1
|
Zhao Z, Gao H, Yang Y, Deng Y, Ju F. Fungi as a Critical Component of Lake Microbiota in Response to Cyanobacterial Harmful Algal Blooms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11167-11180. [PMID: 40434797 DOI: 10.1021/acs.est.4c09164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a growing threat to lake ecosystems. While microbial communities constitute the resilient power of lake ecosystems to CyanoHAB disturbances, the role of fungi remains underexplored. Here, the dynamics of size-fractionated fungal and associated bacterial communities were tracked across the peak and decline stages of a CyanoHAB event in shallow subtropical Lake Taihu. The results revealed that the composition of fungal and bacterial communities in separated size fractions varied between bloom stages, with enrichment patterns likely influenced by their reliance on algal-derived nutrients. Null model-based analysis revealed a shift in fungal community assembly, from dominance by dispersal limitation (44%) and drift (30%) at the peak stage to increased homogeneous selection (44%) at the early decline stage, whereas bacterial communities remained predominantly shaped by stochastic processes, highlighting their distinct responses to cyanobacterial biomass decomposition. Comparative topological analysis of microbial co-occurrence networks showed strengthened cross-kingdom fungi-bacteria interactions as the bloom declined, especially within decomposing cyanobacterial colonies, facilitating nutrient cycling and accelerating cyanobacterial biomass removal. These findings led to a conceptual model proposing fungi as critical members of the freshwater microbiome in eutrophic lakes, driving biogeochemical cycling and potentially contributing to the resilience of the lake ecosystem against CyanoHABs.
Collapse
Affiliation(s)
- Ze Zhao
- Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Han Gao
- Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China
| | - Feng Ju
- Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
2
|
Shen Z, Cui J, Li J, Peng Y, Li J, Zhang Z, Chan A, Chen M, Yao D. Differential impacts of invasive aquatic plants water lettuce (Pistia stratiotes) and water hyacinth (Eichhornia crassipes) on plankton community dynamics and its ecosystem functionality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125606. [PMID: 40345092 DOI: 10.1016/j.jenvman.2025.125606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Plankton plays a pivotal role in maintaining aquatic ecosystem stability and food web equilibrium. Yet, the mechanistic responses of plankton communities to invasive aquatic plants (e.g., Pistia stratiotes and Eichhornia crassipes) remain poorly understood. This study investigated the temporal effects of these invasive species on plankton biodiversity, native plant (Ludwigia ovalis) growth, and nutrient dynamics in freshwater systems in a 50-day microcosm experiment. Results indicated no significant change in L. ovalis growth (p > 0.05), while pH, EC, TN, and TP significantly decreased (p < 0.05). And plankton dominant species, functional communities (e.g., functional group D and small copepoda and cladocera filter feeders) and their co-occurrence networks were disrupted. Moreover, the Shannon index of phytoplankton was significantly higher at day 10 and lower at day 50 (p < 0.05) than that of P. stratiotes, while the metazoan zooplankton showed the reverse trend. P. stratiotes reduced network complexity including average degree and graph density, while E. crassipes disrupted architectural integrity as modularity, collectively destabilizing plankton interactions. SEM model revealed that E. crassipes indirectly decreased EC via TN reduction (-0.412) while P. stratiotes directly suppressed EC (-0.242), cascading into decreased plankton biomass, density, and diversity. These findings elucidated species-specific invasion mechanisms and their cascading impacts on planktonic ecosystems, which could provide actionable insights for mitigating biodiversity loss in invaded freshwater habitats and enhancing ecological monitoring frameworks to safeguard ecosystem services.
Collapse
Affiliation(s)
- Ziyao Shen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Jinfeng Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Ying Peng
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Andy Chan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mianrun Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| |
Collapse
|
3
|
Kalra I, Stewart BP, Florea KM, Smith J, Webb EA, Caron DA. Temporal and spatial dynamics of harmful algal bloom-associated microbial communities in eutrophic Clear Lake, California. Appl Environ Microbiol 2025; 91:e0001125. [PMID: 40152608 PMCID: PMC12016506 DOI: 10.1128/aem.00011-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Clear Lake is a large, natural eutrophic lake located in northern California, United States. Persistent, toxic cyanobacterial blooms have been reported in the lake since 2011. However, our understanding of the spatiotemporal distribution of toxin-producing genera and their interaction with the biotic and abiotic environment is limited. Moreover, few studies have addressed how the co-occurring microbial communities respond to these toxic cyanobacterial blooms. Using multi-domain 16S/18S rRNA gene amplicon sequencing, a strong seasonal succession within the cyanobacterial and co-occurring eukaryotic assemblage was identified, which was primarily explained by variation in total phosphorus (~30%, P < 0.001) and temperature (~15%, P < 0.01). Cyanobacterial seasonal succession was often initiated by proliferation of diazotrophs (Dolichospermum and Nodularia) with concomitant increases in total nitrogen, followed by blooms of non-diazotrophs, such as Microcystis, Limnothrix, and Planktothrix. The picocyanobacterium Cyanobium, previously undocumented in the lake, was a dominant summer taxon in the western part of Clear Lake, accounting for ~45%-80% relative abundance of the cyanobacterial reads. Seasonal succession within the eukaryotic assemblage was influenced by photosynthetic chlorophytes and diatoms, as well as mixotrophic ciliates and cryptophytes. Among all toxin-producing cyanobacterial genera, Microcystis abundance was most strongly correlated with microcystin concentrations (P < 0.001), both of which appeared to influence co-occurring eukaryotes. Finally, using putative relationships based on correlation of sequence abundance and environmental variables, several potential grazers of Microcystis were identified, including cyclopoid copepods and Cryptomonas. These correlations need further confirmation and experimental work to validate the nature of the relationships.IMPORTANCEClear Lake is an important habitat for fish and wildlife, which also provides a myriad of human benefits, such as recreation, irrigation, and drinking water. Moreover, the lake is vital for tribal tradition and cultural practices. However, since the last decade, the lake has experienced recurring harmful algal blooms with toxin levels that frequently exceed California voluntary guidance levels. These high toxin concentrations pose a substantial threat to the residents, visitors, and tribal sustenance fishing and beneficial uses. However, significant gaps remain in our understanding of these toxic algal bloom dynamics and their interaction with the abiotic and biotic environments. This study characterized the seasonal and spatial patterns in the distribution of bloom-causing cyanobacteria and identified Microcystis as the major toxin producer in Clear Lake. Additionally, the co-occurring bacterial and eukaryotic microbial communities were also characterized, and their potential interactions with the cyanobacterial assemblage were identified and discussed.
Collapse
Affiliation(s)
- Isha Kalra
- University of Southern California, Los Angeles, California, USA
| | | | - Kyra M. Florea
- University of Southern California, Los Angeles, California, USA
| | - Jayme Smith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Eric A. Webb
- University of Southern California, Los Angeles, California, USA
| | - David A. Caron
- University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Mo Y, Abdolahpur Monikh F, Jaffer YD, Mugani R, Ionescu D, Chen G, Yang J, Grossart HP. Effects of tire wear particles on freshwater bacterial-fungal community dynamics and subsequent elemental cycles using microcosms. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137062. [PMID: 39799671 DOI: 10.1016/j.jhazmat.2024.137062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system. Our results revealed the degree of change in microbial community diversity in water is higher than that in sediment following TWPs addition. For bacterial communities, TWPs addition changed their composition in the water, but only little in the sediment. For fungal communities, TWPs addition changed their composition both in water and sediments. Furthermore, in water, TWPs addition increased network complexity between bacteria-bacteria, fungi-fungi and bacteria-fungi in the urban system but reduced it in the rural one. In contrast, TWPs presence did not significantly change network complexity among microbial communities in the sediment of both lakes. Isotope labeling analysis uncovered that based on a short-term (6 hours) incubation experiment, TWPs addition did not significantly change carbon nor nitrogen cycling in the water. Yet, certain changes could be observed, especially in the long-term experiment (1 month), indicating that TWPs pollution has the potential to impact elemental cycling and thus ecosystem functions by altering microbial communities. Our results provide new insights into TWPs-induced ecological effects on microorganisms and potential biogeochemical consequences in a rural vs. urban lakes.
Collapse
Affiliation(s)
- Yuanyuan Mo
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fazel Abdolahpur Monikh
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Department of Chemical Sciences, University of Padua, via Marzolo 1, Padova 35131, Italy; Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 460 01, Czech Republic.
| | - Yousuf Dar Jaffer
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Richard Mugani
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; National Institute of Public Health, Ministry of Health and Fight Against AIDS, Bujumbura, Burundi
| | - Danny Ionescu
- Department of Environmental Microbiomics, Technische Universität Berlin, 10587, Berlin, Germany
| | - Guogui Chen
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
5
|
Wang W, Wang R, Li Y, Li Y, Zhang P, Gao M, Cao Y, Fohrer N, Zhang Y, Li BL. Cross-sectional-dependent microbial assembly and network stability: Bacteria sensitivity response was higher than eukaryotes and fungi in the Danjiangkou Reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124851. [PMID: 40056577 DOI: 10.1016/j.jenvman.2025.124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Water depth variation can lead to the vertical structure change of microbial communities in reservoirs, and then affect the relationship between the microbial communities along the depth gradient, profoundly affecting the stability of the aquatic ecosystems. However, the interspecific dynamics of microbial communities across different water layers in deep-water low-nutrient drinking water reservoirs remain not well understood. Thus, we assessed microbial communities' dynamic changes in different water layers in this study. The physical and chemical parameters and different planktonic microbial of the surface, middle, and bottom layers were studied from July 2022 to August 2023 in the Danjiangkou Reservoir, China. Based on high-throughput sequencing technology, model analysis and network analysis, the diversity of microbial communities in different water layers, community construction process and co-occurrence network differences were studied. The results showed that the diversity of bacterial communities in the Danjiangkou reservoir was significantly higher than that of fungi and eukaryotic microorganisms in different water depths. The dominant taxa of the bacterial communities in different water depths were Actinobacteriota, Bacteroidota, Proteobacteria and Cyanobacteria. The dominant phyla were Ascomycota, unclassified_k__Fungi and Chytridiomycota. The relative abundance of vertical dominant species in eukaryotic communities was slightly different, including Cryptophyta, Chlorophyta, Dinophyta and Metazoa. Different microbial communities shared the main dominant species on the vertical stratification. The neutral model showed that random processes significantly affected the assembly process of microbial communities in different water layers, and the mobility of fungal communities was much lower than that of bacteria and eukaryotes. The co-occurrence network analysis showed that the number of nodes and edges of the bacterial community was the highest, indicating that the network scale of the bacterial community was the largest. In addition, the map density and average clustering coefficient of bacterial and eukaryotic communities in surface water were the highest, indicating that the surface microbial species had a high degree of connectivity, can better transfer materials and exchange information, and Sensitive to changes in the external environment. In contrast, in fungal communities, microbial interactions were the most complex at the bottom. The interactions between microbial communities in different water depths were mainly positive, and the negative correlation of microbial communities in the middle and bottom water was greater than that in the surface water, indicating that the competition between species increased with the increase of depth. Correlation analysis showed that the key species of microbial community were significantly correlated with TP, PO43--P, NO3--N and ORP. In summary, by analyzing water depth changes' impacts on the spatial distribution pattern, community assembly process and symbiotic network stability of microbial communities in the Danjiangkou Reservoir, we found that bacterial communities were more sensitive to water depth than eukaryotes and fungi. This study revealed the response mechanism of microbial communities to water depth in low-nutrient reservoirs, which is helpful to reflect aquatic ecological processes and provide a theoretical basis for the construction of subsequent reservoir ecological models.
Collapse
Affiliation(s)
- Wanping Wang
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Rongxin Wang
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yuying Li
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Yixuan Li
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Pengcheng Zhang
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Mingming Gao
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yuxuan Cao
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Nicola Fohrer
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China; Department of Hydrology and Water Resources Management, Kiel University, Kiel, 240980, Germany.
| | - Yixin Zhang
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China; International One Health Institute, Wenzhou-Kean University, Wenzhou, 325000, China.
| | - B Larry Li
- International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of South to North Water Diversion / College of Water Resource and Modern Agriculture, Nanyang Normal University, Nanyang, 473061, China; Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Li S, Yan X, Chen H, Jeppesen E, Xiao P, Jin L, Xu Z, Zuo J, Ren K, Yang J. Cyanobacterial blooms specifically alter the dispersal-mediated taxonomic and functional vertical similarity of microbial communities in a subtropical reservoir. WATER RESEARCH 2025; 281:123574. [PMID: 40220646 DOI: 10.1016/j.watres.2025.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Harmful cyanobacterial blooms, including Raphidiopsis raciborskii (basionym Cylindrospermopsis raciborskii), are an increasing environmental concern in freshwater ecosystems globally. However, the ecological consequences of cyanobacterial blooms for the vertical similarity of microbial community structure have yet to be thoroughly investigated, especially in deep waters. Here, we explored the taxonomic and functional similarity of microbial communities at different depths in a subtropical reservoir over a 7-year period following multiple R. raciborskii blooms. Our results showed that vertical microbial dispersal, rather than ecological niche, is the main process determining vertical similarity. Both particle-attached (PA) and free-living (FL) bacteria from the surface water were able to reach the deep water, particle size being a contributing factor to their vertical dispersal. Cyanobacterial blooms enhanced the vertical microbial transport of PA, impacting the composition and biogeochemical processes of deep microbial communities. During the mixing period, microbial taxonomic and functional similarities between the different water layers were high whereas they were minimal across the oxycline during the stratification period, suggesting a bottleneck in microbial vertical dispersal. In the deep water layers, the abundances of specific taxa, such as those of Burkholderiales and Desulfomonilales in PA and FL fractions respectively in stratification periods, increased during blooms. Additionally, cyanobacterial blooms enhanced sulfur compound respiration in both PA and FL fractions and suppressed nitrification in PA bacteria and denitrification in FL bacteria, simultaneously reducing light-utilization capacity in PA bacteria and altering organic matter degradation. Several mechanisms are proposed to drive variations in microbial vertical connectivity by cyanobacteria, including ecological niche shifts and alterations of physicochemical properties and nutrient dynamics. Overall, our results reveal complex effects of cyanobacterial blooms on microbial taxonomic and functional vertical similarity and highlight the contribution of surface communities to the biodiversity and biogeography of deep communities.
Collapse
Affiliation(s)
- Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xue Yan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erik Jeppesen
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Ecoscience and Centre for Water Technology, Aarhus University, Aarhus DK-8000, Denmark; Limnology Laboratory, Department of Biological Sciences, Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zijie Xu
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kexin Ren
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
7
|
Yang H, Xiong X, Tai Y, Xiao LJ, He D, Wu L, Zhou L, Ren L, Wu QL, Han BP. Sediment bacterial biogeography across reservoirs in the Hanjiang river basin, southern China: the predominant influence of eutrophication-induced carbon enrichment. Front Microbiol 2025; 16:1554914. [PMID: 40226101 PMCID: PMC11991844 DOI: 10.3389/fmicb.2025.1554914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
A fundamental goal of reservoir ecosystem management is to understand bacterial biogeographic patterns and the mechanisms shaping them at a regional scale. However, little is known about how eutrophication, a major water quality challenge in reservoirs, influences sediment bacterial biogeographic patterns in subtropical regions. In this study, sediment bacterial communities were sampled from 21 subtropical reservoirs in the Hanjiang river basin, southern China, and spanning trophic states from oligotrophic to eutrophic. Our findings demonstrated that eutrophication-driven changes in total carbon (TC) significantly shaped the regional biogeographic patterns of sediment bacterial communities, weakening the "distance-decay" relationships that typically link bacterial community similarity to geographical distance. TC content exceeding a threshold of 13.2 g·kg-1 resulted in substantial shifts in bacterial community structure. Specifically, high TC levels promoted the dominance of copiotrophic bacteria such as Syntrophales (Deltaproteobacteria), Clostridiaceae (Firmicutes), and VadinHA17 (Bacteroidetes), while oligotrophic taxa like Anaerolineaceae (Chloroflexi) and Nitrospirota were prevalent in low TC sediments. Additionally, higher TC content was associated with increased regional heterogeneity in bacterial community composition. Reservoirs with elevated TC levels exhibited more complex bacterial interaction networks, characterized by stronger niche segregation and higher competition compared to low TC networks. Overall, these findings underscore the pivotal role of sediment TC in shaping bacterial biogeography at a regional scale. They provide valuable insights for predicting ecosystem responses to eutrophication and offer guidance for mitigating the impacts of anthropogenic activities on freshwater ecosystems.
Collapse
Affiliation(s)
- Haokun Yang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Xueling Xiong
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Yiping Tai
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Li-Juan Xiao
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Dan He
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Liqin Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, China
| | - Lijun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qinglong L. Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Xue Z, He H, Han Y, Tian W, Li S, Guo J, Yu P, Qiao L, Zhang W. Relic DNA obscures bacterial diversity and interactions in ballast tank sediment. ENVIRONMENTAL RESEARCH 2025; 267:120715. [PMID: 39733986 DOI: 10.1016/j.envres.2024.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024]
Abstract
The dark and anoxic environment of ballast tank sediment (BTS) harbors substantial amounts of relic DNA, yet its impact on microbial diversity estimates in BTS management remains poorly understood. This study employed propidium monoazide (PMA) treatment to eliminate relic DNA and used 16S amplicon high-throughput sequencing to characterize both total and viable bacteria. Our findings revealed that relic DNA is abundant in BTS. When removed, it led to variable reductions in species richness, which fluctuated from a 3.15% increase to a 37.52% decrease. Additionally, 6.27%-15.79% of OTUs were absent in the PMA-treated samples. These findings indicate that relic DNA has diverse effects on microbial diversity estimates. Moreover, relic DNA removal altered the relative abundances of a wide range of taxa, thereby facilitating the detection of rare taxa. Furthermore, the absence of relic DNA resulted in an overestimation of co-occurrence network size, complexity, and competitiveness, which could lead to misinterpretations of community assembly processes. In conclusion, our findings indicate that relic DNA obscures microbial diversity estimates and risk assessments in BTS, highlighting the critical need for monitoring viable bacteria in ballast sediment management.
Collapse
Affiliation(s)
- Zhaozhao Xue
- Marine College, Shandong University, Weihai, China
| | - Haoze He
- Marine College, Shandong University, Weihai, China
| | - Yangchun Han
- Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Wen Tian
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Shengjie Li
- COSCO SHIPPING Heavy Industry Technology (Weihai) Co., Ltd, Weihai, China
| | - Jingfeng Guo
- Integrated Technical Service Center of Jiangyin Customs, Jiangyin, China
| | - Pei Yu
- Marine College, Shandong University, Weihai, China
| | - Lina Qiao
- Marine College, Shandong University, Weihai, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, China.
| |
Collapse
|
9
|
Ismail N, Seguin P, Pricam L, Janssen EML, Kohn T, Ibelings BW, Carratalà A. Seasonality of cyanobacteria and eukaryotes in Lake Geneva and the impacts of cyanotoxins on growth of the model ciliate Tetrahymena pyriformis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107262. [PMID: 39893999 DOI: 10.1016/j.aquatox.2025.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Toxic cyanobacteria are likely to be favored by global warming and other human impacts, posing significant threats to aquatic ecosystems. While cyanobacterial blooms in eutrophic lakes are widely investigated, the dynamics of cyanobacteria and the effects of their toxins and bioactive metabolites on the plankton communities in mesotrophic and oligotrophic lakes are less well understood. Here we investigated seasonal dynamics of cyanobacteria, eukaryotic algae and cyanotoxins in oligo-mesotrophic Lake Geneva-the largest and deepest lake in western Europe. High-throughput sequencing of the 16S rRNA genes in 143 samples along a water column revealed that Lake Geneva hosts diverse, co-dominant cyanobacterial genera, including Planktothrix, Cyanobium, Pseudanabaena, and Aphanizomenon. The abundance of the mcyA gene marker for microcystin production was highly correlated with total cyanobacteria abundance, obtained from qPCR of the 16S rRNA genes. Targeted LC-HRMS/MS analysis demonstrated peak concentrations of cyanotoxins in September and December 2021 at the deep chlorophyll-a maximum layer, reaching up to 1474 ng/l for anabaenopeptins and 144 ng/l for microcystins. The toxin peaks did not correlate with the abundance or variations in the cyanobacteria or eukaryote community, but they were correlated in time with seasonal lows in the abundances of ciliates (18S rRNA analysis). Laboratory exposure tests demonstrated that growth of the model ciliate Tetrahymena pyriformis was inhibited by Microcystin-RR and Anabaenopeptin A at environmentally relevant concentrations in the ng/l-range, in natural lake water, synthetic freshwater, and growth media spiked with the cyanotoxins. Our findings suggest that even low concentrations (in the ng/l-range) of microcystins and anabaenopeptins, reduce growth of ciliates such as T. pyriformis and can be expected to have wider impacts on the eukaryote communities.
Collapse
Affiliation(s)
- Niveen Ismail
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Picker Engineering Program, Smith College, Northampton, MA, USA
| | - Paul Seguin
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lola Pricam
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Elisabeth M L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Bas W Ibelings
- Department FA Forel for Environmental and Aquatic Sciences / Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Anna Carratalà
- Laboratory of Environmental Virology, ENAC École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
10
|
Zhao J, Gao Y, Zhang J, Li Y, Gao X, Yuan H, Dong J, Li X. Community characteristics of macrobenthos and ecosystem health assessment in ten reservoirs of Henan Province, China. Sci Rep 2024; 14:31531. [PMID: 39732952 PMCID: PMC11682443 DOI: 10.1038/s41598-024-83236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
Assessing the eco-health of regional reservoirs is essential for sustainable water resource utilization and water security, particularly in water-scarce areas. This study constructed a Benthic Index of Biotic Integrity (B-IBI) based on the community characteristics of macrobenthos in ten large and medium-sized reservoirs across four major river basins in Henan Province, China. A total of 90 taxa were identified, representing 3 phyla, 6 classes, 17 orders, 45 families and 81 genera. The B-IBI was derived from five key metrics: the number of crustacean and mollusca taxa, Intolerant %, the BI index, the BMWP index, and the Shannon-Wiener index. The B-IBI scores across 44 sites in the ten reservoirs ranged from 0.35 to 3.99. The assessment classified two reservoirs (QTH and HKC in the Yellow River basin) as poor, whereas one reservoir (QP in the Huai River sbasin) was classified as excellent. The B-IBI index effectively distinguished impaired sites from reference sites, supporting its suitability for eco-health assessments of reservoirs in Henan Province.
Collapse
Affiliation(s)
- Jiannan Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, Henan, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Yunni Gao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, Henan, China.
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China.
| | - Jingxiao Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, Henan, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Yongli Li
- Center of Hydrology and Water Resources of Henan Province, Zhengzhou, 450003, Henan, China
| | - Xiaofei Gao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, Henan, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Huatao Yuan
- College of Fisheries, Henan Normal University, Xinxiang, 453007, Henan, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Jing Dong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, Henan, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, Henan, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| |
Collapse
|
11
|
Hao L, Zhang Y, Shen Y, Liu Y, Gao H, Guo P. Driving mechanism of land use and landscape pattern to phytoplankton and zooplankton community and their trophic interactions in river ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122691. [PMID: 39357447 DOI: 10.1016/j.jenvman.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The trophic interactions between phytoplankton and zooplankton communities are essential for maintaining river ecosystem integrity and health. However, the driving mechanisms of land use and landscape patterns (LULP) affecting their trophic interactions are not fully understood. Therefore, the research objective of this study was to reveal the driving mechanisms of LULP on the interaction of phytoplankton with zooplankton through remote sensing interpretation of LULP in different buffer scales (500 m, 1000 m, 1500 m, and catchment), combined with water environment factors and plankton community structures analyzed. Results showed that LULP had the most significant effect on the phytoplankton and the zooplankton community structure at 500 and 1500 m buffer scales, respectively. Construction land (CON) and edge density (ED) most influenced phytoplankton and zooplankton community structure and their influence mechanisms were identified, i.e., CON increased the species (S) of phytoplankton by increasing the concentration of NO3-N in river water at the 500 m buffer scale. ED reduced the biological density (BD) of zooplankton by decreasing the concentration of heavy metal (HM) in river water at the 1500 m buffer scale. The water area (WAT) and ED showed the most significant influence on plankton interaction. Three pathways were found to explain their influence mechanisms, i.e., ED decreased the BD or Shannon-Weiner index (H') of zooplankton by increasing the dissolved oxygen (DO) to enhance BD of phytoplankton in river water at the 1500 m buffer scale; the WAT increased the BD of phytoplankton by increasing water temperature to reduce the H' of zooplankton at the 500 m buffer. These findings have implications for effective ecological planning of future human activities in the stream domain and maintaining river ecosystem health.
Collapse
Affiliation(s)
- Litao Hao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, The Sino-Portugal Joint Laboratory of Cultural Heritage Conservation Science, Soochow University, Suzhou 215123, PR China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Hongjie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
12
|
Ye J, Zhu Y, Chen H, Nie Y, Zhang J, Chen Y, Guo Y, Fang N. Carbon flow allocation patterns of CH 4, CO 2, and biomass production vary with sewage and sediment microbial and biochemical factors in the anaerobic sewer environment. CHEMOSPHERE 2024; 368:143744. [PMID: 39542371 DOI: 10.1016/j.chemosphere.2024.143744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Understanding the carbon (C) fate in municipal sewers is imperative for optimizing current sewer-C-degradation control and treatment efficiency, aligning with China's C-neutrality strategy in determining the exact C budget of the wastewater system. This study used laboratory batch tests mimicking the anaerobic sewer environment and sewage-sediment stratification to evaluate C flow allocation (CFA) patterns in response to biotic and abiotic variables. We quantified the C equivalent mass (CEM) and used absolute quantitative 16S rRNA gene amplicon sequencing to characterize the microbiome. The substantial methane production (CH4, 17.2%-18.8%) required both activated sediment and exogenous C, while biomass production (BP, 63.1%-74.9%) formed C sink predominated as the main CFA direction under the stratified state. This was supported by the high diversity, interspecific interactions, and metabolic capacity of the sediment microbiome. However, CH4 and BP patterns demonstrated non-synchronicity and opposite dynamic characteristics. Carbon dioxide (CO2, 64.0%-81.3%) production dominated the sewage CFA. The absolute abundance of the sediment microbiome, which was 5.6 times higher than that of the sewage, exhibited a strong increase in magnitude across the phases. It was primarily associated with biomass growth and N metabolism, whereas sewage showed differentiated and competing communities and appeared to act mainly as the exogenous C sources. We constructed a binary quadratic linear model revealing the non-linear relationship between ACK activity, DOC degradation rate, and CEMCH4 rate; the former maintained low CH4 production when the available substrate was insufficient. The influence of N and S factors on the CFA is complex and multi-faceted. These findings highlight the importance of further investigations into the process-based framework of the sewer C budget, focusing on the C source-emission-sink functions and mass balance.
Collapse
Affiliation(s)
- Jianfeng Ye
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Yi Zhu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Hao Chen
- Science and Technology Innovation Center for Eco-environmental Protection, Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200050, China; YANGTZE Eco-Environment Engineering Research Center, Three Gorges Corporation, Beijing, 100038, China.
| | - Yunhan Nie
- Architectural Design & Research Institute of Tongji University (Group) Co., Ltd., Shanghai, 200092, China
| | - Jinxu Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Yu Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Yali Guo
- Science and Technology Innovation Center for Eco-environmental Protection, Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200050, China; YANGTZE Eco-Environment Engineering Research Center, Three Gorges Corporation, Beijing, 100038, China
| | - Ning Fang
- Science and Technology Innovation Center for Eco-environmental Protection, Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200050, China; YANGTZE Eco-Environment Engineering Research Center, Three Gorges Corporation, Beijing, 100038, China
| |
Collapse
|
13
|
Zheng B, Zhou L, Wang J, Dong P, Zhao T, Deng Y, Song L, Shi J, Wu Z. The shifts in microbial interactions and gene expression caused by temperature and nutrient loading influence Raphidiopsis raciborskii blooms. WATER RESEARCH 2024; 268:122725. [PMID: 39504700 DOI: 10.1016/j.watres.2024.122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Climate change and the trophic status of water bodies are important factors in global occurrence of cyanobacterial blooms. The aim of this study was to explore the cyanobacteria‒bacterial interactions that occur during Raphidiopsis raciborskii (R. raciborskii) blooms by conducting microcosm simulation experiments at different temperatures (20 °C and 30 °C) and with different phosphorus concentrations (0.01 mg/L and 1 mg/L) using an ecological model of microbial behavior and by analyzing microbial self-regulatory strategies using weighted gene coexpression network analysis (WGCNA). Three-way ANOVA revealed significant effects of temperature and phosphorus on the growth of R. raciborskii (P < 0.001). The results of a metagenomics-based analysis of bacterioplankton revealed that the synergistic effects of both climate and trophic changes increased the ability of R. raciborskii to compete with other cyanobacteria for dominance in the cyanobacterial community. The antagonistic effects of climate and nutrient changes favored the occurrence of R. raciborskii blooms, especially in eutrophic waters at approximately 20 °C. The species diversity and richness indices differed between the eutrophication treatment group at 20 °C and the other treatment groups. The symbiotic bacterioplankton network revealed the complexity and stability of the symbiotic bacterioplankton network during blooms and identified the roles of key species in the network. The study also revealed a complex pattern of interactions between cyanobacteria and non-cyanobacteria dominated by altruism, as well as the effects of different behavioral patterns on R. raciborskii bloom occurrence. Furthermore, this study revealed self-regulatory strategies that are used by microbes in response to the dual pressures of temperature and nutrient loading. These results provide important insights into the adaptation of microbial communities in freshwater ecosystems to environmental change and provide useful theoretical support for aquatic environmental management and ecological restoration efforts.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Ling Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Jinna Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Peichang Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Teng Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Yuting Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
14
|
Yan P, Guo M, Gan Y, Zhu M, Han X, Wu J. Early pregnancy exposure to Microcystin-LR compromises endometrial decidualization in mice via the PI3K/AKT/FOXO1 signaling pathway. CHEMOSPHERE 2024; 366:143466. [PMID: 39369752 DOI: 10.1016/j.chemosphere.2024.143466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Previous experimental studies have found that exposure to Microcystin-leucine arginine can impact pregnancy outcomes in female mice. The impact of MC-LR on early pregnancy in mammals is not yet well understood. Both mice and humans need to undergo decidualization to maintain pregnancy. In this study, we tried to evaluate whether MC-LR affects decidualization process in mice. Our research showed that MC-LR decreased maternal weight gain, uterine weight, and implantation site weight. These findings suggested that MC-LR exerted adverse effects on decidualization. In mice, we examined decreased number of polyploid decidual cells, but marked proliferation of mouse endometrial stromal cells the expression levels of prolactin (PRL)and insulin-like growth factor binding protein 1 (IGFBP1) were significantly downregulated in the decidual tissue and primary endometrial stromal cells following MC-LR treatment. Furthermore, further in vitro experiments identified that MC-LR promoted endometrial stromal cell division and cycle transition. Lastly, our study demonstrated that MC-LR impaired decidualization through the PI3K/AKT/FOXO1 pathway. Collectively, these data suggested that exposure to MC-LR impaired decidualization during early pregnancy.
Collapse
Affiliation(s)
- Pinru Yan
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Meihong Guo
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yibin Gan
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Mengjiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Jiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
15
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
16
|
Wang S, Gu S, Zhang Y, Deng Y, Qiu W, Sun Q, Zhang T, Wang P, Yan Z. Microeukaryotic plankton community dynamics under ecological water replenishment: Insights from eDNA metabarcoding. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100409. [PMID: 38572085 PMCID: PMC10987827 DOI: 10.1016/j.ese.2024.100409] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
Ecological water replenishment (EWR) is an important strategy for river restoration globally, but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge. Here, we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA (eDNA) metabarcoding. The three ecosystems include a long-term cut-off river, a short-term connected river after EWR, and long-term connected rivers. We analyzed community stability by investigating species composition, stochastic and deterministic dynamics interplay, and ecological network robustness. We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton, altered their community dynamics, and lessened the variation within the community. Moreover, EWR disrupted the deterministic patterns of community organization, favoring dispersal constraints, and aligning with trends observed in naturally connected rivers. The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance, whereas, in permanently connected rivers, both forces concurrently influenced community assembly. The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems. This shift markedly bolstered the resilience of the ecological network. The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions, which could be critical in assessing the effects of river restoration projects throughout their life cycle.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Songsong Gu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaqun Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
17
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
18
|
Zhang Z, Xu D, Huang T, Zhang Q, Li Y, Zhou J, Zou R, Li X, Chen J. High levels of cadmium altered soil archaeal activity, assembly, and co-occurrence network in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171529. [PMID: 38453065 DOI: 10.1016/j.scitotenv.2024.171529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Soil microbial communities are essential to biogeochemical cycles. However, the responses of microorganisms in volcanic soil with high heavy metal levels remain poorly understood. Here, two areas with high levels of cadmium (Cd) from the same volcano were investigated to determine their archaeal composition and assembly. In this study, the Cd concentrations (0.32-0.38 mg/ kg) in the volcanic soils exceeded the standard risk screening values (GB15618-2018) and correlated with archaeal communities strongly (P < 0.05). Moreover, the area with elevated levels of Cd (periphery) exhibited a greater diversity of archaeal species, albeit with reduced archaeal activity, compared to the area with lower levels of Cd (center). Besides, stochastic processes mainly governed the archaeal communities. Furthermore, the co-occurrence network was simplest in the periphery. The proportion of positive links between taxa increased positively with Cd concentration. Moreover, four keystone taxa (all from the family Nitrososphaeraceae) were identified from the archaeal networks. In its entirety, this study has expanded our comprehension of the variations of soil archaeal communities in volcanic areas with elevated cadmium levels and serves as a point of reference for the agricultural development of volcanic soils in China.
Collapse
Affiliation(s)
- Zihua Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Daolong Xu
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, Inner Mongolia, China
| | - Tao Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qing Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Yingyue Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Ruifan Zou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Qu W, Zuo Y, Zhang Y, Wang J. Structure and assembly process of fungal communities in the Yangtze River Estuary. Front Microbiol 2024; 14:1220239. [PMID: 38260888 PMCID: PMC10800840 DOI: 10.3389/fmicb.2023.1220239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Marine fungi are essential for the ecological function of estuarine ecosystems. However, limited studies have reported on the structure and assembly pattern of the fungal communities in estuaries. The purpose of this study is to reveal the structure and the ecological process of the fungal community in the Yangtze River Estuary (YRE) by using the amplicon sequencing method. Phyla of Ascomycota, Basidiomycota, and Chytridiomycota were dominant in the seawater and sediment samples from YRE. The null model analysis, community-neutral community model (NCM), and phylogenetic normalized stochasticity ratio (pNST) showed that the stochastic process dominated the assembly of fungal communities in YRE. Drift and homogeneous dispersal were the predominant stochastic processes for the fungal community assembly in seawater and sediment samples, respectively. The co-occurrence network analysis showed that fungal communities were more complex and closely connected in the sediment than in the seawater samples. Phyla Ascomycota, Basidiomycota, and Mucoromycota were the potential keystone taxa in the network. These findings demonstrated the importance of stochastic processes for the fungal community assembly, thereby widening our knowledge of the community structure and dynamics of fungi for future study and utilization in the YRE ecosystem.
Collapse
Affiliation(s)
| | | | | | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
20
|
Ren K, Mo Y, Xiao P, Rønn R, Xu Z, Xue Y, Chen H, Rivera WL, Rensing C, Yang J. Microeukaryotic plankton evolutionary constraints in a subtropical river explained by environment and bacteria along differing taxonomic resolutions. ISME COMMUNICATIONS 2024; 4:ycae026. [PMID: 38559570 PMCID: PMC10980835 DOI: 10.1093/ismeco/ycae026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Microeukaryotic plankton communities are keystone components for keeping aquatic primary productivity. Currently, variations in microeukaryotic plankton diversity have often been explained by local ecological factors but not by evolutionary constraints. We used amplicon sequencing of 100 water samples across five years to investigate the ecological preferences of the microeukaryotic plankton community in a subtropical riverine ecosystem. We found that microeukaryotic plankton diversity was less associated with bacterial abundance (16S rRNA gene copy number) than bacterial diversity. Further, environmental effects exhibited a larger influence on microeukaryotic plankton community composition than bacterial community composition, especially at fine taxonomic levels. The evolutionary constraints of microeukaryotic plankton community increased with decreasing taxonomic resolution (from 97% to 91% similarity levels), but not significant change from 85% to 70% similarity levels. However, compared with the bacterial community, the evolutionary constraints were shown to be more affected by environmental variables. This study illustrated possible controlling environmental and bacterial drivers of microeukaryotic diversity and community assembly in a subtropical river, thereby indirectly reflecting on the quality status of the water environment by providing new clues on the microeukaryotic community assembly.
Collapse
Affiliation(s)
- Kexin Ren
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Regin Rønn
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Biology, University of Copenhagen, Copenhagen DK2100, Denmark
| | - Zijie Xu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Christopher Rensing
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Institute of Environmental Microbiology, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
21
|
Le VV, Kang M, Ko SR, Jeong S, Park CY, Lee JJ, Choi IC, Oh HM, Ahn CY. Dynamic response of bacterial communities to Microcystis blooms: A three-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165888. [PMID: 37544456 DOI: 10.1016/j.scitotenv.2023.165888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Although nutrient availability is widely recognized as the driving force behind Microcystis blooms, identifying the microorganisms that play a pivotal role in their formation is a challenging task. Our understanding of the contribution of bacterial communities to the development of Microcystis blooms remains incomplete, despite the fact that the relationship between Microcystis and bacterial communities has been extensively investigated. Most studies have focused on their interaction for a single year rather than for multiple years. To determine key bacteria crucial for the formation of Microcystis blooms, we collected samples from three sites in the Daechung Reservoir (Chuso, Hoenam, and Janggye) over three years (2017, 2019, and 2020). Our results indicated that Microcystis bloom-associated bacterial communities were more conserved across stations than across years. Bacterial communities could be separated into modules corresponding to the different phases of Microcystis blooms. Dolichospermum and Aphanizomenon belonged to the same module, whereas the module of Microcystis was distinct. The microbial recurrent association network (MRAN) showed that amplicon sequence variants (ASVs) directly linked to Microcystis belonged to Pseudanabaena, Microscillaceae, Sutterellaceae, Flavobacterium, Candidatus Aquiluna, Bryobacter, and DSSD61. These ASVs were also identified as key indicators of the bloom stage, indicating that they were fundamental biological elements in the development of Microcystis blooms. Overall, our study highlights that, although bacterial communities change annually, they continue to share core ASVs that may be crucial for the formation and maintenance of Microcystis blooms.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seonah Jeong
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan-Yeong Park
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jay Jung Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea
| | - In-Chan Choi
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk 29027, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
22
|
Du C, Xu R, Zhao X, Liu Y, Zhou X, Zhang W, Zhou X, Hu N, Zhang Y, Sun Z, Wang Z. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Appl Microbiol Biotechnol 2023; 107:7347-7364. [PMID: 37747613 DOI: 10.1007/s00253-023-12787-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.
Collapse
Affiliation(s)
- Chenghang Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runlai Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanqing Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Li H, Tan L, Xu Y, Zheng X. Metagenomics insights into the performance and mechanism of soil infiltration systems on removing antibiotic resistance genes in rural sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118981. [PMID: 37742563 DOI: 10.1016/j.jenvman.2023.118981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
The removal of antibiotic resistance genes (ARGs) in sewage is of great concern, but advanced sewage treatment technologies are not suitable for rural areas, so the multi-layer soil infiltration system (MSL) has been developed for rural sewage treatment. However, little is known about the performance and function of MSL in the treatment of ARGs in rural sewage. Here, we optimized the matrix composition and structure of MSL and explored the efficacy and mechanism of MSL systems for ARG removal under different hydraulic conditions. The ARGs removal rate of MSL ranged from 41.51% to 99.67%, in which MSL with the middle hydraulic load, high pollution load, and continuous inflowing conditions showed the best removal performance. In addition, this system can operate stably and resist the temperature fluctuation, which showed an equivalent removal rate of ARGs in warm and cold seasons, amounting to 69.0%. The structural equation model revealed that microorganisms in sewage could significantly affect ARG removal (path coefficient = 0.91), probably owing to their interspecies competition. As for the internal system, the reduction of ARGs was mainly driven by microorganisms in the system matrix (path coefficient = 0.685), especially soil-mixture-block (SMB) microorganisms. The physicochemical factors of the matrix indirectly reduce ARGs by affecting the microorganisms that adhere to the matrices. Note that the pairwise alignment of nucleotide analysis demonstrated that the system matrix, especially biochar in the SMB, adsorbed ARGs and their hosts from the sewage, and in turn eliminated them by inhibiting the spread and colonization of hosts, thereby reducing the abundance of ARGs. Collectively, this study provides a deeper insight into the removal of ARGs from rural sewage by MSL, which can help improve sewage treatment technologies.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China.
| |
Collapse
|
24
|
Zhang H, Chen H, Grossart HP, Jin L, Yan X, Gao X, Zhang H, Xue Y, Yang J. Persistent response of the bottom free-living bacteria to typhoon events in a subtropical reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 908:168069. [PMID: 39492531 DOI: 10.1016/j.scitotenv.2023.168069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Typhoon-induced perturbations can result in long-lasting effects on aquatic communities in subtropical lakes or reservoirs. However, the responses of bacterial communities and their related nutrient cycling to episodic typhoon events throughout the water column in deep waters remain largely unknown. Here, we conducted a four-year field study to reveal the depth-specific responses of both free-living (FL) and particle-attached (PA) bacteria to typhoon events in a subtropical deep reservoir from 2015 to 2018. By comparing the depth-specific responses of FL and PA bacteria, we found that typhoon-induced inputs of organic matter and microorganisms significantly increased FL bacterial diversity and changed FL bacterial community composition in bottom waters perhaps through the density current or undercurrent. Typhoon events had a more persistent effect on FL than PA bacterial communities, especially in bottom waters of the reservoir. Free-living bacteria were more associated with nutrient cycling in bottom waters than particle-attached bacteria. These findings provide deep understanding of how FL and PA bacteria respond to typhoon events at community level in subtropical deep reservoir and thus help us to improve reservoir management in a rapidly changing world.
Collapse
Affiliation(s)
- Hongteng Zhang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin 16775, Germany; University of Potsdam, Institute of Biochemistry and Biology, Potsdam 14469, Germany
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Yan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Gao
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Haihan Zhang
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
25
|
Li H, Bhattarai B, Barber M, Goel R. Stringent Response of Cyanobacteria and Other Bacterioplankton during Different Stages of a Harmful Cyanobacterial Bloom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16016-16032. [PMID: 37819800 DOI: 10.1021/acs.est.3c03114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We conducted a field study to investigate the role of stringent response in cyanobacteria and coexisting bacterioplankton during nutrient-deprived periods at various stages of bloom in a freshwater lake (Utah Lake) for the first time. Using metagenomics and metatranscriptomics analyses, we examined the cyanobacterial ecology and expression of important functional genes related to stringent response, N and P metabolism, and regulation. Our findings mark a significant advancement in understanding the mechanisms by which toxic cyanobacteria survive and proliferate during nitrogen (N) and phosphorus (P) limitations. We successfully identified and analyzed the metagenome-assembled genomes (MAGs) of the dominant bloom-forming cyanobacteria, namely, Dolichospermum circinale, Aphanizomenon flos-aquae UKL13-PB, Planktothrix agardhii, and Microcystis aeruginosa. By mapping RNA-seq data to the coding sequences of the MAGs, we observed that these four prevalent cyanobacteria species activated multiple functions to adapt to the depletion of inorganic nutrients. During and after the blooms, the four dominant cyanobacteria species expressed high levels of transcripts related to toxin production, such as microcystins (mcy), anatoxins (ana), and cylindrospermopsins (cyr). Additionally, genes associated with polyphosphate (poly-P) storage and the stringent response alarmone (p)ppGpp synthesis/hydrolysis, including ppk, relA, and spoT, were highly activated in both cyanobacteria and bacterioplankton. Under N deficiency, the main N pathways shifted from denitrification and dissimilatory nitrate reduction in bacterioplankton toward N2-fixing and assimilatory nitrate reduction in certain cyanobacteria with a corresponding shift in the community composition. P deprivation triggered a stringent response mediated by spoT-dependent (p)ppGpp accumulation and activation of the Pho regulon in both cyanobacteria and bacterioplankton, facilitating inorganic and organic P uptake. The dominant cyanobacterial MAGs exhibited the presence of multiple alkaline phosphatase (APase) transcripts (e.g., phoA in Dolichospermum, phoX in Planktothrix, and Microcystis), suggesting their ability to synthesize and release APase enzymes to convert ambient organic P into bioavailable forms. Conversely, transcripts associated with bacterioplankton-dominated pathways like denitrification were low and did not align with the occurrence of intense cyanoHABs. The strong correlations observed among N, P, stringent response metabolisms and the succession of blooms caused by dominant cyanobacterial species provide evidence that the stringent response, induced by nutrient limitation, may activate unique N and P functions in toxin-producing cyanobacteria, thereby sustaining cyanoHABs.
Collapse
Affiliation(s)
- Hanyan Li
- Institute for Environmental Genomics, The University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma 73019, United States
| | - Bishav Bhattarai
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| | - Michael Barber
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Fang C, He Y, Yang Y, Fu B, Pan S, Jiao F, Wang J, Yang H. Laboratory tidal microcosm deciphers responses of sediment archaeal and bacterial communities to microplastic exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131813. [PMID: 37339576 DOI: 10.1016/j.jhazmat.2023.131813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Microplastics (MPs) are 1-5 mm plastic particles that are serious global contaminants distributed throughout marine ecosystems. However, their impact on intertidal sediment microbial communities is poorly understood. In this study, we conducted a 30-day laboratory tidal microcosm experiment to investigate the effects of MPs on microbial communities. Specifically, we used the biodegradable polymers polylactic acid (PLA) and polybutylene succinate (PBS), as well as the conventional polymers polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene (PE). Treatments with different concentrations (1-5%, w/w) of PLA- and PE-MPs were also included. We analyzed taxonomic variations in archaeal and bacterial communities using 16S rRNA high-throughput sequencing. PLA-MPs at concentrations of 1% (w/w) rapidly altered microbiome composition. Total organic carbon and nitrite nitrogen were the key physicochemical factors and urease was the major enzyme shaping MP-exposed sediment microbial communities. Stochastic processes predominated in microbial assembly and the addition of biodegradable MPs enhanced the contribution of ecological selections. The major keystone taxa of archaea and bacteria were Nitrososphaeria and Alphaproteobacteria, respectively. MPs exposure had less effect on archaeal functions while nitrogen cycling decreased in PLA-MPs treatments. These findings expanded the current understanding of the mechanism and pattern that MPs affect sediment microbial communities.
Collapse
Affiliation(s)
- Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yuting Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Sentao Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
27
|
Xue X, Su X, Zhou L, Ji J, Qin Z, Liu J, Li K, Wang H, Wang Z. Antibiotic-Induced Recruitment of Specific Algae-Associated Microbiome Enhances the Adaptability of Chlorella vulgaris to Antibiotic Stress and Incidence of Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13336-13345. [PMID: 37642958 DOI: 10.1021/acs.est.3c02801] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Insights into the symbiotic relation between eukaryotic hosts and their microbiome lift the curtain on the crucial roles of microbes in host fitness, behavior, and ecology. However, it remains unclear whether and how abiotic stress shapes the microbiome and further affects host adaptability. This study first investigated the effect of antibiotic exposure on behavior across varying algae taxa at the community level. Chlorophyta, in particular Chlorella vulgaris, exhibited remarkable adaptability to antibiotic stress, leading to their dominance in phytoplankton communities. Accordingly, we isolated C. vulgaris strains and compared the growth of axenic and nonaxenic ones under antibiotic conditions. The positive roles of antibiotics in algal growth were apparent only in the presence of bacteria. Results of 16S rRNA sequencing further revealed that antibiotic challenges resulted in the recruitment of specific bacterial consortia in the phycosphere, whose functions were tightly linked to the host growth promotion and adaptability enhancement. In addition, the algal phycosphere was characterized with 47-fold higher enrichment capability of antibiotic resistance genes (ARGs) than the surrounding water. Under antibiotic stress, specific ARG profiles were recruited in C. vulgaris phycosphere, presumably driven by the specific assembly of bacterial consortia and mobile genetic elements induced by antibiotics. Moreover, the antibiotics even enhanced the dissemination potential of the bacteria carrying ARGs from the algal phycosphere to broader environmental niches. Overall, this study provides an in-depth understanding into the potential functional significance of antibiotic-mediated recruitment of specific algae-associated bacteria for algae adaptability and ARG proliferation in antibiotic-polluted waters.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyue Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linjun Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiqi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Xue Y, Abdullah Al M, Chen H, Xiao P, Zhang H, Jeppesen E, Yang J. Relic DNA obscures DNA-based profiling of multiple microbial taxonomic groups in a river-reservoir ecosystem. Mol Ecol 2023; 32:4940-4952. [PMID: 37452629 DOI: 10.1111/mec.17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Numerous studies have investigated the spatiotemporal variability in water microbial communities, yet the effects of relic DNA on microbial community profiles, especially microeukaryotes, remain far from fully understood. Here, total and active bacterial and microeukaryotic community compositions were characterized using propidium monoazide (PMA) treatment coupled with high-throughput sequencing in a river-reservoir ecosystem. Beta diversity analysis showed a significant difference in community composition between both the PMA untreated and treated bacteria and microeukaryotes; however, the differentiating effect was much stronger for microeukaryotes. Relic DNA only resulted in underestimation of the relative abundances of Bacteroidota and Nitrospirota, while other bacterial taxa exhibited no significant changes. As for microeukaryotes, the relative abundances of some phytoplankton (e.g. Chlorophyta, Dinoflagellata and Ochrophyta) and fungi were greater after relic DNA removal, whereas Cercozoa and Ciliophora showed the opposite trend. Moreover, relic DNA removal weakened the size and complexity of cross-trophic microbial networks and significantly changed the relationships between environmental factors and microeukaryotic community composition. However, there was no significant difference in the rates of temporal community turnover between the PMA untreated and treated samples for either bacteria or microeukaryotes. Overall, our results imply that the presence of relic DNA in waters can give misleading information of the active microbial community composition, co-occurrence networks and their relationships with environmental conditions. More studies of the abundance, decay rate and functioning of nonviable DNA in freshwater ecosystems are highly recommended in the future.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Huihuang Chen
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xiao
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongteng Zhang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research, Beijing, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
29
|
Xu N, Zhou Z, Chen B, Zhang Z, Zhang J, Li Y, Lu T, Sun L, Peijnenburg WJGM, Qian H. Effect of chlorpyrifos on freshwater microbial community and metabolic capacity of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115230. [PMID: 37413963 DOI: 10.1016/j.ecoenv.2023.115230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Chlorpyrifos is a widely used organophosphorus insecticide because of its high efficiency and overall effectiveness, and it is commonly detected in aquatic ecosystems. However, at present, the impact of chlorpyrifos on the aquatic micro-ecological environment is still poorly understood. Here, we established aquatic microcosm systems treated with 0.2 and 2.0 µg/L chlorpyrifos, and employed omics biotechnology, including metagenomics and 16S rRNA gene sequencing, to investigate the effect of chlorpyrifos on the composition and functional potential of the aquatic and zebrafish intestinal microbiomes after 7 d and 14 d chlorpyrifos treatment. After 14 d chlorpyrifos treatment, the aquatic microbial community was adversely affected in terms of its composition, structure, and stability, while its diversity showed only a slight impact. Most functions, especially capacities for environmental information processing and metabolism, were destroyed by chlorpyrifos treatment for 14 d. We observed that chlorpyrifos increased the number of risky antibiotic resistance genes and aggravated the growth of human pathogens. Although no clear effects on the structure of the zebrafish intestinal microbial community were observed, chlorpyrifos treatment did alter the metabolic capacity of the zebrafish. Our study highlights the ecological risk of chlorpyrifos to the aquatic environment and provides a theoretical basis for the rational use of pesticides in agricultural production.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310000, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
30
|
Wang J, Wang C, Hu M, Bian L, Qu L, Sun H, Wu X, Ren G. Bacterial co-occurrence patterns are more complex but less stable than archaea in enhanced oil recovery applied oil reservoirs. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
31
|
Lin X, Zhang C, Xie W. Deterministic processes dominate archaeal community assembly from the Pearl River to the northern South China Sea. Front Microbiol 2023; 14:1185436. [PMID: 37426005 PMCID: PMC10324572 DOI: 10.3389/fmicb.2023.1185436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Archaea play a significant role in the biogeochemical cycling of nutrients in estuaries. However, comprehensive researches about their assembly processes remain notably insufficient. In this study, we systematically examined archaeal community dynamics distinguished between low-salinity and high-salinity groups in water and surface sediments over a 600-kilometer range from the upper Pearl River (PR) to the northern South China Sea (NSCS). Neutral community model analysis together with null model analysis showed that their C-score values were greater than 2, suggesting that deterministic processes could dominate the assembly of those planktonic or benthic archaeal communities at both the low-salinity and high-salinity sites. And deterministic processes contributed more in the low-salinity than high-salinity environments from the PR to the NSCS. Furthermore, through the co-occurrence network analysis, we found that the archaeal communities in the low-salinity groups possessed closer interactions and higher proportions of negative interactions than those in the high-salinity groups, which might be due to the larger environmental heterogeneities reflected by the nutrient concentrations of those low-salinity samples. Collectively, our work systematically investigated the composition and co-occurrence networks of archaeal communities in water as well as sediments from the PR to the NSCS, yielding new insights into the estuary's archaeal community assembly mechanisms.
Collapse
Affiliation(s)
- Xizheng Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| |
Collapse
|
32
|
Chen J, Zhang T, Sun L, Liu Y, Li D, Leng X, An S. Abundance trade-offs and dominant taxa maintain the stability of the bacterioplankton community underlying Microcystis blooms. Front Microbiol 2023; 14:1181341. [PMID: 37275174 PMCID: PMC10235547 DOI: 10.3389/fmicb.2023.1181341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Microcystis blooms are an intractable global environmental problem that pollute water and compromise ecosystem functioning. Closed-lake management practices keep lakes free of sewage and harmful algae invasions and have succeeded in controlling local Microcystis blooms; however, there is little understanding of how the bacterioplankton communities associated with Microcystis have changed. Here, based on metagenomic sequencing, the phyla, genera, functional genes and metabolic functions of the bacterioplankton communities were compared between open lakes (underlying Microcystis blooms) and closed lakes (no Microcystis blooms). Water properties and zooplankton density were investigated and measured as factors influencing blooms. The results showed that (1) the water quality of closed lakes was improved, and the nitrogen and phosphorus concentrations were significantly reduced. (2) The stability of open vs. closed-managed lakes differed notably at the species and genus levels (p < 0.01), but no significant variations were identified at the phylum and functional genes levels (p > 0.05). (3) The relative abundance of Microcystis (Cyanobacteria) increased dramatically in the open lakes (proportions from 1.44 to 41.76%), whereas the relative abundance of several other dominant genera of Cyanobacteria experienced a trade-off and decreased with increasing Microcystis relative abundance. (4) The main functions of the bacterioplankton communities were primarily related to dominant genera of Proteobacteria and had no significant relationship with Microcystis. Overall, the closed-lake management practices significantly reduced nutrients and prevented Microcystis blooms, but the taxonomic and functional structures of bacterioplankton communities remained stable overall.
Collapse
Affiliation(s)
- Jun Chen
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, China
| | - Tiange Zhang
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, China
| | - Lingyan Sun
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, China
| | - Yan Liu
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, China
| | - Dianpeng Li
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, China
| | - Xin Leng
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, China
| | - Shuqing An
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, China
| |
Collapse
|
33
|
Li H, Li Z, Tang Q, Li R, Lu L. Local-Scale Damming Impact on the Planktonic Bacterial and Eukaryotic Assemblages in the upper Yangtze River. MICROBIAL ECOLOGY 2023; 85:1323-1337. [PMID: 35437690 DOI: 10.1007/s00248-022-02012-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/08/2022] [Indexed: 05/10/2023]
Abstract
Dam construction and impoundment cause discontinuities in the natural biophysical gradients in rivers. These discontinuities may alter distinctive habitats and different microbial community assembly mechanisms upstream and downstream of dams, which reflect the potential impacts of damming on riverine aquatic ecosystems. In this study, we investigated the planktonic microbial assemblages of three large dams in the upper Yangtze River by using high-throughput sequencing. The results revealed that the alpha diversity indexes increased downstream of the dams. In addition, more eukaryotic ASVs solely occurred downstream of the dams, which indicated that a large proportion of eukaryotes appeared downstream of the dams. The nonmetric multidimensional scaling analysis indicated that there was no obvious geographic clustering of the planktonic microbial assemblages among the different locations or among the different dams. However, the dam barriers changed dam-related variables (maximum dam height and water level) and local environmental variables (water temperature, DOC, etc.) that could possibly affect the assembly of the planktonic microbial communities that are closest to the dams. A co-occurrence network analysis demonstrated that the keystone taxa of the planktonic bacteria and eukaryotes decreased downstream of the dams. In particular, the keystone taxa of the eukaryotes disappeared downstream of the dams. The robustness analysis indicated that the natural connectivity of the microbial networks decreased more rapidly upstream of the dams, and the downstream eukaryotic network was more stable. In conclusion, damming has a greater impact on planktonic eukaryotes than on bacteria in near-dam areas, and planktonic microbial assemblages were more susceptible to the environmental changes. Our study provides a better understanding of the ecological effects of river damming.
Collapse
Affiliation(s)
- Hang Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Qiong Tang
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ran Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Lunhui Lu
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
34
|
Rothenberger M, Gleich SJ, Flint E. The underappreciated role of biotic factors in controlling the bloom ecology of potentially harmful microalgae in the Hudson-Raritan Bay. HARMFUL ALGAE 2023; 124:102411. [PMID: 37164564 DOI: 10.1016/j.hal.2023.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/28/2023] [Accepted: 02/19/2023] [Indexed: 05/12/2023]
Abstract
Despite widespread distribution of harmful algal blooms (HABs) and new and improved methods for detecting and quantifying them, no unifying ecological explanation has been found. Improved understanding depends upon local, ecological studies that include analysis of phytoplankton species data in relation to both abiotic and biotic parameters. Ecological network analysis was used to detect co-occurrence patterns among abiotic and biotic parameters in a long-term monitoring dataset (i.e., 2010-2021) from the eutrophic Hudson-Raritan Estuary (HRE) between the states of New York and New Jersey. The regular co-occurrence of potentially harmful bloom-forming species with companion species observed through microscopy was supported by the results of ecological network analysis, which showed that there were far more associations between HAB species and biotic parameters (∼95%) than abiotic parameters (∼5%). Temperature was the environmental variable that was most associated with HAB species throughout the estuary. The numerous network associations of HAB species with one another and with diatoms, dinoflagellates, and zooplankton highlight the complexity of planktonic food webs and interactions. Results also suggest that some taxa may play a central role in structuring the HRE plankton communities. These findings demonstrate that biotic associations play an underappreciated role in plankton structure and the value of examining the ecology of HAB species within the breadth of their biological communities. While network analysis does not fully explain and confirm complex associations among species, it does provide fresh insights and testable hypotheses to strengthen understanding and improve prediction.
Collapse
Affiliation(s)
- Megan Rothenberger
- Biology Department, Lafayette College, Kunkel Hall, Easton, PA 18042, USA.
| | - Samantha J Gleich
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Evan Flint
- Mathematics Department, Lafayette College, Pardee Hall, Easton, PA 18042, USA
| |
Collapse
|
35
|
Chen J, Ma X, Lu X, Xu H, Chen D, Li Y, Zhou Z, Li Y, Ma S, Yakov K. Long-term phosphorus addition alleviates CO 2 and N 2O emissions via altering soil microbial functions in secondary rather primary tropical forests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121295. [PMID: 36822311 DOI: 10.1016/j.envpol.2023.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tropical forests, where the soils are nitrogen (N) rich but phosphorus (P) poor, have a disproportionate influence on global carbon (C) and N cycling. While N deposition substantially alters soil C and N retention in tropical forests, whether P input can alleviate these N-induced effects by regulating soil microbial functions remains unclear. We investigated soil microbial taxonomy and functional traits in response to 10-year independent and interactive effects of N and P additions in a primary and a secondary tropical forest in Hainan Island. In the primary forest, N addition boosted oligotrophic bacteria and phosphatase and enriched genes responsible for C-, P-mineralization, nitrification and denitrification, suggesting aggravated P limitation while N excess. This might stimulate P excavation via organic matter mineralization, and enhance N losses, thereby increasing soil CO2 and N2O emissions by 86% and 110%, respectively. Phosphorus and NP additions elevated C-mining enzymes activity mainly due to intensified C limitation, causing 82% increase in CO2 emission. In secondary forest, P and NP additions reduced phosphatase activity, enriched fungal copiotrophs and increased microbial biomass, suggesting removal of nutrient deficiencies and stimulation of fungal growth. Meanwhile, soil CO2 emission decreased by 25% and N2O emission declined by 52-82% due to alleviated P acquisition from organic matter decomposition and increased microbial C and N immobilization. Overall, N addition accelerates most microbial processes for C and N release in tropical forests. Long-term P addition increases C and N retention via reducing soil CO2 and N2O emissions in the secondary but not primary forest because of strong C limitation to microbial N immobilization. Further, the seasonal and annual variations in CO2 and N2O emissions should be considered in future studies to test the generalization of these findings and predict and model dynamics in greenhouse gas emissions and C and N cycling.
Collapse
Affiliation(s)
- Jie Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaomin Ma
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Dexiang Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yanpeng Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhang Zhou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yide Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Suhui Ma
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Kuzyakov Yakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077, Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| |
Collapse
|
36
|
Wu S, Dong Y, Stoeck T, Wang S, Fan H, Wang Y, Zhuang X. Geographic characteristics and environmental variables determine the diversities and assembly of the algal communities in interconnected river-lake system. WATER RESEARCH 2023; 233:119792. [PMID: 36868116 DOI: 10.1016/j.watres.2023.119792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Algal blooms in lakes are a major hazard worldwide. Although various geographical and environmental patterns affect algal communities during river-lake transit, a thorough understanding of what patterns shape the algal communities is still rarely researched, particularly in complex interconnected river-lake systems. In this study, focusing on the most typical interconnected river-lake system in China, the Dongting Lake, we collected paired water and sediment samples in summer, when algal biomass and growth rate are at high levels. Based on 23S rRNA gene sequencing, we investigated the heterogeneity and the differences in assembly mechanisms of planktonic and benthic algae in Dongting Lake. Planktonic algae contained more Cyanobacteria and Cryptophyta, while sediment harbored higher proportions of Bacillariophyta and Chlorophyta. For planktonic algae, stochastic dispersal dominated the assembly of the communities. Upstream rivers and confluences were important sources of planktonic algae in lakes. Meanwhile, for benthic algae, deterministic environmental filtering shaped the communities, and the proportion of benthic algae exploded with increasing N:P ratio and Cu concentration until reaching thresholds of 1.5 and 0.013 g/kg respectively, and then started falling, showing non-linear responses. This study revealed the variability of different aspects of algal communities in different habitats, traced the main sources of planktonic algae, and identified the thresholds for benthic algal shifts in response to environmental filters. Hence, upstream and downstream monitoring as well as thresholds of environmental factors should be considered in further aquatic ecological monitoring or regulatory programs of harmful algal blooms in these complex systems.
Collapse
Affiliation(s)
- Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thorsten Stoeck
- Department of Ecology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
37
|
Da J, Xi Y, Cheng Y, He H, Liu Y, Li H, Wu QL. The Effects of Intraguild Predation on Phytoplankton Assemblage Composition and Diversity: A Mesocosm Experiment. BIOLOGY 2023; 12:biology12040578. [PMID: 37106778 PMCID: PMC10136063 DOI: 10.3390/biology12040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Intraguild predation (IGP) can have a significant impact on phytoplankton biomass, but its effects on their diversity and assemblage composition are not well understood. In this study, we constructed an IGP model based on the common three-trophic food chain of "fish (or shrimp)-large branchiopods (Daphnia)-phytoplankton", and investigated the effects of IGP on phytoplankton assemblage composition and diversity in outdoor mesocosms using environmental DNA high-throughput sequencing. Our results indicated that the alpha diversities (number of amplicon sequence variants and Faith's phylogenetic diversity) of phytoplankton and the relative abundance of Chlorophyceae increased with the addition of Pelteobagrus fulvidraco, while similar trends were found in alpha diversities but with a decrease in the relative abundance of Chlorophyceae in the Exopalaemon modestus treatment. When both predators were added to the community, the strength of collective cascading effects on phytoplankton alpha diversities and assemblage composition were weaker than the sum of the individual predator effects. Network analysis further showed that this IGP effect also decreased the strength of collective cascading effects in reducing the complexity and stability of the phytoplankton assemblages. These findings contribute to a better understanding of the mechanisms underlying the impacts of IGP on lake biodiversity, and provide further knowledge relevant to lake management and conservation.
Collapse
Affiliation(s)
- Jun Da
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, China
| | - Yunshan Cheng
- School of Ecology and Environment, Anhui Normal University, Wuhu 050031, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yanru Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
38
|
Cao M, Wang F, Zhou B, Chen H, Yuan R, Ma S, Geng H, Li J, Lv W, Wang Y, Xing B. Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130201. [PMID: 36283215 DOI: 10.1016/j.jhazmat.2022.130201] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China; School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China.
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Junhong Li
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Wenxiao Lv
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Yan Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
39
|
Abdullah Al M, Wang W, Jin L, Chen H, Xue Y, Jeppesen E, Majaneva M, Xu H, Yang J. Planktonic ciliate community driven by environmental variables and cyanobacterial blooms: A 9-year study in two subtropical reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159866. [PMID: 36328255 DOI: 10.1016/j.scitotenv.2022.159866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
It is well-established that environmental variability and cyanobacterial blooms have major effects on the assembly and functioning of bacterial communities in both marine and freshwater habitats. It remains unclear, however, how the ciliate community responds to such changes over the long-term, particularly in subtropical lake and reservoir ecosystems. We analysed 9-year planktonic ciliate data series from the surface water of two subtropical reservoirs to elucidate the role of cyanobacterial bloom and environmental variabilities on the ciliate temporal dynamics. We identified five distinct periods of cyanobacterial succession in both reservoirs. Using multiple time-scale analyses, we found that the interannual variability of ciliate communities was more strongly related to cyanobacterial blooms than to other environmental variables or to seasonality. Moreover, the percentage of species turnover across cyanobacterial bloom and non-bloom periods increased significantly with time over the 9-year period. Phylogenetic analyses further indicated that 84 %-86 % of ciliate community turnover was governed by stochastic dispersal limitation or undominated processes, suggesting that the ciliate communities in subtropical reservoirs were mainly controlled by neutral processes. However, short-term blooms increased the selection pressure and drove 30 %-53 % of the ciliate community turnover. We found that the ciliate community composition was influenced by environmental conditions with nutrients, cyanobacterial biomass and microzooplankton having direct and/or indirect significant effects on the ciliate taxonomic or functional community dynamics. Our results provide new insights into the long-term temporal dynamics of planktonic ciliate communities under cyanobacterial bloom disturbance.
Collapse
Affiliation(s)
- Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Lei Jin
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Xue
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey
| | - Markus Majaneva
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Henglong Xu
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
40
|
Zhang H, Yang Y, Liu X, Huang T, Ma B, Li N, Yang W, Li H, Zhao K. Novel insights in seasonal dynamics and co-existence patterns of phytoplankton and micro-eukaryotes in drinking water reservoir, Northwest China: DNA data and ecological model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159160. [PMID: 36195142 DOI: 10.1016/j.scitotenv.2022.159160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Although associations between phytoplankton and micro-eukaryotes have been studied in aquatic ecosystems, there are still knowledge gaps in comprehending their dynamics and interactions in drinking water reservoirs. Here, the seasonal dynamics of phytoplankton and micro-eukaryotic diversities and their co-existence patterns were studied in a drinking water reservoir, Northwest China. The highest phytoplankton diversity was observed in summer, and Chlorella sp. that belongs to Chlorophyta was the most abundant genus. The highest eukaryotic diversity was also detected in summer, and Rimostrombidium sp. that belongs to Ciliophora was the most dominant genus. Mantel test showed that the phytoplankton diversity was significantly correlated with ammonia nitrogen (r = 0.561, p = 0.001) and dissolved organic carbon (r = 0.267, p = 0.017), while the eukaryotic diversity was significantly associated with ammonia nitrogen (r = 0.265, p = 0.034) and temperature (r = 0.208, p = 0.046). PLS-PM (Partial Least Squares Path Modeling) further revealed that nutrients (P < 0.01) significantly affected the phytoplankton diversity, while nutrients (P < 0.01) and temperature (P < 0.01) significantly influenced the eukaryotic diversity. Co-occurrence network displayed the primarily positive interactions (77.66% positive and 22.34% negative) between phytoplankton and micro-eukaryotes. These findings could deepen our understanding of interactions between phytoplankton and micro-eukaryotes and their driving factors under changing aquatic environments of drinking water reservoirs.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
41
|
Yu Z, Peng X, Liu L, Yang JR, Zhai X, Xue Y, Mo Y, Yang J. Microbial one‑carbon and nitrogen metabolisms are beneficial to the reservoir recovery after cyanobacterial bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159004. [PMID: 36155037 DOI: 10.1016/j.scitotenv.2022.159004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial blooms have profound effects on the structure and function of plankton communities in inland waters, but few studies have focused on the effects of microbial-based processes in one‑carbon and nitrogen cycling on water quality improvement following the bloom. Here, we compared the structure and function of the bacterial community, focusing on microbial one‑carbon and nitrogen metabolisms during and after a cyanobacterial Microcystis bloom in a deep subtropical reservoir. Our data showed that microbial one‑carbon and nitrogen cycles were closely related to different periods of the bloom, and the changes of functional genes in microbial carbon and nitrogen cycling showed the same consistent trend as that of Methylomonas sp. With the receding of the bloom, the abundance of Methylomonas as well as the functional genes of microbial one‑carbon and nitrogen cycling reached the peak and then recovered. Our results indicate that microbial one‑carbon and nitrogen metabolisms were beneficial to the recovery of water quality from the cyanobacterial bloom. This study lays a foundation for a deep understanding of the cyanobacterial decomposition mediated by microbes in one‑carbon and nitrogen cycles in inland freshwaters.
Collapse
Affiliation(s)
- Zheng Yu
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China; Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xuan Peng
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Lemian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jun R Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xingyu Zhai
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
42
|
Tarafdar L, Mohapatra M, Muduli PR, Kumar A, Mishra DR, Rastogi G. Co-occurrence patterns and environmental factors associated with rapid onset of Microcystis aeruginosa bloom in a tropical coastal lagoon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116580. [PMID: 36323116 DOI: 10.1016/j.jenvman.2022.116580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The environmental factors contributing to the Microcystis aeruginosa bloom (hereafter referred to as Microcystis bloom) are still debatable as they vary with season and geographic settings. We examined the environmental factors that triggered Microcystis bloom outbreak in India's largest brackish water coastal lagoon, Chilika. The warmer water temperature (25.31-32.48 °C), higher dissolved inorganic nitrogen (DIN) loading (10.15-13.53 μmol L-1), strong P-limitation (N:P ratio 138.47-246.86), higher water transparency (46.62-73.38 cm), and low-salinity (5.45-9.15) exerted a strong positive influence on blooming process. During the bloom outbreak, M. aeruginosa proliferated, replaced diatoms, and constituted 70-88% of the total phytoplankton population. The abundances of M. aeruginosa increased from 0.89 × 104 cells L-1 in September to 1.85 × 104 cells L-1 in November and reduced drastically during bloom collapse (6.22 × 103 cells L-1) by the late November of year 2017. The decrease in M. aeruginosa during bloom collapse was associated with a decline in DIN loading (2.97 μmol L-1) and N:P ratio (73.95). Sentinel-3 OLCI-based satellite monitoring corroborated the field observations showing Cyanophyta Index (CI) > 0.01 in September, indicative of intense bloom and CI < 0.0001 during late November, suggesting bloom collapse. The presence of M. aeruginosa altered the phytoplankton community composition. Furthermore, co-occurrence network indicated that bloom resulted in a less stable community with low diversity, inter-connectedness, and prominence of a negative association between phytoplankton taxa. Variance partitioning analysis revealed that TSM (16.63%), salinity (6.99%), DIN (5.21%), and transparency (5.15%) were the most influential environmental factors controlling the phytoplankton composition. This study provides new insight into the phytoplankton co-occurrences and combination of environmental factors triggering the rapid onset of Microcystis bloom and influencing the phytoplankton composition dynamics of a large coastal lagoon. These findings would be valuable for future bloom forecast modeling and aid in the management of the lagoon.
Collapse
Affiliation(s)
- Lipika Tarafdar
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India; Department of Marine Sciences, Berhampur University, Bhanjabihar, 760007, Odisha, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Pradipta R Muduli
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Abhishek Kumar
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
| | - Deepak R Mishra
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India.
| |
Collapse
|
43
|
Wu D, Zhao J, Su Y, Yang M, Dolfing J, Graham DW, Yang K, Xie B. Explaining the resistomes in a megacity's water supply catchment: Roles of microbial assembly-dominant taxa, niched environments and pathogenic bacteria. WATER RESEARCH 2023; 228:119359. [PMID: 36423548 DOI: 10.1016/j.watres.2022.119359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) in drinking water sources suggest the possible presence of resistant microorganisms that jeopardize human health. However, explanations for the presence of specific ARGs in situ are largely unknown, especially how their prevalence is affected by local microbial ecology, taxa assembly and community-wide gene transfer. Here, we characterized resistomes and bacterial communities in the Taipu River catchment, which feeds a key drinking water reservoir to a global megacity, Shanghai. Overall, ARG abundances decreased significantly as the river flowed downstream towards the reservoir (P < 0.01), whereas the waterborne bacteria assembled deterministically (|βNRI| > 2.0) as a function of temperature and dissolved oxygen conditions with the assembly-dominant taxa (e.g. Ilumatobacteraceae and Cyanobiaceae) defining local resistomes (P < 0.01, Cohen's D = 4.22). Bacterial hosts of intragenomic ARGs stayed at the same level across the catchment (60 ∼ 70 genome copies per million reads). Among them, the putative resistant pathogens (e.g. Burkholderiaceae) carried mixtures of ARGs that exhibited high transmission probability (transfer counts = 126, P < 0.001), especially with the microbial assembly-dominant taxa. These putative resistant pathogens had densities ranging form 3.0 to 4.0 × 106 cell/L, which was more pronouncedly affected by resistome and microbial assembly structures than environmental factors (SEM, std-coeff β = 0.62 vs. 0.12). This work shows that microbial assembly and resistant pathogens play predominant roles in prevelance and dissemination of resistomes in receiving water, which deserves greater attention in devisng control strategies for reducing in-situ ARGs and resistant strains in a catchment.
Collapse
Affiliation(s)
- Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou 550001, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jue Zhao
- Department of Civil and Environmental Engineering and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Mengjie Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jan Dolfing
- Faculty Energy and Environment, Northumbria University, Newcastle upon Tyne, NE1 8QH, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Kai Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
44
|
Shen Z, Xie G, Zhang Y, Yu B, Shao K, Gao G, Tang X. Similar assembly mechanisms but distinct co-occurrence patterns of free-living vs. particle-attached bacterial communities across different habitats and seasons in shallow, eutrophic Lake Taihu. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120305. [PMID: 36181942 DOI: 10.1016/j.envpol.2022.120305] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Eutrophication due to nitrogen and phosphorus input is an increasing problem in lake ecosystems. Free-living (FL) and particle-attached (PA) bacterial communities play a primary role in mediating biogeochemical processes in these lakes and in responding to eutrophication. However, knowledge of factors governing function, assembly mechanisms, and co-occurrence patterns of these communities remain poorly understood and are key challenges in microbial ecology. To address this knowledge gap, we collected 96 samples from Lake Taihu across four seasons and investigated the bacterial community using 16S rRNA gene sequencing. Our results demonstrate that the α-diversity, β-diversity, community composition, and functional composition of FL and PA bacterial communities exhibited differing spatiotemporal dynamics. FL and PA bacterial communities displayed similar distance-decay relationships across seasons. Deterministic processes (i.e., environmental filtering and species interaction) were the primary factors shaping community assembly in both FL and PA bacteria. Similar environmental factors shaped bacterial community structure while different environmental factors drove bacterial functional composition. Habitat filtering influenced enrichment of bacteria within specific functional groups. Among them, the FL bacterial community appeared to play a critical role in methane-utilization, whereas the PA bacteria contributed more to biogeochemical cycling of carbon. FL and PA bacterial communities exhibited distinct co-occurrence pattern across different seasons. In the FL network, Methylotenera and Methylophilaceae were identified as keystone taxa, while Burkholderiaceae and the hgcI clade were keystone taxa in the PA network. The PA bacterial community appeared to possess greater stability in the face of environmental change than did FL counterparts. These results broaden our knowledge of the driving factors, co-occurrence patterns, and assembly processes in FL and PA bacterial communities in eutrophic ecosystems and provide improved insight into the underlying mechanisms responsible for these results.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijuan Xie
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yuqing Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Li H, Liu PQ, Luo QP, Ma JJ, Yang XR, Yan Y, Su JQ, Zhu YG. Spatiotemporal variations of microbial assembly, interaction, and potential risk in urban dust. ENVIRONMENT INTERNATIONAL 2022; 170:107577. [PMID: 36244231 DOI: 10.1016/j.envint.2022.107577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Community and composition of dust-borne microbes would affect human health and are regulated by microbial community assembly. The dust in kindergarten is always collected to evaluate the microbial exposure of children, yet the microbial assembly, their interactions, and potential pathogens in kindergarten dust remain unclear. Here, we aim to investigate the microbial community assembly and structures, and potential bacterial pathogens in outdoor dust of kindergartens, and reveal the factors influencing the assembly and composition of microbial community. A total of 118 urban dust samples were collected on the outdoor impervious surfaces of 59 kindergartens from different districts of Xiamen in January and June 2020. We extracted microbial genomic DNA in these dusts and characterized the microbial (i.e., bacteria and fungi) community compositions and diversities using target gene-based (16S rRNA genes for bacterial community and ITS 2 regions for fungal community) high-throughput sequencing. Potential bacterial pathogens were identified and the interactions between microbes were determined through a co-occurrence network analysis. Our results showed the predominance of Actinobacteria and α-Proteobacteria in bacterial communities and Capnodiales in fungal communities. Season altered microbial assembly, composition, and interactions, with both bacterial and fungal communities exhibiting a higher heterogeneity in summer than those in winter. Although stochastic processes predominated in bacterial and fungal community assembly, the season-depended environmental factors (e.g., temperature) and interactions between microbes play important roles in dust microbial community assembly. Potential bacterial pathogens were detected in all urban dust, with significantly higher relative abundance in summer than that in winter. These results indicated that season exerted more profound effects on microbial community composition, assembly, and interactions, and suggested the seasonal changes of potential risk of microbes in urban dust. Our findings provide new insights into microbial community, community assembly, and interactions between microbes in the urban dust, and indicate that taxa containing opportunistic pathogens occur commonly in urban dust.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Pei-Qin Liu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiu-Ping Luo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jin-Jin Ma
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, Peoples R China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
46
|
Mo Y, Peng F, Jeppesen E, Gamfeldt L, Xiao P, Al MA, Yang J. Microbial network complexity drives non-linear shift in biodiversity-nutrient cycling in a saline urban reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158011. [PMID: 35970466 DOI: 10.1016/j.scitotenv.2022.158011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Aquatic biodiversity is important in mediating ecosystem functioning, contributing to ecosystem sustainability and human wellbeing. However, how microbial network complexity affects the biodiversity-nutrient cycling relationship in saline freshwater ecosystems remains underexplored. Using high-resolution time-series data, we examined the relationships between microeukaryotic-bacterial community network complexity, biodiversity and multi-nutrient cycling in an urban reservoir undergoing a freshwater salinization-desalinization cycle. We found that low microbial diversity enhanced ecosystem multi-nutrient cycling under high salinity stress. In addition, multi-nutrient cycling declined with increased network complexity. Further, we found a non-linear relationship between salinity-induced shifts in the complexity of the microbial network and biodiversity-nutrient cycling (BNC) relationship of keystone taxa, i.e. the strength of the BNC relationship first became weak and then strong with increased network complexity. Together, these results highlighted the significant insight that there is not always positive relationship between biodiversity/network complexity and multi-nutrient cycling, even between network complexity and BNC relationship in real-world ecosystems, suggesting that preserving microbial association is important in aquatic health managing and evaluating the freshwater salinization problem.
Collapse
Affiliation(s)
- Yuanyuan Mo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Peng
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey
| | - Lars Gamfeldt
- Department of Marine Sciences, University of Gothenburg, Göteborg SE-40530, Sweden
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mamun Abdullah Al
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
47
|
Li Y, Shen Q, An X, Xie Y, Liu X, Lian B. Organomineral fertilizer application enhances Perilla frutescens nutritional quality and rhizosphere microbial community stability in karst mountain soils. Front Microbiol 2022; 13:1058067. [PMID: 36504806 PMCID: PMC9730529 DOI: 10.3389/fmicb.2022.1058067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Applications of organomineral fertilizer (OMF) are important measures for developing organic agriculture in karst mountain areas. However, the influence of OMF on the structure and function of soil microbial diversity and their relationship with crop yield and quality are still unclear. Methods Based on soil science, crop science, and high-throughput sequencing methods, we investigated the changes of rhizosphere soil microbial communities of Perilla frutescens under different fertilization measures. Then, the relationship between P. frutescens yield and quality with soil quality was analyzed. Results The results showed that the addition of OMF increased the amount of total carbon and total potassium in soil. OF, especially OMF, improved P. frutescens yield and quality (e.g., panicle number per plant, main panicle length, and unsaturated fatty acid contents). Both OF and OMF treatments significantly increased the enrichment of beneficial microorganism (e.g., Bacillus, Actinomadura, Candidatus_Solibacter, Iamia, Pseudallescheria, and Cladorrhinum). The symbiotic network analysis demonstrated that OMF strengthened the connection among the soil microbial communities, and the community composition became more stable. Redundancy analysis and structural equation modeling showed that the soil pH, available phosphorus, and available potassium were significantly correlated with soil microbial community diversity and P. frutescens yield and quality. Discussion Our study confirmed that OMF could replace CF or common OF to improve soil fertility, crop yield and quality in karst mountain soils.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China,College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaochi An
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Yuanhuan Xie
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China,*Correspondence: Xiuming Liu,
| | - Bin Lian
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China,Bin Lian,
| |
Collapse
|
48
|
Pestana CJ, Santos AA, Capelo-Neto J, Melo VMM, Reis KC, Oliveira S, Rogers R, Pacheco ABF, Hui J, Skillen NC, Barros MUG, Edwards C, Azevedo SMFO, Robertson PKJ, Irvine JTS, Lawton LA. Suppressing cyanobacterial dominance by UV-LED TiO 2-photocatalysis in a drinking water reservoir: A mesocosm study. WATER RESEARCH 2022; 226:119299. [PMID: 36323220 DOI: 10.1016/j.watres.2022.119299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria and their toxic secondary metabolites present challenges for water treatment globally. In this study we have assessed TiO2 immobilized onto recycled foamed glass beads by a facile calcination method, combined in treatment units with 365 nm UV-LEDs. The treatment system was deployed in mesocosms within a eutrophic Brazilian drinking water reservoir. The treatment units were deployed for 7 days and suppressed cyanobacterial abundance by 85% while at the same time enhancing other water quality parameters; turbidity and transparency improved by 40 and 81% respectively. Genomic analysis of the microbiota in the treated mesocosms revealed that the composition of the cyanobacterial community was affected and the abundance of Bacteroidetes and Proteobacteria increased during cyanobacterial suppression. The effect of the treatment on zooplankton and other eukaryotes was also monitored. The abundance of zooplankton decreased while Chrysophyte and Alveolata loadings increased. The results of this proof-of-concept study demonstrate the potential for full-scale, in-reservoir application of advanced oxidation processes as complementary water treatment processes.
Collapse
Affiliation(s)
- Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK.
| | - Allan A Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Vânia M M Melo
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Kelly C Reis
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Samylla Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Ricardo Rogers
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana B F Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jianing Hui
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Nathan C Skillen
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Mário U G Barros
- Ceára Water Resources Management Company (COGERH), Fortaleza, Brazil
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Sandra M F O Azevedo
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter K J Robertson
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - John T S Irvine
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
49
|
Jin L, Chen H, Xue Y, Soininen J, Yang J. The scale-dependence of spatial distribution of reservoir plankton communities in subtropical and tropical China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157179. [PMID: 35809738 DOI: 10.1016/j.scitotenv.2022.157179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Distance-decay relationships (DDRs) represent a very useful approach to describing the spatial distribution of biological communities. However, plankton DDR patterns and community assembly mechanisms are still poorly understood at different spatial scales in reservoir ecosystems. We collected phytoplankton, zooplankton and water samples in 24 reservoirs from subtropical and tropical China from July to August 2018. We examined DDR patterns across three distinct spatial scales, i.e., within-reservoir, within-drainage (but between reservoirs) and between drainages. We tested whether the rate of change (i.e., slope) of DDRs is consistent across different spatial scales. We assessed the relative importance of spatial and environmental variables in shaping the community distribution of plankton and quantitatively distinguished the community assembly mechanisms. We observed significant DDR curves in phytoplankton and zooplankton communities, in which slopes of the DDRs were steepest at the smallest spatial scale. Both spatial and environmental factors had significant impacts on DDR and dispersal assembly was a slightly stronger process in reservoir phytoplankton and zooplankton community assembly than niche-based process. We conclude that DDRs of reservoir phytoplankton and zooplankton vary with spatial scale. Our data shed light on how spatial and environmental variables contribute to plankton community assembly together. However, we revealed that dispersal process contributes to the biogeography of reservoir plankton slightly more strongly than environmental filtering. Collectively, this study enhances the understanding of plankton biogeography and distribution at multiple spatial scales.
Collapse
Affiliation(s)
- Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
50
|
Liu L, Wang S, Yang J, Chen J. Nutrient Removal in Eutrophic Water Promotes Stability of Planktonic Bacterial and Protist Communities. MICROBIAL ECOLOGY 2022; 84:759-768. [PMID: 34671825 DOI: 10.1007/s00248-021-01898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Nutrient (nitrogen and phosphorus) removal by using bioremediation technologies in eutrophic water alters bacterial and protist community structure and function, but how it changes the stability of community remains unclear. To fill this gap, in this study, bacterial and protist communities were investigated using 16S and 18S rRNA gene high-throughput sequencing during the nutrient removal by using ecological floating beds of Canna indica L. Our results showed that both bacterial and protist community compositions in the treatment group were similar to those in the control group at the beginning of the experiment (day 1 to day 11), but then bacterial and protist community compositions became more stable with the removal of nutrients in the treatment group than those in the control group (day 12 to day 18). We further explored the mechanisms for this increased stability and found that the contribution of the stochastic process to bacterial and protist community variations was higher in the control group than that in the treatment group. This suggests that the high nutrient concentration in the control group might increase the random colonization or extinction, and therefore resulted in the high temporal variability (i.e., unstable) of bacterial and protist communities. Our findings suggest that bioremediation for eutrophication can promote the stability of aquatic communities, and therefore potentially maintain aquatic ecosystem functions and services to humanity.
Collapse
Affiliation(s)
- Lemian Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China.
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.
| | - Shanshan Wang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianfeng Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, China
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|