1
|
Li S, Liu T, Li C, Zhang Z, Zhang J, Sun D. Overcoming immunotherapy resistance in colorectal cancer through nano-selenium probiotic complexes and IL-32 modulation. Biomaterials 2025; 320:123233. [PMID: 40081224 DOI: 10.1016/j.biomaterials.2025.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) is a major global health burden, with immunotherapy often limited by immune tolerance and resistance. This study introduces an innovative approach using Selenium Nanoparticles-Loaded Extracellular Vesicles combined with Interleukin-32 and Engineered Probiotic Escherichia coli Nissle 1917 (SeNVs@NE-IL32-EcN) to enhance CD8+ T cell-mediated immune responses and overcome immunotherapy resistance. METHODS Single-cell RNA sequencing (scRNA-seq) and transcriptomic analyses were performed to identify key immune cells and regulators involved in CRC immunotherapy resistance, focusing on CD8+ T cells and the regulatory factor IL32. A humanized xenograft mouse model was used to evaluate the impact of IL32 and SeNVs@NE-IL32-EcN on tumor growth and immune responses. The SeNVs@NE-IL32-EcN complex was synthesized through a reverse micelle method and functionalized using extracellular vesicles. Its morphology, size, antioxidant activity, and safety were characterized using electron microscopy, dynamic light scattering (DLS), and in vitro co-culture assays. RESULTS Single-cell analyses revealed a significant reduction in CD8+ T cell infiltration in immunotherapy-resistant CRC patients. IL32 was identified as a key regulator enhancing CD8+ T cell cytotoxic activity through granzyme B and IFN-γ secretion. Treatment with SeNVs@NE-IL32-EcN significantly improved the proliferation and activity of CD8+ T cells and reduced tumor progression in humanized mouse models. In vitro and in vivo results demonstrated the complex's biocompatibility, antioxidant properties, and ability to enhance CRC immunotherapy while mitigating immune tolerance. CONCLUSION SeNVs@NE-IL32-EcN offers a novel nano-biomaterial strategy that integrates nanotechnology and probiotic therapy to enhance CD8+ T cell-mediated immunity and overcome CRC immunotherapy resistance. This study lays the foundation for future therapeutic applications in cancer treatment by advancing immune-modulating biomaterials.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Tao Liu
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Chenyao Li
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhiyuan Zhang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Jiantao Zhang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Di Sun
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Cohen-Zinder M, Shor-Shimoni E, Glasser T, Leibovich H, David T, Argov-Argaman N, Shabtay A. Dietary Moringa oleifera improves goat milk quality: Benefits for human nutrition and the dairy industry. Food Chem 2025; 479:143786. [PMID: 40088657 DOI: 10.1016/j.foodchem.2025.143786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
This study evaluated the effects of Moringa oleifera silage on milk quality in lactating goats, aiming to produce a nutritionally enriched product with health-promoting compounds. In line with this goal, milk from Moringa-fed goats exhibited higher fat, protein, and lactose contents, along with a significant reduction in somatic cell count, compared to those fed clover hay. Enhanced antioxidant status was indicated by increased α-tocopherol (P < 0.05) and lower malondialdehyde levels (P < 0.05). Additionally, Moringa-fed goats showed a substantial increase in both the yield (P < 0.01) and concentration (P < 0.001) of phospholipids, along with significant changes in their composition. This was accompanied by higher levels of omega-3 fatty acids and a lower n-6/n-3 ratio in their milk (P < 0.01). The study highlights the beneficial potential of dietary supplementation of Moringa silage in enriching the nutritional value of goat milk by inducing the accumulation of nutraceutical attributes.
Collapse
Affiliation(s)
- Miri Cohen-Zinder
- Sustainable Ruminant Production Lab, Newe Ya'ar Research Center, Ramat Yishay 30095, Agricultural Research Organization, Israel; Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Ramat Yishay 30095, Agricultural Research Organization, Israel.
| | - Einav Shor-Shimoni
- Sustainable Ruminant Production Lab, Newe Ya'ar Research Center, Ramat Yishay 30095, Agricultural Research Organization, Israel; Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Ramat Yishay 30095, Agricultural Research Organization, Israel
| | - Tzach Glasser
- The Ramat Hanadiv Nature Park, Zikhron Yaakov, Israel
| | - Haim Leibovich
- Research and Development Haemek, P.O. Box 73, Migdal Haemek 2310001, Israel
| | - Tanya David
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Ariel Shabtay
- Sustainable Ruminant Production Lab, Newe Ya'ar Research Center, Ramat Yishay 30095, Agricultural Research Organization, Israel; Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Ramat Yishay 30095, Agricultural Research Organization, Israel
| |
Collapse
|
3
|
Xie Y, Guo J, Hu J, Li Y, Zhang Z, Zhu Y, Deng F, Qi J, Zhou Y, Chen W. A factorial design-optimized microfluidic LNP vaccine elicits potent magnesium-adjuvating cancer immunotherapy. Mater Today Bio 2025; 32:101703. [PMID: 40230646 PMCID: PMC11994397 DOI: 10.1016/j.mtbio.2025.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
Human papillomavirus (HPV)-associated cancers remain a critical health challenge, prompting the development of effective therapeutic vaccines. This study presents a lipid nanoparticle (LNP)-based vaccine co-loading E7 antigen peptide and magnesium ions as the adjuvant. Microfluidic technology was employed to optimize LNP preparation and formulation, ensuring efficient co-delivery of antigen and adjuvant. Magnesium ions were chosen over conventional aluminum-based adjuvants, which often suffer from limited efficacy and adverse effects, particularly for cancer immunotherapy. Compared to aluminum, magnesium ions exhibited superior capabilities in enhancing T-cell activation and promoting cellular immune response. Mechanistic insights suggest that magnesium ions facilitate dendritic cell maturation and antigen presentation via a collagen-CD36 axis, contributing to the adjuvant activity of magnesium. Through design of experiments (DoE) optimization, the LNP formulation was tailored for enhanced encapsulation and stability, positioning it as a targeted system for immune activation. These findings support the promise of magnesium ions as effective and safer adjuvants in LNP-based vaccines, marking a potential advancement for therapeutic cancer vaccination.
Collapse
Affiliation(s)
- Yongyi Xie
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiaxin Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jialin Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuan Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zhongqian Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongcheng Zhu
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fei Deng
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW, 2052, Australia
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, PR China
| | - You Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenjie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| |
Collapse
|
4
|
Kumar RR, Agarwal N, Shree A, Gorain JK, Rahul E, Ganguly S, Bakhshi S, Sharma U. Decoding the immune landscape in Ewing sarcoma pathogenesis: The role of tumor infiltrating immune cells and immune milieu. J Bone Oncol 2025; 52:100678. [PMID: 40242222 PMCID: PMC12002756 DOI: 10.1016/j.jbo.2025.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Ewing sarcoma (EwS) is the second most prevalent pediatric bone malignancy, characterized by its aggressive behavior and unfavorable prognosis. The tumor microenvironment (TME) of EwS is shaped by immunosuppressive components, including myeloid-derived suppressor cells, tumor-associated macrophages, and immune checkpoint molecules such as PD-1/PD-L1 and HLA-G. These elements impair anti-tumor immune responses by modulating the function of tumor-infiltrating immune cells, such as regulatory T cells (Tregs), CD8+ T cells, and natural killer cells. Chemokines, including CXCL9 and CXCL12, and cytokines, such as transforming growth factor-beta and interleukin-10, further contribute to immune suppression and promote metastatic dissemination. Recent advances in immunotherapy have highlighted the therapeutic potential of modulating immune cells and signaling pathways to enhance anti-tumor immunity. This review provides a comprehensive analysis of the complex immune landscape within the EwS TME, focusing on the mechanistic roles of key immune components and their potential as therapeutic targets. Understanding these interactions could pave the way for innovative treatment strategies to improve clinical outcomes in patients with EwS.
Collapse
Affiliation(s)
- Rajiv Ranjan Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Nikita Agarwal
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Akshi Shree
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
- Department of Biomedical Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi 110096, India
| | - Jaya Kanta Gorain
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ekta Rahul
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Uttam Sharma
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Wei L, Zhu W, Dong C, Kim JK, Ma Y, Denning TL, Kang SM, Wang BZ. Lipid nanoparticles encapsulating both adjuvant and antigen mRNA improve influenza immune cross-protection in mice. Biomaterials 2025; 317:123039. [PMID: 39724768 DOI: 10.1016/j.biomaterials.2024.123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The rapid approval of SARS-CoV-2 mRNA lipid nanoparticle (LNP) vaccines indicates the versatility of mRNA LNPs in an urgent vaccine need. However, the mRNA vaccines do not induce mucosal cellular responses or broad protection against recent variants. To improve cross-protection of mRNA vaccines, here we engineered a pioneered mRNA LNP encapsulating with mRNA constructs encoding cytokine adjuvant and influenza A hemagglutinin (HA) antigen for intradermal vaccination. The adjuvant mRNA encodes a novel fusion cytokine GIFT4 comprising GM-CSF and IL-4. We found that the adjuvanted mRNA LNP vaccine induced high levels of humoral antibodies and systemic T cell responses against heterologous influenza antigens and protected immunized mice against influenza A viral infections. Also, the adjuvanted mRNA LNP vaccine elicited early germinal center reactions in draining lymph nodes and promoted antibody-secreting B cell responses. In addition, we generated another adjuvant mRNA encoding CCL27, which enhanced systemic immune responses. We found the two adjuvant mRNAs both showed effective adjuvanticity in enhancing humoral and cellular responses in mice. Interestingly, intradermal immunizations of GIFT4 or CCL27 mRNA adjuvanted mRNA LNP vaccines induced significant lung tissue-resident T cells. Our findings demonstrate that the cytokine mRNA can be a promising adjuvant flexibly formulated into mRNA LNP vaccines to provoke strong immunity against viral variants.
Collapse
Affiliation(s)
- Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Wu H, Liu J, Zhang XH, Jin S, Li P, Liu H, Zhao L, Wang J, Zhao S, Tian HD, Lai JR, Hao Y, Liu GR, Hou K, Yan M, Liu SL, Pang D. The combination of flaxseed lignans and PD-1/ PD-L1 inhibitor inhibits breast cancer growth via modulating gut microbiome and host immunity. Drug Resist Updat 2025; 80:101222. [PMID: 40048957 DOI: 10.1016/j.drup.2025.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Patients with breast cancer (BC) who benefit from the PD-1/PD-L1 inhibitor (PDi) is limited, necessitating novel strategies to improve immunotherapy efficacy of BC. Here we aimed to investigate the inhibitory effects of flaxseed lignans (FL) on the biological behaviors of BC and evaluate the roles of FL in enhancing the anticancer effects of PDi. METHODS HPLC was used to detect the content of enterolactone (ENL), the bacterial transformation product of FL. Transcript sequencing was performed and identified CD38 as a downstream target gene of ENL. CD38-overexpressing cells were constructed and cell proliferation, colony formation, wound healing and transwell assays were used to assess the function of ENL/CD38 axis on BC cells in vitro. Multiplexed immunohistochemistry (mIHC) and CyTOF were used to detect the changes of the tumor immune microenvironment (TIM). 16S rDNA sequencing was used to explore the changes of gut microbiota in mice. A series of in vivo experiments were conducted to investigate the anticancer effects and mechanisms of FL and PDi. RESULTS FL was converted to ENL by gut microbiota and FL administration inhibited the progression of BC. ENL inhibited the malignant behaviors of BC by downregulating CD38, a key gene associated with immunosuppression and PD-1/PD-L1 blockade resistance. The mIHC assay revealed that FL administration enhanced CD3+, CD4+ and CD8+ cells and reduced F4/80+ cells in TIM. CyTOF confirmed the regulatory effects of FL and FL in combination with PDi (FLcPDi) on TIM. In addition, 16S rDNA analysis demonstrated that FLcPDi treatment significantly elevated the abundance of Akkermansia and, importantly, Akkermansia administration enhanced the response to PDi in mice treated with antibiotics. CONCLUSIONS The FL/ENL/CD38 axis inhibited BC progression. FL enhanced the anticancer effects of PDi by modulating gut microbiota and host immunity.
Collapse
Affiliation(s)
- Hao Wu
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jiena Liu
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xing-Hua Zhang
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Shengye Jin
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Li
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Huidi Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Liuying Zhao
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianyu Wang
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shilu Zhao
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Da Tian
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Jin-Ru Lai
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Gui-Rong Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China
| | - Kaijian Hou
- School of Public Health, Shantou University, Shantou, China; Longhu People's Hospital, Shantou, China.
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Genomics Research Center, State Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150081, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Da Pang
- Heilongjiang Clinical Research Center for Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
7
|
Tang L, Wu L, Dai M, Liu N, Liu L. Integrative analysis of signaling and metabolic pathways, immune infiltration patterns, and machine learning-based diagnostic model construction in major depressive disorder. Sci Rep 2025; 15:13519. [PMID: 40253457 PMCID: PMC12009401 DOI: 10.1038/s41598-025-97623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Major depressive disorder (MDD) is a multifactorial disorder involving genetic and environmental factors, with unclear pathogenesis. This study aims to explore the pathogenic pathway of MDD and its relationship with immune responses and to discover its potential targets by bioinformatics methods. We first applied gene set variation analysis (GSVA) and seven different immune infiltration algorithms to the GSE98793 dataset to determine the differences in signaling pathways, metabolic pathways, and immune cell infiltration between MDD patients and healthy controls. Differentially expressed genes between MDD patients and controls were obtained from five datasets (GSE98793, GSE32280, GSE38206, GSE39653, and GSE52790), and 113 machine learning methods were employed to construct MDD diagnostic models. Based on the constructed MDD diagnostic models, MDD patients were divided into high-risk and low-risk groups. GSVA and immune microenvironment analyses were conducted to investigate the differences between the two groups. Furthermore, potential drugs and therapeutic targets for the high-risk MDD group were explored to provide new insights and directions for the precise treatment of MDD. GSVA and immune infiltration results indicate that patients with MDD exhibit differences from normal individuals in various aspects, including biological processes, signaling pathways, metabolic processes, and immune cells. To investigate the functions and biological significance of differentially expressed genes in MDD patients, we performed GO and KEGG enrichment analyses on the differentially expressed genes from five databases (GSE98793, GSE32280, GSE38206, GSE39653, and GSE52790). By comparing the enrichment results across the five datasets, we found that the cell-killing signaling pathway was consistently present in the enriched signaling pathways of all datasets, suggesting that this pathway may play a crucial role in the pathogenesis of MDD. The random forest algorithm (AUC = 0.788) was selected as the optimal algorithm from 113 machine learning algorithms, leading to the development of a robust and predictive MDD algorithm, highlighting the important role of NPL in MDD. By dividing MDD into high and low-risk subgroups based on diagnostic model scores, enrichment pathways, and immunological results further demonstrated that high-risk MDD is associated with increased levels of reactive oxygen species, inflammation, and numbers of T cells and B cells. Through GSEA scoring, five upregulated pathways in the high-risk MDD group were identified, and multiple potential drugs such as Mibefradil, LY364947, ZLN005, STA- 5326, and vemurafenib were screened. Patients with MDD show differences in signaling pathways, metabolic pathways, and immune mechanisms. By constructing an MDD diagnostic model, we predicted the key genes of MDD and the characteristic pathways associated with a higher risk of MDD. This provides new insights for risk stratification identification and offers new perspectives for the clinical application of precision immunotherapy and drug development.
Collapse
Affiliation(s)
- Lei Tang
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, 637000, Nanchong, China
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liling Wu
- Department of Pharmacy, The Second Clinical School of North Sichuan Medical College, Nanchong Hospital of Beijing Anzhen Hospital CMU (Nanchong Central Hospital), Nanchong, China
| | - Mengqin Dai
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, 637000, Nanchong, China
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Lu Liu
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, 637000, Nanchong, China.
- School of Psychiatry, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
8
|
Cao Y, Xiao S, He B, Shi X, Xiao N, Liu X, Liu D, Zhou Z, Wang P. Chronic Exposure to Fluxapyroxad Exacerbated Susceptibility to Colitis in Mice via a Gut Microbiota-Indole Derivatives-Th17/Treg Cell Balance Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40244699 DOI: 10.1021/acs.jafc.5c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Fluxapyroxad is the most commonly used succinate dehydrogenase inhibitor fungicide. This work investigated its adverse effects on colitis susceptibility and explored the underlying mechanisms based on a mouse model. After 13 weeks of exposure at the acceptable daily intake (ADI) level, fluxapyroxad exacerbated the susceptibility to colitis, impaired the intestinal barrier, and elevated proinflammatory cytokines and chemokines of the colon in mice. It was found that this toxic effect was caused by the disruption of the gut microbiome. Specifically, the abundance of Lachnospiraceae and Muribaculaceae decreased, while Desulfovibrionaceae and Eggerthellaceae increased. Altered microbiota reduced fecal indole derivatives, including indole-3-lactic acid (ILA), indole-3-acetic acid (IAA), and indole-3-acrylic acid (IArA), inhibiting aryl hydrocarbon receptor (AHR) activation, disrupting immune homeostasis by overactivating Th17 cells and insufficient Treg cell differentiation, and causing mild colonic inflammation. Oral antibiotic-treated mice and fecal transfer experiments validated the pathway. Susceptibility to colitis induced by fluxapyroxad was not detected in the oral antibiotic-treated mice. Fecal transfer of the disordered gut microbiota caused by fluxapyroxad could aggravate the severity of colitis in recipient oral antibiotic-treated mice that did not receive fluxapyroxad exposure. In conclusion, chronic fluxapyroxad exposure at the ADI level exacerbated colitis via a gut microbiota-indole derivatives-Treg/Th17 cell balance axis, offering a new risk assessment perspective of fluxapyroxad.
Collapse
Affiliation(s)
- Yue Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| | - Shouchun Xiao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| | - Bingying He
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| | - Xinlei Shi
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| | - Nan Xiao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, P.R. China
| |
Collapse
|
9
|
Sun L, Zhang T, Ge Y, Yao Z, Su Y, Wang Q, Chen Y, He B, Ding R, Zhang C, Lan L, Liu R, Ping H, Zhang D, Shi L, Zhou X, Jia X, Sun C, Liang L, Zhang L, Zhang B. FTO controls CD8 + T cell survival and effector response by modulating m 6A methylation of Fas. Cell Death Dis 2025; 16:301. [PMID: 40234389 PMCID: PMC12000336 DOI: 10.1038/s41419-025-07606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Functional CD8+ T cell immunity is essential for immune surveillance and host defense against infection and tumors. Epigenetic mechanisms, particularly RNA modification, in controlling CD8+ T cell immune response is not fully elucidated. Here, by T cell-specific deletion of fat mass and obesity-associated protein (FTO), a critical N6-methyladenosine (m6A) demethylase, we revealed that FTO was indispensable for adequate CD8+ T cell immune response and protective function. FTO ablation led to considerable cell death in activated CD8+ T cells, which was attributed to cell apoptosis. MeRIP-seq analysis revealed an increase in m6A methylation on Fas mRNA in FTO-deficient CD8+ T cells. The loss of FTO promoted Fas expression via enhancing the Fas mRNA stability, which depended on the m6A reader insulin-like growth factor-2 mRNA-biding proteins 3 (IGF2BP3). Mutation of the Fas m6A sites or knockdown IGF2BP3 could normalize the upregulated Fas expression and apoptosis levels caused by FTO ablation in CD8+ T cells. Our findings delineate a novel epigenetic regulatory mechanism of FTO-mediated m6A modification in supporting CD8+ T cell survival and effector responses, providing new insights into understanding the post-transcriptional regulation in CD8+ T cell immunological functions and the potential therapeutic intervention.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, China
| | - Yao Ge
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhihong Yao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Faculty of Clinical Medicine, Hanzhong Vocational and Technical College, Hanzhong, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, China
| | - Yang Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Boxiao He
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Linbo Lan
- Clinical Teaching and Research Center, School of Nursing, Weinan Vocational and Technical College, Weinan, Shaanxi, China
| | - Ruonan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Huanxin Ping
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, China
| | - Xiaoxuan Jia
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, China.
| | - Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China.
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, China.
| |
Collapse
|
10
|
Yan Z, Shen D, Qiu X, Ai B, Xiong C. Causal Impact of Immune Phenotypes on Herpes Zoster and Postherpetic Neuralgia: Insights from Mendelian Randomization Analysis. Clin Cosmet Investig Dermatol 2025; 18:919-928. [PMID: 40255632 PMCID: PMC12009118 DOI: 10.2147/ccid.s502861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Background Previous research has investigated the contribution of immunological cells to both herpes zoster (HZ) and postherpetic neuralgia (PHN). This Mendelian randomization (MR) study seeks to further assess the cause-and-effect connection among 731 immune cell phenotypes and HZ and PHN providing partial causal evidence. Methods The data for HZ and PHN were sourced from the FinnGen database, and the 731 immune cell phenotypes were drawn from GWAS. Five analytical methods, primarily utilizing the inverse variance weighted (IVW) approach, were selected to assess the cause-and-effect connection in relation to exposure and outcomes. Finally, sensitivity analyses were undertaken to verify the robustness as well as validity of the data. Results The MR analysis utilizing the IVW method revealed that in the forward Mendelian randomization, two immune cell phenotypes of T cells were negatively connected with HZ(P < 0.05, OR < 1). In comparison, two other immune cell phenotypes were advantageously linked with PHN(P < 0.05, OR > 1). In the reverse Mendelian randomization, HZ was positively associated with five immune cell phenotypes from T cells and NK cells (P < 0.05, OR > 1). PHN demonstrated a positive association with nine immune cell phenotypes from T cells, myeloid cells, B cells, CDC, and monocytes (P < 0.05, OR > 1), while showing a negative association with the remaining 11 immune cells (P < 0.05, OR < 1). Likewise, No evidence of disparity, horizontal pleiotropy, or backward causality was found. Conclusion This study employs Mendelian randomization analysis to elucidate the complex causal relationships between various immune cell phenotypes and the development of HZ and PHN. The findings provide insights into the immune mechanisms underlying disease progression, advancing our understanding of immune-mediated pathways and their potential implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Zhangren Yan
- Department of Traditional Chinese Medicine Surgery, Hospital of Traditional Jiangxi University of Chinese Medicine, Nanchang, 330006, People’s Republic of China
| | - Dandan Shen
- Department of Traditional Chinese Medicine Surgery, Hospital of Traditional Jiangxi University of Chinese Medicine, Nanchang, 330006, People’s Republic of China
| | - Xiaoqian Qiu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, People’s Republic of China
| | - Bohua Ai
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, People’s Republic of China
| | - Chenxi Xiong
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, People’s Republic of China
| |
Collapse
|
11
|
Mahoney KE, Reser L, Ruiz Cuevas MV, Abelin JG, Shabanowitz J, Hunt DF, Malaker SA. Identification of post-translationally modified MHC class I-associated peptides as potential cancer immunotherapeutic targets. Mol Cell Proteomics 2025:100971. [PMID: 40239839 DOI: 10.1016/j.mcpro.2025.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025] Open
Abstract
Over the past three decades, the Hunt laboratory has developed advancements in mass spectrometry-based technologies to enable the identification of peptides bound to major histocompatibility complex (MHC) molecules. The MHC class I processing pathway is responsible for presenting these peptides to circulating cytotoxic T cells, allowing them to recognize and eliminate malignant cells, many of which have aberrant signaling. Professor Hunt hypothesized that due to the dysregulation in phosphorylation in cancer, that abnormal phosphopeptides are likely presented by this pathway, and went on to discover the first phosphopeptide presented by the MHC processing pathway. Thereafter, the laboratory continued to sequence MHC-associated phosphopeptides and contributed several improved methods for their enrichment, detection, and sequencing. This manuscript summarizes the most recent advancements in identification of modified MHC-associated peptides and includes the cumulative list of phosphopeptides sequenced by the Hunt lab. Further, many other post-translational modifications (PTMs) were found to modify MHC peptides, including O-GlcNAcylation, methylation, and kynurenine; in total, we present here a list of 2,450 MHC-associated PTM peptides. Many of these were disease specific and found across several patients, thus highlighting their potential as cancer immunotherapy targets. We are sharing this list with the field in hopes that it might be used in investigating this potential. Overall, the Hunt lab's contributions have significantly advanced our understanding of antigen presentation and dysregulation of PTMs, supporting modern immunotherapy and vaccine development efforts.
Collapse
Affiliation(s)
- Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT, USA; Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | - Jennifer G Abelin
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA; Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT, USA; Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
De Backer E, Verdoodt D, Ponsaerts P, Pasciuto E, Van Rompaey V. Cochlear T cells and their role in health and disease: A systematic review. Autoimmun Rev 2025; 24:103814. [PMID: 40221069 DOI: 10.1016/j.autrev.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The role of T cells in health and disease has already been studied extensively in many organs, yet their activity in the cochlea and involvement in hearing loss remains less explored. This review aims to summarize current existing literature on the presence and activity of T cells in the cochlea and the link between T-cell activity and the development of hearing loss. METHODS A systematic review of the literature was performed on PubMed and Web of Science on the 4th of December 2024 using the following search term: ("T-cell" OR "T cells" OR "T-lymphocyte*") AND ("cochlea*" OR "spiral ligament" OR "spiral limbus"). RESULTS The literature search revealed 20 studies that explored the presence and activity of T cells in the cochlea, as well as associations between T cells and hearing loss. The presence of cochlear T cells was compared between steady-state conditions and stimulated environments, which suggested an increase in cochlear T cells post-stimulation. Additionally, the role of T cells in hearing loss, both causal as protective, are described in 12 studies. Finally, three studies introduce cochlin as an inner ear-specific antigen triggering autoimmunity. CONCLUSION This review highlights the critical role of the immune balance in maintaining cochlear homeostasis. Both protective and detrimental T-cell functions have been linked to hearing, reflecting the dual role of T cells in cochlear health. Future therapies for hearing loss should aim to restore the immune balance to support normal hearing functions.
Collapse
Affiliation(s)
- Evi De Backer
- Resonant labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.
| | - Dorien Verdoodt
- Resonant labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Emanuela Pasciuto
- Laboratory of Neuroimmunology, VIB-Center for Molecular Neurology (CMN), Antwerp, Belgium
| | - Vincent Van Rompaey
- Resonant labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
13
|
Tang Y, Cao L, Jin J, Li T, Chen Y, Lu Y, Li T, Weiss LM, Pan G, Bao J, Zhou Z. Single-cell transcriptional responses of T cells during microsporidia infection. Commun Biol 2025; 8:567. [PMID: 40185986 PMCID: PMC11971339 DOI: 10.1038/s42003-025-07990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
T cells have been reported to play critical roles in preventing of microsporidia dissemination. However, there roles and functions of each subset remain unclear. Here in the study, we performed a thorough analysis of murine splenic T-cell response analysis via single-cell RNA sequencing during microsporidia E. cuniculi infection. We demonstrated that Type I T helper (Th1) cells, T follicular helper (Tfh) cells, effector CD8 + T cells and proliferating CD8 + T cells were activated and expanded after infection. Activated Th1 cells and Tfh cells presented significantly upregulated gene expression of Ifng and Il21, respectively. A subcluster of Th1 cells with high Csf1 expression was detected after infection. Subsets of activated CD8 + T cells were markedly enriched with high expression of cytotoxic-function related genes such as Gzma and Gzmb, whereas some active CD8 T cells were enriched with proliferation-function related genes Mki67 and Stmn1. Other subsets of T cells including NK T cells, Myb+ T cells, γδ T cells and Cxcr6+ T cells, were also analyzed in this study yet no expansion was observed. In summary, our findings provide in-depth and comprehensive insights into T-cell responses during microsporidia infection, which will be valuable for further investigations.
Collapse
Affiliation(s)
- Yunlin Tang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Lu Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jiangyan Jin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tangxin Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yebo Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yishan Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.
- College of Life Sciences, Chongqing Normal University, Chongqing, China.
| |
Collapse
|
14
|
Bai X, Liu R, Tang Y, Yang L, Niu Z, Hu Y, Zhang L, Chen M. Combined Transcriptomic and Mendelian Randomisation Explores the Diagnostic Value of Ubiquitination-Related Genes in Sepsis. J Inflamm Res 2025; 18:4709-4724. [PMID: 40201575 PMCID: PMC11977632 DOI: 10.2147/jir.s489077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Sepsis is the 10th leading cause of death globally and the most common cause of death in patients with infections. Ubiquitination plays a key role in regulating immune responses during sepsis. This study combined bioinformatics and Mendelian randomization (MR) analyses to identify ubiquitin-related genes (UbRGs) with unique roles in sepsis. Methods Relevant genes were obtained from the GSE28750 dataset and GSE95233, weighted gene co-expression network analyses were performed to identify gene modules, and differentially expressed UBRGs (DE-UBRGs) were generated by differentially expressed genes (DEGs) crossover with key modular genes and UBRGs in sepsis and normal samples. Causal relationships between sepsis and UbRGs were analysed using MR, performance diagnostics were performed using subject work characteristics (ROC) curves, and an artificial neural network (ANN) model was developed. On this basis, immune infiltration was performed and the expression of key genes was verified in animal models. Results 3022 DEGs were found between sepsis and normal. A total of 2620 genes were obtained as key modular genes. Crossing DEGs, key modular genes and UBRGs yielded 93 DE-UBRGs. MR results showed WDR26 as a risk factor for sepsis (OR>1) and UBE2D1 as a protective factor for sepsis (OR<1), which was reinforced by scatterplot and forest plot. ROC curves showed that WDR26 and UBE2D1 could accurately differentiate between sepsis and normal samples. Confusion matrix and ROC curve results indicate that the artificial neural network model has strong diagnostic ability. The results of immune infiltration showed that.WDR26 was negatively correlated with plasma cells, while UBE2D1 was positively correlated with CD4 naïve T cells. Significant differences between sepsis and normal were obtained between UBE2D1 and WDR26 in the animal model. Conclusion There appeared to be a causal relationship between sepsis, WDR26 and UBE2D1. The insights were of value for effective clinical diagnosis and treatment in sepsis.
Collapse
Affiliation(s)
- Xue Bai
- Department of Emergency, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, People’s Republic of China
| | - RuXing Liu
- Department of Emergency, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yujiao Tang
- Department of Emergency, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - LiTing Yang
- Department of Emergency, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, People’s Republic of China
| | - Zesu Niu
- Department of Emergency, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yi Hu
- Department of Emergency, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Ling Zhang
- Department of Emergency, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, People’s Republic of China
| | - MengFei Chen
- Department of Emergency, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, People’s Republic of China
| |
Collapse
|
15
|
Hong Y, Wang Y, Shu W. Immunocyte phenotypes and childhood disease susceptibility: insights from bidirectional Mendelian randomization and implications for immunomodulatory therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04091-1. [PMID: 40178601 DOI: 10.1007/s00210-025-04091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Immune cells are essential for maintaining immune homeostasis during childhood and influence both growth and disease susceptibility. However, the causal relationships between immunocyte phenotypes and childhood diseases remain unclear. This study employed a two-sample Mendelian Randomization (MR) analysis to assess causal associations between 731 immunocyte phenotypes and four major childhood diseases: childhood obesity, childhood absence epilepsy, childhood asthma, and childhood allergies. Genome-wide association study (GWAS) data were used, and stringent instrumental variable (IV) selection and multiple sensitivity analyses, including MR-Egger, weighted median, and leave-one-out tests, were applied to validate the robustness of the results. Significant associations were identified between specific T cell, monocyte, and B cell phenotypes and childhood diseases. Notably, CD8bright T cells and CD19 + B cells were positively correlated with childhood obesity, while monocyte subtypes were strongly associated with asthma pathophysiology. Reverse MR analysis indicated no significant causal effects of childhood diseases on immune phenotypes, except for negative associations between childhood asthma and TCRgd AC, and childhood allergy and CD28 + CD45RA + CD4 + cells. These findings highlight the critical role of immune dysregulation in childhood disease etiology and suggest potential targets for immunomodulatory therapies. Understanding these immune-disease interactions may inform novel pharmacological interventions, particularly in immune-mediated disorders such as asthma and obesity. Further research into immune-targeted therapies could enhance treatment strategies for pediatric conditions associated with chronic inflammation and immune dysfunction.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Wanyi Shu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| |
Collapse
|
16
|
Luo J, Chen K, Nong X. Potential regulation of artesunate on bone metabolism through suppressing inflammatory infiltration in type 2 diabetes mellitus. Immunopharmacol Immunotoxicol 2025; 47:147-158. [PMID: 39762719 DOI: 10.1080/08923973.2024.2444953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Osteoimmunology is an emerging field that explores the interplay between bone and the immune system. The immune system plays a critical role in the pathogenesis of diabetes and significantly affects bone homeostasis. Artesunate, a first-line treatment for malaria, is known for its low toxicity and multifunctional properties. Increasing evidence suggests that artesunate possesses anti-inflammatory, immunoregulatory, and osteogenic effects. This review aims to explore the relationship between immune regulation and bone metabolism in type 2 diabetes (T2DM) and to investigate the potential therapeutic application of artesunate. METHODS This review systematically examines literature from PubMed/Medline, Elsevier, Web of Science, Embase, the International Diabetes Federation, and other relevant databases. RESULTS This review synthesizes evidence from multiple sources to delineate the relationship between T lymphocytes and T2DM, the regulation of T lymphocyte subsets in bone metabolism, and the effects of artesunate on both T lymphocytes and bone metabolism. Recent studies suggest a bidirectional regulatory relationship between T2DM and T lymphocytes (CD4+ T and CD8+ T) during the onset and progression of the disease, with inflammatory and anti-inflammatory cytokines serving as key mediators. T lymphocyte subsets and their cytokines play a pivotal role in regulating osteogenesis and osteoclastogenesis in pathological conditions. Furthermore, artesunate has shown promise in modulating inflammatory infiltration and bone metabolism. CONCLUSION The accumulated evidence indicates that artesunate exerts regulatory effects on bone metabolism in T2DM by influencing T lymphocyte differentiation.
Collapse
Affiliation(s)
- Jinghong Luo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kun Chen
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- Department of Oral & Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Fu Z, Lin S, Chen H, Guo H, Li J, Chen Y, Lu Y, Liu J, Huang W, Pang Y. Generating Self-Adjuvated Nanofiber Vaccines by Coating Bacterial Flagella with Antigens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415887. [PMID: 39981905 DOI: 10.1002/adma.202415887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Bacteria-based vaccines have received increasing attention given the ability to induce strong systemic immune responses. However, the application of bacteria as therapeutic agents inevitably suffers from infection-associated side effects due to the living characteristics. Here, the use of bacteria-derived flagella is described to construct self-adjuvated nanofiber vaccines. With the help of charge-reversal mediated by decoration with cationic polymers, the flagella can be coated with negatively charged antigens through electrostatic interaction. By virtue of the large aspect ratio, the resulting nanofiber vaccines show prolonged retention at the injection site and increased uptake by dendritic cells and macrophages. Thanks to the innate immunogenicity, self-adjuvated flagella robustly promote dendritic cell maturation and macrophage polarization, resulting in the elicitation of antigen-specific T-cell and B-cell immune responses. In ovalbumin-overexpressing melanoma-bearing mice, immunization with ovalbumin-carried vaccines not only exhibits a favorable tolerance, but also displays superior inhibition efficacies on tumor growth and metastasis separately under the therapeutic and prophylactic settings. The flexibility of this approach is further demonstrated for vaccine fabrication by coating with the SARS-CoV-2 Spike protein S1 subunit. Bacterial flagella-based self-adjuvated nanofiber platform proposes a versatile strategy to develop various vaccines for disease prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huan Chen
- Shanghai Frontiers Science Center of Drug Target ldentification and Delivery,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yue Lu
- Shanghai Frontiers Science Center of Drug Target ldentification and Delivery,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Xiangfu Laboratory, Jiaxing, Zhejiang, 314102, China
| | - Yan Pang
- Shanghai Frontiers Science Center of Drug Target ldentification and Delivery,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Qian L, Wu L, Miao X, Xu J, Zhou Y. The role of TIGIT-CD226-PVR axis in mediating T cell exhaustion and apoptosis in NSCLC. Apoptosis 2025; 30:784-804. [PMID: 39725799 DOI: 10.1007/s10495-024-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) remains a critical challenge in oncology, primarily due to the dysfunction and exhaustion of T cells within the tumor microenvironment, which greatly limits the effectiveness of immunotherapy. This study investigates the regulatory role of the T cell immunoglobulin and ITIM domain (TIGIT)-CD226-PVR signaling axis in the exhaustion and apoptosis of cluster of differentiation (CD)27+/CD127+T cells in NSCLC. Utilizing single-cell sequencing technology, we conducted a comprehensive gene expression analysis of T cells in a mouse model of NSCLC. Bioinformatics analysis revealed that the TIGIT-CD226-PVR signaling axis is highly active in the CD27+/CD127+T cell subset and is closely associated with their functional decline and exhaustion. In vitro experiments further demonstrated that inhibiting the TIGIT-PVR pathway while activating the CD226-PVR pathway significantly restored T cell proliferation and effector function. Importantly, in vivo studies showed that targeting this axis can significantly alleviate T cell exhaustion, enhance their cytotoxicity against NSCLC cells, and promote apoptosis, thereby improving the efficacy of immunotherapy.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Animals
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Apoptosis/genetics
- Humans
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Mice
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Receptors, Virus/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Line, Tumor
- Tumor Microenvironment/immunology
- T-Cell Exhaustion
Collapse
Affiliation(s)
- Liang Qian
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Ling Wu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Xiaohui Miao
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Jiao Xu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Yao Zhou
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China.
| |
Collapse
|
19
|
Otero JG, Belmonte-Beitia J, Jiménez-Sánchez J. Exploring neuroblastoma's cellular microenvironment: A novel approach using cellular automata to model Celyvir treatment. Comput Biol Med 2025; 188:109782. [PMID: 39946782 DOI: 10.1016/j.compbiomed.2025.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Neuroblastoma is a significant health concern in children, as it is one of the most common types of cancer among this age group and is associated with poor survival rates. Currently, there are no effective therapies that significantly improve outcomes for these patients. This study explores the efficacy of Celyvir - an advanced therapy comprising mesenchymal stem cells (MSCs) carrying the oncolytic virus ICOVIR 5 - against neuroblastoma, by means of an individual-based model. A probabilistic cellular automaton was developed to implement the dynamic interactions between neuroblastoma cells, T lymphocytes, and the therapeutic agent Celyvir. The model examines various sizes, shapes, and positions of the tumour within a lattice, along with different infection probabilities associated with the action of Celyvir and various treatment schedules. This analysis identifies the most influential infection probabilities according to the cellular automaton model, and demonstrates that different treatment regimens can effectively eradicate the tumour, in contrast to standard clinical approaches. Additionally, Kaplan-Meier curves have been generated to assess different treatment schedules under specific tumour scenarios, highlighting the importance of precise treatment scheduling to optimise therapeutic outcomes. This study provides insights into the potential of Celyvir in neuroblastoma treatment, emphasising the need to understand tumour dynamics and strategically implement treatment schemes to improve clinical outcomes.
Collapse
Affiliation(s)
- José García Otero
- Mathematical Oncology Laboratory (MOLAB), University Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real, 13071, Castilla-La Mancha, Spain.
| | - Juan Belmonte-Beitia
- Mathematical Oncology Laboratory (MOLAB), University Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real, 13071, Castilla-La Mancha, Spain.
| | - Juan Jiménez-Sánchez
- Mathematical Oncology Laboratory (MOLAB), University Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real, 13071, Castilla-La Mancha, Spain; Dipartimento di Scienze Matematiche Giuseppe Luigi Lagrange, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy.
| |
Collapse
|
20
|
Mivehchi H, Eskandari-Yaghbastlo A, Ghazanfarpour M, Ziaei S, Mesgari H, Faghihinia F, Zokaei Ashtiani N, Afjadi MN. Microenvironment-based immunotherapy in oral cancer: a comprehensive review. Med Oncol 2025; 42:140. [PMID: 40153139 DOI: 10.1007/s12032-025-02694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Oral cancer, a prevalent form of head and neck malignancy, accounts for 4% of global cancer cases. The most common type, oral squamous cell carcinoma (OSCC), has a survival rate of about 50%. Even though emerging molecular therapies show promise for managing oral cancer, current treatments like surgery, radiotherapy, and chemotherapy have significant side effects. In addition, the complex tumor microenvironment (TME), involving the extracellular matrix (ECM) and cells like fibroblasts and stromal cells like immune cells, promotes tumor growth and inhibits immune responses, complicating treatment. Nonetheless, immunotherapy is crucial in cancer treatment, especially in oral cancers. Indeed, its effectiveness lies in targeting immune checkpoints such as PD-1 and CTLA-4 inhibitors, as well as monoclonal antibodies like pembrolizumab and cetuximab, adoptive cell transfer methods (including CAR-T cell therapy), cytokine therapy such as IL-2, and tumor vaccines. Thus, these interventions collectively regulate tumor proliferation and metastasis by targeting the TME through autocrine-paracrine signaling pathways. Immunotherapy indeed aims to stimulate the immune system, leveraging both innate and adaptive immunity to counteract cancer cell signals and promote tumor destruction. This review will explore how the TME controls tumor proliferation and metastasis via autocrine-paracrine signaling pathways. It will then detail the effectiveness of immunotherapy in oral cancers, focusing on immune checkpoints, targeted monoclonal antibodies, adoptive cell transfer, cytokine therapy, and tumor vaccines.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - SeyedMehdi Ziaei
- Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Chen Y, Wu J, Cai K, Xiao X, Chen Y, Zhang X, Deng S, Pei C, Chen Y, Xie Z, Li P, Liao Q. Bifidobacterium longum subsp. longum XZ01 delays the progression of colon cancer in mice through the interaction between the microbial spatial distribution and tumour immunity. Int Immunopharmacol 2025; 150:114283. [PMID: 39955918 DOI: 10.1016/j.intimp.2025.114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Studies have shown that the colonisation of active microorganisms is more conducive to the development of tumour immunotherapy, but intuitive evidence regarding shaping of the tumour immune microenvironment is lacking. In this study, we used Bifidobacterium longum subsp. longum (XZ01) to intervene in a colon cancer mouse model and found that its mechanism may be related to the interaction between the spatial distribution of microorganisms and tumour immunity. Through the visualisation method we established, for the first time, we showed that harmful active bacteria such as Streptococcus and Rhodococcus specifically accumulate in the middle and upper layers of tumour tissue. These bacteria likely participate in signalling pathways that affect macrophages by directly contacting or invading the macrophages, leading to a nondifferentiated state in macrophages and the loss of some immune functions. Furthermore, the accumulation of Streptococcus and Rhodococcus fragments in the deep layer of tumour tissue likely upregulates the expression of IL-10 in tumour tissue and inhibits other immune cells, such as CD8+ T cells, DC and NK cells. In contrast, XZ01 can specifically compete for the growth sites of Streptococcus and Rhodococcus in the middle and upper layers of tumour tissue and probably protects macrophages from being invaded by harmful bacteria. XZ01 directly regulates the polarisation of M0 macrophages towards the M1 phenotype by upregulating IFN-γ, thus activating tumour immunity to inhibit the growth of tumour cells. This study revealed that the influence of active microorganisms on the tumour immune microenvironment is crucial for effective immunotherapy intervention, potentially offering new targets for improving patient prognosis.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangdong Yunfu Vocational College of Chinese Medicine, Yunfu 527300, China
| | - Jinyun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
22
|
Occhipinti G, Brugaletta S, Abbate A, Pedicino D, Del Buono MG, Vinci R, Biondi Zoccai G, Sabate M, Angiolillo D, Liuzzo G. Inflammation in coronary atherosclerosis: diagnosis and treatment. Heart 2025:heartjnl-2024-325408. [PMID: 40139681 DOI: 10.1136/heartjnl-2024-325408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Coronary atherosclerosis is a chronic condition characterised by the development of an atherosclerotic plaque in the inner layer of the coronary artery, mainly associated with cholesterol accumulation and favoured by endothelial dysfunction related to other cardiovascular risk factors, such as smoking, diabetes and hypertension. A key actor in this process is the systemic inflammatory response, which can make plaques either grow slowly over the course of years (like a 'mountain'), obstructing coronary flow, and causing stable coronary artery disease, or make them explode (like a 'volcano') with subsequent abrupt thrombosis causing an acute coronary syndrome. This central role of inflammation in coronary atherosclerosis has led to its consideration as a modifiable cardiovascular risk factor and a therapeutic target. Classic anti-inflammatory drugs have been tested in clinical trials with some encouraging results, and new drugs specifically designed to tackle inflammation are currently being under investigation in ongoing trials. The objectives of this review are to (1) summarise the role of inflammatory biomarkers and imaging techniques to detect inflammation at each stage of plaque progression, and (2) explore currently available and upcoming anti-inflammatory therapies.
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
| | - Salvatore Brugaletta
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
- Universitat de Barcelona Facultat de Medicina i Ciències de la Salut, Barcelona, Catalunya, Spain
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ramona Vinci
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Manel Sabate
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
- Universitat de Barcelona Facultat de Medicina i Ciències de la Salut, Barcelona, Catalunya, Spain
| | - Dominick Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| |
Collapse
|
23
|
Powell T, Karuppiah V, Shaikh SA, Pengelly R, Mai N, Barnbrook K, Sharma A, Harper S, Ebner M, Creese AJ. Determining T-cell receptor binding orientation and Peptide-HLA interactions using cross-linking mass spectrometry. J Biol Chem 2025; 301:108445. [PMID: 40154610 DOI: 10.1016/j.jbc.2025.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
T cell receptors (TCRs) recognize specific peptides presented by human leukocyte antigens (HLAs) on the surface of antigen-presenting cells and are involved in fighting pathogens and cancer surveillance. Canonical docking orientation of TCRs to their target peptide-HLAs (pHLAs) is essential for T cell activation, with reverse binding TCRs lacking functionality. TCR binding geometry and molecular interaction footprint with pHLAs are typically obtained by determining the crystal structure. Here, we describe the use of a cross-linking tandem mass spectrometry (XL-MS/MS) method to decipher the binding orientation of several TCRs to their target pHLAs. Cross-linking sites were localized to specific residues and their molecular interactions showed differentiation between TCRs binding in canonical or reverse orientations. Structural prediction and crystal structure determination of two TCR-pHLA complexes validated these findings. The XL-MS/MS method described herein offers a faster and simpler approach for elucidating TCR-pHLA binding orientation and interactions.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Mai
- Immunocore Limited, Abingdon, United Kingdom
| | | | - Amit Sharma
- Immunocore Limited, Abingdon, United Kingdom
| | | | | | | |
Collapse
|
24
|
Talib M, Gyebrovszki B, Fodor A, Mészáros A, Balog Virág K, Barta LG, Rojkovich B, Nagy G, Sármay G. PD-L1 + Regulatory B Cells from Rheumatoid Arthritis Patients Have Impaired Function in Suppressing IFN-ү and IL-21 Production. Int J Mol Sci 2025; 26:2998. [PMID: 40243636 PMCID: PMC11988511 DOI: 10.3390/ijms26072998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease. The pathomechanism of RA depends on both B and T cells. Regulatory B cells (Breg) have been shown to suppress T-cell immune responses and play a key role in modulating autoimmune processes. We aimed to investigate the possibility of utilizing PD-L1+ Breg cells in downregulating the Th cells' immune response in healthy individuals and RA patients. We hypothesized that the PD-1/PD-1L interaction plays a key role in this process, which may be defective in autoimmune diseases. We separated T and B cells from the peripheral blood of healthy volunteers and RA patients by magnetic cell sorting, and Th cells and Treg cells were isolated by fluorescence-activated cell sorting. The cytokine production by CD4+ Th cells was detected by intracellular flow cytometry. CpG and CD40L stimulations were applied to induce PD-L1hi expressing Breg cells. We found that the frequency of PD-L1hi cells is significantly lower in all B-cell subsets in RA compared to healthy controls. Functional analysis of induced PD-L1+ Breg cells in coculture with activated autologous Th cells has shown that healthy control samples containing higher levels of PD-L1hi Breg cells significantly inhibit IFN-ү and IL-21 production by Th cells. In contrast, RA patients' samples with lower levels of PD-L1hi Breg cells failed to do so. Since the expression of PD-L1 on B cells can be modulated in vitro to induce Breg cell suppressive capacity, these data may provide new perspectives for future therapy for RA.
Collapse
Affiliation(s)
- Mustafa Talib
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (A.F.); (A.M.); (L.G.B.)
| | - Balázs Gyebrovszki
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (A.F.); (A.M.); (L.G.B.)
| | - Anna Fodor
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (A.F.); (A.M.); (L.G.B.)
| | - Anna Mészáros
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (A.F.); (A.M.); (L.G.B.)
| | - Kata Balog Virág
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (A.F.); (A.M.); (L.G.B.)
| | - Leila Gloria Barta
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (A.F.); (A.M.); (L.G.B.)
| | - Bernadette Rojkovich
- Rheumatology-Rehabilitation Department, Buda Hospital of the Hospitaller Order of Saint John of God, 1027 Budapest, Hungary;
| | - György Nagy
- Department of Rheumatology and Immunology, Semmelweis University, 1023 Budapest, Hungary;
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Gabriella Sármay
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (A.F.); (A.M.); (L.G.B.)
| |
Collapse
|
25
|
Jalili S, Hosn RR, Ko WC, Afshari K, Dhinakaran AK, Chaudhary N, Maiorino L, Haddadi N, Nathan A, Getz MA, Gaiha GD, Rashighi M, Harris JE, Hammond PT, Irvine DJ. Leveraging tissue-resident memory T cells for non-invasive immune monitoring via microneedle skin patches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.17.25324099. [PMID: 40166546 PMCID: PMC11957092 DOI: 10.1101/2025.03.17.25324099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Detecting antigen-specific lymphocytes is crucial for immune monitoring in the setting of vaccination, infectious disease, cancer, and autoimmunity. However, their low frequency and dispersed distribution across lymphoid organs, peripheral tissues, and blood pose challenges for reliable detection. To address this issue, we developed a strategy exploiting the functions of tissue-resident memory T cells (T rm s) to concentrate target circulating immune cells in the skin and then sample these cells non-invasively using a microneedle (MN) skin patch. T rm s were first induced at a selected skin site through initial sensitization with a selected antigen. Subsequently, these T rm s were restimulated by intradermal inoculation of a small quantity of the same antigen to trigger the "alarm" and immune recruitment functions of these cells, leading to accumulation of antigen-specific T cells from the circulation over several days. In mouse models of vaccination, we show that application of MN patches coated with an optimized hydrogel layer for cell and fluid sampling to this skin site allowed effective isolation of thousands of live antigen-specific lymphocytes as well as innate immune cells. In a human subject with allergic contact dermatitis, stimulation of T rm s with allergen followed by MN patch application allowed the recovery of diverse lymphocyte populations that were absent from untreated skin sites. These results suggest that T rm restimulation coupled with microneedle patch sampling can be used to obtain a window into both local and systemic antigen-specific immune cell populations in a noninvasive manner that could be readily applied to a wide range of disease or vaccination settings.
Collapse
Affiliation(s)
- Sasan Jalili
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Ryan R. Hosn
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wei-Che Ko
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Khashayar Afshari
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Namit Chaudhary
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Nazgol Haddadi
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Anusha Nathan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Matthew A. Getz
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Gaurav D. Gaiha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - John E. Harris
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
26
|
Zhang J, Tian T, Tian S, Yao J, Zhang Y, Xie R, Yang T, Han B. Study on the Mechanism of QRICH1 Mediating PRMT1 to Regulate the Arginine Methylation Modification of cGAS to Promote Arsenics-Induced Pyroptosis in Hepatocellular Carcinoma Cells. J Hepatocell Carcinoma 2025; 12:597-614. [PMID: 40124968 PMCID: PMC11930257 DOI: 10.2147/jhc.s505266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose This study aims to investigate the mechanism of action of arsenic-based agents against hepatocellular carcinoma (HCC) and to identify effective drug targets for HCC treatment. Methods Huh7 and HepG2 cells treated with NaAsO2 were assessed for cell viability, pyroptosis, migration, and invasion after undergoing lentiviral transfection. An orthotopic liver tumor model was established and divided into a model group and a treatment group. Proteins associated with QRICH1, PRMT1, cGAS-STING, and the classical pyroptosis pathway were quantified using Western blotting. The intracellular expression and localization of PRMT1 and NLRP3 in HCC were analyzed through cellular immunofluorescence. Co-immunoprecipitation (Co-IP) was performed to examine the protein interactions between PRMT1 and cGAS, as well as between STING and NLRP3. Chromatin immunoprecipitation (ChIP) was used to confirm QRICH1 enrichment in the PRMT1 promoter region. Results NaAsO2 treatment significantly inhibited the proliferation of Huh7 and HepG2 cells and effectively blocked their migration and invasion capabilities, while promoting cellular pyroptosis. Quantitative polymerase chain reaction(QRCR) and ChIP assays confirmed that NaAsO2 regulates PRMT1 expression by down-regulate QRICH1 binding in the PRMT1 promoter region. Additionally, NaAsO2 decreased the expression of the QRICH1-PRMT1 complex and upregulated the cGAS-STING signaling pathway, activating the downstream NLRP3-dependent classical pyroptosis pathway. Overexpression of QRICH1 reversed these effects. Conclusion NaAsO2 inhibits the expression of the QRICH1-PRMT1 axis, activates cGAS-STING signaling pathway transduction, and induces pyroptosis in HCC cells, thereby increasing the infiltration of immune cells in liver cancer tissues.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Tian Tian
- Department of Eugenic Genetics, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, 550003, People’s Republic of China
| | - Shanshan Tian
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Jinhai Yao
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Yingwan Zhang
- Qianxinan People’s Hospital, Qianxinan Affiliated Hospital of Zunyi Medical University, Xingyi, Guizhou, 562400, People’s Republic of China
| | - Rujia Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Ting Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
27
|
Liu C, Gu F, Zou Z, Wang F, Li D, Song J, Hong Y, Wu X, Yang X, Liu WH, Liu G, Zhou Y, Liu Q. Marine-Derived Alternariol Suppresses Inflammation by Regulating T Cell Activation and Migration. Mar Drugs 2025; 23:133. [PMID: 40137319 PMCID: PMC11944012 DOI: 10.3390/md23030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
T cells play pivotal roles in inflammation's initiation and progression. Exploring natural compounds that regulate T cell function is crucial for preventing and treating inflammation. Herein, we report that Alternariol (AOH), a marine-derived secondary metabolite, exerts an anti-inflammatory activity by targeting T cell function. Using an ovalbumin (OVA)-induced OT-II CD4+ T cell activation model, we demonstrated that AOH potently suppresses T cell proliferation and cytokine secretion, mildly promotes T cell apoptosis, and spares antigen presentation processes. Mechanistically, AOH controlled early T cell activation by inhibiting the expression of activation markers (CD69, CD25, CD44) and transcription factors (T-bet, Eomes), leading to impaired Th1 cytokine production. In vivo experiments revealed that AOH attenuated OVA-induced lung injury in mice by reducing immune cell infiltration in pulmonary tissues and draining lymph nodes. Notably, AOH dramatically suppressed OVA-specific T cells migrating to the inflammatory lung while impairing T-cell-mediated other immune cell infiltration. Collectively, AOH exhibited potent anti-inflammatory effects by modulating T cell proliferation, function, and migration, offering a promising therapeutic strategy for T-cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chenfeng Liu
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, China (F.W.); (D.L.)
| | - Fudie Gu
- Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (F.G.)
| | - Zhengbiao Zou
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China (X.Y.)
| | - Fengli Wang
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, China (F.W.); (D.L.)
| | - Dashuai Li
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, China (F.W.); (D.L.)
| | - Jing Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xuhui Wu
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianwen Yang
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China (X.Y.)
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Guangming Liu
- Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (F.G.)
- Faculty of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Yu Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qingmei Liu
- Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (F.G.)
| |
Collapse
|
28
|
Liu H, Zheng R, Zhuang Z, Xue L, Chen M, Wu Y, Zeng Y. Diagnostic Efficacy and Clinical Significance of Lymphocyte Subsets, Granzyme B and Perforin in the Peripheral Blood of Patients with Invasive Breast Cancer Following Neoadjuvant Chemotherapy. Cancer Manag Res 2025; 17:589-602. [PMID: 40124841 PMCID: PMC11928756 DOI: 10.2147/cmar.s502155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Breast cancer, a predominant contributor to cancer-related mortality worldwide, is increasingly managed through the application of neoadjuvant chemotherapy (NAC). Analyzing the dynamic changes in peripheral blood lymphocyte subsets, granzyme B and perforin are crucial for investigating their roles in tumorigenesis, development and treatment; this study aimed to use these analyses to diagnose malignant breast tumor, assess the anti-tumor immunity and predict chemotherapy efficacy in breast cancer patients. Patients and Methods To address this objective, a total of 582 peripheral blood samples were collected from healthy controls (n=47), benign breast disease patients (n=401) and breast cancer patients (n=134). Lymphocyte subsets, along with granzyme B and perforin expression, were assessed using flow cytometry. Changes before and after NAC were also monitored. Results Breast cancer patients exhibited reduced proportions and absolute counts of CD3+ and CD8+ T cells, increased NK cell percentage and CD4+/CD8+ ratio, and higher levels of granzyme B and perforin in CD3+, CD8+ T cells and NK cells. Post-NAC, the percentages of CD3+, CD4+, CD8+ T cells and NK cells increased, along with a higher CD4+/CD8+ ratio, while B cell percentages decreased compared to pre-NAC. Furthermore, the effective group showed higher percentages of CD3+, CD8+ T cells and lower percentages of B cells than the ineffective group post-NAC. Incidentally, Granzyme B and perforin expression in CD3+ and CD8+ T cells was elevated following postoperative chemotherapy. Conclusion These findings indicated that peripheral blood lymphocyte subsets, along with granzyme B and perforin levels, could serve as potential biomarkers for differentiating benign from malignant breast tumors, assessing anti-tumor immunity and predicting chemotherapy efficacy.
Collapse
Affiliation(s)
- Han Liu
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Ruinian Zheng
- Phase I Clinical Trial Center, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, People’s Republic of China
| | - Zhaowei Zhuang
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Liwen Xue
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Minggui Chen
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuluo Wu
- Department of Oncology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yan Zeng
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
29
|
Shen WK, Zhang CY, Gu YM, Luo T, Chen SY, Yue T, Xie GY, Liao Y, Yuan Y, Lei Q, Guo AY. An automatic annotation tool and reference database for T cell subtypes and states at single-cell resolution. Sci Bull (Beijing) 2025:S2095-9273(25)00288-9. [PMID: 40157887 DOI: 10.1016/j.scib.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
T cells have various subtypes and states with different functions. However, a reference list and automated annotation tool for T cell subtypes and states are lacking, which is critical for analyzing and comparing T cells under various conditions. We constructed the largest human T cell reference, containing 1,348,268 T cells from 35 conditions and 16 tissues. We classified T cells into 33 subtypes and further stratified them into 68 categories according to subtype and state. Based on this reference, we developed a tool named STCAT to automatically annotate T cells from scRNA-seq data by hierarchical models and marker correction. The accuracy of STCAT was 28% higher than that of existing tools validated on six independent datasets, including cancer and healthy samples. Using STCAT, we consistently discovered that CD4+ Th17 cells were enriched in late-stage lung cancer patients in multiple datasets, whereas MAIT cells were prevalent in milder-stage COVID-19 patients. We also confirmed a decrease in Treg cytotoxicity in post-treatment ovarian cancer. Systematic landscape analyses of CD4+ and CD8+ T cell references revealed that CD4+ Treg cells were enriched in tumor samples and that CD8+ naive-related cells were abundant in healthy individuals. Finally, we deposited all the T cell references and annotations into a TCellAtlas (https://guolab.wchscu.cn/TCellAtlas) database, which allows users to browse T cell expression profiles and analyze customized scRNA-seq data by STCAT. In conclusion, comprehensive human T cell subtypes and states reference, automated annotation tool, and database will greatly facilitate research on T cell immunity and tumor immunology.
Collapse
Affiliation(s)
- Wen-Kang Shen
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chu-Yu Zhang
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi-Min Gu
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Luo
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Si-Yi Chen
- Department of Rheumatology & Immunology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Yue
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gui-Yan Xie
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liao
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qian Lei
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - An-Yuan Guo
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Sharath S, Sardana K, Khurana A, Yadav A, Singh A. Therapy resistant hypertrophic lichen planus and its response to oral tofacitinib with a priori tissue cytokine expression: a real-world hospital-based study. Arch Dermatol Res 2025; 317:590. [PMID: 40095121 DOI: 10.1007/s00403-025-04088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Although there are several reports on use of tofacitinib in lichen planus (LP), its usage in hypertrophic LP is sparse with no data on tissue cytokine expression. METHODS We retrospectively analyzed the records of recalcitrant hypertrophic LP patients treated with tofacitinib monotherapy. Demographic and clinical details were noted. We assessed Th1, Th2, Th17 cytokines in lesional and non-lesional tissue samples using real time PCR. Dose, duration and response to tofacitinib in terms of resolution of lesions and pruritus was noted. Side effects and time after which relapses were seen post treatment were recorded. RESULTS Fifteen hypertrophic LP patients were analysed with a mean age of 34.06years (18-59years, 8 females and 7 males). Previous failed systemic treatments included corticosteroids(n = 1), retinoids(n = 5), cyclosporine(n = 8), methotrexate(n = 8) and thalidomide(n = 3). Tissue cytokine analysis was performed in 3/15 patients which showed upregulation of Th1 and Th17 cytokines [Interferon-γ, Interleukin (IL)-17 and IL-21]. Mean dose of tofacitinib was 11.6 mg (10-15 mg) and was given for a mean duration of 8.8weeks (8-16weeks). Pruritus resolved in a mean duration of 8.6days and mean time to achieve resolution of lesions was 4.69weeks. Two patients failed to show improvement and drug was stopped after 8 weeks. Side effects were noted in 6 patients [dyslipidemia(n = 2), upper respiratory infection(n = 2), fever(n = 1) and folliculitis(n = 1)]. Relapse was noted in 5/13 patients [38.46%, mean time duration: 7.2weeks (4-12weeks)]. CONCLUSION A predominant Th1/Th17 cytokine profile was noted in the subset analysed and was extrapolated to the use of oral tofacitinib in hypertrophic LP patients.
Collapse
Affiliation(s)
- Savitha Sharath
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr. Ram Manohar Lohia Hospital, New Delhi, India.
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Apeksha Yadav
- Council of Scientific and Industrial Research- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Archana Singh
- Council of Scientific and Industrial Research- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative research, Ghaziabad, India
| |
Collapse
|
31
|
Huang S, Li X, Cao Y, Mou M, Li J, Zhuo K, Wang L, Zeng Z, Wei X, Tang C, Zhong M. TLR5 activation in respiratory epithelial cells orchestrate mucosal Th17 response through both indirect and direct pathways. Respir Res 2025; 26:104. [PMID: 40098159 PMCID: PMC11916947 DOI: 10.1186/s12931-025-03186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Flagellin, a potent mucosal adjuvant administered via the intranasal route, has been widely recognized for its capacity to enhance immune responses against diverse pathogens. However, the effects and the underlying mechanisms by which flagellin modulates CD4+ T cell differentiation remain incompletely understood. METHODS Recombinant flagellin proteins, including full-length flagellin (SF) and a TLR5-binding deficient variant (SFΔ90-97), were produced and purified. An OT-II derived CD4+ T cell adoptive transfer model, a classical intranasal immunization model and dendritic cell (DC)-CD4+ T co-culturing system were used. The proliferation and differentiation of CD4+ T cells were analyzed using flow cytometry analysis. RNA sequencing and neutralizing antibody blocking experiments were performed to determine the essential cytokines involved in flagellin modulated Th17 differentiation. RESULTS Flagellin preferentially promotes Th17 cells differentiation. Respiratory epithelial cells (RECs), acting as sentinel cells, are the first to encounter exogenous stimuli during intranasal immunization. Flagellin stimulates the secretion of various soluble cytokines by binding to TLR5 on the surface of RECs, with GM-CSF facilitating the functional activation of airway DCs. GM-CSF-conditioned DCs exhibit upregulated IL-6 expression which in turn drives the polarization of naïve CD4+ T cells toward the Th17 phenotype. Furthermore, TLR5-regulated REC-derived IL-6 synergizes with TLR5-modulated DCs to amplify Th17 polarization signals, thereby enhancing the Th17 induction. CONCLUSION Flagellin preferentially induced a Th17-enhanced immune response and RECs were highlighted its essential roles during this process through both indirect and direct pathways. For indirect pathway, RECs modulate DC function through GM-CSF. Moreover, RECs directly contribute to Th17 differentiation by secreting IL-6.
Collapse
Affiliation(s)
- Sijian Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Xu Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Clinical Laboratory, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430056, China
| | - Yuan Cao
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Analytical & Testing Center, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Man Mou
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Department of Blood Transfusion, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430056, China
| | - Jianlun Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Kexing Zhuo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Lijuan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Zihang Zeng
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Xianghong Wei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Chunlian Tang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China.
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, 430063, China.
| | - Maohua Zhong
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China.
| |
Collapse
|
32
|
Tukaj S, Sitna M, Sitko K. The impact of the mRNA COVID-19 vaccine on the Th-like cytokine profile in individuals with no history of COVID-19: insights into autoimmunity targeting heat shock proteins. Front Immunol 2025; 16:1549739. [PMID: 40160814 PMCID: PMC11949786 DOI: 10.3389/fimmu.2025.1549739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Although some reports suggest that COVID-19 vaccination may exacerbate existing autoimmune diseases or trigger new-onset cases, a definitive causal relationship between the vaccines and these conditions has not been established. Several potential mechanisms have been proposed to explain this association, including: (i) molecular mimicry, which refers to a structural similarity between SARS-CoV-2 and human antigens; (ii) bystander activation, involving both B and T lymphocytes; and (iii) the effects of adjuvants. In this study, we investigated whether two doses of the mRNA COVID-19 vaccine influenced blood cytokine levels associated with major T helper cell populations, which are known to play a significant role in autoimmunity and revisited the role of the humoral autoimmune response directed against heat shock proteins (Hsps) in individuals with no history of COVID-19. While no significant differences were found in the levels of IFN-γ, IL-6, IL-22, IL-4, IL-8, IL-10, and IL-17A, between vaccinated and unvaccinated people, several positive correlations were observed between serum cytokine levels and circulating autoantibodies directed against self-Hsps exclusively in vaccinated individuals. These findings suggest that the mRNA COVID-19 vaccine does not impact cytokines involved in the pathogenesis of autoimmune diseases. Further research is required to evaluate the safety of COVID-19 vaccination in patients with autoimmune conditions, particularly those in whom anti-Hsps autoantibodies are suspected to contribute to disease development.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
33
|
Arnet L, Emilius L, Hamann A, Carmo-Fonseca M, Berking C, Dörrie J, Schaft N. The Influence of Indisulam on Human Immune Effector Cells: Is a Combination with Immunotherapy Feasible? Pharmaceutics 2025; 17:368. [PMID: 40143032 PMCID: PMC11945250 DOI: 10.3390/pharmaceutics17030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Background: As a modulator of pre-mRNA splicing, the anti-cancer agent indisulam can induce aberrantly spliced neoantigens, enabling immunologic anti-tumor activity. Consequently, combining indisulam with immunotherapy is expected to be a promising novel approach in cancer therapy. However, a prerequisite for such a combination is that immune effector cells remain functional and unharmed by the chemical. Methods: To ensure the immunocompetence of human immune effector cells is maintained, we investigated the influence of indisulam on ex vivo-isolated T cells and monocyte-derived dendritic cells (moDCs) from healthy donors. We used indisulam concentrations from 0.625 µM to 160 µM and examined the impact on the following: (i) the activation of CD4+ and CD8+ T cells by CD3-crosslinking and via a high-affinity TCR, (ii) the cytotoxicity of CD8+ T cells, (iii) the maturation process of moDCs, and (iv) antigen-specific CD8+ T cell priming. Results: We observed dose-dependent inhibitory effects of indisulam, and substantial inhibition occurred at concentrations around 10 µM, but the various functions of the immune system exhibited different sensitivities. The weaker activation of T cells via CD3-crosslinking was more sensitive than the stronger activation via the high-affinity TCR. T cells remained capable of killing tumor cells after treatment with indisulam up to 40 µM, but T cell cytotoxicity was impaired at 160 µM indisulam. While moDC maturation was also rather resistant, T cell priming was almost completely abolished at a concentration of 10 µM. Conclusions: These effects should be considered in possible future combinations of immunotherapy with the mRNA splicing inhibitor indisulam.
Collapse
Affiliation(s)
- Lisa Arnet
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität ErlangenNürnberg, 91054 Erlangen, Germany; (L.A.); (L.E.); (A.H.); (C.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität ErlangenNürnberg, 91054 Erlangen, Germany; (L.A.); (L.E.); (A.H.); (C.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Annett Hamann
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität ErlangenNürnberg, 91054 Erlangen, Germany; (L.A.); (L.E.); (A.H.); (C.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität ErlangenNürnberg, 91054 Erlangen, Germany; (L.A.); (L.E.); (A.H.); (C.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität ErlangenNürnberg, 91054 Erlangen, Germany; (L.A.); (L.E.); (A.H.); (C.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität ErlangenNürnberg, 91054 Erlangen, Germany; (L.A.); (L.E.); (A.H.); (C.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
34
|
Saavedra-Almarza J, Malgue F, García-Gómez M, Gouët S, Edwards N, Palma V, Rosemblatt M, Sauma D. Unveiling the role of resident memory T cells in psoriasis. J Leukoc Biol 2025; 117:qiae254. [PMID: 39689031 DOI: 10.1093/jleuko/qiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by periods of remission and relapse. In this pathology, keratinocytes, dendritic cells, and different subpopulations of T cells are critical to developing psoriatic lesions. Although current treatments can reduce symptoms, they reappear in previously injured areas months after stopping treatment. Evidence has pointed out that besides T-helper 17 cells, other T-cell subsets may be involved in relapses. This review focuses on the leading evidence linking resident memory T cells and P2X7 receptor to psoriasis' pathogenesis and their role in this pathology. Finally, we discuss some of the most widely used experimental murine models and novel strategies to investigate further the role of resident memory T cells in psoriasis.
Collapse
Affiliation(s)
- Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Felipe Malgue
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Solange Gouët
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalie Edwards
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Providencia, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
| |
Collapse
|
35
|
Liu J, Li P, Zhang Y, Zheng L. Transcriptome combined with single-cell sequencing explored prognostic markers associated with T cell exhaustion characteristics in head and neck squamous carcinoma. Sci Rep 2025; 15:8209. [PMID: 40065044 PMCID: PMC11893791 DOI: 10.1038/s41598-025-91299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) ranks among the most prevalent cancers worldwide, characterized by significant heterogeneity and a complex immune microenvironment. T cell exhaustion is pivotal in the pathogenesis of HNSC, where depleted T cells exhibit reduced proliferative capacity and diminished effector function, facilitating tumor immune escape and subsequent disease progression. A thorough understanding of the primary mechanisms driving T cell depletion within the tumor microenvironment is essential for enhancing the efficacy of immunotherapeutic approaches in HNSC, with profound implications for patient outcomes. In this study, a single-cell atlas of HNSC was constructed, enabling an in-depth analysis of T cell heterogeneity. The differentiation trajectory of T cells, transitioning from normal tissue to HNSC, was characterized, revealing a predisposition toward depletion in the C2 T cell subgroup. A subsequent cross-analysis of significantly upregulated differentially expressed genes in the C2 T cell subset identified five characteristics pertinent to T cell C2, which informed the development of a clinical prognostic model. Additionally, maximum half inhibitory concentration (IC50) values for various pharmacological agents were calculated, leading to the identification of eleven drugs relevant to the risk model, providing an intriguing starting point for further work in personalized cancer treatment. However, certain limitations of this study must be acknowledged. While T cell heterogeneity and differentiation trajectories were mapped, the interrelationships among these subpopulations remain poorly understood. Further research is required to elucidate the specific biological processes and molecular evolutionary mechanisms involved. The insights from this study provide a valuable foundation for future investigations into the molecular mechanisms and immune landscape associated with the progression from normal tissue to malignant squamous cell carcinoma.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yuanyuan Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshedong Road, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
36
|
Lu W, Gong Y, Liu L, Zhang Y, Tian X, Liu H. Association of systemic immune-inflammatory index with all-cause and cancer mortality in Americans aged 60 years and older. FRONTIERS IN AGING 2025; 6:1502746. [PMID: 40129693 PMCID: PMC11931307 DOI: 10.3389/fragi.2025.1502746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/28/2025] [Indexed: 03/26/2025]
Abstract
Background This research delved into the association between the systemic immune-inflammatory index (SII) and both all-cause and cancer-specific mortality among individuals aged 60 years and above in the United States during the period from 1999 to 2018, with follow-up extending until 31 December 2019. The data utilized was sourced from 4295 population-based participants in the National Health and Nutrition Examination Survey (NHANES). Methods To analyze the relationship between SII and mortality, the study employed Cox proportional-risk models, restricted cubic spline curves, survival curves, and subgroup analyses. Results The average age of the participants was 70.7 (±7.6) years, the median follow-up duration was 131.7 (±59.8) months, and the all-cause mortality rate stood at 50.5%. Findings from the Cox regression model indicated that, after adjusting for covariates, SII was significantly and linearly related to all-cause mortality (hazard ratio HR = 1.31, 95% confidence interval CI = 1.15-1.48). Moreover, the relationship between SII and cancer mortality exhibited a U-shaped pattern. Results from the survival curves suggested that a higher SII was associated with an augmented risk of both all-cause mortality and cancer mortality. Conclusion There is a significant association between higher SII levels and increased risk of all-cause and cancer-specific mortality in the US population aged 60 years and older.
Collapse
Affiliation(s)
- Wangfeng Lu
- Department of Gastrointestinal Surgery, Shangluo Central Hospital, Shangluo, Shanxi, China
| | - Yuliang Gong
- Department of Gastrointestinal Surgery, Shangluo Central Hospital, Shangluo, Shanxi, China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Shangluo Central Hospital, Shangluo, Shanxi, China
| | - Yonghong Zhang
- Department of Gastrointestinal Surgery, Shangluo Central Hospital, Shangluo, Shanxi, China
| | - Xiaojian Tian
- Department of Gastrointestinal Surgery, Shangluo Central Hospital, Shangluo, Shanxi, China
| | - Huanxian Liu
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Lang SQ, Kong JJ, Li GB, Liu J. Prognostic value of CRP-albumin-lymphocyte index in patients with intrahepatic cholangiocarcinoma after radical resection. Front Med (Lausanne) 2025; 12:1543665. [PMID: 40115790 PMCID: PMC11922830 DOI: 10.3389/fmed.2025.1543665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose The aim of this study is to explore the prognostic value of CRP-Albumin-Lymphocyte (CALLY) index in patients undergoing radical resection of intrahepatic cholangiocarcinoma (ICC). Patients and methods Retrospectively collected clinical data of 286 patients with ICC who underwent radical surgery at Shandong Provincial Hospital from July 2010 to July 2021. Univariate and multivariate analyses were used to evaluate the correlation between the CALLY index and overall survival (OS) and recurrence-free survival (RFS), and a nomogram prediction model was established based on the results. The accuracy of the model was evaluated using concordance index (C-index), calibration curves, decision curve analysis (DCA), and the receiver operating characteristic (ROC) curve was used to compare the prognostic value of the nomogram model with the TNM staging system. Results The optimal cut-off value of CALLY index was 1.81. In the training set, multifactorial Cox regression analysis showed that CALLY index <1.81 was an independent risk factor for OS and RFS (p < 0.05). Compared to neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune inflammation index (SII), and modified Glasgow prognostic score (mGPS), CALLY index had a higher area under the curve (AUC). The nomogram established based on the results of multifactorial analysis demonstrated strong efficacy in survival prediction, and the ROC curve showed that the nomogram had a higher prognostic value than TNM staging. Conclusion The CALLY index is independently associated with OS and RFS in patients after radical resection of ICC, and the nomogram model based on it shows significantly higher efficacy in predicting the long-term prognosis of patients after radical resection of ICC, and is more accurate than TNM staging.
Collapse
Affiliation(s)
- Shi-Qian Lang
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun-Jie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guang-Bing Li
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
38
|
Prince N, Begum S, Mendez KM, Ramirez LG, Chen Y, Chen Q, Chu SH, Kachroo P, Levy O, Diray-Arce J, Palma P, Litonjua AA, Weiss ST, Kelly RS, Lasky-Su JA. Network analysis reveals protein modules associated with childhood respiratory diseases. J Allergy Clin Immunol 2025:S0091-6749(25)00261-1. [PMID: 40057284 DOI: 10.1016/j.jaci.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND The first year of life represents a dynamic immune development period that impacts the risk of developing respiratory-related diseases, including asthma, recurrent infections, and eczema. However, the role of immune-mediating proteins in childhood respiratory diseases is not well characterized in early life. OBJECTIVE The objective of this study was to investigate relationships between protein profiles at age 1 year and respiratory-related diseases by age 6 years, including asthma, recurrent wheeze, respiratory infections, and eczema. METHODS We applied weighted gene correlation network analysis to derive modules of highly correlated proteins during early life immune development using plasma samples collected from children at age 1 year (n = 294) in the Vitamin D Antenatal Asthma Reduction Trial. Using regression analysis, we evaluated relationships between protein modules at age 1 and respiratory-related diseases by age 6. We integrated protein modules with additional omics and social, demographic, and environmental data for further characterization. RESULTS Our analysis identified 4 protein modules at age 1 year associated with incidence of childhood asthma and/or recurrent wheeze (adjusted Ps = .02 to .03), respiratory infections (adjusted Ps = 6.3 × 10-9 to 2.9 × 10-6), and eczema (adjusted P = .01) by age 6 years; associations between modules and clinical outcomes were temporally sensitive and were not recapitulated using protein profiles at age 6 years. Age 1 modules were associated with environmental factors (adjusted Ps = 2.8 × 10-10 to .03) and alterations in metabolomic pathways (adjusted Ps = 2.8 × 10-6 to .04). No genome-wide single nucleotide polymorphisms were identified for any protein module. CONCLUSION These findings suggested that protein profiles at age 1 year predicted development of respiratory-related diseases by age 6. Applying network approaches to study protein profiles may represent a new strategy to identify children susceptible to respiratory-related diseases in the first year of life.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Kevin M Mendez
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Lourdes G Ramirez
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Qingwen Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Ofer Levy
- Harvard Medical School, Boston, Mass; Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Joann Diray-Arce
- Harvard Medical School, Boston, Mass; Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| |
Collapse
|
39
|
Sun J, Wang P, Yi Z, Wu Y, Wei Y, Fang H, Song D, Chen Y, Du H, Huang J, Li Q, Yang D, Ren G, Li H. Blocking WNT7A Enhances MHC-I Antigen Presentation and Enhances the Effectiveness of Immune Checkpoint Blockade Therapy. Cancer Immunol Res 2025; 13:400-416. [PMID: 39602462 DOI: 10.1158/2326-6066.cir-24-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/09/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
The limited infiltration of CD8+ T cells in tumors hampers the effectiveness of T cell-based immunotherapy, yet the mechanisms that limit tumor infiltration by CD8+ T cells remain unclear. Through bulk RNA sequencing of human tumors, we identified a strong correlation between WNT7A expression and reduced CD8+ T-cell infiltration. Further investigation demonstrated that inhibiting WNT7A substantially enhanced MHC-I expression on tumor cells. Mechanistically, WNT7A inhibition inactivated the Wnt/β-catenin signaling pathway and thus resulted in reduced physical interaction between β-catenin and p65 in the cytoplasm, which increased the nuclear translocation of p65 and activated the NF-κB pathway, ultimately promoting the transcription of genes encoding MHC-I molecules. We found that our lead compound, 1365-0109, disrupted the protein-protein interaction between WNT7A and its receptor FZD5, resulting in the upregulation of MHC-I expression. In murine tumor models, both genetic and pharmaceutical suppression of WNT7A led to increased MHC-I levels on tumor cells, and consequently enhanced the infiltration and functionality of CD8+ T cells, which bolstered antitumor immunity and improved the effectiveness of immune checkpoint blockade therapy. These findings have elucidated the intrinsic mechanisms of WNT7A-induced immune suppression, suggesting that therapeutic interventions targeting WNT7A hold promise for enhancing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pin Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu, China
- Center of Breast and Thyroid Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing, China
| | - Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dejuan Yang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Yang I, Jeong NH, Choi YA, Choi DK, Lee HS, Kwon TK, Lee S, Kim SH. Aspalathin, a key flavonoid in rooibos, restores STAT6-mediated immune dysregulation in atopic dermatitis. Biomed Pharmacother 2025; 184:117926. [PMID: 39970731 DOI: 10.1016/j.biopha.2025.117926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025] Open
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease whose incidence is increasing worldwide, requires the development of alternative treatments due to limited treatment options and concerns about side effects of therapeutic agents. Aspalathin (ASP) is the primary flavonoid found in rooibos, an herb traditionally used for allergies and eczema, accounting for over 40 % of the total flavonoid content, especially in its unfermented state (Green rooibos). This research conducted a thorough investigation into the pharmacological properties of ASP on AD, emphasizing local responses via activated keratinocytes, systemic responses involving T cells and basophils, and an integrated assessment using an AD mouse model. Topical application of ASP significantly reduced AD phenotypes, including erythema, scaling, and increased skin thickness, in AD mouse model. Histological analysis indicated a decrease in the infiltration of immune cells in skin lesions. Moreover, ASP down-regulated inflammatory markers, including T helper (Th)1 and Th2 cytokines, in both skin tissues and activated mouse T cells. In particular, ASP significantly reduced serum immunoglobulin (Ig)E and IgG2a levels. ASP suppressed the expression of cytokines linked to allergy and inflammation in T cells, basophils, and keratinocytes. Mechanistically, ASP exhibited anti-inflammatory properties by inhibiting STAT6 and NFAT1 activation in AD mouse skin and in activated T cells, basophils, and keratinocytes. In conclusion, ASP displayed pronounced effectiveness in relieving AD by sophisticated modulation of immune responses across both local and systemic domains. These findings highlight ASP's promise as a therapeutic intervention for AD, providing a solid scientific basis for future exploration and development.
Collapse
Affiliation(s)
- Inyoung Yang
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Na-Hee Jeong
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Ae Choi
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong Kyu Choi
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Shik Lee
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Soyoung Lee
- Department of Innovative Pharmaceutical Sciences, Advanced Institute of Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
41
|
Saeed F, Adamopoulos IE. Pathogenesis of psoriatic arthritis: new insights from a bone marrow perspective. Curr Opin Rheumatol 2025; 37:136-141. [PMID: 39470182 PMCID: PMC11779588 DOI: 10.1097/bor.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Psoriatic arthritis is an immune-mediated disease that primarily affects the skin and joints. It falls under the umbrella term of rheumatic diseases, which describes a group of closely related yet distinct disorders with many common underlying molecular pathways. Despite the distinct clinical manifestation of each disorder, the shared therapeutic strategies attest to the commonality of cellular and molecular underpinnings. Herein we provide a concise yet comprehensive overview of the interleukin (IL)-23/IL-17 axis and its involvement in mechanistic pathways leading to the pathogenesis of this dual skin and joint clinical manifestation which is characteristic of psoriatic arthritis and other rheumatic diseases. RECENT FINDINGS The interconnection between activated innate immune cells and adaptive immunity has transformed current thinking to include other organs such as the bone marrow as potential tissue of disease origin. A plethora of animal models and genetic studies converge on the critical role of IL-23/IL-17 axis, and highlight the importance of myeloid cell activation as common pathways between autoinflammatory and autoimmune diseases and chronic inflammation. These findings underscore the intricate immune mechanisms involved in inflammatory arthritis and highlight molecular mechanisms in disease pathogenesis. SUMMARY These insights pave the way for the development of novel diagnostic and therapeutic strategies, with a focus on translating these findings into improved clinical practice.
Collapse
Affiliation(s)
- Fatima Saeed
- Department of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Iannis E. Adamopoulos
- Department of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
42
|
Burnham AJ, Toma AI, Shah D, Cha T, Kaimari S, Behara M, Sekar KPC, Kamalakar A, Willett N, Botchwey E, Goudy SL. FTY720P-treated macrophages in PEG-4MAL hydrogels promote oral wound healing. Cytotherapy 2025; 27:338-349. [PMID: 39665738 PMCID: PMC11810592 DOI: 10.1016/j.jcyt.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AIMS Oral wound healing involves hemostasis, inflammation, proliferation and tissue remodeling. The oral cavity is a complex wound healing environment because of the presence of saliva, a high bacterial burden and ongoing physical trauma from eating. The inflammatory component of wound healing balances the polarization of macrophages in healing tissues between M1 inflammatory macrophages and M2 anti-inflammatory macrophages. M2 macrophages secrete anti-inflammatory and pro-regenerative cytokines and chemokines, which aid wound healing. Fingolimod, or FTY720, a Food and Drug Administration-approved sphingosine-1-phosphate modulator, has been implicated in inducing the polarization of macrophages to the M2 phenotype. In this study, we investigated whether macrophage pre-treatment with phosphorylated FTY720 (FTY720P), the bioactive form of the drug, in a PEG-4MAL hydrogel promotes improved oral wound healing in a critically sized oral mucosal defect model. METHODS AND RESULTS Using cytokine dot blots and Luminex cytokine assays (MilliporeSigma, Burlington, MA, USA), FTY720P-treated murine RAW 264.7 and human THP1-differentiated macrophages in PEG-4MAL hydrogels secreted chemokines and cytokines known to regulate inflammation (e.g., interleukin [IL] 4, IL-13) and induce M2 macrophage polarization (e.g., CCL6, CCL22), leukocyte migration (e.g., CXCL2, CCL2, CCL12, CCL22), angiogenesis (e.g., vascular endothelial growth factor) and epithelialization (e.g., IL-1, IL-17, IL-22). In vitro, FTY720P-treated cells induced chemotaxis of macrophages and fibroblasts in Transwell assays (Corning, Corning, NY, USA) and oral epithelial scratch wound closure. In a murine oronasal fistula (ONF) model of oral wound healing, the local application of FTY720P-treated macrophages in PEG-4MAL hydrogels significantly increased wound closure (75% closure) relative to non-treated cells (40% closure) and blank hydrogel controls (25% closure) (P < 0.0001). Flow cytometry of mouse palatal tissue showed that application of FTY720P-treated macrophage hydrogels to ONFs significantly increased day 7 percentage of M1 and M2 macrophages, mesenchymal stromal cells and CD19+ B cells. Significantly fewer neutrophils, monocytes, CD4+/CD8+ T cells and endothelial cells were observed in the FTY720P-treated macrophage defects, suggesting that FTY720P-treated macrophages in hydrogels promote oral wound healing via suppression of granulation and resolution of inflammation and promotion of tissue maturation. CONCLUSIONS Our data provide new insights into the use of potential FTY720P-treated macrophage therapies for oral wound healing and have clinical implications for cleft palate and oral surgery.
Collapse
Affiliation(s)
- Andre J Burnham
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA; Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afra I Toma
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daniel Shah
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tim Cha
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sundus Kaimari
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Monica Behara
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Archana Kamalakar
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nick Willett
- Department of Bioengineering, University of Oregon, Eugene, Oregon, USA
| | - Edward Botchwey
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Steven L Goudy
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Otolaryngology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
43
|
Li Y, Xu Y, Su W, Xu J, Ye Z, Wang Z, Liu Q, Chen F. Exploring the immuno-nano nexus: A paradigm shift in tumor vaccines. Biomed Pharmacother 2025; 184:117897. [PMID: 39921945 DOI: 10.1016/j.biopha.2025.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tumor vaccines have become a crucial strategy in cancer immunotherapy. Challenges of traditional tumor vaccines include inadequate immune activation and low efficacy of antigen delivery. Nanoparticles, with their tunable properties and versatile functionalities, have redefined the landscape of tumor vaccine design. In this review, we outline the multifaceted roles of nanoparticles in tumor vaccines, ranging from their capacity as delivery vehicles to their function as immunomodulatory adjuvants capable of stimulating anti-tumor immunity. We discuss how this innovative approach significantly boosts antigen presentation by leveraging tailored nanoparticles that facilitate efficient uptake by antigen-presenting cells. These nanoparticles have been meticulously designed to overcome biological barriers, ensuring optimal delivery to lymph nodes and effective interaction with the immune system. Overall, this review highlights the transformative power of nanotechnology in redefining the principles of tumor vaccines. The intent is to inform more efficacious and precise cancer immunotherapies. The integration of these advanced nanotechnological strategies should unlock new frontiers in tumor vaccine development, enhancing their potential to elicit robust and durable anti-tumor immunity.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yike Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenwen Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jia Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zifei Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhuoyi Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
44
|
Kim M, Je Y, Chun J, Youn YH, Park H, Nahm JH, Kim J. Helicobacter pylori Eradication Is Associated With a Reduced Risk of Metachronous Gastric Neoplasia by Restoring Immune Function in the Gastric Mucosa. Helicobacter 2025; 30:e70030. [PMID: 40169366 PMCID: PMC11961346 DOI: 10.1111/hel.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Helicobacter pylori infection is a significant contributing factor of gastric cancer. Metachronous neoplasms also pose a risk. The mechanism underlying the impact of H. pylori eradication on preventing metachronous gastric cancer is unclear. This study aimed to investigate immunity changes in gastric mucosa after H. pylori eradication and to identify mechanisms preventing metachronous recurrence. MATERIALS AND METHODS Patients diagnosed with gastric neoplasm and H. pylori infection, who underwent endoscopic resection, were included. Thirty-six cases of metachronous neoplasms occurring after eradication (metachronous group) were compared to 36 controls matched for age, sex, atrophy, and metaplasia (control group). Histological features and immunohistochemical staining for T-cell (CD3, CD4, and CD8) and immune exhaustion (forkhead/winged helix transcription factor and programmed cell death-ligand 1) markers in the non-tumor-bearing mucosa were evaluated. RESULTS In histologic features, glandular atrophy and intestinal metaplasia in the gastric mucosa significantly improved following H. pylori eradication in the control group (p < 0.001, 0.008), whereas they did not improve in the metachronous group (p = 0.449, 0.609). CD8 and CD8/CD3 ratios increased in the control group (p < 0.001, 0.04), but did not show differences in the metachronous group (p = 0.057, 0.245). The CD4/CD3 ratio and programmed cell death-ligand 1/CD4 expression significantly decreased after H. pylori eradication in the control group (p = 0.003, 0.042), but not in the metachronous group (p = 0.54, 0.55). CONCLUSIONS This observational study suggests that H. pylori eradication may prevent the recurrence of gastric neoplasia by improving histological inflammation and overcoming immune exhaustion.
Collapse
Affiliation(s)
- Min‐Jae Kim
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Yeonjin Je
- Graduate School of MedicineYonsei UniversitySeoulKorea
| | - Jaeyoung Chun
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Young Hoon Youn
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Ji Hae Nahm
- Department of Pathology, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Jie‐Hyun Kim
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| |
Collapse
|
45
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. m6A RNA methylation: a pivotal regulator of tumor immunity and a promising target for cancer immunotherapy. J Transl Med 2025; 23:245. [PMID: 40022120 PMCID: PMC11871626 DOI: 10.1186/s12967-025-06221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
M6A modification is one of the most common regulatory mechanisms of gene expression in eukaryotic cells, influencing processes such as RNA splicing, degradation, stability, and protein translation. Studies have shown that m6A methylation is closely associated with tumorigenesis and progression, and it plays a key regulatory role in tumor immune responses. m6A modification participates in regulating the differentiation and maturation of immune cells, as well as related anti-tumor immune responses. In the tumor microenvironment, m6A modification can also affect immune cell recruitment, activation, and polarization, thereby promoting or inhibiting tumor cell proliferation and metastasis, and reshaping the tumor immune microenvironment. In recent years, immunotherapies for tumors, such as immune checkpoint inhibitors and adoptive cell immunotherapy, have been increasingly applied in clinical settings, achieving favorable outcomes. Targeting m6A modifications to modulate the immune system, such as using small-molecule inhibitors to target dysregulated m6A regulatory factors or inducing immune cell reprogramming, can enhance anti-tumor immune responses and strengthen immune cell recognition and cytotoxicity against tumor cells. m6A modification represents a new direction in tumor immunotherapy with promising clinical potential. This review discusses the regulatory role of m6A methylation on immune cells and tumor immune responses and explores new strategies for immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Fan Zhou
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China.
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
46
|
Leung J, Qu L, Ye Q, Zhong Z. The immune duality of osteopontin and its therapeutic implications for kidney transplantation. Front Immunol 2025; 16:1520777. [PMID: 40093009 PMCID: PMC11906708 DOI: 10.3389/fimmu.2025.1520777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Osteopontin (OPN) is a multifunctional glycoprotein with various structural domains that enable it to perform diverse functions in both physiological and pathological states. This review comprehensively examines OPN from multiple perspectives, including its protein structure, interactions with receptors, interactions with immune cells, and roles in kidney diseases and transplantation. This review explores the immunological duality of OPN and its significance and value as a biomarker and therapeutic target in kidney transplantation. In cancer, OPN typically promotes tumor evasion by suppressing the immune system. Conversely, in immune-related kidney diseases, particularly kidney transplantation, OPN activates the immune system by enhancing the migration and activation of immune cells, thereby exacerbating kidney damage. This immunological duality may stem from different OPN splice variants and the exposure, after cleavage, of different structural domains, which play distinct biological roles in cellular interactions. Additionally, OPN has a significant biological impact posttransplantation and on chronic kidney disease and, highlighting its importance as a biomarker and potential therapeutic target. Future research should further explore the specific mechanisms of OPN in kidney transplantation to improve treatment strategies and enhance patient quality of life.
Collapse
Affiliation(s)
- Junto Leung
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| | - Lei Qu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
- The 3rd Xiangya Hospital of Central South University, NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| |
Collapse
|
47
|
Zhang S, Wu J, Wang L, Zhang C, Zhang Y, Feng Y. Exploring the hepatic-ophthalmic axis through immune modulation and cellular dynamics in diabetic retinopathy and non-alcoholic fatty liver disease. Hum Genomics 2025; 19:19. [PMID: 40011971 DOI: 10.1186/s40246-025-00730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Dysfunctions within the liver system are intricately linked to the progression of diabetic retinopathy (DR) and non-alcoholic fatty liver disease (NAFLD). This study leverages systematic analysis to elucidate the complex cross-talk and communication pathways among diverse cell populations implicated in the pathogenesis of DR and NAFLD. METHODS Single-cell RNA sequencing data for proliferative diabetic retinopathy (PDR) and NAFLD were retrieved from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was conducted and followed by pseudo-time analysis to delineate dynamic changes in core cells and differentially expressed genes (DEGs). CellChat was employed to predict intercellular communication and signaling pathways. Additionally, gene set enrichment and variation analyses (GSEA and GSVA) were performed to uncover key functional enrichments. RESULTS Our comparative analysis of the two datasets focused on T cells, macrophages and endothelial cells, revealing SYNE2 as a notable DEG. Notably, common genes including PYHIN1, SLC38A1, ETS1 (T cells), PPFIBP1, LIFR, HSPG2 (endothelial cells), and MSR1 (macrophages), emerged among the top 50 DEGs across these cell types. The CD45 signaling pathway was pivotal for T cells and macrophages, exerting profound effects on other cells in both PDR and NAFLD. Moreover, GSEA and GSVA underscored their involvement in cellular communication, immune modulation, energy metabolism, mitotic processes. CONCLUSION The comprehensive investigation of T cells, macrophages, endothelial cells, and the CD45 signaling pathway advances our understanding of the intricate biological processes underpinning DR and NAFLD. This research underscores the imperative of exploring immune-related cell interactions, shedding light on novel therapeutic avenues in these disease contexts.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiajun Wu
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leilei Wang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
48
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
49
|
Jernigan JE, Staley HA, Baty Z, Bolen ML, Gomes BN, Holt J, Cole CL, Neighbarger NK, Dheeravath K, Merchak AR, Menees KB, Coombes SA, Tansey MG. RGS10 attenuates systemic immune dysregulation induced by chronic inflammatory stress. J Neuroinflammation 2025; 22:49. [PMID: 39994765 PMCID: PMC11852585 DOI: 10.1186/s12974-024-03322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 02/26/2025] Open
Abstract
Regulator of G-protein signaling 10 (RGS10), a key homeostatic regulator of immune cells, has been implicated in multiple diseases associated with aging and chronic inflammation including Parkinson's Disease (PD). Interestingly, subjects with idiopathic PD display reduced levels of RGS10 in subsets of peripheral immune cells. Additionally, individuals with PD have been shown to have increased activated peripheral immune cells in cerebrospinal fluid (CSF) compared to age-matched healthy controls. However, it is unknown whether peripheral immune cells in the CSF of individuals with PD also exhibit decreased levels of RGS10. Utilizing the Michael J. Fox Foundation Parkinson's Progression Markers Initiative (PPMI) study we found that RGS10 levels are decreased in the CSF of individuals with PD compared to healthy controls and prodromal individuals. As RGS10 levels are decreased in the CSF and circulating peripheral immune cells of individuals with PD, we hypothesized that RGS10 regulates peripheral immune cell responses to chronic systemic inflammation (CSI) prior to the onset of neurodegeneration. To test this, we induced CSI for 6 weeks in C57BL6/J mice and RGS10 KO mice to assess circulating and CNS-associated immune cell responses. We found that RGS10 deficiency synergizes with CSI to induce a bias for inflammatory and cytotoxic cell populations, a reduction in antigen presentation machinery in peripheral blood immune cells, as well as in and around the brain that is most notable in males. These results highlight RGS10 as an important regulator of the systemic immune response to CSI and implicate RGS10 as a potential contributor to the development of immune dysregulation in PD.
Collapse
Affiliation(s)
- Janna E Jernigan
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Hannah A Staley
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Zachary Baty
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, USA
| | - MacKenzie L Bolen
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Beatriz Nuñes Gomes
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jenny Holt
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra L Cole
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K Neighbarger
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kruthika Dheeravath
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Andrea R Merchak
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kelly B Menees
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
50
|
Li J, Jiang L, Ma Q, Zhang Z, Zheng S, Qiu J, Pang Y, Wang J. Evodiamine inhibits programmed cell death ligand 1 expression via the PI3K/AKT signaling pathway to regulate antitumor immunity in melanoma. Sci Rep 2025; 15:6649. [PMID: 39994441 PMCID: PMC11850830 DOI: 10.1038/s41598-025-91137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Malignant melanoma, a rare and aggressive skin cancer, arises from the transformation of cutaneous melanocytes and is associated with a poor prognosis. Evodiamine (EVO), a bioactive compound derived from traditional Chinese herbal medicine, has demonstrated significant inhibitory effects on various tumor cells. In this study, we aimed to investigate the potential of EVO in regulating melanoma immunity and elucidate its underlying mechanisms. Experimental results revealed that the IC50 value of EVO in B16-F10 cells for 24, 48, and 72 h were 11.73, 5.083, and 4.604 µM, respectively. EVO inhibited the proliferation, invasion, and metastasis of B16-F10 cells by more than 50%, while promoting apoptosis of higher concentration of EVO. EVO also significantly suppressed tumor growth by more than 80% and reduced spleen damage in tumor-bearing mice. Treatment with EVO led to a marked increase in T-cell subsets in the spleen, bone marrow, and tumors, with immunohistochemical (IHC) staining in particular showing about 50% higher. Furthermore, EVO inhibited the expression of programmed cell death ligand 1 (PD-L1) and the PI3K/AKT signaling pathway-related proteins in both B16-F10 cells and tumors. These findings suggest that EVO exerts antitumor effects by enhancing the tumor immune microenvironment and indicates its potential as a therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Li Jiang
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Qianlong Ma
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhenglong Zhang
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Shengping Zheng
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jing Qiu
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yunqing Pang
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China.
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Jing Wang
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China.
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|