIRT5 Regulates Lipid Deposition in Goat Preadipocytes via PI3K-Akt and MAPK Signaling Pathways. Animals (Basel) 2025; 15:1072. [PMID: 40218465 PMCID: PMC11988186 DOI: 10.3390/ani15071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Silent Information Regulator 5 (SIRT5) has been established as a crucial regulator of cellular alanylation modification. Furthermore, accumulating evidence suggests that SIRT5 plays a significant regulatory role in key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and fatty acid oxidation, all of which are closely associated with cellular lipid metabolism. Despite these advancements, the specific role of SIRT5 in regulating intramuscular fat (IMF) deposition in goats, as well as the underlying molecular mechanisms, remains largely unexplored. In this study, we cloned the complete coding sequence of the goat SIRT5 gene and, through amino acid sequence alignment, demonstrated its closest phylogenetic relationship with sheep. Additionally, we characterized the higher expression of SIRT5 during the differentiation of goat intramuscular precursor adipocytes. The silencing of SIRT5 by siRNA-mediated knockdown significantly upregulated the expression of lipogenesis-related genes and enhanced lipid deposition in goat intramuscular preadipocytes. Concurrently, SIRT5 deficiency led to the inhibition of cell proliferation and a marked reduction in apoptosis. Interestingly, although overexpression of SIRT5 promoted cell proliferation, it did not significantly alter lipid deposition in goat intramuscular precursor adipocytes. RNA sequencing (RNA-seq) analysis identified a total of 106 differentially expressed genes (DEGs) following SIRT5 silencing in goat preadipocytes, predominantly involved in the Focal adhesion, HIF-1, PI3K-Akt, and MAPK signaling pathways by KEGG pathway enrichment analysis. Notably, we successfully reversed the phenotypic effects observed in SIRT5 knockdown goat precursor adipocytes by inhibiting the PI3K-Akt and MAPK signaling pathways using the AKT inhibitor LY294002 and the p38 MAPK pathway inhibitor PD169316, respectively. In conclusion, our findings demonstrated that SIRT5 may modulate intramuscular fat deposition in goats through PI3k-Akt and MAPK signaling pathways. These results expand the gene regulatory network associated with IMF formation and provide a theoretical foundation for improving meat quality by targeting IMF deposition.
Collapse
Affiliation(s)
- Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Wenli Yao
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Changheng Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Ming Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Huaigong Fan
- Sichuan Guonong Tianfu Agricultural Development Co., Ltd., Chengdu 611441, China;
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| |
Collapse
|
15
|
Huang P, Qin D, Qin Y, Tao S, Liu G. SIRT3/6/7: promising therapeutic targets for pulmonary fibrosis. Front Cell Dev Biol 2025; 13:1557384. [PMID: 40241794 PMCID: PMC12000143 DOI: 10.3389/fcell.2025.1557384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Pulmonary fibrosis is a chronic progressive fibrosing interstitial lung disease of unknown cause, characterized by excessive deposition of extracellular matrix, leading to irreversible decline in lung function and ultimately death due to respiratory failure and multiple complications. The Sirtuin family is a group of nicotinamide adenine dinucleotide (NAD+) -dependent histone deacetylases, including SIRT1 to SIRT7. They are involved in various biological processes such as protein synthesis, metabolism, cell stress, inflammation, aging and fibrosis through deacetylation. This article reviews the complex molecular mechanisms of the poorly studied SIRT3, SIRT6, and SIRT7 subtypes in lung fibrosis and the latest research progress in targeting them to treat lung fibrosis.
Collapse
Affiliation(s)
- Pingping Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Qin
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanling Qin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sha Tao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangnan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Yu T, Ding C, Peng J, Liang G, Tang Y, Zhao J, Li Z. SIRT7-mediated NRF2 deacetylation promotes antioxidant response and protects against chemodrug-induced liver injury. Cell Death Dis 2025; 16:232. [PMID: 40169535 PMCID: PMC11961749 DOI: 10.1038/s41419-025-07549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
NRF2 has been recognized as a central hub that neutralizes ROS and restores intracellular redox balance. In addition to KEAP1 mediated ubiquitin-proteasome degradation, post-translational modifications of NRF2 are critical for regulating its nuclear translocation and activation but precise mechanisms underly this regulation remain elusive. In this study, we found that SIRT7 was sufficient and essential for NRF2 nuclear localization and activation. Knockdown of SIRT7 significantly impaired intercellular ROS homeostasis and increased apoptosis in response to oxidative stress including chemodrug treatment. SIRT7 interacted with NRF2 and induced its deacetylation, by which inhibited binding of NRF2 to KEAP1, enhanced NRF2 protein stability and promoted its nuclear translocation. SIRT7 induced NRF2 deacetylation at K443 and K518 sites. Lysine-arginine mutations of these sites (2KR NRF2) significantly reduced KEAP1/NRF2 binding, increased NRF2 nuclear translocation and target gene expression, decreased intercellular ROS level, whereas lysine-glutamine (2KQ) mutant showed similar subcellular localization and functions with WT. Knockdown SIRT7 in hepatocyte exacerbated Oxaliplatin (Oxa) induced hepatic injury and inflammation. While AAV8-NRF2-mediated hepatic NRF2 overexpression or NRF2 agonist significantly prevented Oxa-induced elevation of ALT levels, sinusoidal dilatation and inflammation in SIRT7HKO mice. Our data thus uncovered previously unidentified role of SIRT7 in modulating NRF2 nuclear localization and activation via deacetylation. Activating SIRT7 might offer protection against chemodrug-induced liver injury.
Collapse
Affiliation(s)
- Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, Hunan, China
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, Hunan, China
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, Hunan, China
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, Hunan, China
| | - Yongyi Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, Hunan, China
| | - Jinqiu Zhao
- Department of infectious disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Cancer center, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, Hunan, China.
| |
Collapse
|
17
|
Datta A, Ghosh B, Barik A, Karmarkar G, Sarmah D, Borah A, Saraf S, Yavagal DR, Bhattacharya P. Stem Cell Therapy Modulates Molecular Cues of Vasogenic Edema Following Ischemic Stroke: Role of Sirtuin-1 in Regulating Aquaporin-4 Expression. Stem Cell Rev Rep 2025; 21:797-815. [PMID: 39888572 DOI: 10.1007/s12015-025-10846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Conventional post-stroke edema management strategies are limitedly successful as in multiple cases of hemorrhagic transformation is being reported. Clinically, acute-ischemic-stroke (AIS) intervention by endovascular mesenchymal stem cells (MSCs) have shown benefits by altering various signaling pathways. Our previous studies have reported that intra-arterial administration of 1*105 MSCs (IA-MSCs) were beneficial in alleviating post-stroke edema by modulating PKCδ/MMP9/AQP4 axis and helpful in preserving the integrity of blood-brain-barrier (BBB). However, the role of mitochondrial dysfunction and ROS generation post-AIS cannot be overlooked in context to the alteration of the BBB integrity and edema formation through the activation of inflammatory pathways. The anti-inflammatory activity of IA-MSCs in stroke has been reported to be regulated by sirtuin-1 (SIRT-1). Hence, the relationship between SIRT-1 and AQP4 towards regulation of post-stroke edema needs to be further explored. Therefore, the present study deciphers the molecular events towards AQP4 upregulation, mitochondrial dysfunction and BBB disruption in context to the modulation of SIRT-1/PKCδ/NFκB loop by IA-MSCs administration. METHODS Ovariectomized SD rats were subjected to focal ischemia. SIRT-1 activator, SIRT-1 inhibitor, NFkB inhibitor and IA-MSCs were administered at optimized dose. At 24 h of reperfusion, behavioral tests were performed, and brains were harvested following euthanasia for molecular studies. RESULTS IA-MSCs downregulated AQP4, PKCδ and NFkB expression, and upregulated SIRT-1 expression. SIRT-1 upregulation renders mitochondrial protection via reduction of oxidative stress resulting in BBB protection. CONCLUSION IA-MSCs can modulate SIRT-1 mediated AQP4 expression via mitochondrial ROS reduction and modification of NFkB transcriptional regulation.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anirban Barik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Gautam Karmarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar, Assam, India
| | - Shailendra Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
18
|
Chen Z, Wang X, Tan M, Hu W, Wang J, Jin Z. Overexpressed Rv0222 in M. smegmatis suppresses host innate immunity by downregulating miR-9 target SIRT1. Microb Pathog 2025; 204:107525. [PMID: 40180236 DOI: 10.1016/j.micpath.2025.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Tuberculosis (TB) remains one of the most fatal infectious diseases, the pathogenic bacterium Mycobacterium tuberculosis (Mtb) has a thick wall to resist the invasion of extracellular substances and secretes a variety of virulence proteins to antagonize host innate immunity. Rv0222, a protein encoded by the gene Rv0222 in the RD4 region of Mtb, is a critical virulence factor in the pathogenicity of Mtb. However, the mechanism of its regulation of miRNAs during bacterial infection is unclear. We used Rv0222 gene and Mycobacterium smegmatis (M. smegmatis), which is highly homologous to Mtb, to construct Rv0222 recombinant M. smegmatis Ms_Rv0222. Ms_Rv0222 induced down-regulation of miR-9 expression and up-regulation of SIRT1 in RAW264.7 cells and mice post-infection. Up-regulation of SIRT1 caused down-regulation of p65 activity and decreased the expression of pro-inflammatory cytokine, which increased the intracellular survival of M. smegmatis. Si-SIRT1 induced up-regulation of p65 activity and increased the expression of pro-inflammatory cytokine, then decreased the intracellular survival of M. smegmatis. This study reveals that Mtb Rv0222 mediates the suppression of host innate immunity by miR-9 and its target SIRT1, and may provide a potential site for the development of new anti-TB drugs targeting Rv0222.
Collapse
Affiliation(s)
- Zonghai Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China; Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xianghu Wang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Ming Tan
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Wenxu Hu
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Jinsuan Wang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Zixuan Jin
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
19
|
Hu F, Tong S, Xu H. Schisandrin B Improves Mitochondrial Function and Inhibits HT22 Cell Apoptosis by Regulating Sirt3 Protein. J Membr Biol 2025; 258:123-133. [PMID: 39939534 DOI: 10.1007/s00232-025-00340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/25/2025] [Indexed: 02/14/2025]
Abstract
Neurological diseases refer to pathological changes that occur in the brain, spinal cord, and peripheral nerves. Their etiologies are complex, treatment outcomes are poor, and prognoses are unfavorable. Therefore, how to improve the treatment efficacy of neurological diseases is an urgent problem to be addressed in current clinical practice. Schisandrin B, a commonly used traditional Chinese medicine in clinical settings, has anti-tumor, anti-inflammatory, and wound-healing promoting effects. However, there are relatively few studies on its application in the treatment of neurological diseases. In this study, HT22 nerve cells were cultured, and an injury model was constructed by applying H2O2 stimulation to explore the protective effect of Schisandrin B on these cells. The research results showed that compared with the H2O2 group, Schisandrin B could significantly increase the viability (30.872%) and migration ability (42.756%) of HT22 cells, and inhibit the apoptosis of HT22 cells (22.817%). Further exploration of the mechanism revealed that Schisandrin B regulated the mitochondrial dynamic balance and membrane potential level of HT22 cells by upregulating the expression of Sirt3 protein, enhanced the mitochondrial energy metabolism (with an increase of 53.411% in ATP production), and maintained the integrity of the quantity and structure of mitochondria, ultimately exerting a protective effect on HT22 cells.
Collapse
Affiliation(s)
- Fei Hu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Ningbo, China
| | - Songlin Tong
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, No. 999, South Second Ring Road, Hushan Street, Cixi, Ningbo, China
| | - Hongming Xu
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital, Wenzhou Medical University, No. 999, South Second Ring Road, Hushan Street, Cixi, Ningbo, China.
| |
Collapse
|
20
|
Yu X, Chen X, Wu W, Tang H, Su Y, Lian G, Zhang Y, Xie L. Zinc Alleviates Diabetic Muscle Atrophy via Modulation of the SIRT1/FoxO1 Autophagy Pathway Through GPR39. J Cachexia Sarcopenia Muscle 2025; 16:e13771. [PMID: 40026072 PMCID: PMC11873538 DOI: 10.1002/jcsm.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Muscle atrophy is a severe complication of diabetes, with autophagy playing a critical role in its progression. Zinc has been shown to alleviate hyperglycaemia and several diabetes-related complications, but its direct role in mediating diabetic muscle atrophy remains unclear. This study explores the potential role of zinc in the pathogenesis of diabetic muscle atrophy. METHODS In vivo, C57BL/6J mice were induced with diabetes by streptozotocin (STZ) and treated with ZnSO₄ (25 mg/kg/day) for six weeks. Gastrocnemius muscles were collected for histological analysis, including transmission electron microscopy (TEM). Serum zinc levels were measured by ICP-MS. Protein expression was evaluated using immunofluorescence (IF), immunohistochemistry (IHC) and Western blotting (WB). Bioinformatics analysis was used to identify key genes associated with muscle atrophy. In vitro, a high-glucose-induced diabetic C2C12 cell model was established and received ZnSO₄, rapamycin, SRT1720, TC-G-1008, or GPR39-CRISPR Cas9 intervention. Autophagy was observed by TEM, and protein expression was assessed by IF and WB. Intracellular zinc concentrations were measured using fluorescence resonance energy transfer (FRET). RESULTS In vivo, muscle atrophy, autophagy activation, and upregulation of SIRT1 and FoxO1, along with downregulation of GPR39, were confirmed in the T1D group. ZnSO₄ protected against muscle atrophy and inhibited autophagy (T1D + ZnSO₄ vs. T1D, all p < 0.0001), as evidenced by increased grip strength (212.40 ± 11.08 vs. 163.90 ± 10.95 gf), gastrocnemius muscle index (10.67 ± 0.44 vs. 8.80 ± 0.72 mg/g), muscle fibre cross-sectional area (978.20 ± 144.00 vs. 580.20 ± 103.30 μm2), and serum zinc levels (0.2335 ± 0.0227 vs. 0.1561 ± 0.0123 mg/L). ZnSO₄ down-regulated the expression of Atrogin-1 and MuRF1, and decreased the formation of autophagosomes in the gastrocnemius muscle of T1D mice (all p < 0.0001). RNA-seq analysis indicated activation of the SIRT1/FoxO1 signalling pathway in diabetic mice. ZnSO₄ down-regulated LC3B, SIRT1 and FoxO1, while upregulating P62 and GPR39 (all p < 0.05). In vitro, muscle atrophy, autophagy activation, and down-regulation of GPR39 were confirmed in the diabetic cell model (all p < 0.05). Both ZnSO₄ and TC-G-1008 down-regulated Atrogin-1, LC3B, SIRT1, and FoxO1, and up-regulated P62 and GPR39, inhibiting autophagy and improving muscle atrophy (all p < 0.05). The beneficial anti-atrophic effects of ZnSO₄ are diminished following treatment with SRT1720 or RAPA. Upon GPR39 knockout, SIRT1, FoxO1, and Atrogin-1 were upregulated, while P62 was downregulated. Intracellular zinc concentrations in ZnSO₄-treated group remained unchanged (p > 0.05), indicating that zinc supplementation did not affect zinc ion entry but acted through the cell surface receptor GPR39. CONCLUSION ZnSO4 inhibits excessive autophagy in skeletal muscle and alleviates muscle atrophy in diabetic mice via the GPR39-SIRT1/FoxO1 axis. These findings suggest that zinc supplementation may offer a potential therapeutic strategy for managing diabetic muscle atrophy.
Collapse
Affiliation(s)
- Xing Yu
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Xiaojun Chen
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Weibin Wu
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Huibin Tang
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Yunyun Su
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Guili Lian
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| | - Yujie Zhang
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Liangdi Xie
- Department of GeriatricsThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Fujian Hypertension Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Clinical Research Center for Geriatric Hypertension Disease of Fujian ProvinceThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Branch of National Clinical Research Center for Aging and MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of GeriatricsNational Regional Medical CenterBinhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
21
|
Zeng L, Zhu L, Fu S, Li Y, Hu K. Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma. Mol Cell Biochem 2025; 480:2131-2142. [PMID: 39463200 DOI: 10.1007/s11010-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.
Collapse
Affiliation(s)
- Lianlin Zeng
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Lutao Zhu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Shasha Fu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Yangan Li
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Kehui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China.
| |
Collapse
|
22
|
Carollo C, Sorce A, Cirafici E, Mulè G, Caimi G. Sirtuins and Resveratrol in Cardiorenal Diseases: A Narrative Review of Mechanisms and Therapeutic Potential. Nutrients 2025; 17:1212. [PMID: 40218970 PMCID: PMC11990745 DOI: 10.3390/nu17071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Aging is a very complex process, and it has been linked with Sirtuins. Sirtuin enzymes are a family of deacetylases that are related to caloric restriction and aging by modulating energy metabolism, genomic stability, and stress resistance. Up to now, seven sirtuins have been recognized. This narrative review aimed to analyze the literature produced between January 2005 and March 2025 to evaluate the role of sirtuins in chronic kidney disease and, as heart and kidney diseases are strictly interrelated, to explore their role in heart diseases and cardio-renal cross-talk. A reciprocal relationship between CKD and aging seems to exist since CKD may contribute to premature biological aging of different organ systems. SIRTs are involved in the pathophysiology of renal diseases; their activation can delay the progression of several renal diseases. Notably, an increasing number of studies linked SIRTs with different CVDs. SIRTs affect the production of mitochondrial reactive oxygen species (ROS) by modulating mitochondrial function. The imbalance of SIRT levels may increase the vulnerability to CVDs. SIRTs are involved in the pathophysiological mechanisms of HFpEF (heart failure with preserved ejection fraction) through different signaling pathways. Fibrosis is the linkage mechanism between the heart and kidney in the development of cardio-renal diseases. Current studies on sirtuins, resveratrol, and cardiorenal disease highlight their potential therapeutic benefits in regulating blood pressure, kidney function, lipid profiles, and inflammation, making them a promising area of investigation for improving cardiovascular and renal health outcomes. However, significant gaps remain. The limited availability of highly selective and potent sirtuin modulators hampers their clinical translation, as most existing compounds exhibit poor bioavailability and suboptimal pharmacokinetic properties.
Collapse
Affiliation(s)
- Caterina Carollo
- Department of Health Promotion, Mother and Child Care, Internal and Specialistic Medicine, University of Palermo, 90127 Palermo, Italy (E.C.); (G.M.)
| | | | | | | | | |
Collapse
|
23
|
Kibria MG, Yoshizawa T, Zhang T, Ono K, Mizumoto T, Sato Y, Sawa T, Yamagata K. SIRT7 Is a Lysine Deacylase with a Preference for Depropionylation and Demyristoylation. Int J Mol Sci 2025; 26:3153. [PMID: 40243935 PMCID: PMC11988671 DOI: 10.3390/ijms26073153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases that remove acyl groups from lysine residues on target proteins, releasing nicotinamide. SIRT7 is associated with aging and a number of age-related diseases, but the enzymatic properties of SIRT7 are largely unknown. In the present study, we investigated the biochemical activity of SIRT7 by performing a series of in vitro kinetic studies in the presence of different acyl substrates. The binding affinity of SIRT7 for NAD+ was dependent on the acyl substrate, and SIRT7 showed a preference for depropionylation and demyristoylation. Nicotinamide, the end-product of the sirtuin reaction, inhibits the activity of SIRT1-6. We also found that the sensitivity of SIRT7 to nicotinamide inhibition also depended on the chain length of the acylated peptides and that nicotinamide was a poor inhibitor of SIRT7 with non-acetylated substrates. These findings may provide insights into the development of novel SIRT7 modulators for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Mohammad Golam Kibria
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tianli Zhang
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Katsuhiko Ono
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.O.); (T.S.)
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Tomohiro Sawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.O.); (T.S.)
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
24
|
Tong Y, Gu Q, Dong B, Ying H, Ji T, Shen X, Shen B, Yu H, Feng L, Cai X, Li Z. Beta-catenin/sirtuin 1/farnesoid X receptor pathway promotion of portal vein ligation and parenchymal transection-induced rapid liver regeneration. Surgery 2025; 182:109343. [PMID: 40157124 DOI: 10.1016/j.surg.2025.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND By accelerating the regeneration of the future liver remnant, portal vein ligation and parenchymal transection allows for more extensive hepatectomy. Given that the mechanism remains poorly understood, the aim of this study was to investigate the mechanism of portal vein ligation and parenchymal transection-induced liver regeneration. METHODS A portal vein ligation and parenchymal transection-induced liver regeneration mouse model was established, followed by RNA microarray analysis to identify candidate molecules. Genomic deletion and chemical manipulation of target molecules were used to explore their functions in portal vein ligation and parenchymal transection-induced liver regeneration. Validation was conducted using a diseased liver model and human samples. RESULTS Portal vein ligation and parenchymal transection-induced liver regeneration was significantly accelerated compared with that in sham-operated mice (P < .05). An RNA microarray revealed that Sirtuin 1 is a crucial molecule in the proliferation of the future liver remnant. Regardless of whether Sirtuin 1 is inhibited chemically or through genetic deletion, portal vein ligation and parenchymal transection-induced liver regeneration is distinctly attenuated. Further investigation revealed that Sirtuin 1 promoted portal vein ligation and parenchymal transection-induced liver regeneration via the farnesoid X receptor. In addition, beta-catenin also was found to participate in the process of future liver remnant proliferation. Chemical inhibition of beta-catenin markedly impaired but activation of WNT/beta-catenin mildly enhanced portal vein ligation and parenchymal transection-induced liver regeneration (P < .05). Deletion of Sirtuin 1 blocked the facilitating effect of beta-catenin on portal vein ligation and parenchymal transection-induced liver regeneration. These findings were validated in diseased liver models and patient samples, confirming the correlation between the beta-catenin/Sirtuin 1/farnesoid X receptor pathway and portal vein ligation and parenchymal transection-induced liver regeneration. CONCLUSION Activation of the beta-catenin/Sirtuin 1/farnesoid X receptor pathway offers critical mechanistic insights into accelerating portal vein ligation and parenchymal transection-induced liver regeneration. Modulation of beta-catenin/Sirtuin 1/farnesoid X receptor may therefore improve clinical outcomes in patients receiving staged hepatectomy.
Collapse
Affiliation(s)
- Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiuxia Gu
- Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingzhi Dong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyun Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Department of Biomedical Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheyong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liver Regeneration and Metabolism Study Group, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of General Surgery, Alaer Hospital, School of Medicine, Tarim University, Alar, Xinjiang, China.
| |
Collapse
|
25
|
Hu Z, Tang M, Huang Y, Cai B, Sun X, Chen G, Huang A, Li X, Shah AR, Jiang L, Li Q, Xu X, Lu W, Mao Z, Wan X. SIRT7 facilitates endometrial cancer progression by regulating PTEN stability in an estrogen-dependent manner. Nat Commun 2025; 16:2989. [PMID: 40148340 PMCID: PMC11950185 DOI: 10.1038/s41467-025-58317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
The prognosis of metastatic endometrial carcinoma (EC), one of the most common gynecological malignancies worldwide, remains poor, and the underlying driver of metastases is poorly understood. Dysregulation in estrogen-related signaling and inactivation of tumor suppressor PTEN are two essential risk factors of EC. However, whether and how they are interconnected during EC development remains unclear. Here, we demonstrate that the deacetylase SIRT7 is upregulated in EC patients and mouse models, facilitating EC progression in vitro and in vivo. Mechanistically, in an estrogen-dependent fashion, SIRT7 mediates PTEN deacetylation at K260, promoting PTEN ubiquitination by the E3 ligase NEDD4L, accelerating PTEN degradation and, consequently, expediting EC metastasis. Additionally, SIRT7 expression strongly correlates with poor survival in EC patients with wild-type PTEN, though no significant correlation is observed in PTEN mutation patients. These results lay the foundation for the study of targeting estrogen-SIRT7-PTEN axis, to restore PTEN abundance, offering potential avenues for EC therapy.
Collapse
Affiliation(s)
- Zhiyi Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yujia Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bailian Cai
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ao Huang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmacy, Changsha Medical University, Changsha, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ab Rauf Shah
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
26
|
Naatz A, Bohl KS, Jones Lipinski RA, Nord JA, Gehant AL, Hansen PA, Smith BC, Corbett JA. Role of SIRT3 in the regulation of Gadd45α expression and DNA repair in β-cells. J Biol Chem 2025:108451. [PMID: 40147772 DOI: 10.1016/j.jbc.2025.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025] Open
Abstract
In previous studies, we have shown that growth arrest and DNA damage (Gadd) 45α is required for the repair of nitric oxide-mediated DNA damage in β-cells. Gadd45α expression is stimulated by nitric oxide and requires forkhead box protein (Fox) O1 and NAD+-dependent deacetylase activity. Based on inhibitor studies, we attributed this activity to Sirtuin (SIRT)1; however, the inhibitors used in this previous study also attenuate the deacetylase activity of SIRT2, 3, and 6. We now provide experimental evidence that SIRT1 is dispensable for β-cell expression of Gadd45α and that the mitochondrial localized isoform SIRT3, is required for DNA repair in β-cells. We show that siRNA knockdown of Sirt3 attenuates nitric oxide-stimulated Gadd45α mRNA accumulation in both wildtype and Sirt1-/- INS 832/13 cells as well as isolated rat islets, and that SIRT3 inhibition increases FoxO1 acetylation and attenuates DNA repair in response to nitric oxide. While SIRT3 is predominantly localized to mitochondria, a small fraction is localized in the nucleus of insulin-containing cells and functions to participate in the regulation of FoxO1-dependent, nitric oxide-stimulated DNA repair.
Collapse
Affiliation(s)
- Aaron Naatz
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Kelsey S Bohl
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Rachel A Jones Lipinski
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Joshua A Nord
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Alyssa L Gehant
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Polly A Hansen
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - Brian C Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226
| | - John A Corbett
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226.
| |
Collapse
|
27
|
Li Y, Wu T, Li Y, Xu C, Zhou C, Li Z, Shang W, Wang L, Liu Z, Wang J, Liu Y, Fang F, Yang B, Tong C. Ectopic protein lysine methacrylation contributes to defects caused by loss of HIBCH or ECHS1. Cell Rep 2025; 44:115379. [PMID: 40056416 DOI: 10.1016/j.celrep.2025.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 03/10/2025] Open
Abstract
The absence of HIBCH or ECHS1, two Leigh syndrome genes, in cultured cells results in abnormal mitochondrial morphology and respiratory defects. Fly eyes lacking either protein exhibit age-dependent degeneration. Elevated lysine methacrylation (Kmea) is observed in both HIBCH- and ECHS1-deficient cells and fly tissues. Quantitative mass spectrometry reveals that many proteins are ectopically modified by Kmea in these cells. Mimicking Kmea in proteins like CH60, FKBP4, BIP, LDHB, or DHRS2 replicates the mitochondrial morphology changes seen in HIBCH- or ECHS1-deficient cells. Reducing Kmea modification partially rescues mitochondrial morphology changes in cells and eye degeneration in flies. Fibroblasts from patients with HIBCH or ECHS1 mutations show similar mitochondrial changes and elevated Kmea, which are significantly reversed by administering N-acetyl-L-cysteine to reduce Kmea levels. We propose that ectopic Kmea modification mediates the defects caused by HIBCH- or ECHS1-deficiency. Reducing Kmea modification provides a new approach for treating HIBCH- or ECHS1-related Leigh syndrome.
Collapse
Affiliation(s)
- Yawen Li
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ting Wu
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou 310015, China
| | - Yaoyao Li
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chaolong Xu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Caixia Zhou
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhirong Li
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weina Shang
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Liquan Wang
- Department of Obstetrics and Gynecology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Yang Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Bing Yang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Chao Tong
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
28
|
Slayo M, Rummel C, Singhaarachchi PH, Feldotto M, Spencer SJ. The role of n-3-derived specialised pro-resolving mediators (SPMs) in microglial mitochondrial respiration and inflammation resolution in Alzheimer's disease. Mol Neurodegener 2025; 20:35. [PMID: 40114266 PMCID: PMC11927317 DOI: 10.1186/s13024-025-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia globally and is characterised by reduced mitochondrial respiration and cortical deposition of amyloid-β plaques and neurofibrillary tangles comprised of hyper-phosphorylated tau. Despite its characterisation more than 110 years ago, the mechanisms by which AD develops are still unclear. Dysregulation of microglial phagocytosis of amyloid-β may play a key role. Microglia are the major innate immune cell of the central nervous system and are critical responders to pro-inflammatory states. Typically, microglia react with a short-lived inflammatory response. However, a dysregulation in the resolution of this microglial response results in the chronic release of inflammatory mediators. This prolongs the state of neuroinflammation, likely contributing to the pathogenesis of AD. In addition, the microglial specialised pro-resolving mediator (SPM) contribution to phagocytosis of amyloid-β is dysregulated in AD. SPMs are derivatives of dietary n-3 polyunsaturated fatty acids (PUFAs) and potentially represent a strategic target for protection against AD progression. However, there is little understanding of how mitochondrial respiration in microglia may be sustained long term by n-3-derived SPMs, and how this affects their clearance of amyloid-β. Here, we re-evaluate the current literature on SPMs in AD and propose that SPMs may improve phagocytosis of amyloid-β by microglia as a result of sustained mitochondrial respiration and allowing a pro-resolution response.
Collapse
Affiliation(s)
- Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior - CMBB, Giessen, Marburg, Germany
| | | | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Zhra M, Elahi MA, Tariq A, Abu-Zaid A, Yaqinuddin A. Sirtuins and Gut Microbiota: Dynamics in Health and a Journey from Metabolic Dysfunction to Hepatocellular Carcinoma. Cells 2025; 14:466. [PMID: 40136715 PMCID: PMC11941559 DOI: 10.3390/cells14060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction leading to non-alcoholic fatty liver disease (NAFLD) exhibits distinct molecular and immune signatures that are influenced by factors like gut microbiota. The gut microbiome interacts with the liver via a bidirectional relationship with the gut-liver axis. Microbial metabolites, sirtuins, and immune responses are pivotal in different metabolic diseases. This extensive review explores the complex and multifaceted interrelationship between sirtuins and gut microbiota, highlighting their importance in health and disease, particularly metabolic dysfunction and hepatocellular carcinoma (HCC). Sirtuins (SIRTs), classified as a group of NAD+-dependent deacetylases, serve as crucial modulators of a wide spectrum of cellular functions, including metabolic pathways, the inflammatory response, and the process of senescence. Their subcellular localization and diverse functions link them to various health conditions, including NAFLD and cancer. Concurrently, the gut microbiota, comprising diverse microorganisms, significantly influences host metabolism and immune responses. Recent findings indicate that sirtuins modulate gut microbiota composition and function, while the microbiota can affect sirtuin activity. This bidirectional relationship is particularly relevant in metabolic disorders, where dysbiosis contributes to disease progression. The review highlights recent findings on the roles of specific sirtuins in maintaining gut health and their implications in metabolic dysfunction and HCC development. Understanding these interactions offers potential therapeutic avenues for managing diseases linked to metabolic dysregulation and liver pathology.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | - Ahmed Abu-Zaid
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Ahmed Yaqinuddin
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
30
|
Hou R, Yang X, Xu Q, Shen C, Zhang L, Huang B, Yang Y, Yu Z, Yin Z, Cao Y, Peng X. SIRT2 alleviates pre-eclampsia via prompting mitochondrial biogenesis and function. Life Sci 2025; 371:123566. [PMID: 40118268 DOI: 10.1016/j.lfs.2025.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
AIMS Pre-eclampsia (PE) globally impacts 2-8 % of pregnancies and is a leading cause of neonatal and maternal morbidity and mortality. Recent studies found the association between mitochondrial dysfunction and deficient motility of trophoblast cells in PE. Lower expressions of mitochondrial biogenesis related proteins (i.e. PGC1α, NRF1 and TFAM) and SIRT2 have recently been found. However, the regulative role of SIRT2 on the protein expression and acetylation of PGC1α and its influence on trophoblast migration and invasion in PE have never been investigated. MATERIALS AND METHODS The alterations in protein expressions of SIRT2 and PGC1α/NRF1/TFAM were examined in the placenta from pregnant women with and without PE. The role of SIRT2 on mitochondrial biogenesis and mitochondrial morphology/function was explored in trophoblast cell, and the findings were confirmed in the LPS-induced PE mice with adeno-associated virus transfection system. KEY FINDINGS We demonstrated the lower protein expressions of SIRT2 and PGC1α/NRF1/TFAM and mitochondrial dysfunction in PE patients and mice compared with counterparts. Moreover, overexpression of SIRT2 enhanced the protein expressions of PGC1α and deacetylated PGC1α, and further facilitating mitochondrial function and motility of trophoblast cells. In vivo, overexpression of SIRT2 attenuated the PE-like symptoms and adverse pregnancy outcomes in LPS-induced PE mice via promoting mitochondrial biogenesis. SIGNIFICANCE Above findings suggest that SIRT2 might be a potential interventive target against PE via improving deacetylation of PGC1α and mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Ruirui Hou
- School of Pharmacy, Anhui Medical University, Hefei, China; Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Xiaoyan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Qi Xu
- School of Pharmacy, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Can Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Longbiao Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Binbin Huang
- The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Zhen Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.
| | - Xiaoqing Peng
- School of Pharmacy, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, Anhui, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Key National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.
| |
Collapse
|
31
|
Cheng Y, Zheng G, Huang H, Ni J, Zhao Y, Sun Y, Chang Y, Liu S, He F, Li D, Guo Y, Miao Y, Xu M, Wang D, Zhang Y, Hua Y, Yang S, Fan G, Ma C. GLSP mitigates vascular aging by promoting Sirt7-mediated Keap1 deacetylation and Keap1-Nrf2 dissociation. Theranostics 2025; 15:4345-4367. [PMID: 40225574 PMCID: PMC11984382 DOI: 10.7150/thno.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background and Purpose: Vascular aging is a prior marker of human aging and a significant contributor to atherosclerosis and vascular calcification. However, there are limited pharmacological options available to mitigate vascular aging. Thus, understanding the mechanisms underlying vascular aging and age-related atherosclerosis and vascular calcification is crucial. This study investigates the targets of vascular aging and elucidates the role and mechanisms of Ganoderma lucidum spore powder (GLSP) in mitigating vascular aging and aging-associated atherosclerosis as well as vascular calcification. Methods: The anti-vascular aging effects of GLSP was determined in aged C57BL/6J mice and the targets of GLSP was identified through transcriptome sequencing. Additionally, the protective effects of GLSP on the aged vasculature were assessed by examining atherosclerosis in apoE-/- mice and vascular calcification in VD3 and nicotine-induced mice. In vitro, the protective effects of GLSP triterpenes against vascular aging and calcification was determined in vascular smooth muscle cells (VSMCs). Results: GLSP exerted anti-vascular aging effects by regulating the cell cycle and senescence-associated secretory phenotype (SASP), mitigating DNA damage, reducing oxidative stress, improving mitochondrial function and modulating metabolic levels. Furthermore, GLSP improved vascular aging-associated atherosclerosis and vascular calcification in vivo. Mechanistically, RNA sequencing revealed an upregulation of Sirt7 expression after GLSP treatment. Sirt7 inhibitor exacerbated VSMCs senescence and calcification in senescent VSMCs and abolished the anti-senescence and the inhibitory effect of GLSP triterpenes on VSMCs senescence and calcification. Innovatively, we found that Sirt7 interacted with Keap1 and facilitated Keap1 deacetylation, which promoted Keap1-Nrf2 dissociation and consequently enhanced Nrf2 nuclear translocation and activation. Conclusion: GLSP alleviates vascular aging by exerting antioxidant effects through the activation of the Sirt7-Nrf2 axis, providing a promising new strategy for delaying vascular aging, atherosclerosis and vascular calcification.
Collapse
Affiliation(s)
- Yanfei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guobin Zheng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Heming Huang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuting Sun
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingxin Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shangjing Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng He
- Culture and Industry Research Center of Li Shizhen Traditional Chinese Medicine, Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, China
| | - Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengxin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dongyue Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shu Yang
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
32
|
Strzałka P, Krawiec K, Wiśnik A, Jarych D, Czemerska M, Zawlik I, Pluta A, Wierzbowska A. The Role of the Sirtuin Family Histone Deacetylases in Acute Myeloid Leukemia-A Promising Road Ahead. Cancers (Basel) 2025; 17:1009. [PMID: 40149343 PMCID: PMC11940623 DOI: 10.3390/cancers17061009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Acute myeloid leukemia (AML) corresponds to a heterogeneous group of clonal hematopoietic diseases, which are characterized by uncontrolled proliferation of malignant transformed myeloid precursors and their inability to differentiate into mature blood cells. The prognosis of AML depends on many variables, including the genetic features of the disease. Treatment outcomes, despite the introduction of new targeted therapies, are still unsatisfactory. Recently, there have been an increasing number of reports on enzymatic proteins of the sirtuin family and their potential importance in cancer in general. Sirtuins are a group of 7 (SIRT1-7) NAD+-dependent histone deacetylases with pleiotropic effects on metabolism, aging processes, and cell survival. They are not only responsible for post-translational modification of histones but also play various biochemical functions and interact with other proteins regulating cell survival, such as p53. Thus, their role in key mechanisms of tumorigenesis makes them a worthwhile topic in AML. Different sirtuins have been shown to act oppositely depending on the biological context, the mechanism of which requires further exploration. This review provides a comprehensive description of the significance and role of sirtuins in AML in light of the current state of knowledge. It focuses in particular on molecular mechanisms regulated by sirtuins and signaling pathways involved in leukemogenesis, as well as clinical aspects and potential therapeutic targets in AML.
Collapse
Affiliation(s)
- Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Aneta Wiśnik
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| |
Collapse
|
33
|
Yang Y, Sun W, Yang F, Liang T, Li CL, Wang Y, Wang XL, Wang RR, Wu SC, Chen J. High energy diet-induced prediabetic neuropathic pain is mediated by reduction of SIRT6 negative control of both spinal and peripheral neuroinflammation. Neuroscience 2025; 569:58-66. [PMID: 39909339 DOI: 10.1016/j.neuroscience.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Prediabetic neuropathic pain has been classified as peripheral neuropathic pain associated with polyneuropathy caused by impaired glucose tolerance or impaired fasting glucose, which is a preclinical stage and might develop type 2 diabetes mellitus. Our previous research highlighted that prediabetes is accompanied by dramatic bilateral mechanical hyperalgesia following high energy diet (HED) which results in myelin and axonal degenerations along somatosensory system. However, the pathogenic mechanisms underlying prediabetic neuropathic pain remain unclear. The nuclear sirtuin 6 (SIRT6) is a crucial deacetylase in the regulation of multiple cellular biological processes, such as DNA repair, genome stability, inflammation and metabolic homeostasis. In current study, we show that the expressions of SIRT6 were significantly decreased, while its downstream NF-κB and proinflammatory mediator IL-6 and IL-1β were significantly increased in both dorsal root ganglia (DRG) and spinal dorsal horn of rats with prediabetic neuropathic pain induced by HED. Moreover, siRNA-SIRT6 treatment induced a significant reduction in bilateral paw withdrawal mechanical thresholds, indicating that SIRT6 down-regulation contributed to prediabetic neuropathic pain induced by HED. Furthermore, it was also found that SIRT6 reduction induced the activation of HMGB1 via disinhibition of NF-κB in both DRG and spinal dorsal horn of prediabetic rats. In conclusion, prediabetic neuropathic pain is caused by SIRT6 reduction through upregulating HMGB1-RAGE signaling at both peripheral and spinal levels.
Collapse
Affiliation(s)
- Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Shuang-Chan Wu
- Sanhang Institute for Brain Science and Technology, Northwestern Polytechnical University, Xi'an 710129 Shaanxi Province, PR China.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China; Sanhang Institute for Brain Science and Technology, Northwestern Polytechnical University, Xi'an 710129 Shaanxi Province, PR China.
| |
Collapse
|
34
|
Meng (姿 含 孟) Z, Norwitz NG, Bickel SE. Meiotic cohesion requires Sirt1 and preserving its activity in aging oocytes reduces missegregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642822. [PMID: 40161738 PMCID: PMC11952436 DOI: 10.1101/2025.03.12.642822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chromosome segregation errors in human oocytes increase dramatically as women age and premature loss of meiotic cohesion is one factor that contributes to a higher incidence of segregation errors in older oocytes. Here we show that cohesion maintenance during meiotic prophase in Drosophila oocytes requires the NAD+-dependent deacetylase, Sirt1. Knockdown of Sirt1 during meiotic prophase causes premature loss of arm cohesion and chromosome segregation errors. We have previously demonstrated that when Drosophila oocytes arrest and age in diplotene, segregation errors increase significantly. By quantifying acetylation of the Sirt1 substrate H4K16 on oocytes chromosomes, we find that Sirt1 deacetylase activity declines markedly during aging. However, if females are fed the Sirt1 activator SRT1720 as their oocytes age, the H4K16ac signal on oocyte DNA remains low in aged oocytes, consistent with preservation of Sirt1 activity during aging. Strikingly, age-dependent segregation errors are significantly reduced if mothers are fed SRT1720 while their oocytes age. Our data suggest that maintaining Sirt1 activity in aging oocytes may provide a viable therapeutic strategy to decrease age-dependent segregation errors.
Collapse
Affiliation(s)
- Zihan Meng (姿 含 孟)
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| | - Nicholas G. Norwitz
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| |
Collapse
|
35
|
Siedlecka-Kroplewska K, Kmiec Z, Zmijewski MA. The Interplay Between Autophagy and Apoptosis in the Mechanisms of Action of Stilbenes in Cancer Cells. Antioxidants (Basel) 2025; 14:339. [PMID: 40227400 PMCID: PMC11939748 DOI: 10.3390/antiox14030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Plant-based stilbenes are low-molecular-weight polyphenolic compounds that exhibit anti-oxidant, anti-microbial, anti-fungal, anti-inflammatory, anti-diabetic, cardioprotective, neuroprotective, and anti-cancer activities. They are phytoalexins produced in diverse plant species in response to stress, such as fungal and bacterial infections or excessive UV irradiation. Plant-derived dietary products containing stilbenes are common components of the human diet. Stilbenes appear to be promising chemopreventive and chemotherapeutic agents. Accumulating evidence indicates that stilbenes are able to trigger both apoptotic and autophagic molecular pathways in many human cancer cell lines. Of note, the molecular crosstalk between autophagy and apoptosis under cellular stress conditions determines the cell fate. The autophagy and apoptosis relationship is complex and depends on the cellular context, e.g., cell type and cellular stress level. Apoptosis is a type of regulated cell death, whereas autophagy may act as a pro-survival or pro-death mechanism depending on the context. The interplay between autophagy and apoptosis may have an important impact on chemotherapy efficiency. This review focuses on the in vitro effects of stilbenes in different human cancer cell lines concerning the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
| | - Zbigniew Kmiec
- Department of Anatomy and Histology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | | |
Collapse
|
36
|
Zeng S, Huang X, Qu S, Hu Q. Role and therapeutic considerations of SIRT1 in epilepsy. Neuroscience 2025; 568:109-115. [PMID: 39824342 DOI: 10.1016/j.neuroscience.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Epilepsy is a primary study focus for scientists worldwide due to its prevalence and poor prognosis. Silent information regulator 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, is becoming increasingly recognized for its critical role in the pathophysiology and progression of epilepsy. The treatment of epilepsy remains challenging despite the discovery of numerous factors that contribute to the development of several beneficial medications. In recent years, many microRNAs have been linked to the progression of epilepsy because they target SIRT1 mRNA. SIRT1, which protects from epilepsy, has been reported to be upregulated by several natural compounds and their derivatives. This review will summarize the latest findings about SIRT1's role in epilepsy. Results from the literature indicate that SIRT1 is a promising target for epilepsy therapy.
Collapse
Affiliation(s)
- Shasha Zeng
- The Second Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan 4210001, China
| | - Xiangyi Huang
- The Second Affiliated Hospital, Department of Function Examination, Hengyang Medical School, University of South China, Hengyang, Hunan 4210001, China
| | - Shunlin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Qingpeng Hu
- The Second Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan 4210001, China.
| |
Collapse
|
37
|
Zhang SY, Yang N, Hao PH, Wen R, Zhang TN. Targeting sirtuins in neurological disorders: A comprehensive review. Int J Biol Macromol 2025; 292:139258. [PMID: 39736297 DOI: 10.1016/j.ijbiomac.2024.139258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function. This review summarizes the latest research advancements in the role of the SIRT family in neurological diseases, mainly including neurodegenerative diseases, ischemia-related diseases, bleeding-related diseases, nervous system injury and other nervous system diseases, emphasizing their critical functions and associated signaling pathways, (e.g., AMPK/SIRT1/PGC-1α, AMPK/SIRT1/IL-1β/NF-κB, STAT2-SIRT4-mTOR, SIRT3/FOXO3α, and other signaling pathways in disease progression, particularly their protective roles in neurodegenerative diseases, ischemic injuries, and neural damage. Additionally, this review discusses progress in clinical studies targeting SIRT-specific small-molecule agonists and inhibitors. Further research on SIRTs may provide new insights into potential therapeutic strategies for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
38
|
Kablan T, Biyikli E, Bozdemir N, Uysal F. A narrative review of the histone acetylation and deacetylation during mammalian spermatogenesis. Biochimie 2025; 230:147-155. [PMID: 39566815 DOI: 10.1016/j.biochi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Dynamic epigenetic control is essential for proper spermatogenesis. Spermatogenesis is a unique mechanism that includes recombination, meiosis, and the conversion of histones to protamines. Epigenetics refers to the ability to modify gene expression without affecting DNA strands directly and helps to regulate the dynamic gene expression throughout the differentiation process of spermatogonium stem cells. Histone alterations and DNA methylation control the epigenome. While histone modifications can result in either expression or repression depending on the type of modification, the type of histone protein, and its specific residue, histone acetylation is one of the changes that typically results in gene expression. Histone acetyltransferases (HATs) add an acetyl group to the amino-terminal of the core histone proteins, causing histone acetylation. On the other hand, histone deacetylases (HDACs) catalyze histone deacetylation, which is linked to the suppression of gene expression. This review highlights the significance of HATs and HDACs during mammalian spermatogenesis and focuses on what is known about changes in their expression.
Collapse
Affiliation(s)
- Tuba Kablan
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Efe Biyikli
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Nazlican Bozdemir
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Fatma Uysal
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| |
Collapse
|
39
|
Caniçais C, Sobral D, Vasconcelos S, Cunha M, Pinto A, Mesquita Guimarães J, Santos F, Barros A, Dória S, Marques CJ. Transcriptomic analysis and epigenetic regulators in human oocytes at different stages of oocyte meiotic maturation. Dev Biol 2025; 519:55-64. [PMID: 39681207 DOI: 10.1016/j.ydbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Human oocytes are highly specialized cells with the capacity to store and regulate mRNAs during oocyte maturation, in preparation for post-fertilization steps. Here we performed single-oocyte transcriptomic analysis of human oocytes in three meitoic maturation stages - Germinal Vesicle (GV; n = 6), Metaphase I (MI; n = 6) and Metaphase II (MII; n = 7). Single-oocyte transcriptomic analysis revealed that the total number of expressed genes progressively decreased from GV to MII stages, with 9660 genes being transcribed in GV, 8734 in MI and 5889 in MII. The same tendency was observed for the number of uniquely expressed genes, with 1328 uniquely expressed genes in GV, 401 in MI and 72 in MII. GO analysis of the uniquely expressed genes showed distinct terms in GV oocytes such as transferase activity, organonitrogen compound metabolic process and ncRNA processing. Analysis of Differentially Expressed Genes (DEGs) between the three maturation stages revealed 1165 DEGs between GV and MII oocytes, with 635 being upregulated and 528 downregulated, 42 DEGs between GV and MI, with 38 being upregulated and 4 downregulated, and no significant changes in gene expression between MI and MII oocytes. Comprehensive analysis of epigenetic regulators showed high expression of several histone-modifying enzymes, namely deacetylases, acetylases, lysine demethylases and methyltransferases, and DNA methylation regulators, namely the maintenance methyltransferase DNMT1 and its co-regulators DPPA3 and UHRF1. Some of these epigenetic regulators were differentially expressed between maturation stages, namely SIRT3, SIRT6, KDM3AP1, KMT2E, DNMT1, DPPA3 and the MEST and RASGRF1 imprinted genes. Our study contributes with important information on the transcriptional landscape of human oocytes in different stages of meiotic maturation, providing important insights into candidate biomarkers of human oocyte quality.
Collapse
Affiliation(s)
- Carla Caniçais
- Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; ICBAS- School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Daniel Sobral
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), 1649-016, Lisbon, Portugal
| | - Sara Vasconcelos
- Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics A Barros (CGRAB), 4100-009, Porto, Portugal
| | - Alice Pinto
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Fátima Santos
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Alberto Barros
- Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; Centre for Reproductive Genetics A Barros (CGRAB), 4100-009, Porto, Portugal; PROCRIAR Fertility Clinic, 4100-130, Porto, Portugal
| | - Sofia Dória
- Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; ICBAS- School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - C Joana Marques
- Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; CINTESIS@RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
40
|
Zheng S, Yang L, Dai Q, Li X, Masuoka T, Lv J. Role of sirtuin 1 in depression‑induced coronary heart disease: Molecular pathways and therapeutic potential (Review). Biomed Rep 2025; 22:46. [PMID: 39882335 PMCID: PMC11775641 DOI: 10.3892/br.2025.1924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Depression and coronary heart disease (CHD) are two interconnected diseases that profoundly impact global health. Depression is both a complex psychiatric disorder and an established risk factor for CHD. Sirtuin 1 (SIRT1) is an enzyme that requires the cofactor nicotinamide adenine dinucleotide (NAD+) to perform its deacetylation function, and its involvement is crucial in reducing cardiovascular risks that are associated with depression. SIRT1 exerts its cardioprotective effects via modulating oxidative stress, inflammation and metabolic processes, all of which are central to the pathogenesis of CHD in individuals with depression. Through influencing these pathways, SIRT1 helps to reduce endothelial dysfunction, prevent the formation of atherosclerotic plaques and stabilize existing plaques, thereby decreasing the overall risk of CHD. The present review underscores the important role of SIRT1 in serving as a therapeutic intervention molecule for tackling cardiovascular complications stemming from depression. Furthermore, it highlights the need for further studies to clarify how SIRT1 influences both depression and CHD at the molecular level. The ultimate goal of this research will be to translate these findings into practical clinical intervention strategies.
Collapse
Affiliation(s)
- Shijie Zheng
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Linlin Yang
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Qiuting Dai
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Xiangyan Li
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Jianfeng Lv
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| |
Collapse
|
41
|
Yu H, Li X, Ning B, Feng L, Ren Y, Li S, Kang Y, Ma J, Zhao M. SIRT1: a potential therapeutic target for coronary heart disease combined with anxiety or depression. J Drug Target 2025; 33:328-340. [PMID: 39470049 DOI: 10.1080/1061186x.2024.2422882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Coronary heart disease (CHD) combined with anxiety or depression is increasingly receiving attention in the clinical field of cardiology, and exploring the comorbidity pathological mechanisms of cardiovascular disease combined with psychological disorders is a hot research topic for scholars in this field. Current research suggests that Silent Information Regulatory Factor 1 (SIRT1) may serve as a potential biomarker for the comorbidity mechanism and treatment of CHD with anxiety or depression. SIRT1 is considered a promising therapeutic target for CHD combined with anxiety or depression, with the ability to regulate inflammatory cytokine levels, alleviate oxidative stress damage, activate multiple signalling pathways, reduce platelet hyperresponsiveness, and exert neuroprotective and cardioprotective effects. In this comprehensive review, we deeply studied the structure, function, and mechanism of SIRT1, and discussed its protective effects in the cardiovascular and nervous system. The latest progress in the mechanism of SIRT1's role in CHD combined with anxiety or depression was emphasised, including its specific mechanisms in regulating inflammatory response, alleviating oxidative stress, and mediating various signalling pathways. In addition, this article also summarises the therapeutic potential of SIRT1 as a potential biomarker in patients with CHD combined with anxiety or depression.
Collapse
Affiliation(s)
- Hubin Yu
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinping Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lanshuan Feng
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yaolong Ren
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shilin Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yalong Kang
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Mingjun Zhao
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
42
|
Huang S, Li J, Ye H, Huang Z, Wu J, Liu L, Ma S, Luo H, Wei T, Liu K, Deng J, Liu D, Tan C. Increased proline intake during gestation alleviates obesity-related impaired fetal development and placental function in gilts. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:355-365. [PMID: 40034458 PMCID: PMC11872664 DOI: 10.1016/j.aninu.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 03/05/2025]
Abstract
Maternal proline (Pro) supplementation enhances fetal survival and placental development in mice. However, the effect of Pro on fetal and placental development in gilts remains to be investigated, particularly in the context of obesity-induced impaired pregnancy. Here, we investigated the effect of dietary Pro on fetal and placental development in obese gilts. Exp.1: On day 60 of gestation, 48 gilts with similar delivery times were selected and followed up until delivery to determine the relationship between maternal obesity, litter performance, and Pro abundance in term placentae. The results showed that impaired reproductive performance was associated with body condition parameters and inadequate placental Pro availability of gilts. Exp. 2: A total of 114 gilts were then used in a 2 × 3 factorial design to investigate the interaction between body condition (factor I: normal or obese gilts) and dietary Pro levels (factor II: low [0.89%, L-Pro], medium [1.39%, M-Pro], and high [1.89%, H-Pro]) on farrowing performance and placental angiogenesis. This resulted in six treatment combinations: normal-L-Pro, obese-L-Pro, normal-M-Pro, obese-M-Pro, normal-H-Pro, and obese-H-Pro. The effective number of replicates per group was 17, 21, 19, 21, 18, and 18, respectively (1 gilt per replicate). The results showed that increasing Pro intake increased piglet birth weight (P = 0.001), litter weight (P < 0.001), placental efficiency (P = 0.036) and placental vascular density (P < 0.001), and decreased the number of mummified fetuses (P = 0.001), the rate of low-birth-weight piglets (P = 0.005), and the rate of invalid piglets (P = 0.029). Interaction effects were observed between body condition and dietary Pro levels on piglet birth weight (P = 0.046), within-litter birth weight variation (P = 0.012), and placental vascular density (P = 0.007). Moreover, the beneficial effect of Pro on farrowing performance may be related to the improvement of sirtuin 1-superoxide dismutase 2-mitochondrial reactive oxygen species axis homeostasis and angiogenesis in the placenta. Our results suggest that gestation diets need to provide adequate Pro to meet the needs of fetal and placental development, particularly in obese gilts.
Collapse
Affiliation(s)
- Shuangbo Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinfeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongxuan Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liudan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu 610225, China
| | - Tanghong Wei
- Dekon Food and Agriculture Group, Chengdu 610225, China
| | - Kai Liu
- Guangdong Foodstuffs IMP&EXP (Group) Corp, Guangzhou 510642, China
| | - Jinping Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dingfa Liu
- Guangdong Foodstuffs IMP&EXP (Group) Corp, Guangzhou 510642, China
| | - Chengquan Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
43
|
Ilari S, Nucera S, Passacatini LC, Caminiti R, Mazza V, Macrì R, Serra M, Scarano F, Malafoglia V, Palma E, Oppedisano F, Maiuolo J, Tomino C, Mollace V, Muscoli C. SIRT1: A likely key for future therapeutic strategies for pain management. Pharmacol Res 2025; 213:107670. [PMID: 39983332 DOI: 10.1016/j.phrs.2025.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Sirtuin 1 (SIRT1), a NAD+ -dependent histone deacetylase, plays a crucial role in mitigating oxidative stress, regulating inflammation, and maintaining mitochondrial function. Reduced SIRT1 activity has been linked to elevated pro-inflammatory cytokines, mitochondrial dysfunction, and chronic pain, all of which are observed in long COVID pathology. Emerging evidence identifies mitochondrial dysfunction and oxidative stress as central contributors to these symptoms. Increases reactive oxygen species (ROS) such as superoxide, nitric oxide, and peroxynitrite, leading to oxidative damage, chronic inflammation, and central/peripheral sensitization. Nutraceuticals, particularly the polyphenolic fraction of bergamot (BPF), have demonstrated potent antioxidant, anti-inflammatory, and antiviral properties. This study highlights BPF's ability to modulate SIRT1 activity in a rat model of inflammation and hyperalgesia. It provides novel evidence of SIRT1 nitration within the nucleus as a key event in inflammatory pain pathogenesis. BPF administration preserved SIRT1 activity, reduced oxidative stress markers such as malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG), and minimized post-translational modifications of nuclear proteins, including nitration, acetylation, and carbonylation. Additionally, it alleviated hyperalgesia and allodynia. These findings underscore the therapeutic potential of polyphenols like BPF in reducing oxidative stress and inflammation-driven pain. By activating SIRT1, BPF may provide relief for pain conditions. Further research on SIRT1-targeted therapies is essential to combat inflammation and oxidative stress, preventing chronic conditions and enhancing treatment options.
Collapse
Affiliation(s)
- Sara Ilari
- IRCCS San Raffaele Roma, Rome 00166, Italy; Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, Rome 00166, Italy.
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | | | - Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Valeria Mazza
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | | | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy.
| |
Collapse
|
44
|
Tsukihara S, Akiyama Y, Shimada S, Hatano M, Igarashi Y, Taniai T, Tanji Y, Kodera K, Yasukawa K, Umeura K, Kamachi A, Nara A, Okuno K, Tokunaga M, Katoh H, Ishikawa S, Ikegami T, Kinugasa Y, Eto K, Tanaka S. Delactylase effects of SIRT1 on a positive feedback loop involving the H19-glycolysis-histone lactylation in gastric cancer. Oncogene 2025; 44:724-738. [PMID: 39658647 DOI: 10.1038/s41388-024-03243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Histone lactylation, a novel epigenetic modification, is regulated by the lactate produced by glycolysis. Glycolysis is activated in various cancers, including gastric cancer (GC). However, the molecular mechanism and clinical impact of histone lactylation in GC remain poorly understood. Here, we demonstrate that histone H3K18 lactylation (H3K18la) is elevated in GC, correlating with a worse prognosis. SIRT1 overexpression decreases H3K18la levels, whereas SIRT1 knockdown increases H3K18la levels in GC cells. RNA-seq analysis demonstrates that lncRNA H19 is markedly downregulated in GC cells with SIRT1 overexpression and those grown under glucose free condition, which confirmed decreased H3K18la levels at its promoter region. H19 knockdown decreased the expression levels of LDHA and H3K18la, and LDHA knockdown impaired H19 and H3K18la expression, suggesting an H19/glycolysis/H3K18la-positive feedback loop. Combined treatment with low doses of the SIRT1-specific activator SRT2104 and the LDHA inhibitor oxamate exerted significant antitumor effects on GC cells, with limited adverse effects on normal gastric cells. The SIRT1-weak/H3K18la-strong signature was found to be an independent prognostic factor in patients with GC. Therefore, SIRT1 acts as a histone delactylase for H3K18, and loss of SIRT1 triggers a positive feedback loop involving H19/glycolysis/H3K18la. Targeting this pathway serves as a novel therapeutic strategy for GC treatment.
Collapse
Grants
- JP19cm0106540, JP24fk0210136, JP24fk0210102, JP24fk0210106, 24fk0210149 Japan Agency for Medical Research and Development (AMED)
- A, JP19H01055; B, JP23H02979, JP23K27670; Exploratory, JP20K21627, and JP22K19554 MEXT | Japan Society for the Promotion of Science (JSPS)
- B, JP24K02320 MEXT | Japan Society for the Promotion of Science (JSPS)
Collapse
Affiliation(s)
- Shu Tsukihara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Megumi Hatano
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Igarashi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshiaki Tanji
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Keita Kodera
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Koya Yasukawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Umeura
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Kamachi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Nara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Okuno
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
45
|
Ayeldeen G, Badr BM, Shaker OG, Diab K, Ahmed TI, Hassan EA, Nagaty RA, Galal S, Hasona NA. Integrated analysis of non‑coding RNAs (HOTAIR and miR‑130a) and their cross‑talk with TGF‑β1, SIRT1 and E‑cadherin as potential biomarkers in colorectal cancer. Oncol Lett 2025; 29:116. [PMID: 39807105 PMCID: PMC11726295 DOI: 10.3892/ol.2025.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
Molecular changes have a substantial impact on the onset of colorectal cancer (CRC). Complexes of HOTAIR and miRNAs disrupt several cellular functions during carcinogenesis, primarily by disrupting several carcinogenic signaling pathways. In the present study, the relationships between the serum levels of transforming growth factor-β1 (TGF-β1), sirtuin-1 (SIRT1) and E-cadherin and those of HOX transcript antisense intergenic RNA (HOTAIR) and microRNA-130a (miR-130a) in individuals with CRC were analyzed, including their correlations and diagnostic potential. Patients with colon cancer and healthy volunteers were enrolled in the study. Blood samples were collected from 70 patients with CRC and 30 age-matched healthy control volunteers and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine the serum levels of HOTAIR and miR-130a. In addition, the levels of TGF-β1, SIRT1 and E-cadherin were determined utilizing enzyme-linked immunosorbent assays. Patients with CRC were found to have significantly higher TGF-β1, SIRT1, HOTAIR and miR-130a serum levels than those of healthy participants. In addition, patients with high-grade CRC had significantly higher levels of TGF-β1, SIRT1, HOTAIR and miR-130a compared with those of patients with low-grade CRC. A significant reduction in the serum levels of E-cadherin was observed in participants with CRC compared with healthy participants, but no significant difference was detected according to the grade of CRC. Positive correlations were found between HOTAIR and miR-130a, as well as TGF-β1 and SIRT1. By contrast, negative correlations were noted between E-cadherin and HOTAIR, miR-130a, TGF-β1 and SIRT1. Therefore, it may be concluded that the miR-130a/HOTAIR and TGF-β1/SIRT1/E-cadherin axes may serve as novel biomarkers for the early diagnosis of CRC.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Bahaa Mohammed Badr
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University (Assiut branch), Assiut 71524, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Khaled Diab
- Department of General Surgery, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt
| | - Tarek I. Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt
| | - Essam A. Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt
| | - Raghda A. Nagaty
- Clinical and Chemical Pathology Research Institute of Ophthalmology, Ministry of Higher Education and Scientific Research, Cairo 11694, Egypt
| | - Shaymaa Galal
- Department of Biochemistry, Modern University for Technology and Information, Cairo 11792, Egypt
| | - Nabil A. Hasona
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
46
|
Kausar R, Nguyen NTT, Le TPH, Kim JH, Lee SY. Inhibition of HDAC6 elicits anticancer effects on head and neck cancer cells through Sp1/SOD3/MKP1 signaling axis to downregulate ERK phosphorylation. Cell Signal 2025; 127:111587. [PMID: 39755348 DOI: 10.1016/j.cellsig.2024.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression. In this study, we examined the potential effects of HDAC6 inhibition on SOD3 expression in head and neck cancer (HNC) cells and its impact on cell proliferation, which remains unaddressed. We found that functional inactivation of HDAC6, through the use of chemical inhibitors such as tubastatin A (TubA), gene knockdown, or overexpression of an inactive mutant, strongly upregulated protein and mRNA levels of SOD3 in HNC cell lines FaDu and Detroit562. Mechanistically, TubA induced acetylation of the transcription factor Sp1 at Lys703, which consequently enhanced its binding to the SOD3 proximal promoter region and increased SOD3 expression. An acetylation-defective Sp1 mutant (K703R) was much less effective in inducing SOD3 expression compared to wild-type Sp1. TubA reduced intracellular ROS and superoxide levels, and this antioxidative effect was attenuated in SOD3 knockdown cells. Similar to the changes in ROS levels, HDAC6 inhibition as well as SOD3 overexpression suppressed cell proliferation and the stimulatory phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), whereas SOD3 knockdown produced opposite effects in both resting and TubA-treated conditions. In addition, SOD3 overexpression prevented ROS-induced ERK1/2 phosphorylation and enhanced the protein stability of mitogen-activated protein kinase phosphatase 1 (MKP1), thereby counteracting ERK1/2 phosphorylation. We further showed that SOD3-mediated ERK1/2 dephosphorylation was moderated in MKP1 knockdown cells. Collectively, these results suggest that HDAC6 inhibition elicits anticancer effects on HNC cells by promoting Sp1 acetylation-dependent SOD3 upregulation, leading to MKP1 stabilization and subsequent ERK1/2 inactivation.
Collapse
Affiliation(s)
- Rukhsana Kausar
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Nga Thi Thanh Nguyen
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea
| | - Jae Hyung Kim
- Department of Anesthesiology and Pain Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi 18450, Republic of Korea
| | - Sang Yoon Lee
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea.
| |
Collapse
|
47
|
Zou Y, Zhao J, Li C, Wang R, Jiang X, Zhu Z, Wang Q, Xiao M. Total Astragalus saponins promote ferroptosis in gastric cancer cells by upregulating SIRT3. Transl Cancer Res 2025; 14:1311-1322. [PMID: 40104701 PMCID: PMC11912042 DOI: 10.21037/tcr-24-1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025]
Abstract
Background Gastric cancer (GC) is a malignant tumor of the digestive tract originating from the epithelial cells of the gastric mucosa, which is highly invasive and heterogeneous, posing a serious threat to human health. In recent years, ferroptosis, as a novel mode of programmed cell death, has shown potential anticancer effects in tumor therapy. Total Astragalus saponins (TAS), a natural product derived from Astragalus membranaceus, have been shown to possess various pharmacological activities, including anticancer effects. This study aimed to investigate the effects of TAS on GC cells, focusing on the mechanism of action of its regulation of the silent information regulator 3 (SIRT3) in inducing ferroptosis in GC cells. Methods We treated SGC-7901 cells with TAS at concentrations of 50, 100, and 200 µg/mL. After TAS treatment, the SGC-7901 cells were transfected with a vector designed to knock down SIRT3 expression. We assessed cell proliferation, viability, and apoptosis using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay), colony formation assay, and flow cytometry. SIRT3 expression was measured by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fe2+, malondialdehyde (MDA), lactate dehydrogenase (LDH), and superoxide dismutase assay kits were used to detect the level of reactive oxygen species (ROS) by fluorescent probe assay. Western blot was used to detect apoptosis-related proteins and SIRT3 protein expression. Results TAS dose-dependently inhibited SGC-7901 cell proliferation and viability (P<0.05) and induced apoptosis (P<0.05). TAS promoted the expression of SIRT3 and ACSL4 proteins (P<0.05), inhibited the expression of SLC7A11 and GPX4 proteins (P<0.05), and induced ferroptosis of SGC-7901 cells (P<0.05). Knockdown of the SIRT3 gene attenuated the effect of TAS treatment on ferroptosis (P<0.05). Conclusions TAS has therapeutic potential for GC and can effectively inhibit the proliferation and viability of SGC-7901 cells, and the mechanism may be that TAS upregulates SIRT3 to promote the ferroptosis of SGC-7901 cells.
Collapse
Affiliation(s)
- Yue Zou
- Department of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingling Zhao
- Department of Gynecology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Chengyin Li
- Hubei Shizhen Laboratory, Wuhan, China
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Wang
- Hubei Shizhen Laboratory, Wuhan, China
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaocui Jiang
- Hubei Shizhen Laboratory, Wuhan, China
- Experimental Centre of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongyi Zhu
- Experimental Centre of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiyuan Wang
- Hubei Shizhen Laboratory, Wuhan, China
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Min Xiao
- Hubei Shizhen Laboratory, Wuhan, China
- Experimental Centre of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
48
|
Ruggiero M, Motti ML, Meccariello R, Mazzeo F. Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing? Nutrients 2025; 17:837. [PMID: 40077707 PMCID: PMC11902109 DOI: 10.3390/nu17050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Physical exercise is an essential component of human health. In recent years, scientific research has focused on identifying natural compounds and formulating new supplements aimed at enhancing athletic performance, accelerating muscle recovery, and minimizing the damage caused by physical exertion. The use of antioxidants to counteract the formation of reactive oxygen species (ROS) following physical activity (PA) is already a widely adopted practice. Resveratrol (RES), a polyphenol belonging to the stilbene class, is well known for its potent antioxidant activity and anti-inflammatory effects primarily attributed to the activation of sirtuins. RES possesses multiple nutraceutical properties used for the prevention and treatment of inflammatory, cardiovascular, neoplastic, and infectious diseases, thus attracting attention to study its use in combination with physical exercise to promote well-being. Animal trials combining RES and PA have mainly reported improvements in muscle, energy, and cardiovascular functions. The data presented and discussed in this narrative review are from Pubmed, Scopus, and the Human Gene Database (search limited to 2011 to 2025 with the keywords RES, sirtuins, and physical activity altogether or in combination with each other). This review gathers several studies on RES focusing on its nutraceutical properties, epigenetic activities via sirtuins, and the potential benefits of combining RES with PA in maintaining health and well-being based on trials performed first in animals and later in humans. Human studies have been conducted on various populations, including active adults, sedentary individuals, patients with diseases, and elderly individuals. Some studies have confirmed the benefits of RES observed in animal experiments. However, in some cases, no substantial differences were found between RES supplementation and the control group. In conclusion, the benefits of RES on PA reported in the literature are still not fully evident, given the contrasting studies and the still limited number of trials, but both RES and PA are successful tools for the maintenance of health and wellbeing.
Collapse
Affiliation(s)
- Mario Ruggiero
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Maria Letizia Motti
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| |
Collapse
|
49
|
Anastasopoulos NA, Barbouti A, Goussia AC, Christodoulou DK, Glantzounis GK. Exploring the Role of Metabolic Hyperferritinaemia (MHF) in Steatotic Liver Disease (SLD) and Hepatocellular Carcinoma (HCC). Cancers (Basel) 2025; 17:842. [PMID: 40075688 PMCID: PMC11899477 DOI: 10.3390/cancers17050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing prevalence of the spectrum of Steatotic Liver Disease (SLD), including Metabolic-Associated Steatotic Liver Disease (MASLD), Metabolic-Associated Steatohepatitis (MASH), and progression to Cirrhosis and Hepatocellular Carcinoma (HCC) has led to intense research in disease pathophysiology, with many studies focusing on the role of iron. Iron overload, which is often observed in patients with SLD as a part of metabolic hyperferritinaemia (MHF), particularly in the reticuloendothelial system (RES), can exacerbate steatosis. This imbalance in iron distribution, coupled with a high-fat diet, can further promote the progression of SLD by means of oxidative stress triggering inflammation and activating hepatic stellate cells (HSCs), therefore leading to fibrosis and progression of simple steatosis to the more severe MASH. The influence of iron overload in disease progression has also been shown by the complex role of ferroptosis, a type of cell death driven by iron-dependent lipid peroxidation. Ferroptosis depletes the liver's antioxidant capacity, further contributing to the development of MASH, while its role in MASH-related HCC is potentially linked to alternations in the tumour microenvironment, as well as ferroptosis resistance. The iron-rich steatotic hepatic environment becomes prone to hepatocarcinogenesis by activation of several pro-carcinogenic mechanisms including epithelial-to-mesenchymal transition and deactivation of DNA damage repair. Biochemical markers of iron overload and deranged metabolism have been linked to all stages of SLD and its associated HCC in multiple patient cohorts of diverse genetic backgrounds, enhancing our daily clinical understanding of this interaction. Further understanding could lead to enhanced therapies for SLD management and prevention.
Collapse
Affiliation(s)
- Nikolaos-Andreas Anastasopoulos
- HPB Unit, Department of Surgery, University Hospital of Ioannina, 45110 Ioannina, Greece
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna C. Goussia
- Department of Pathology, University Hospital of Ioannina, 45110 Ioannina, Greece
| | | | | |
Collapse
|
50
|
Gupta S, Afzal M, Agrawal N, Almalki WH, Rana M, Gangola S, Chinni SV, Kumar K B, Ali H, Singh SK, Jha SK, Gupta G. Harnessing the FOXO-SIRT1 axis: insights into cellular stress, metabolism, and aging. Biogerontology 2025; 26:65. [PMID: 40011269 DOI: 10.1007/s10522-025-10207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Aging and metabolic disorders share intricate molecular pathways, with the Forkhead box O (FOXO)- Sirtuin 1 (SIRT1) axis emerging as a pivotal regulator of cellular stress adaptation, metabolic homeostasis, and longevity. This axis integrates nutrient signaling with oxidative stress defence, modulating glucose and lipid metabolism, mitochondrial function, and autophagy to maintain cellular stability. FOXO transcription factors, regulated by SIRT1 deacetylation, enhance antioxidant defence mechanisms, activating genes such as superoxide dismutase (SOD) and catalase, thereby counteracting oxidative stress and metabolic dysregulation. Recent evidence highlights the dynamic role of reactive oxygen species (ROS) as secondary messengers in redox signaling, influencing FOXO-SIRT1 activity in metabolic adaptation. Additionally, key redox-sensitive regulators such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) interact with this pathway, orchestrating mitochondrial biogenesis and adaptive stress responses. Pharmacological interventions, including alpha-lipoic acid (ALA), resveratrol, curcumin and NAD+ precursors, exhibit therapeutic potential by enhancing insulin sensitivity, reducing oxidative burden, and restoring metabolic balance. This review synthesizes current advancements in FOXO-SIRT1 regulation, its emerging role in redox homeostasis, and its therapeutic relevance, offering insights into future strategies for combating metabolic dysfunction and aging-related diseases.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Khandwa Road, Village Umrikheda, Near Tollbooth, Indore, Madhya Pradesh, 452020, India
| | - Muhammad Afzal
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gangola
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, 248002, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia
| | - Benod Kumar K
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, New Delhi, India
- Centre for Himalayan Studies, University of Delhi, Delhi, 110007, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|