1
|
Roth SK, Uth C, Orizar I, Rico A, Hedberg P, Norkko A, Lewandowska A. Synergistic effects of the antibiotic ciprofloxacin and a simulated heatwave on the Baltic Sea dinoflagellate Apocalathium malmogiense. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107155. [PMID: 40258321 DOI: 10.1016/j.marenvres.2025.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 04/23/2025]
Abstract
Climate change-driven heatwaves in the Baltic Sea are becoming more frequent and intense, potentially exacerbating phytoplankton blooms that impact biodiversity and ecosystem functioning. Alongside this, chemical pollutants, such as antibiotics, may compound these effects. This study examined the combined impacts of a simulated heatwave (+5 °C) and the antibiotic ciprofloxacin (0.1 μg L-1) on the dinoflagellate Apocalathium malmogiense. We assessed cell counts, size, growth rates, Chlorophyll-a (Chl-a) content, and nutrient uptake. The simulated heatwave increased growth and Chl-a content but reduced cell size, while ciprofloxacin alone had no effect on growth response parameters. However, the combination of both stressors significantly reduced cell counts (-17 %), Chl-a content (-34 %), and growth rates (-20 %). Ciprofloxacin also decreased nitrogen uptake by over 40 %, exacerbating the nitrogen deficit caused by the heatwave. This study highlights the importance of testing global change stressors in combination, as synergistic effects may otherwise go undetected if only studied in isolation.
Collapse
Affiliation(s)
- Sabrina K Roth
- Tvärminne Zoological Station, University of Helsinki, Finland.
| | - Catharina Uth
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Iris Orizar
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Spain
| | - Per Hedberg
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, Finland
| | | |
Collapse
|
2
|
Yang Y, Chen Q, Pan J, Liu Y, Luigi NF. Growing status rather than temperature was more associated with phytoplankton stoichiometry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125175. [PMID: 40188754 DOI: 10.1016/j.jenvman.2025.125175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/27/2025]
Abstract
Phytoplankton growth is regulated primarily by temperature and nutrient availability. Due to the increasing trend of global warming and eutrophication, it is important to unravel the responses of phytoplankton to varying temperatures and nutrients. This study investigated the interactive effects of temperature (15 °C vs 25 °C) and nitrogen/phosphorus availability (N/P ratios: 13-77) on phytoplankton stoichiometry and community assembly in subtropical reservoir communities. We assumed that (1) Temperature effect on stoichiometry would intensify under nutrient limitation due to altered metabolic demands. Phosphorus limitation would dominate at higher temperatures through growth rate-mediated utilization; (2) Stoichiometric homeostasis would primarily reflect growth phase rather than thermal regime. Results demonstrated that temperature-nutrient interactions shape cellular stoichiometry through growth dynamics. Biomass increased with warming and nutrient enrichment, particularly under P-repleted conditions. Alkaline phosphatase, acting as a strategy for P-limitation, showed temperature-dependent, phase-specific patterns. Cellular elemental contents exhibited greater thermal sensitivity during the exponential growth, aligning with ribosomal investment demands. The homeostasis of phytoplankton was growth-phase dependent, with stationary-phase communities showing plasticity at 25 °C and stability at 15 °C. Temperature affected the stoichiometry indirectly by adjusting the growth rate and metabolism which changes the nutrient demand and resource allocation within cells. Cyanobacteria dominated warmer treatments through enhanced P-use efficiency. This study highlighted temperature-mediated shifts in nutrient limitation thresholds and homeostasis strategies, which provides evidences for predicting bloom dynamic under eutrophication and climate change in this region.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, China; Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, 550025, Guiyang, China
| | - Qinglan Chen
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, China
| | - Jingyun Pan
- South China Sea Institute of Planning and Environmental Research, 510300, Guangzhou, China
| | - Yingliang Liu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, China; Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, 550025, Guiyang, China.
| | - Naselli-Flores Luigi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 28, 90123, Palermo, Italy
| |
Collapse
|
3
|
González-Olalla JM, Brahney J. Diverse dust sources and warming trigger cyanobacteria abundance in freshwater ecosystems in the western United States. ENVIRONMENTAL RESEARCH 2025; 278:121663. [PMID: 40268222 DOI: 10.1016/j.envres.2025.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/13/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The rise in global temperature and the increase in atmospheric transport and deposition of dust linked to greater aridity, land abandonment, and wildfires, are placing significant stress on freshwater microbial communities. Temperature increases and the nutrients contained in the dust may independently and together alter the metabolism and structure of these communities. However, dust chemistry is widely variable, and pre-existing lake conditions will likely influence the response of the algal and microbial communities to added nutrients and temperature stress. To fill this gap of knowledge, we tested the metabolic and structural response of phytoplankton in two aquatic ecosystems in the Western United States (Half-Moon Lake and Jordanelle Reservoir), which have similar trophic status but different biogeochemical properties, in response to two types of atmospheric dust from the region. The results show that the Temperature × Dust interaction led to greater cyanobacteria growth in Half-Moon compared to Jordanelle. The effect on metabolism also differed, with Half-Moon showing a tendency toward heterotrophy, while Jordanelle trended toward autotrophy. Interestingly, our study reveals that the direction of the response was mainly regulated by each ecosystem's properties, while the magnitude of the response was controlled by the type of dust. Through this work, we demonstrate that oligotrophic freshwater ecosystems are sensitive to dust-nutrient additions leading to cyanobacterial blooms and highlight the importance of considering watershed biogeochemical properties and exposure to different types of dust in lake and reservoir management strategies.
Collapse
Affiliation(s)
- Juan Manuel González-Olalla
- Institute of Water Research, University of Granada, Avenida de Madrid, 11, Granada 18071, Spain; Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, 84321, USA.
| | - Janice Brahney
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, UT, 84321, USA
| |
Collapse
|
4
|
Meng Y, Feng T, Fang Z, Sun W, Zhao S, Yang G, Wang L. Impacts of decadal increasing nitrogen deposition on North Pacific marine ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124844. [PMID: 40056589 DOI: 10.1016/j.jenvman.2025.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Atmospheric nitrogen deposition is one of the key sources of marine nutrients, significantly affecting marine ecosystems. However, the ecological response of marine ecosystems to current and future changes in nitrogen deposition remains unclear. This study investigates the effects of rising nitrogen deposition during the past decades on North Pacific ecosystems by utilizing a coupled physical-biological model. We estimate that the drastic 170% increase in nitrogen deposition during 1950-2020, as indicated by the ACCMIP project, leads to a 1% rise in plankton biomass and a 0.4% decrease in phosphate. These changes boost marine primary productivity and increase the demand for phosphorus, particularly in mid to low-latitude regions. Continued nitrogen deposition under different emission scenarios (RCP2.6, 6.0, and 8.5) during the next decades would exacerbate nutrient imbalances, with the nitrogen-to-phosphorus ratio rising by >0.25%, adversely affecting ecosystem stability. These findings provide insights into future responses of marine ecosystems to rising nitrogen deposition.
Collapse
Affiliation(s)
- Yanjiahui Meng
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China
| | - Tian Feng
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China; Institute of East China Sea, Ningbo University, Ningbo, China.
| | - Zhen Fang
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China; Ningbo Natural Resources & Planning Big Data Center, Ningbo, Zhejiang, China
| | - Weiwei Sun
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China.
| | - Shuyu Zhao
- Ningbo Meteorological Bureau, Ningbo, Zhejiang, China
| | - Gang Yang
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China
| | - Lihua Wang
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Fahimi P, Irwin AJ, Lynch M. Costs and benefits of phytoplankton motility. ARXIV 2025:arXiv:2503.14625v1. [PMID: 40166745 PMCID: PMC11957218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The motility skills of phytoplankton have evolved and persisted over millions of years, primarily in response to factors such as nutrient and light availability, temperature and viscosity gradients, turbulence, and predation pressure. Phytoplankton motility is broadly categorized into swimming and buoyancy regulation. Despite studies in the literature exploring the motility costs and benefits of phytoplankton, there remains a gap in our integrative understanding of direct and indirect energy expenditures, starting from when an organism initiates movement due to any biophysical motive, to when the organism encounters intracellular and environmental challenges. Here we gather all available pieces of this puzzle from literature in biology, physics, and oceanography to paint an overarching picture of our current knowledge. The characterization of sinking and rising behavior as passive motility has resulted in the concept of sinking and rising internal efficiency being overlooked. We define this efficiency based on any energy dissipation associated with processes of mass density adjustment, as exemplified in structures like frustules and vacuoles. We propose that sinking and rising are active motility processes involving non-visible mechanisms, as species demonstrate active and rapid strategies in response to turbulence, predation risk, and gradients of nutrients, light, temperature, and viscosity. Identifying intracellular buoyancy-regulating dissipative processes offers deeper insight into the motility costs relative to the organism's total metabolic rate.
Collapse
Affiliation(s)
- Peyman Fahimi
- Department of Mathematics & Statistics, Dalhousie University, Halifax, NS B3H4R2 Canada
| | - Andrew J. Irwin
- Department of Mathematics & Statistics, Dalhousie University, Halifax, NS B3H4R2 Canada
| | - Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
6
|
Wen C, Zhang X, Chen W, Li J, Ding L, Yang S. The effect of temperature on carbon, nitrogen elements, and chlorophyll-a content in harmful algal blooms and their role in marine carbon and nitrogen cycles. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106978. [PMID: 39914292 DOI: 10.1016/j.marenvres.2025.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 03/08/2025]
Abstract
This study investigates the impact of temperature on the carbon, nitrogen elements, and chlorophyll-a content in harmful algal blooms, revealing their potential contribution to blue carbon ecosystems. By culturing 15 species of dinoflagellate at various temperatures, we measured their carbon, nitrogen, and chlorophyll-a content. The results indicated that temperature significantly influences the growth rate, C/N ratio, and chlorophyll-a content of these dinoflagellate. Within a moderate temperature range of 14 °C-26 °C, dinoflagellate exhibited optimal growth and carbon fixation capacity, whereas both high (30 °C) and low (6 °C) temperatures inhibited growth. Certain species, such as Akashiwo sanguinea, displayed enhanced carbon fixation capacity at higher temperatures, with a marked increase in the C/N ratio, suggesting metabolic adjustments to environmental changes. This study offers new insights into the ecological role of dinoflagellate in the context of global warming.
Collapse
Affiliation(s)
- Chao Wen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaobo Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wenqing Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiaxuan Li
- Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Lichi Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shimin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Heinrichs AL, Happe A, Koussoroplis A, Hillebrand H, Merder J, Striebel M. Temperature-dependent responses to light and nutrients in phytoplankton. Ecology 2025; 106:e70027. [PMID: 40026205 PMCID: PMC11874050 DOI: 10.1002/ecy.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 03/04/2025]
Abstract
Nutrients and light are major resources controlling growth, biomass, and community structure of phytoplankton. When looking at those resources individually, resource uptake and biochemical transformation, and thereby also the demand for resources, have been shown to be temperature-dependent. However, there is still a lack of understanding of how temperature controls the response to multiple resources, although simultaneous limitation by multiple resources is common for single species and whole communities. We conducted a multifactorial, gradient-design experiment growing four freshwater phytoplankton species under 125 combinations of temperature, light, and nutrients (5 × 5 × 5 levels). In three of four species, we found evidence for an interactive effect of light and nutrients on growth that was modulated by temperature. The effect of high-level supply of both resources on algal growth rate generally exceeded the sum of their individual effects. Conversely, the lowest growth rates occurred not necessarily at the lowest level of both resources but at the most extreme light:nutrient supply ratios (either only light or nutrients were at highest supply level but the other resource remained at low supply). These interactive light-nutrient effects were modulated by temperature, resulting in highest growth rates when both resources and temperature were highest. Our study demonstrates that temperature modulates the magnitude of the interactive light-nutrient effect on phytoplankton growth. Consequently, these findings highlight the importance of considering temperature to understand the limitation by multiple resources and show that growth responses would be over- or underestimated when these interactions are not taken into account. Our results provide a first indication that the resource-dependent growth of phytoplankton will change in a warming world when considering multiple resources.
Collapse
Affiliation(s)
- Anna Lena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
- Present address:
Instituto Gulbenkian de Ciênca (IGC)OeirasPortugal
| | - Anika Happe
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| | - Apostolos‐Manuel Koussoroplis
- Laboratoire Microorganismes Genome et Environnement (LMGE)UMR CNRS 6023, Université Clermont AuvergneAubière CedexFrance
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl‐von‐Ossietzky University of OldenburgOldenburgGermany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research [AWI]BremerhavenGermany
| | - Julian Merder
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| |
Collapse
|
8
|
Cabrerizo MJ, Villafañe VE, Helbling EW, Blum R, Vizzo JI, Gadda A, Valiñas MS. Multi-interacting global-change drivers reduce photosynthetic and resource use efficiencies and prompt a microzooplankton-phytoplankton uncoupling in estuarine communities. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106952. [PMID: 39799851 DOI: 10.1016/j.marenvres.2025.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Plankton communities are subjected to multiple global change drivers; however, it is unknown how the interplay between them deviates from predictions based on single-driver studies, in particular when trophic interactions are explicitly considered. We investigated how simultaneous manipulation of temperature, pH, nutrient availability and solar radiation quality affects the carbon transfer from phytoplankton to herbivorous protists and their potential consequences for ecosystem functioning. Our results showed that multiple interacting global-change drivers reduced the photosynthetic (gross primary production-to-electron transport rates ratios, from 0.2 to 0.6-0.8) and resource use efficiencies (from 9 to 1 μg chlorophyll a (Chl a) μmol nitrogen-1) and prompted uncoupling between microzooplankton grazing (m) and phytoplankton growth (μ) rates (μ > m). The altered trophic interaction could be due to enhanced intra-guild predation or to microzooplankton growing at suboptimal temperatures compared to their prey. Because phytoplankton-specific loss rates to consumers grazing are the most significant uncertainty in marine biogeochemical models, we stress the need for experimental approaches quantifying it accurately to avoid bias in predicting the impacts of global change on marine ecosystems.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Departamento de Ecología, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina.
| | - Virginia E Villafañe
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - E Walter Helbling
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina
| | - Ricarda Blum
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Juan I Vizzo
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Gadda
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Macarena S Valiñas
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
9
|
Marañón E, Fernández-González C, Tarran GA. Effect of temperature, nutrients and growth rate on picophytoplankton cell size across the Atlantic Ocean. Sci Rep 2024; 14:28034. [PMID: 39543313 PMCID: PMC11564571 DOI: 10.1038/s41598-024-78951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
The cell size of picophytoplankton populations affects their ecology and biogeochemical role, but how different environmental drivers control its variability is still not well understood. To gain insight into the role of temperature and nutrient availability as determinants of picophytoplankton population mean cell size, we carried out five microcosm experiments across the Atlantic Ocean (45°N-27°S) in which surface plankton assemblages were incubated under all combinations of three temperatures (in situ, 3 °C cooling and 3 °C warming) and two nutrient levels (unamended and addition of nitrogen and phosphorus). The overall range of variability in cell volume was 5-fold for Prochlorococcus, 8-fold for Synechococcus and 6-fold for the picoeukaryotes. We observed, in all the treatments and in the control, a consistent trend toward larger mean cell sizes over time for both Prochlorococcus and Synechococcus, which was likely the result of sample confinement. Changes in temperature and nutrient status alone did not cause clear changes in cell size, relative to the control, but the combination of warming and nutrient addition resulted in an increase in Prochlorococcus and Synechococcus cell size. The largest increases in cell volume were associated with slow or negative population net growth rates. Our results emphasize the importance of considering changes in biovolume to obtain accurate estimates of picophytoplankton biomass and suggest that the inverse relationship between growth rate and population mean cell size may be a general pattern in marine phytoplankton.
Collapse
Affiliation(s)
- Emilio Marañón
- Centro de Investigación Marina and Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain.
| | | | | |
Collapse
|
10
|
Trombetta T, Mostajir B, Courboulès J, Protopapa M, Mas S, Aberle N, Vidussi F. Warming and trophic structure tightly control phytoplankton bloom amplitude, composition and succession. PLoS One 2024; 19:e0308505. [PMID: 39365779 PMCID: PMC11451980 DOI: 10.1371/journal.pone.0308505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/24/2024] [Indexed: 10/06/2024] Open
Abstract
To better identify the responses of phytoplankton blooms to warming conditions as expected in a climate change context, an in situ mesocosm experiment was carried out in a coastal Mediterranean lagoon (Thau Lagoon, South of France) in April 2018. Our objective was to assess both the direct and indirect effects of warming on phytoplankton, particularly those mediated by top-down control. Four treatments were applied: 1) natural planktonic community with ambient water temperature (C); 2) natural planktonic community at +3°C elevated temperature (T); 3) exclusion of larger zooplankton (> 200 μm; mesozooplankton) leaving microzooplankton predominant with ambient water temperature (MicroZ); and 4) exclusion of larger zooplankton (> 200 μm; mesozooplankton) at +3°C elevated temperature (TMicroZ). Warming strongly depressed the amplitude of the phytoplankton bloom as the chlorophyll a concentration was twice lower in the T treatment. This decline under warmer conditions was most likely imputed to increase top-down control by zooplankton. However, removal of mesozooplankton resulted in an opposite trend, with a higher bloom amplitude observed under warmer conditions (MicroZ vs. TMicroZ) pointing at a strong interplay between micro- and mesozooplankton and the effect of warming for the spring phytoplankton blooms. Furthermore, both warming and mesozooplankton exclusion induced shifts in phytoplankton community composition during bloom and post-bloom periods, favoring dinoflagellates and small green algae at the expense of diatoms and prymnesiophytes. Moreover, warming altered phytoplankton succession by promoting an early bloom of small green flagellates, and a late bloom of diatoms. Our findings clearly highlighted the sensitivity of phytoplankton blooms amplitudes, community composition and succession patterns to temperature increases, as well as the key role of initial zooplankton community composition to elicit opposite response in bloom dynamics. It also points out that warmer conditions might favor dinoflagellates and small green algae, irrespective of zooplankton community composition, with potential implications for food web dynamics and energy transfer efficiency under future ocean condition.
Collapse
Affiliation(s)
- Thomas Trombetta
- MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Behzad Mostajir
- MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Justine Courboulès
- MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Maria Protopapa
- HCMR (Hellenic Centre for Marine Research), Institute of Oceanography, Anavissos, Greece
| | - Sébastien Mas
- MEDIMEER (Mediterranean Platform for Marine Ecosystems Experimental Research), OSU OREME, CNRS, University Montpellier, IRD, INRAE, Sète, France
| | - Nicole Aberle
- Department of Biology, NTNU (Norwegian University of Science and Technology), Trondhjem Biological Station, Trondheim, Norway
- Institute of Marine Ecosystem and Fisheries Science (IMF), Universität Hamburg, Hamburg, Germany
| | - Francesca Vidussi
- MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
11
|
Piontek J, Hassenrück C, Zäncker B, Jürgens K. Environmental control and metabolic strategies of organic-matter-responsive bacterioplankton in the Weddell Sea (Antarctica). Environ Microbiol 2024; 26:e16675. [PMID: 39022885 DOI: 10.1111/1462-2920.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas. Our experiments demonstrated that the combination of labile organic matter supply and temperature increase synergistically boosted bacterial growth. This suggests that, besides low seawater temperature, carbon limitation also hinders heterotrophic bacterial activity. Through the analysis of metagenome-assembled genomes, we discovered distinct genomic adaptation strategies in Bacteroidia and Gammaproteobacteria, both of which respond to organic matter. Both natural phytoplankton blooms and experimental addition of organic matter favoured Bacteroidia, which possess a large number of gene copies and a wide range of functional membrane transporters, glycoside hydrolases, and aminopeptidases. In contrast, the genomes of organic-matter-responsive Gammaproteobacteria were characterized by high densities of transcriptional regulators and transporters. Our findings suggest that bacterioplankton in the Weddell Sea, which respond to organic matter, employ metabolic strategies similar to those of their counterparts in temperate oceans. These strategies enable efficient growth at extremely low seawater temperatures, provided that organic carbon limitation is alleviated.
Collapse
|
12
|
Jin L, Chen H, Matsuzaki SIS, Shinohara R, Wilkinson DM, Yang J. Tipping points of nitrogen use efficiency in freshwater phytoplankton along trophic state gradient. WATER RESEARCH 2023; 245:120639. [PMID: 37774538 DOI: 10.1016/j.watres.2023.120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Eutrophication and harmful algal blooms have severe effects on water quality and biodiversity in lakes and reservoirs. Ecological regime shifts of phytoplankton blooms are generally thought to be driven by the rapidly rising nutrient use efficiency of bloom-forming species over short periods, and often exhibit nonlinear dynamics. Regime shifts of trophic state, eutrophication, stratification, and clear or turbid waters are well-studied topics in aquatic ecology. However, information on the prevalence of regime shifts in relationships between trophic states and phytoplankton resource transfer efficiencies in ecosystems is still lacking. Here, we provided a first insight into regime shifts in nitrogen use efficiency of phytoplankton along the trophic state gradient. We explored the regime shifts of phytoplankton resource use efficiency and detected the tipping points by combining four temporal or spatial datasets from tropical to temperate zones in Asia and Europe. We first observed significant abrupt transitions (abruptness > 1) in phytoplankton nitrogen use efficiency along the trophic state gradient. The tipping point values were lower in subtropical/tropical waterbodies (mesotrophic states; TSIc: around 50) than those in temperate zones (eutrophic states; TSIc: 60-70). The regime shifts significantly reduced the primary production transfer efficiency via zooplankton (from 0.15 ± 0.03 to 0.03 ± 0.01; mean ± standard error) in the aquatic food web. Nitrogen-fixing filamentous cyanobacteria can drive eutrophication under mesotrophic state. Our findings imply that the time-window of opportunity for harmful algae prevention and control in lakes and reservoirs is earlier in subtropical/tropical regions.
Collapse
Affiliation(s)
- Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shin-Ichiro S Matsuzaki
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ryuichiro Shinohara
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - David M Wilkinson
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
13
|
Leles SG, Levine NM. Mechanistic constraints on the trade-off between photosynthesis and respiration in response to warming. SCIENCE ADVANCES 2023; 9:eadh8043. [PMID: 37656790 PMCID: PMC10796116 DOI: 10.1126/sciadv.adh8043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Phytoplankton are responsible for half of all oxygen production and drive the ocean carbon cycle. Metabolic theory predicts that increasing global temperatures will cause phytoplankton to become more heterotrophic and smaller. Here, we uncover the metabolic trade-offs between cellular space, energy, and stress management driving phytoplankton thermal acclimation and how these might be overcome through evolutionary adaptation. We show that the observed relationships between traits such as chlorophyll, lipid content, C:N, and size can be predicted on the basis of the metabolic demands of the cell, the thermal dependency of transporters, and changes in membrane lipids. We suggest that many of the observed relationships are not fixed physiological constraints but rather can be altered through adaptation. For example, the evolution of lipid metabolism can favor larger cells with higher lipid content to mitigate oxidative stress. These results have implications for rates of carbon sequestration and export in a warmer ocean.
Collapse
Affiliation(s)
- Suzana G. Leles
- Department of Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
14
|
Álvarez‐Codesal S, Faillace CA, Garreau A, Bestion E, Synodinos AD, Montoya JM. Thermal mismatches explain consumer-resource dynamics in response to environmental warming. Ecol Evol 2023; 13:e10179. [PMID: 37325725 PMCID: PMC10264966 DOI: 10.1002/ece3.10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Changing temperatures will impact food webs in ways we yet to fully understand. The thermal sensitivities of various physiological and ecological processes differ across organisms and study systems, hindering the generation of accurate predictions. One step towards improving this picture is to acquire a mechanistic understanding of how temperature change impacts trophic interactions before we can scale these insights up to food webs and ecosystems. Here, we implement a mechanistic approach centered on the thermal sensitivity of energetic balances in pairwise consumer-resource interactions, measuring the thermal dependence of energetic gain and loss for two resource and one consumer freshwater species. Quantifying the balance between energy gain and loss, we determined the temperature ranges where the balance decreased for each species in isolation (intraspecific thermal mismatch) and where a mismatch in the balance between consumer and resource species emerged (interspecific thermal mismatch). The latter reveals the temperatures for which consumer and resource energetic balances respond either differently or in the same way, which in turn informs us of the strength of top-down control. We found that warming improved the energetic balance for both resources, but reduces it for the consumer, due to the stronger thermal sensitivity of respiration compared to ingestion. The interspecific thermal mismatch yielded different patterns between the two consumer-resource pairs. In one case, the consumer-resource energetic balance became weaker throughout the temperature gradient, and in the other case it produced a U-shaped response. By also measuring interaction strength for these interaction pairs, we demonstrated the correspondence of interspecific thermal mismatches and interaction strength. Our approach accounts for the energetic traits of both consumer and resource species, which combined produce a good indication of the thermal sensitivity of interaction strength. Thus, this novel approach links thermal ecology with parameters typically explored in food-web studies.
Collapse
Affiliation(s)
| | - Cara A. Faillace
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
- Present address:
Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Elvire Bestion
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| | | | - José M. Montoya
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| |
Collapse
|
15
|
Godoy RFB, Trevisan E, Battistelli AA, Crisigiovanni EL, do Nascimento EA, da Fonseca Machado AL. Does water temperature influence in microcystin production? A case study of Billings Reservoir, São Paulo, Brazil. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 255:104164. [PMID: 36848739 DOI: 10.1016/j.jconhyd.2023.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We investigated the relationship between some water quality parameters and microcystin, chlorophyll-a, and cyanobacteria in different conditions of water temperature. We also proposed to predict chlorophyll-a concentration in the Billings Reservoir using three machine learning techniques. Our results indicate that in the condition of higher water temperatures with high density of cyanobacteria, microcystin concentration can increase severely (>102 μg/L). Besides the magnitude observed in higher concentrations, in water temperatures above 25.3 °C (classified as high extreme event), higher frequencies of inadequate values of microcystin (87.5%), chlorophyll-a (70%), and cyanobacteria (82.5%) compared to cooler temperatures (<19.6 °C) were observed. The prediction of chlorophyll-a in Billings Reservoir presented good results (0.76 ≤ R2 ≤ 0.82; 0.17 ≤ RMSE≤0.20) using water temperature, total phosphorus, and cyanobacteria as predictors, with the best result using Support Vector Machine.
Collapse
Affiliation(s)
- Rodrigo Felipe Bedim Godoy
- Centre de recherche sur les interactions bassins versants-écosystèmes aquatiques (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada; Interuniversity Research Group in Limnology (GRIL), Université de Montréal, Montreal, Quebec, Canada.
| | - Elias Trevisan
- Instituto Federal do Paraná, Campus União da Vitória, União da Vitória, Paraná, Brazil
| | - André Aguiar Battistelli
- Department of Environmental Engineering, Midwestern State University (UNICENTRO), Maria Roza de Almeida Street, Irati, Paraná CEP 84505-677, Brazil
| | | | - Elynton Alves do Nascimento
- Department of Environmental Engineering, Midwestern State University (UNICENTRO), Maria Roza de Almeida Street, Irati, Paraná CEP 84505-677, Brazil.
| | | |
Collapse
|
16
|
van Moorsel SJ, Thébault E, Radchuk V, Narwani A, Montoya JM, Dakos V, Holmes M, De Laender F, Pennekamp F. Predicting effects of multiple interacting global change drivers across trophic levels. GLOBAL CHANGE BIOLOGY 2023; 29:1223-1238. [PMID: 36461630 PMCID: PMC7614140 DOI: 10.1111/gcb.16548] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization-that is, community and food web. Building on the framework of consumer-resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today.
Collapse
Affiliation(s)
- Sofia J. van Moorsel
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of GeographyUniversity of ZurichZurichSwitzerland
| | - Elisa Thébault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES‐Paris)ParisFrance
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Anita Narwani
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - José M. Montoya
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| | - Vasilis Dakos
- Institut des Sciences de l'Evolution de Montpellier (ISEM)Université de Montpellier, IRD, EPHEMontpellierFrance
| | - Mark Holmes
- Namur Institute for Complex Systems (naXys), Institute of Life, Earth, and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of NamurNamurBelgium
| | - Frederik De Laender
- Namur Institute for Complex Systems (naXys), Institute of Life, Earth, and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of NamurNamurBelgium
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Lopes VM, Court M, Seco MC, Borges FO, Vicente B, Lage S, Braga AC, Duarte B, Santos CF, Amorim A, Costa PR, Rosa R. Gymnodinium catenatum Paralytic Shellfish Toxin Production and Photobiological Responses under Marine Heat Waves. Toxins (Basel) 2023; 15:157. [PMID: 36828471 PMCID: PMC9967835 DOI: 10.3390/toxins15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Marine heatwaves (MHWs) have doubled in frequency since the 1980s and are projected to be exacerbated during this century. MHWs have been shown to trigger harmful algal blooms (HABs), with severe consequences to marine life and human populations. Within this context, this study aims to understand, for the first time, how MHWs impact key biological and toxicological parameters of the paralytic shellfish toxin (PST) producer Gymnodinium catenatum, a dinoflagellate inhabiting temperate and tropical coastal waters. Two MHW were simulated-category I (i.e., peak: 19.9 °C) and category IV (i.e., peak: 24.1 °C)-relative to the estimated baseline in the western coast of Portugal (18.5 °C). No significant changes in abundance, size, and photosynthetic efficiency were observed among treatments. On the other hand, chain-formation was significantly reduced under category IV MHW, as was PSP toxicity and production of some PST compounds. Overall, this suggests that G. catenatum may have a high tolerance to MHWs. Nevertheless, some sublethal effects may have occurred since chain-formation was affected, suggesting that these growth conditions may be sub-optimal for this population. Our study suggests that the increase in frequency, intensity, and duration of MHWs may lead to reduced severity of G. catenatum blooms.
Collapse
Affiliation(s)
- Vanessa M. Lopes
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Mélanie Court
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Martim Costa Seco
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Francisco O. Borges
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Bernardo Vicente
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Sandra Lage
- CCMAR—Centre of Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Ana Catarina Braga
- IPMA—Portuguese Institute for the Sea and Atmosphere, 1749-077 Lisboa, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
| | - Bernardo Duarte
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Catarina Frazão Santos
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Amorim
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Pedro Reis Costa
- CCMAR—Centre of Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
- IPMA—Portuguese Institute for the Sea and Atmosphere, 1749-077 Lisboa, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associate Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
18
|
Lepori‐Bui M, Paight C, Eberhard E, Mertz CM, Moeller HV. Evidence for evolutionary adaptation of mixotrophic nanoflagellates to warmer temperatures. GLOBAL CHANGE BIOLOGY 2022; 28:7094-7107. [PMID: 36107442 PMCID: PMC9828162 DOI: 10.1111/gcb.16431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/19/2022] [Indexed: 05/28/2023]
Abstract
Mixotrophs, organisms that combine photosynthesis and heterotrophy to gain energy, play an important role in global biogeochemical cycles. Metabolic theory predicts that mixotrophs will become more heterotrophic with rising temperatures, potentially creating a positive feedback loop that accelerates carbon dioxide accumulation in the atmosphere. Studies testing this theory have focused on phenotypically plastic (short-term, non-evolutionary) thermal responses of mixotrophs. However, as small organisms with short generation times and large population sizes, mixotrophs may rapidly evolve in response to climate change. Here, we present data from a 3-year experiment quantifying the evolutionary response of two mixotrophic nanoflagellates to temperature. We found evidence for adaptive evolution (increased growth rates in evolved relative to acclimated lineages) in the obligately phototrophic strain, but not in the facultative phototroph. All lineages showed trends of increased carbon use efficiency, flattening of thermal reaction norms, and a return to homeostatic gene expression. Generally, mixotrophs evolved reduced photosynthesis and higher grazing with increased temperatures, suggesting that evolution may act to exacerbate mixotrophs' effects on global carbon cycling.
Collapse
Affiliation(s)
- Michelle Lepori‐Bui
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
- Washington Sea GrantUniversity of WashingtonSeattleWashingtonUSA
| | - Christopher Paight
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Ean Eberhard
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Conner M. Mertz
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Holly V. Moeller
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
19
|
Tanioka T, Garcia CA, Larkin AA, Garcia NS, Fagan AJ, Martiny AC. Global patterns and predictors of C:N:P in marine ecosystems. COMMUNICATIONS EARTH & ENVIRONMENT 2022; 3:271. [PMID: 36407846 PMCID: PMC9640808 DOI: 10.1038/s43247-022-00603-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/21/2022] [Indexed: 06/08/2023]
Abstract
Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in marine ecosystems is variable through space and time, with no clear consensus on the controls on variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry. We find latitudinal variability in C:N:P stoichiometry, with surface temperature and macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic observations indicated community nutrient stress and suggested that nutrient supply rate and nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest systematic regulation of elemental stoichiometry among ocean ecosystems, but that future changes remain highly uncertain.
Collapse
Affiliation(s)
- Tatsuro Tanioka
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
| | - Catherine A. Garcia
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
- Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, Honolulu, HI USA
| | - Alyse A. Larkin
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
| | - Nathan S. Garcia
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
| | - Adam J. Fagan
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
| | - Adam C. Martiny
- Department of Earth System Science, University of California Irvine, Irvine, CA USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA USA
| |
Collapse
|
20
|
Wang F, Kong W, Ji M, Zhao K, Chen H, Yue L, Dong X. Grazing greatly reduces the temporal stability of soil cellulolytic fungal community in a steppe on the Tibetan Plateau. J Environ Sci (China) 2022; 121:48-57. [PMID: 35654515 DOI: 10.1016/j.jes.2021.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 06/15/2023]
Abstract
Excessive livestock grazing degrades grasslands ecosystem stability and sustainability by reducing soil organic matter and plant productivity. However, the effects of grazing on soil cellulolytic fungi, an important indicator of the degradation process for soil organic matter, remain less well understood. Using T-RFLP and sequencing methods, we investigated the effects of grazing on the temporal changes of cellulolytic fungal abundance and community structure in dry steppe soils during the growing months from May to September, on the Tibetan Plateau using T-RFLP and sequencing methods. The results demonstrated that the abundance of soil cellulolytic fungi under grazing treatment changed significantly from month to month, and was positively correlated with dissolved organic carbon (DOC) and soil temperature, but negatively correlated with soil pH. Contrastingly, cellulolytic fungal abundance did not change within the fencing treatment (ungrazed conditions). Cellulolytic fungal community structure changed significantly in the growing months in grazed soils, but did not change in fenced soils. Grazing played a key role in determining the community structure of soil cellulolytic fungi by explaining 8.1% of the variation, while pH and DOC explained 4.1% and 4.0%, respectively. Phylogenetically, the cellulolytic fungi were primarily affiliated with Ascomycota (69.65% in relative abundance) and Basidiomycota (30.35%). Therefore, grazing substantially reduced the stability of soil cellulolytic fungal abundance and community structure, as compared with the fencing treatment. Our finding provides a new insight into the responses of organic matter-decomposing microbes for grassland managements.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Mukan Ji
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kang Zhao
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Hao Chen
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linyan Yue
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaobin Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Wei Y, Gu T, Zhang G, Qu K, Cui Z, Sun J. Exploring the dynamics of marine picophytoplankton among the Yellow Sea, Indian Ocean and Pacific Ocean: The importance of temperature and nitrogen. ENVIRONMENTAL RESEARCH 2022; 214:113870. [PMID: 35863451 DOI: 10.1016/j.envres.2022.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Marine picophytoplankton (<2 μm) are the most abundant photosynthetic group and also important contributors to global primary production. However, it is still constrained to incorporate picophytoplankton into dynamic ecosystem models, as a result of our limited understanding of their global distribution and abundance. Here, we applied a large dataset consisted of 1817 in situ observations from the Yellow Sea, Indian Ocean, and Pacific Ocean to suggest that picophytoplankton abundance and distribution had a large variability among the three distinct regions. Based on the correlation analysis, aggregated boosted tree analysis, and generalized additive model, we proposed that water temperature and dissolved inorganic nitrogen (N) were key determinants in driving the large-scale variability of marine picophytoplankton. For example, we revealed that high temperature and low N would stimulate the growth of Prochlorococcus. Therefore, these results could provide some insights into the various environmental factors which affect the dynamics of picophytoplankton, as well as the dynamic ecosystem models.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Ting Gu
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
22
|
Fernández-González C, Tarran GA, Schuback N, Woodward EMS, Arístegui J, Marañón E. Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Commun Biol 2022; 5:1035. [PMID: 36175608 PMCID: PMC9522883 DOI: 10.1038/s42003-022-03971-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Temperature and nutrient supply interactively control phytoplankton growth and productivity, yet the role of these drivers together still has not been determined experimentally over large spatial scales in the oligotrophic ocean. We conducted four microcosm experiments in the tropical and subtropical Atlantic (29°N-27°S) in which surface plankton assemblages were exposed to all combinations of three temperatures (in situ, 3 °C warming and 3 °C cooling) and two nutrient treatments (unamended and enrichment with nitrogen and phosphorus). We found that chlorophyll a concentration and the biomass of picophytoplankton consistently increase in response to nutrient addition, whereas changes in temperature have a smaller and more variable effect. Nutrient enrichment leads to increased picoeukaryote abundance, depressed Prochlorococcus abundance, and increased contribution of small nanophytoplankton to total biomass. Warming and nutrient addition synergistically stimulate light-harvesting capacity, and accordingly the largest biomass response is observed in the warmed, nutrient-enriched treatment at the warmest and least oligotrophic location (12.7°N). While moderate nutrient increases have a much larger impact than varying temperature upon the growth and community structure of tropical phytoplankton, ocean warming may increase their ability to exploit events of enhanced nutrient availability. Microcosm experiments in the tropical and subtropical Atlantic reveal consistent responses of phytoplankton to changing temperature and nutrient availability, with implications for the impacts of ocean warming in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Cristina Fernández-González
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain.,Centro de Investigacións Mariñas, Universidade de Vigo, Vigo, Spain
| | | | | | | | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Emilio Marañón
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain. .,Centro de Investigacións Mariñas, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
23
|
Natsir H, Arif AR, Wahab AW, Budi P, Arfah RA, Arwansyah A, Fudholi A, Suriani NL, Himawan A. Inhibitory effects of Moringa oleifera leaves extract on xanthine oxidase activity from bovine milk. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e77740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Moringa oleifera is a tropical plant in the Moringaceae family that contains a lot of bioactive compounds. This study aimed to isolate and characterize the enzyme xanthine oxidase (XO), and conducted inhibitory tests on XO using methanol extracts of M. oleifera leaves. The xanthine oxidase enzyme isolated from bovine milk was characterized to determine the optimum pH, temperature, and substrate concentration. XO inhibition was evaluated by in vitro and in silico methods. The results of XO isolation and characterization of bovine milk showed the optimum conditions at pH 6.5, substrate concentration of 0.1 mM, and temperature 35 °C with an activity rate of 32.47 mU/mL; 21.55 mU/mL, and 21.94 mU/mL. Inhibition analysis results on methanol extract of M. oleifera leaves showed the highest activity decrease at the extract concentration of 160 ppm, with a relative inhibition value of 21.35%, while allopurinol as a positive control has a relative value inhibition of 61.21%. Relative value inhibition indicated the potential of M. oleifera leaves as a source of medicinal plants for gout sufferers. Additionally, a computational analysis was performed to observe the molecular interaction between the primary compounds of M. oleifera leaves, i.e., 5-O-acetyl-thio-octyl-β-L-rhamnofuranoside, quinic acid, and 2-dimethyl(trimethylsilylmethyl)silyloxymethyltetrahydrofuran, and XO using the molecular docking method. The finding implied that these compounds are bound to the catalytic sites of XO by hydrogen bonds and hydrophobic interactions, indicating the primary compounds of M. oleifera leaves could become XO inhibitors to treat gout disease.
Collapse
|
24
|
Cabrerizo MJ, Medina-Sánchez JM, González-Olalla JM, Sánchez-Gómez D, Carrillo P. Microbial plankton responses to multiple environmental drivers in marine ecosystems with different phosphorus limitation degrees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151491. [PMID: 34752863 DOI: 10.1016/j.scitotenv.2021.151491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Multiple drivers are threatening the functioning of the microbial food webs and trophic interactions. Our understanding about how temperature, CO2, nutrient inputs, and solar ultraviolet radiation (UVR) availability interact to alter ecosystem functioning is scarce because research has focused on single and double interactions. Moreover, the role that the degree of in situ nutrient limitation could play in the outcome of these interactions has been largely neglected, despite it is predominant in marine ecosystems. We address these uncertainties by combining remote-sensing analyses, and a collapsed experimental design with natural microbial communities from Mediterranean Sea and Atlantic Ocean exposed to temperature, nutrients, CO2, and UVR interactions. At the decade scale, we found that more intense and frequent (and longer lasting) Saharan dust inputs (and marine heatwaves) were only coupled with reduced phytoplankton biomass production. When microbial communities were concurrently exposed to future temperature, CO2, nutrient, and UVR conditions (i.e. the drivers studied over long-term scales), we found shifts from net autotrophy [primary production:respiration (PP:R) ratio > 1] towards a metabolic equilibrium (PP:R ratio ~ 1) or even a net heterotrophy (PP:R ratio < 1), as P-limitation degree was higher (i.e. Atlantic Ocean). These changes in the metabolic balance were coupled with a weakened phytoplankton-bacteria interaction (i.e. bacterial carbon demand exceeded phytoplankton carbon supply. Our work reveals that an accentuated in situ P limitation may promote reductions both in carbon uptake and fluxes between trophic levels in microbial plankton communities under global-change conditions. We show that considering long-term series can aid in identifying major local environmental drivers (i.e. temperature and nutrients in our case), easing the design of future global-change studies, but also that the abiotic environment to which microbial plankton communities are acclimated should be taken into account to avoid biased predictions concerning the effects of multiple interacting global-change drivers on marine ecosystems.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidad de Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain; Centro de Investigación Mariña, Universidad de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331 Vigo, Spain; Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Juan Manuel Medina-Sánchez
- Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Instituto Universitario de Investigación del Agua, C/Ramón y Cajal, n 4, 18071 Granada, Spain
| | | | - Daniel Sánchez-Gómez
- Instituto Universitario de Investigación del Agua, C/Ramón y Cajal, n 4, 18071 Granada, Spain
| | - Presentación Carrillo
- Instituto Universitario de Investigación del Agua, C/Ramón y Cajal, n 4, 18071 Granada, Spain
| |
Collapse
|
25
|
Di Pane J, Wiltshire KH, McLean M, Boersma M, Meunier CL. Environmentally induced functional shifts in phytoplankton and their potential consequences for ecosystem functioning. GLOBAL CHANGE BIOLOGY 2022; 28:2804-2819. [PMID: 35068029 DOI: 10.1111/gcb.16098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Phytoplanktonic organisms are particularly sensitive to environmental change, and, as they represent a direct link between abiotic and biotic compartments within the marine food web, changes in the functional structure of phytoplankton communities can result in profound impacts on ecosystem functioning. Using a trait-based approach, we examined changes in the functional structure of the southern North Sea phytoplankton over the past five decades in relation to environmental conditions. We identified a shift in functional structure between 1998 and 2004 which coincides with a pronounced increase in diatom and decrease in dinoflagellate abundances, and we provide a mechanistic explanation for this taxonomic change. Early in the 2000s, the phytoplankton functional structure shifted from slow growing, autumn blooming, mixotrophic organisms, towards earlier blooming and faster-growing microalgae. Warming and decreasing dissolved phosphorus concentrations were linked to this rapid reorganization of the functional structure. We identified a potential link between this shift and dissolved nutrient concentrations, and we hypothesise that organisms blooming early and displaying high growth rates efficiently take up nutrients which then are no longer available to late bloomers. Moreover, we identified that the above-mentioned functional change may have bottom-up consequences, through a food quality-driven negative influence on copepod abundances. Overall, our study highlights that, by altering the phytoplankton functional composition, global and regional changes may have profound long-term impacts on coastal ecosystems, impacting both food-web structure and biogeochemical cycles.
Collapse
Affiliation(s)
- Julien Di Pane
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Karen Helen Wiltshire
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Wadden Sea Station, Sylt, Germany
| | - Matthew McLean
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maarten Boersma
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- University of Bremen, FB 2, Bremen, Germany
| | - Cédric Léo Meunier
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| |
Collapse
|
26
|
González-Olalla JM, Medina-Sánchez JM, Carrillo P. Fluctuation at High Temperature Combined with Nutrients Alters the Thermal Dependence of Phytoplankton. MICROBIAL ECOLOGY 2022; 83:555-567. [PMID: 34145482 DOI: 10.1007/s00248-021-01787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The Metabolic Theory of Ecology (MTE) predicts that the temperature increases exert a common effect on organisms stimulating metabolic rates, this being stronger for a heterotrophic than for an autotrophic metabolism. However, no available studies within the MTE framework have focused on organisms' response under fluctuation at high temperature interacting with factors such as nutrient availability, or how this interaction could affect the coexistence between mixotrophic and strict autotrophic phytoplankton. Hence, we assess how the phytoplankton metabolism and species composition are affected under scenarios of high temperature and fluctuation at high temperature, and how nutrients alter the direction and magnitude of such impact. For that, we use a mixed culture composed of two phytoplankton species: a strict autotrophic species and a mixotrophic species. Our results indicate that, in agreement with the MTE, only fluctuation at high temperature treatment registered a greater activation energy (Ea) value for respiration than for primary production and stimulated mixotrophic over strict autotrophic species abundance compared to control treatment. Remarkably, fluctuation at high temperature had a strong negative impact on the total abundance of the mixed-culture. The interaction between nutrient enrichment and fluctuation at high temperature increased abundance of the strict autotrophic species and overall species abundance, and led to Ea values that were higher in primary production than in respiration. Changes in community composition, enhanced by nutrient enrichment, could be behind this response, which can have implications in ecosystem functioning in a changing world.
Collapse
Affiliation(s)
- Juan Manuel González-Olalla
- University Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Juan Manuel Medina-Sánchez
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| | - Presentación Carrillo
- University Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
27
|
Olofsson M, Almén AK, Jaatinen K, Scheinin M. OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6524179. [PMID: 35137038 PMCID: PMC8973911 DOI: 10.1093/femsle/fnac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Diatoms commonly set off the spring-bloom in temperate coastal environments. However, their temporal offset may change in regions subject to nutrient enrichment, and by peaking earlier, such populations can maintain their position in the vernal plankton succession. We tested whether the marine keystone diatom Skeletonema marinoi can accomplish this through thermal evolutionary adaptation. Eight geographically separated subpopulations, representing hydromorphologically and climatologically similar inlets displaying a range of trophic states, were compared in a common-garden experiment. At early-spring temperatures, both doubling times and variation coefficients thereof, correlated negatively with the trophic state of the environment of origin, indicating selection for fast growth due to eutrophication. At mid-spring temperatures, the relationships were reversed, indicating selection in the opposite direction. At late-spring temperatures, no significant relationships were detected, suggesting relaxed selection. Subsequent field observations reflected these findings, where blooming temperatures decreased with trophic state. Natural selection thus moves along with eutrophication towards colder temperatures earlier in the spring, favouring genotypes with the capacity to grow fast. The thermal niche shift demonstrated herein may be an evolutionary mechanism essentially leading to trophic changes in the local ecosystem.
Collapse
Affiliation(s)
- Malin Olofsson
- Corresponding author: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07 Uppsala, Sweden. E-mail:
| | - Anna-Karin Almén
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménintie 260, 10900 Hanko, Finland
| | - Kim Jaatinen
- Nature and Game Management Trust Finland, Degerbyvägen 176, 10160 Degerby, Finland
| | - Matias Scheinin
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménintie 260, 10900 Hanko, Finland
- Department of Environmental Protection, City of Hanko, Santalantie 2, 10900 Hanko, Finland
- Pro Litore, Långgatan 13, 10620 Ekenäs, Finland
| |
Collapse
|
28
|
Li X, Liang Y, Li K, Jin P, Tang J, Klepacz-Smółka A, Ledakowicz S, Daroch M. Effects of Low Temperature, Nitrogen Starvation and Their Combination on the Photosynthesis and Metabolites of Thermosynechococcus E542: A Comparison Study. PLANTS 2021; 10:plants10102101. [PMID: 34685910 PMCID: PMC8537721 DOI: 10.3390/plants10102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Both low temperature and nitrogen starvation caused chlorosis of cyanobacteria. Here, in this study, for the first time, we compared the effects of low temperature, nitrogen starvation, and their combination on the photosynthesis and metabolites of a thermophilic cyanobacterium strain, Thermosynechococcus E542. Under various culture conditions, the growth rates, pigment contents, and chlorophyll fluorescence were monitored, and the composition of alkanes, lipidomes, and carbohydrates were determined. It was found that low temperature (35 °C) significantly suppressed the growth of Thermosynechococcus E542. Nitrogen starvation at 45 °C and 55 °C did not affect the growth; however, combined treatment of low temperature and nitrogen starvation led to the lowest growth rate and biomass productivity. Both low temperature and nitrogen starvation caused significantly declined contents of pigments, but they resulted in a different effect on the OJIP curves, and their combination led to the lowest pigment contents. The composition of fatty acids and alkanes was altered upon low-temperature cultivation, while nitrogen starvation caused reduced contents of all lipids. The low temperature did not affect carbohydrate contents, while nitrogen starvation greatly enhanced carbohydrate content, and their combination did not enhance carbohydrate content, but led to reduced productivity. These results revealed the influence of low temperature, nitrogen starvation, and their combined treatment for the accumulation of phycobiliproteins, lipids, and carbohydrates of a thermophilic cyanobacterium strain, Thermosynechococcus E542.
Collapse
Affiliation(s)
- Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
- Department School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
| | - Kai Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
| | - Peng Jin
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China;
| | - Anna Klepacz-Smółka
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland; (A.K.-S.); (S.L.)
| | - Stanislaw Ledakowicz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924 Lodz, Poland; (A.K.-S.); (S.L.)
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (X.L.); (Y.L.); (K.L.); (P.J.)
- Correspondence: ; Tel.: +86-0755-26032184
| |
Collapse
|
29
|
Berthold M, Campbell DA. Restoration, conservation and phytoplankton hysteresis. CONSERVATION PHYSIOLOGY 2021; 9:coab062. [PMID: 34394942 PMCID: PMC8361504 DOI: 10.1093/conphys/coab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.
Collapse
Affiliation(s)
- Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| |
Collapse
|
30
|
Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, Ardyna M, Zayed AA, Junger PC, Galand PE, Lovejoy C, Murray AE, Sarmento H, Acinas SG, Babin M, Iudicone D, Jaillon O, Karsenti E, Wincker P, Karp-Boss L, Sullivan MB, Bowler C, de Vargas C, Eveillard D. Environmental vulnerability of the global ocean epipelagic plankton community interactome. SCIENCE ADVANCES 2021; 7:eabg1921. [PMID: 34452910 PMCID: PMC8397264 DOI: 10.1126/sciadv.abg1921] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.
Collapse
Affiliation(s)
- Samuel Chaffron
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Erwan Delage
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Marko Budinich
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Vintache
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Nicolas Henry
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Charlotte Nef
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Ardyna
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Pedro C Junger
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Pierre E Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500 Paris, France
| | - Connie Lovejoy
- Département de biologie, Faculté des sciences et Institut de biologie intégrative et des systèmes (IBIS) 1030, ave de la Médecine, Université Laval, Québec, QC, Canada
| | - Alison E Murray
- Division of Earth and Ecosystem Science, Desert Research Institute, Reno, NV 89512, USA
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona 08003, Spain
| | - Marcel Babin
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
- Takuvik International Research Laboratory, Université Laval and CNRS, Québec, QC, Canada
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Olivier Jaillon
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Eric Karsenti
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Eveillard
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
31
|
Cabrerizo MJ, Marañón E. Geographical and Seasonal Thermal Sensitivity of Grazing Pressure by Microzooplankton in Contrasting Marine Ecosystems. Front Microbiol 2021; 12:679863. [PMID: 34290682 PMCID: PMC8287633 DOI: 10.3389/fmicb.2021.679863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Grazing pressure, estimated as the ratio between microzooplankton grazing and phytoplankton growth rates (g:μ), is a strong determinant of microbial food-web structure and element cycling in the upper ocean. It is generally accepted that g is more sensitive to temperature than μ, but it remains unknown how the thermal dependence (activation energy, Ea) of g:μ varies over spatial and temporal scales. To tackle this uncertainty, we used an extensive literature analysis obtaining 751 paired rate estimates of μ and g from dilution experiments performed throughout the world’s marine environments. On a geographical scale, we found a stimulatory effect of temperature in polar open-ocean (∼0.5 eV) and tropical coastal (∼0.2 eV) regions, and an inhibitory one in the remaining biomes (values between −0.1 and −0.4 eV). On a seasonal scale, the temperature effect on g:μ ratios was stimulatory, particularly in polar environments; however, the large variability existing between estimates resulted in non-significant differences among biomes. We observed that increases in nitrate availability stimulated the temperature dependence of grazing pressure (i.e., led to more positive Ea of g:μ) in open-ocean ecosystems and inhibited it in coastal ones, particularly in polar environments. The percentage of primary production grazed by microzooplankton (∼56%) was similar in all regions. Our results suggest that warming of surface ocean waters could exert a highly variable impact, in terms of both magnitude and direction (stimulation or inhibition), on microzooplankton grazing pressure in different ocean regions.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain.,Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain
| | - Emilio Marañón
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain.,Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
32
|
Chai X, Li X, Hii KS, Zhang Q, Deng Q, Wan L, Zheng L, Lim PT, Tan SN, Mohd-Din M, Song C, Song L, Zhou Y, Cao X. Blooms of diatom and dinoflagellate associated with nutrient imbalance driven by cycling of nitrogen and phosphorus in anaerobic sediments in Johor Strait (Malaysia). MARINE ENVIRONMENTAL RESEARCH 2021; 169:105398. [PMID: 34171592 DOI: 10.1016/j.marenvres.2021.105398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Coastal eutrophication is one of the pivotal factors driving occurrence of harmful algal blooms (HABs), whose underlying mechanism remained unclear. To better understand the nutrient regime triggering HABs and their formation process, the phytoplankton composition and its response to varying nitrogen (N) and phosphorus (P), physio-chemical parameters in water and sediment in Johor Strait in March 2019 were analyzed. Surface and sub-surface HABs were observed with the main causative species of Skeletonema, Chaetoceros and Karlodinium. The ecophysiological responses of Skeletonema to the low ambient N/P ratio such as secreting alkaline phosphatase, regulating cell morphology (volume; surface area/volume ratio) might play an important role in dominating the community. Anaerobic sediment iron-bound P release and simultaneous N removal by denitrification and anammox, shaped the stoichiometry of N and P in water column. The decrease of N/P ratio might shift the phytoplankton community into the dominance of HABs causative diatoms and dinoflagellates.
Collapse
Affiliation(s)
- Xiaojie Chai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Xiaowen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, 16310, Kelantan, Malaysia.
| | - Qi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Qinghui Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Lingling Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, 16310, Kelantan, Malaysia.
| | - Suh Nih Tan
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, 16310, Kelantan, Malaysia; Institute of Oceanography and Environment, University of Terengganu Malaysia, Malaysia; China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, 43900, Selangor Malaysia.
| | - Monaliza Mohd-Din
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, 16310, Kelantan, Malaysia.
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
33
|
Istvánovics V, Honti M. Stochastic simulation of phytoplankton biomass using eighteen years of daily data - predictability of phytoplankton growth in a large, shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:143636. [PMID: 33401043 DOI: 10.1016/j.scitotenv.2020.143636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
During the past decades, on-line monitoring of freshwater lakes has developed rapidly. To use high frequency time-series in lake management, novel models are needed that are simple and provide insight into the complexity of phytoplankton dynamics. Chlorophyll a (Chl), a proxy for phytoplankton biomass and environmental drivers were monitored on-line in large, shallow Lake Balaton during the vegetation periods between 2001 and 2018. Growth and non-growth (G and non-G) states of algae were deduced from daily change in Chl. Random forests (RF) were used to find stochastic response rules of phytoplankton to growth-supporting environmental habitat templates. The stochastic G/non-G state was translated into long-term daily biomass dynamics by a deterministic biomass model to assess uncertainty and to distinguish between inevitable and unpredictable blooms. A biomass peak was qualified as inevitable or unpredictable if the lower 95% confidence limit of simulations exceeded or remained at the baseline Chl level, respectively. Compared to a stochastic null model based on monthly Markovian transition probabilities, RF-based models captured wax and wane of biomass realistically. Timing of peaks could be better simulated than their magnitude, likely because habitat templates were primarily determined by light whereas peak sizes might depend on unmeasured processes, such as phosphorus availability. In general, algal growth was favored by wind-induced sediment resuspension that decreased light availability but simultaneously enhanced the P supply. Seasonal temperature and an integral of departures from the "normal" seasonal temperature over 2 to 3 generations were important drivers of phytoplankton growth, whereas short-term (diel and day to day) changes in water temperature appeared to be irrelevant. Four types of years could be distinguished during the study period with respect to algal growth conditions. The present modeling approach can reasonably be used even in highly variable aquatic environments when 3 to 4 years of daily data are available.
Collapse
Affiliation(s)
- Vera Istvánovics
- MTA-BME Water Research Group, Műegyetem rkp. 3, 1111 Budapest, Hungary.
| | - Márk Honti
- MTA-BME Water Research Group, Műegyetem rkp. 3, 1111 Budapest, Hungary
| |
Collapse
|
34
|
Cabrerizo MJ, Marañón E. Grazing Pressure Is Independent of Prey Size in a Generalist Herbivorous Protist: Insights from Experimental Temperature Gradients. MICROBIAL ECOLOGY 2021; 81:553-562. [PMID: 32829442 DOI: 10.1007/s00248-020-01578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Grazing by herbivorous protists contributes to structuring plankton communities through its effect on the growth, biomass, and competitiveness of prey organisms and also impacts the transfer of primary production towards higher trophic levels. Previous evidence shows that heterotrophic processes (grazing rates, g) are more sensitive to temperature than autotrophic ones (phytoplankton growth rates, μ) and also that small cells tend to be more heavily predated than larger ones; however, it remains unresolved how the interplay between changes in temperature and cell size modulates grazing pressure (i.e., g:μ ratio). We addressed this problem by conducting an experiment with four phytoplankton populations, from pico- to microphytoplankton, over a 12 °C gradient and in the presence/absence of a generalist herbivorous protist, Oxyrrhis marina. We found that highest g rates coincided with highest μ rates, which corresponded to intermediate cell sizes. There were no significant differences in either μ or g between the smallest and largest cell sizes considered. The g:μ ratio was largely independent of cell size and C:N ratios, and its thermal dependence was low although species-specific differences were large. We suggest that the similar g:μ found could be the consequence that the energetic demand imposed by rising temperatures would be a more important issue than the mechanical constriction to ingestion derived from prey cell size. Despite the difficulty of quantifying μ and g in natural planktonic communities, we suggest that the g:μ ratio is a key response variable to evaluate thermal sensitivity of food webs because it gives a more integrative view of trophic functioning than both rates separately.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain.
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain.
| | - Emilio Marañón
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain
| |
Collapse
|
35
|
Yang X, Yuan J, Yue FJ, Li SL, Wang B, Mohinuzzaman M, Liu Y, Senesi N, Lao X, Li L, Liu CQ, Ellam RM, Vione D, Mostofa KMG. New insights into mechanisms of sunlight- and dark-mediated high-temperature accelerated diurnal production-degradation of fluorescent DOM in lake waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143377. [PMID: 33198994 DOI: 10.1016/j.scitotenv.2020.143377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The production of fluorescent dissolved organic matter (FDOM) by phytoplankton and its subsequent degradation, both of which occur constantly under diurnal-day time sunlight and by night time dark-microbial respiration processes in the upper layer of surface waters, influence markedly several biogeochemical processes and functions in aquatic environments and can be feasibly related to global warming (GW). In this work sunlight-mediated high-temperature was shown to accelerate the production of FDOM, but also its complete disappearance over a 24-h diurnal period in July at the highest air and water temperatures (respectively, 41.1 and 33.5 °C), differently from lower temperature months. Extracellular polymeric substances (EPS), an early-state DOM, were produced by phytoplankton in July in the early morning (6:00-9:00), then they were degraded into four FDOM components over midday (10:00-15:00), which was followed by simultaneous production and almost complete degradation of FDOM with reformation of EPS during the night (2:00-6:00). Such transformations occurred simultaneously with the fluctuating production of nutrients, dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and the two isotopes (δ15N and δ18O) of NO3-. It was estimated that complete degradation of FDOM in July was associated with mineralization of approximately 15% of the initial DOC, which showed a nighttime minimum (00:00) in comparison to a maximum at 13:00. FDOM identified by excitation-emission matrix spectroscopy combined with parallel factor analysis consisted of EPS, autochthonous humic-like substances (AHLS) of C- and M-types, a combined form of C- and M-types of AHLS, protein-like substances (PLS), newly-released PLS, tryptophan-like substances, tyrosine-like substances (TYLS), a combined form of TYLS and phenylalanine-like substances (PALS), and their degradation products. Finally, stepwise degradation and production processes are synthesized in a pathway for FDOM components production and their subsequent transformation under different diurnal temperature conditions, which provided a broader paradigm for future impacts on GW-mediated DOM dynamics in lake water.
Collapse
Affiliation(s)
- Xuemei Yang
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jie Yuan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beitucheng Western Road, Chaoyang District, 100029 Beijing, PR China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Mohammad Mohinuzzaman
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yijun Liu
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Nicola Senesi
- Dip.to di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy
| | - Xinyu Lao
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Longlong Li
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Rob M Ellam
- Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride G75 0QF, UK; Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Davide Vione
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy; Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco, TO, Italy
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
36
|
Du L, Guo S, Gao X, Li W, Li X, Hou F, Wang R. Divergent responses of soil fungal communities to soil erosion and deposition as evidenced in topsoil and subsoil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142616. [PMID: 33045603 DOI: 10.1016/j.scitotenv.2020.142616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Despite the pivotal functional roles dominating the pace of nutrient cycles in terrestrial ecosystems, soil fungal communities at erosional and depositional sites have not been comparatively investigated when assessing the ecosystem stability of eroding landscapes. In this study, soil fungal communities in topsoil (0-5 cm) and subsoil (5-10 cm) on simulated eroding slopes of three slope gradients, i.e., 5°, 10°, and 20°, and in the corresponding depositional zones were examined from 2015 to 2017 in the region of the Chinese Loess Plateau. The results showed that, compared with that in the 5° reference slopes, soil fungal richness in the topsoil and subsoil of the 10° and 20° eroding slopes was 11.8-24.9% lower. However, the richness increased by 2.3-22.7% in the subsoil of the depositional zones, yet not in the topsoil. Soil fungal community compositions in both topsoil and subsoil differed between depositional zones and reference slopes but not between eroding slopes and reference slopes. The differentiation of fungal richness and community compositions between eroding slopes and depositional zones increased with slope gradients, regardless of the topsoil and the subsoil. Saprotrophic fungi levels were 22.5-48.0% lower and pathogenic fungi were 45.2-193.3% higher in the subsoil of the depositional zones with 10° and 20° slopes than in the subsoil of the 5° reference slopes. Soil fungal network on the eroding slope was more complex than that in the depositional zone, suggesting more extensive interactions of fungal taxa and higher community stability potential on eroding slopes. The decreasing soil moisture, organic matter, and other properties on the eroding slopes, in contrast with these properties increasing in the depositional zones, were responsible for the variations in fungal richness and community composition. The divergent responses of soil fungal communities to soil erosion and deposition emphasized the complexity and variability of fungal communities during the soil erosion-deposition processes.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengli Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xin Gao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weijia Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaogang Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fangbin Hou
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Rui Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
37
|
Tong S, Xu D, Wang Y, Zhang X, Li Y, Wu H, Ye N. Influence of ocean acidification on thermal reaction norms of carbon metabolism in the marine diatom Phaeodactylum tricornutum. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105233. [PMID: 33310685 DOI: 10.1016/j.marenvres.2020.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Under the present CO2 condition, the efficiency of biological pump mediating carbon sequestration is predicted to decline in the future because respiration tends to be more sensitive to rising temperature than is photosynthesis. However, it remains unknown whether the impacts of global warming on metabolic rates of phytoplankton can be modulated by elevated CO2 induced ocean acidification. Here we show that in the model diatom species Phaeodactylum tricornutum, Ea (activation energy) of photosynthesis (~0.5 eV) was significantly lower than that of respiration (1.8 eV), while CO2 concentration had no effect on the Ea value. Eh (deactivation energy) of respiration was increased to 2.5 eV, that was equivalent to Eh of photosynthesis in high CO2-grown cells and 28.4% higher than that in low CO2-grown ones. The respiration to photosynthesis ratio (R/P) was consistently higher in high CO2 condition, which increased with temperature at the beginning and subsequently decreased in both CO2 conditions. The ratio of R/P in high CO2 to R/P in low CO2 gradually increased with temperature above the optimal temperature. Our results imply that ocean acidification will aggravate the negative impacts or offset the alleviating effects of warming on the R/P ratio depending on the temperature range in Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- Shanying Tong
- School of Life Sciences, Ludong University, Yantai, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiansheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Hongyan Wu
- School of Life Sciences, Ludong University, Yantai, China.
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
38
|
Cabrerizo MJ, Marañón E. Temperature fluctuations in a warmer environment: impacts on microbial plankton. Fac Rev 2021; 10:9. [PMID: 33659927 PMCID: PMC7894268 DOI: 10.12703/r/10-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Warming can cause changes in the structure and functioning of microbial food webs. Experimental studies quantifying such impacts on microbial plankton have tended to consider constant temperature conditions. However, Jensen's inequality (or the fallacy of the average) recognizes that organism performance under constant conditions is seldom equal to the mean performance under variable conditions, highlighting the need to consider in situ fluctuations over a range of time scales. Here we review some of the available evidence on how warming effects on the abundance, diversity, and metabolism of microbial plankton are altered when temperature fluctuations are considered. We found that fluctuating temperatures may accentuate warming-mediated reductions in phytoplankton evenness and gross photosynthesis while synergistically increasing phytoplankton growth. Also, fluctuating temperatures have been shown to reduce the positive warming effect on cyanobacterial biomass production and recruitment and to reverse a warming effect on cellular nutrient quotas. Other reports have shown that fluctuations in temperature did not alter plankton responses to constant warming. These investigations have mostly focused on a few phytoplankton species (i.e. diatoms and haptophytes) in temperate and marine ecosystems and considered short-term and transient responses. It remains unknown whether the same responses apply to other species and ecosystems and if evolutionary change in thermally varying environments could alter the magnitude and direction of the responses to warming observed over short-term scales. Thus, future research efforts should address the role of fluctuations in environmental drivers. We stress the need to study responses over different biological organization and trophic levels, nutritional modes, temporal scales, and ecosystem types.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Departamento de Ecología y Biología Animal, Universidade de Vigo, Facultad de Ciencias del Mar, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain
| | - Emilio Marañón
- Departamento de Ecología y Biología Animal, Universidade de Vigo, Facultad de Ciencias del Mar, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain
| |
Collapse
|
39
|
Vizzo JI, Cabrerizo MJ, Helbling EW, Villafañe VE. Extreme and gradual rainfall effects on winter and summer estuarine phytoplankton communities from Patagonia (Argentina). MARINE ENVIRONMENTAL RESEARCH 2021; 163:105235. [PMID: 33338796 DOI: 10.1016/j.marenvres.2020.105235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Rainfall events bring both, terrigenous materials (including DOM) and nutrients to the aquatic system (e.g., via riverine runoff) having potential effects on the structure and metabolism of the phytoplankton communities. As extreme rainfall events in Patagonia occurred more frequently in the last decade (2010-2019) as compared to the previous ones (1972-2009), we exposed winter and summer phytoplankton communities (using microcosms) to solar radiation, simulating two rainfall conditions - a single extreme vs. intermittent i.e., with gradual inputs, and we assessed their photosynthetic and growth rates responses and taxonomic changes. Rainfall scenarios significantly increased growth of both communities, mainly of small nanoplanktonic species, as compared to the control. Small nanoplanktonic centric diatoms increased and dominated in both rainfall scenarios, as compared to the control, during winter and summer, with significantly smaller cells during summer as compared to winter. Photosynthetic efficiency increased in both rainfall scenarios at the end of the experiment as compared to the control. Overall, the change towards small cells (associated to rainfall events) that can use more effectively solar radiation and nutrients (as compared to large cells) may have a significant impact on the trophic webs of the South West Atlantic Ocean by favoring grazing pressure by microzooplankton, especially during summer.
Collapse
Affiliation(s)
- Juan I Vizzo
- Estación de Fotobiología Playa Unión, Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Marco J Cabrerizo
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain; Departamento de Ecología y Biología Animal, Universidade de Vigo, Facultad de Ciencias del Mar, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain.
| | - E Walter Helbling
- Estación de Fotobiología Playa Unión, Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Virginia E Villafañe
- Estación de Fotobiología Playa Unión, Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
40
|
Seifert M, Rost B, Trimborn S, Hauck J. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO 2. GLOBAL CHANGE BIOLOGY 2020; 26:6787-6804. [PMID: 32905664 DOI: 10.1111/gcb.15341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Responses of marine primary production to a changing climate are determined by a concert of multiple environmental changes, for example in temperature, light, pCO2 , nutrients, and grazing. To make robust projections of future global marine primary production, it is crucial to understand multiple driver effects on phytoplankton. This meta-analysis quantifies individual and interactive effects of dual driver combinations on marine phytoplankton growth rates. Almost 50% of the single-species laboratory studies were excluded because central data and metadata (growth rates, carbonate system, experimental treatments) were insufficiently reported. The remaining data (42 studies) allowed for the analysis of interactions of pCO2 with temperature, light, and nutrients, respectively. Growth rates mostly respond non-additively, whereby the interaction with increased pCO2 profusely dampens growth-enhancing effects of high temperature and high light. Multiple and single driver effects on coccolithophores differ from other phytoplankton groups, especially in their high sensitivity to increasing pCO2 . Polar species decrease their growth rate in response to high pCO2 , while temperate and tropical species benefit under these conditions. Based on the observed interactions and projected changes, we anticipate primary productivity to: (a) first increase but eventually decrease in the Arctic Ocean once nutrient limitation outweighs the benefits of higher light availability; (b) decrease in the tropics and mid-latitudes due to intensifying nutrient limitation, possibly amplified by elevated pCO2 ; and (c) increase in the Southern Ocean in view of higher nutrient availability and synergistic interaction with increasing pCO2 . Growth-enhancing effect of high light and warming to coccolithophores, mainly Emiliania huxleyi, might increase their relative abundance as long as not offset by acidification. Dinoflagellates are expected to increase their relative abundance due to their positive growth response to increasing pCO2 and light levels. Our analysis reveals gaps in the knowledge on multiple driver responses and provides recommendations for future work on phytoplankton.
Collapse
Affiliation(s)
- Miriam Seifert
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Björn Rost
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Universität Bremen, Bremen, Germany
| | - Scarlett Trimborn
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Universität Bremen, Bremen, Germany
| | - Judith Hauck
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
41
|
Proteomic and Transcriptomic Patterns during Lipid Remodeling in Nannochloropsis gaditana. Int J Mol Sci 2020; 21:ijms21186946. [PMID: 32971781 PMCID: PMC7554720 DOI: 10.3390/ijms21186946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Nutrient limited conditions are common in natural phytoplankton communities and are often used to increase the yield of lipids from industrial microalgae cultivations. Here we studied the effects of bioavailable nitrogen (N) and phosphorus (P) deprivation on the proteome and transcriptome of the oleaginous marine microalga Nannochloropsis gaditana. Turbidostat cultures were used to selectively apply either N or P deprivation, controlling for variables including the light intensity. Global (cell-wide) changes in the proteome were measured using Tandem Mass Tag (TMT) and LC-MS/MS, whilst gene transcript expression of the same samples was quantified by Illumina RNA-sequencing. We detected 3423 proteins, where 1543 and 113 proteins showed significant changes in abundance in N and P treatments, respectively. The analysis includes the global correlation between proteomic and transcriptomic data, the regulation of subcellular proteomes in different compartments, gene/protein functional groups, and metabolic pathways. The results show that triacylglycerol (TAG) accumulation under nitrogen deprivation was associated with substantial downregulation of protein synthesis and photosynthetic activity. Oil accumulation was also accompanied by a diverse set of responses including the upregulation of diacylglycerol acyltransferase (DGAT), lipase, and lipid body associated proteins. Deprivation of phosphorus had comparatively fewer, weaker effects, some of which were linked to the remodeling of respiratory metabolism.
Collapse
|
42
|
Allen R, Hoffmann LJ, Law CS, Summerfield TC. Subtle bacterioplankton community responses to elevated CO 2 and warming in the oligotrophic South Pacific gyre. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:377-386. [PMID: 32307860 DOI: 10.1111/1758-2229.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Bacterioplankton play a critical role in primary production, carbon cycling, and nutrient cycling in the oligotrophic ocean. To investigate the effect of elevated CO2 and warming on the composition and function of bacterioplankton communities in oligotrophic waters, we performed two trace-metal clean deck board incubation experiments during the New Zealand GEOTRACES transect of the South Pacific gyre (SPG). High-throughput amplicon sequencing of the 16S rRNA gene revealed that bacterioplankton community composition was distinct between the fringe and ultra-oligotrophic centre of the SPG and changed consistently in response to elevated CO2 at the ultra-oligotrophic centre but not at the mesotrophic fringe of the SPG. The combined effects of elevated CO2 and warming resulted in a high degree of heterogeneity between replicate communities. Community-level protein synthesis rates (3 H-Leucine incorporation) and bacterioplankton abundance were not affected by elevated CO2 alone or in combination with warming at the fringe or ultra-oligotrophic centre of the SPG. These data suggest bacterioplankton community responses to elevated CO2 may be modulated by nutrient regimes in open ocean ecosystems and highlight the need for further investigation in expanding oligotrophic subtropical gyres.
Collapse
Affiliation(s)
- Ro Allen
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Linn J Hoffmann
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Cliff S Law
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
43
|
Sarker S, Yadav AK, Akter M, Shahadat Hossain M, Chowdhury SR, Kabir MA, Sharifuzzaman S. Rising temperature and marine plankton community dynamics: Is warming bad? ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Spatio-Temporal Variability of Chlorophyll-A and Environmental Variables in the Panama Bight. REMOTE SENSING 2020. [DOI: 10.3390/rs12132150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The analysis of synoptic satellite data of total chlorophyll-a (Chl-a) and the environmental drivers that influence nutrient and light availability for phytoplankton growth allows us to understand the spatio-temporal variability of phytoplankton biomass. In the Panama Bight Tropical region (PB; 1–9°N, 79–84°W), the spatial distribution of Chl-a is mostly related to the seasonal wind patterns and the intensity of localized upwelling centers. However, the association between the Chl-a and different physical variables and nutrient availability is still not fully assessed. In this study, we evaluate the relationship between the Chl-a and multiple physical (wind, Ekman pumping, geostrophic circulation, mixed layer depth, sea level anomalies, river discharges, sea surface temperature, and photosynthetically available radiation) and chemical (nutrients) drivers in order to explain the spatio-temporal Chl-a variability in the PB. We used satellite data of Chl-a and physical variables, and a re-analysis of a biogeochemical product for nutrients (2002–2016). Our results show that at the regional scale, the Chl-a varies seasonally in response to the wind forcing and sea surface temperature. However, in the coastal areas (mainly Gulf of Panama and off central-southern Colombia), the maximum non-seasonal Chl-a values are found in association with the availability of nutrients by river discharges, localized upwelling centers and the geostrophic circulation field. From this study, we infer that the interplay among these physical-chemical drivers is crucial for supporting the phytoplankton growth and the high biodiversity of the PB region.
Collapse
|
45
|
Giani A, Taranu ZE, von Rückert G, Gregory-Eaves I. Comparing key drivers of cyanobacteria biomass in temperate and tropical systems. HARMFUL ALGAE 2020; 97:101859. [PMID: 32732053 DOI: 10.1016/j.hal.2020.101859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
There is growing evidence that cyanobacterial blooms are becoming more common in different parts of the world; within this context, predictive cyanobacteria models have an essential role in lake management. Several models have been successfully used in temperate systems to describe the main drivers of cyanobacterial blooms, but relatively less work has been conducted in the Tropics. We analyzed data from six Brazilian reservoirs and from five Canadian lakes using a combination of regression tree analyses and variation partitioning to evaluate the similarities and differences between regions. Our results, together with a synthesis of the literature from different latitudes, showed that trophic state (i.e. nutrients), climatic variables (e.g., temperature and/or precipitation) and hydrodynamic regimes (i.e. water residence time) are significant drivers of cyanobacteria biomass over several scales. Nutrients came out as the primary predictor in both regions, followed by climate, but when all systems were pooled together, water residence time came out as most important. The consistency in variables identified between regions suggests that these drivers are widely important and cyanobacteria responded quite similarly in different geographical settings and waterbody types (i.e. lakes or reservoirs). However, more work is needed to identify key thresholds across latitudinal gradients. Taken together, these results suggest that multi-region syntheses can help identify drivers that predict broad-scale patterns of cyanobacteria biomass.
Collapse
Affiliation(s)
- Alessandra Giani
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Zofia E Taranu
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, Canada
| | - Gabriela von Rückert
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Environmental and Sanitary Engineering, Centro Universitário Católica do Leste de Minas Gerais, Coronel Fabriciano, Brazil
| | | |
Collapse
|
46
|
Fernández-González C, Pérez-Lorenzo M, Pratt N, Moore CM, Bibby TS, Marañón E. Effects of Temperature and Nutrient Supply on Resource Allocation, Photosynthetic Strategy, and Metabolic Rates of Synechococcus sp. JOURNAL OF PHYCOLOGY 2020; 56:818-829. [PMID: 32130730 DOI: 10.1111/jpy.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply. We measured the abundance of proteins involved in the dark (RuBisCO, rbcL) and light (Photosystem II, psbA) photosynthetic reactions, the content of chlorophyll a, carbon and nitrogen, and the rates of photosynthesis, respiration, and growth. We found that rbcL and psbA abundance increased with nutrient supply, whereas a temperature-induced increase in psbA occurred only in nutrient-replete treatments. Low temperature and abundant nutrients caused increased RuBisCO abundance, a pattern we observed also in natural phytoplankton assemblages across a wide latitudinal range. Photosynthesis and respiration increased with temperature only under nutrient-sufficient conditions. These results suggest that nutrient supply exerts a stronger effect than temperature upon both photosynthetic protein abundance and metabolic rates in Synechococcus sp. and that the temperature effect on photosynthetic physiology and metabolism is nutrient dependent. The preferential resource allocation into the light instead of the dark reactions of photosynthesis as temperature rises is likely related to the different temperature dependence of dark-reaction enzymatic rates versus photochemistry. These findings contribute to our understanding of the strategies for photosynthetic energy allocation in phytoplankton inhabiting contrasting environments.
Collapse
Affiliation(s)
| | - María Pérez-Lorenzo
- Department of Ecology and Animal Biology, Universidade de Vigo, 36310, Vigo, Spain
| | - Nicola Pratt
- Ocean and Earth Science, University of Southampton, SO14 3ZH, Southampton, UK
| | - C Mark Moore
- Ocean and Earth Science, University of Southampton, SO14 3ZH, Southampton, UK
| | - Thomas S Bibby
- Ocean and Earth Science, University of Southampton, SO14 3ZH, Southampton, UK
| | - Emilio Marañón
- Department of Ecology and Animal Biology, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
47
|
Barton S, Jenkins J, Buckling A, Schaum CE, Smirnoff N, Raven JA, Yvon-Durocher G. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol Lett 2020; 23:722-733. [PMID: 32059265 PMCID: PMC7078849 DOI: 10.1111/ele.13469] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/11/2020] [Indexed: 12/01/2022]
Abstract
The efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short‐term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long‐term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short‐term increases in temperature. Long‐term experimental evolution under high temperature reversed the short‐term stimulation of metabolic rates, resulting in increased rates of carbon fixation. Our findings suggest that thermal adaptation may therefore have an ameliorating impact on the efficiency of phytoplankton as primary mediators of the biological carbon pump.
Collapse
Affiliation(s)
- Samuel Barton
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - James Jenkins
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - C-Elisa Schaum
- Institute for Hydrobiology and Fisheries, Section Oceanography, Hamburg University, 22767, Hamburg, Germany
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building University of Exeter, Exeter, EX4 4QD, UK
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.,Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,School of Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
48
|
Pomati F, Shurin JB, Andersen KH, Tellenbach C, Barton AD. Interacting Temperature, Nutrients and Zooplankton Grazing Control Phytoplankton Size-Abundance Relationships in Eight Swiss Lakes. Front Microbiol 2020; 10:3155. [PMID: 32038586 PMCID: PMC6987318 DOI: 10.3389/fmicb.2019.03155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 11/14/2022] Open
Abstract
Biomass distribution among size classes follows a power law where the Log-abundance of taxa scales to Log-size with a slope that responds to environmental abiotic and biotic conditions. The interactions between ecological mechanisms controlling the slope of locally realized size-abundance relationships (SAR) are however not well understood. Here we tested how warming, nutrient levels, and grazing affect the slope of phytoplankton community SARs in decadal time-series from eight Swiss lakes of the peri-alpine region, which underwent environmental forcing due to climate change and oligotrophication. We expected rising temperature to have a negative effect on slope (favoring small phytoplankton), and increasing nutrient levels and grazing pressure to have a positive effect (benefiting large phytoplankton). Using a random forest approach to extract robust patterns from the noisy data, we found that the effects of temperature (direct and indirect through water column stability), nutrient availability (phosphorus and total biomass), and large herbivore (copepods and daphnids) grazing and selectivity on slope were non-linear and interactive. Increasing water temperature or total grazing pressure, and decreasing phosphorus levels, had a positive effect on slope (favoring large phytoplankton, which are predominantly mixotrophic in the lake dataset). Our results therefore showed patterns that were opposite to the expected long-term effects of temperature and nutrient levels, and support a paradigm in which (i) small phototrophic phytoplankton appear to be favored under high nutrients levels, low temperature and low grazing, and (ii) large mixotrophic algae are favored under oligotrophic conditions when temperature and grazing pressure are high. The effects of temperature were stronger under nutrient limitation, and the effects of nutrients and grazing were stronger at high temperature. Our study shows that the phytoplankton local SARs in lakes respond to both the independent and the interactive effects of resources, grazing and water temperature in a complex, unexpected way, and observations from long-term studies can deviate significantly from general theoretical expectations.
Collapse
Affiliation(s)
- Francesco Pomati
- Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Integrative Biology, ETH-Zurich, Zurich, Switzerland
| | - Jonathan B Shurin
- Department of Ecology Behavior and Evolution, University of California, San Diego, La Jolla, CA, United States
| | - Ken H Andersen
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Tellenbach
- Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Andrew D Barton
- Department of Ecology Behavior and Evolution, University of California, San Diego, La Jolla, CA, United States.,Scripps Institution of Oceanography, La Jolla, CA, United States
| |
Collapse
|
49
|
Thangaraj S, Giordano M, Sun J. Comparative Proteomic Analysis Reveals New Insights Into the Common and Specific Metabolic Regulation of the Diatom Skeletonema dohrnii to the Silicate and Temperature Availability. FRONTIERS IN PLANT SCIENCE 2020; 11:578915. [PMID: 33224167 PMCID: PMC7674209 DOI: 10.3389/fpls.2020.578915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/28/2020] [Indexed: 05/12/2023]
Abstract
Silicate (Si) and temperature are essential drivers for diatom growth and development in the ocean. Response of diatoms to these particular stress has been investigated; however, their common and specific responses to regulate intracellular development and growth are not known. Here, we investigated the combination of physiological characteristics and comparative proteomics of the diatom Skeletonema dohrnii grown in silicate- and temperature-limited conditions. Results show that cell carbon and lipid quotas were higher at lower-temperature cells, whereas cellular phosphate was higher in cells grown with lower Si. In silicate-limited cells, nitrate transporters were downregulated and resulted in lower nitrate assimilation, whereas the phosphate transporters and its assimilation were reduced in lower-temperature conditions. In photosynthesis, lower silicate caused impact in the linear electron flow and NADPH production, whereas cycling electron transport and ATP production were affected by the lower temperature. Concerning cell cycle, imbalances in the translation process were observed in lower-silicate cells, whereas impact in the transcription mechanism was observed in lower-temperature cells. However, proteins associated with carbon fixation and photorespiration were downregulated in both stress conditions, while the carbohydrate and lipid synthesis proteins were upregulated. Our results showed new insights into the common and specific responses on the proteome and physiology of S. dohrnii to silicate and temperature limitation, providing particular nutrient (Si)- and temperature-dependent mechanisms in diatoms.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, China
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, China
- *Correspondence: Jun Sun,
| |
Collapse
|
50
|
Ko J, Lee D, Lee BJ, Kauh SK, Lee J. Micropipette Resonator Enabling Targeted Aspiration and Mass Measurement of Single Particles and Cells. ACS Sens 2019; 4:3275-3282. [PMID: 31762257 DOI: 10.1021/acssensors.9b01843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper reports micropipette resonators, mechanical resonator-integrated micropipettes, which enable selective aspiration and mass measurement of particles or cells suspended in liquids with two orthogonal vibration modes. A custom pipette pulling system is built to provide power-modulated linear heating on a rotating glass capillary to make an asymmetric cross section with extended uniformity.A glass capillary is stretched with the custom puller, cut within the pulled region, polished, mounted on a machined metallic jig, and then coated with a metal. As a result, a doubly clamped tube resonator-integrated micropipette is made. For simultaneous frequency readouts of two orthogonal modes, an optical pickup, originally developed for optical data storage, is configured closely above and properly aligned to the micropipette resonator and two digital phase-locked loops are employed. For mass responsivity calibration, frequency shifts of the micropipette resonator are measured with various liquids and glass microparticles. Buoyant masses of unicellular organisms, Paramecium aurelia, freely swimming in a culture dish are successfully measured with two orthogonal modes.
Collapse
Affiliation(s)
| | - Donghyuk Lee
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, South Korea
| | | | - Sang Ken Kauh
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, South Korea
| | | |
Collapse
|