1
|
Zhang B, Li S, Ding J, Guo J, Ma Z, Duan H. Rho-GTPases subfamily: cellular defectors orchestrating viral infection. Cell Mol Biol Lett 2025; 30:55. [PMID: 40316910 PMCID: PMC12049043 DOI: 10.1186/s11658-025-00722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025] Open
Abstract
Ras homolog gene family-guanosine triphosphatases (Rho-GTPases), key molecular switches regulating cytoskeletal dynamics and cellular signaling, play a pivotal role in viral infections by modulating critical processes such as viral entry, replication, and release. This review elucidates the intricate mechanisms through which Rho-GTPases, via interactions with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and other signaling pathways, including the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), rat sarcoma (Ras), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, facilitate viral pathogenesis. Specific viruses, such as influenza A virus (IAV), herpesviruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), exploit Rho-GTPase-mediated cytoskeletal reorganization to enhance infectivity. For example, Rho-GTPases promote actin remodeling and membrane fusion, which are essential for viral entry and intracellular transport. Furthermore, Rho-GTPases modulate immune responses, often suppressing antiviral defenses to favor viral replication. Despite these insights, the molecular mechanisms underlying Rho-GTPase regulation during viral infections remain incompletely understood. Future research should focus on delineating the precise roles of Rho-GTPases in distinct viral life cycles, uncovering novel regulatory mechanisms, and developing targeted antiviral therapies that selectively inhibit Rho-GTPase signaling without compromising host cell functions. Such advancements could pave the way for broad-spectrum antiviral strategies, particularly against viruses that heavily rely on cytoskeletal manipulation for infection.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shuli Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jingxia Guo
- Disease Prevention and Control Center of Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Luo S, Yin L, Liu X, Wang X. Advances in Virus Biorecognition and Detection Techniques for the Surveillance and Prevention of Infectious Diseases. BIOSENSORS 2025; 15:198. [PMID: 40136995 PMCID: PMC11940537 DOI: 10.3390/bios15030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Viral infectious diseases pose a serious threat to global public health due to their high transmissibility, rapid mutation rates, and limited treatment options. Recent outbreaks of diseases such as plague, monkeypox, avian influenza, and coronavirus disease 2019 (COVID-19) have underscored the urgent need for efficient diagnostic and surveillance technologies. Focusing on viral infectious diseases that seriously threaten human health, this review summarizes and analyzes detection techniques from the perspective of combining viral surveillance and prevention advice, and discusses applications in improving diagnostic sensitivity and specificity. One of the major innovations of this review is the systematic integration of advanced biorecognition and detection technologies, such as bionanosensors, rapid detection test strips, and microfluidic platforms, along with the exploration of artificial intelligence in virus detection. These technologies address the limitations of traditional methods and enable the real-time monitoring and early warning of viral outbreaks. By analyzing the application of these technologies in the detection of pathogens, new insights are provided for the development of next-generation diagnostic tools to address emerging and re-emerging viral threats. In addition, we analyze the current progress of developed vaccines, combining virus surveillance with vaccine research to provide new ideas for future viral disease prevention and control and vaccine development, and call for global attention and the development of new disease prevention and detection technologies.
Collapse
Affiliation(s)
- Shuwen Luo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
| |
Collapse
|
3
|
Wang Y, Xia B, Gao Z. A comprehensive review of current insights into the virulence factors of SARS-CoV-2. J Virol 2025; 99:e0204924. [PMID: 39878471 PMCID: PMC11852741 DOI: 10.1128/jvi.02049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached. Here, we review the potential impact of all proteins in SARS-CoV-2 on the viral pathogenic process and analyze the effects of their mutations on pathogenicity evolution. We aim to summarize which virus-encoded proteins are crucial in influencing viral pathogenicity, defined as disease severity following infection. Mutations in these key proteins, which are the virulence factors in SARS-CoV-2, may be the driving forces behind the evolution of viral pathogenicity. Mutations in the S protein can impact viral entry and fusogenicity. Mutations in proteins such as NSP2, NSP5, NSP14, and ORF7a can alter the virus's ability to suppress host protein synthesis and innate immunity. Mutations in NSP3, NSP4, NSP6, N protein, NSP5, and NSP12 may alter viral replication efficiency. The combined effects of mutations in the S protein and NSP6 can significantly reduce viral replication. In addition, various viral proteins, including ORF3a, ORF8, NSP4, Spike protein, N protein, and E protein, directly participate in the inflammatory process. Mutations in these proteins can modulate the levels of inflammation following infection. Collectively, these viral protein mutations can influence SARS-CoV-2 pathogenicity by impacting viral immune evasion, replication capacity, and the level of inflammation mediated by infection. In conclusion, the evolution of SARS-CoV-2 pathogenicity is likely determined by multiple virulence factors.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Pitsillou E, El-Osta A, Hung A, Karagiannis TC. Epimaps of the SARS-CoV-2 Receptor-Binding Domain Mutational Landscape: Insights into Protein Stability, Epitope Prediction, and Antibody Binding. Biomolecules 2025; 15:301. [PMID: 40001604 PMCID: PMC11853434 DOI: 10.3390/biom15020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses an ongoing threat to the efficacy of vaccines and therapeutic antibodies. Mutations predominantly affect the receptor-binding domain (RBD) of the spike protein, which mediates viral entry. The RBD is also a major target of monoclonal antibodies that were authorised for use during the pandemic. In this study, an in silico approach was used to investigate the mutational landscape of SARS-CoV-2 RBD variants, including currently circulating Omicron subvariants. A total of 40 single-point mutations were assessed for their potential effect on protein stability and dynamics. Destabilising effects were predicted for mutations such as L455S and F456L, while stabilising effects were predicted for mutations such as R346T. Conformational B-cell epitope predictions were subsequently performed for wild-type (WT) and variant RBDs. Mutations from SARS-CoV-2 variants were located within the predicted epitope residues and the epitope regions were found to correspond to the sites targeted by therapeutic antibodies. Furthermore, homology models of the RBD of SARS-CoV-2 variants were generated and were utilised for protein-antibody docking. The binding characteristics of 10 monoclonal antibodies against WT and 14 SARS-CoV-2 variants were evaluated. Through evaluating the binding affinities, interactions, and energy contributions of RBD residues, mutations that were contributing to viral evasion were identified. The findings from this study provide insight into the structural and molecular mechanisms underlying neutralising antibody evasion. Future antibody development could focus on broadly neutralising antibodies, engineering antibodies with enhanced binding affinity, and targeting spike protein regions beyond the RBD.
Collapse
MESH Headings
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Humans
- Protein Stability
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Antibodies, Viral/immunology
- Mutation
- COVID-19/virology
- COVID-19/immunology
- Protein Domains
- Antibodies, Neutralizing/immunology
- Antibodies, Monoclonal/immunology
- Protein Binding
- Epitopes/immunology
- Epitopes/genetics
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30–32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 2200 Copenhagen, Denmark
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Srivastava R, Jaiswal N, Kharkwal H, Dubey NK, Srivastava R. Phytomedical Properties of Carica papaya for Boosting Human Immunity Against Viral Infections. Viruses 2025; 17:271. [PMID: 40007026 PMCID: PMC11861161 DOI: 10.3390/v17020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Carica papaya, a tropical fruit-bearing plant, has attracted significant attention for its diverse phytomedical properties and its ability to regulate both innate and adaptive immunity, making it a promising natural therapeutic agent. C. papaya is rich in bioactive compounds that play a multifaceted role in immunomodulation. These bioactive constituents have demonstrated efficacy not only against the dengue virus but also against other viral infections, including COVID-19 (Corona Virus Disease 2019), Human Immunodeficiency Virus (HIV), Zika virus, and others. The antiviral effects of C. papaya are achieved through its ability to enhance host immunity, mitigate inflammation, reduce oxidative stress, inhibit viral replication, and modulate immune responses. These mechanisms highlight its potential as a candidate for antiviral therapies, paving the way for further exploration of its pharmacological applications and promoting eco-friendly, accessible healthcare solutions for combating viral diseases. This review highlights the antiviral potential of C. papaya extracts in inhibiting viral replication and modulating immune responses, emphasizing the need for further studies and clinical trials to validate their efficacy against other medically significant viruses causing human diseases.
Collapse
Affiliation(s)
- Rashmi Srivastava
- School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Neeshma Jaiswal
- School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida 201313, Uttar Pradesh, India
| | - Neeraj Kumar Dubey
- Botany Department, Rashtriya PG College, Jaunpur 222003, Uttar Pradesh, India
| | - Rakesh Srivastava
- Research and Development, Helix Biosciences, New Delhi 110028, Delhi, India
| |
Collapse
|
6
|
Zhang S, Liu K, Liu Y, Hu X, Gu X. The role and application of bioinformatics techniques and tools in drug discovery. Front Pharmacol 2025; 16:1547131. [PMID: 40017606 PMCID: PMC11865229 DOI: 10.3389/fphar.2025.1547131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
The process of drug discovery and development is both lengthy and intricate, demanding a substantial investment of time and financial resources. Bioinformatics techniques and tools can not only accelerate the identification of drug targets and the screening and refinement of drug candidates, but also facilitate the characterization of side effects and the prediction of drug resistance. High-throughput data from genomics, transcriptomics, proteomics, and metabolomics make significant contributions to mechanics-based drug discovery and drug reuse. This paper summarizes bioinformatics technologies and tools in drug research and development and their roles and applications in drug research and development, aiming to provide references for the development of new drugs and the realization of precision medicine.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kaijie Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Medical Key Laboratory of Gastrointestinal Microecology and Hepatology, Luoyang, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
7
|
Sacco MA, Gualtieri S, Princi A, Verrina MC, Carbone A, Tarda L, Ranno F, Gratteri S, Aquila I. Investigating the Post-Mortem Risk of Transmission of SARS-CoV-2 Virus in Cadaveric Tissues: A Systematic Review of the Literature. Microorganisms 2025; 13:284. [PMID: 40005651 PMCID: PMC11858283 DOI: 10.3390/microorganisms13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The emergence of SARS-CoV-2, responsible for the COVID-19 pandemic, has prompted extensive research into its transmission dynamics; yet, a critical aspect that remains underexplored is the post-mortem infectivity of the virus within cadaveric tissues. Understanding the mechanisms by which SARS-CoV-2 maintains infectivity after death is essential, as it raises significant concerns regarding public health and forensic practices. Research indicates that the virus can persist in various tissues, including lung, liver, and kidney tissues, with studies showing that factors such as the time elapsed since death, the presence of underlying health conditions, and environmental conditions at the time of death can influence the level of infectivity in deceased individuals. These findings are not only crucial for establishing safety protocols for forensic investigators who handle cadavers but also for informing public health guidelines that govern the management of bodies during and after outbreaks. As we investigate the implications of post-mortem SARS-CoV-2 infectivity, it becomes imperative to establish comprehensive protocols to mitigate risks associated with the handling and disposal of infected bodies, thereby protecting public health and ensuring the safety of those working in forensic environments. This paper aims to elucidate the mechanisms of infectivity in cadaveric tissues, explore the persistence of the virus in various tissue types, and assess the broader implications for public health and forensic investigations, ultimately contributing to a safer approach in dealing with COVID-19-related fatalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Isabella Aquila
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (A.P.); (M.C.V.); (A.C.); (L.T.); (F.R.); (S.G.)
| |
Collapse
|
8
|
Sanduzzi Zamparelli S, Sanduzzi Zamparelli A, Bocchino M. Immune-Boosting and Antiviral Effects of Antioxidants in COVID-19 Pneumonia: A Therapeutic Perspective. Life (Basel) 2025; 15:113. [PMID: 39860053 PMCID: PMC11766556 DOI: 10.3390/life15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has profoundly impacted global health, with pneumonia emerging as a major complication in severe cases. The pathogenesis of COVID-19 is marked by the overproduction of reactive oxygen species (ROS) and an excessive inflammatory response, resulting in oxidative stress and significant tissue damage, particularly in the respiratory system. Antioxidants have garnered considerable attention for their potential role in managing COVID-19 pneumonia by mitigating oxidative stress and modulating immune responses. This review provides a comprehensive overview of the literature on the use of antioxidants in hospitalized patients with mild-to-moderate COVID-19. Studies exploring antioxidants, including vitamins, trace elements, nitric oxide (NO), ozone (O3), glutathione (GSH), L-carnitine, melatonin, bromelain, N-acetylcysteine (NAC), and numerous polyphenols, have yielded promising outcomes. Through their ROS-scavenging properties, these molecules support endothelial function, reduce the thrombosis risk, and may help mitigate the effects of the cytokine storm, a key contributor to COVID-19 morbidity and mortality. Clinical evidence suggests that antioxidant supplementation may improve patient outcomes by decreasing inflammation, supporting immune cell function, and potentially shortening recovery times. Furthermore, these molecules may mitigate the symptoms of COVID-19 by exerting direct antiviral effects that inhibit the infection process and genomic replication of SARS-CoV-2 in host cells. Moreover, antioxidants may work synergistically with standard antiviral treatments to reduce viral-induced oxidative damage. By integrating findings from the literature with real-world data from our clinical experience, we gain a more profound understanding of the role of antioxidants in managing COVID-19 pneumonia. Further research combining comprehensive literature reviews with real-world data analysis is crucial to validate the efficacy of antioxidants and establish evidence-based guidelines for their use in clinical practice.
Collapse
Affiliation(s)
| | - Alessandro Sanduzzi Zamparelli
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.S.Z.); (M.B.)
- UNESCO Chair for Health Education and Sustainable Development, University of Naples “Federico II”, 80131 Naples, Italy
- ERN Lung, 60596 Frankfurt am Main, Germany
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.S.Z.); (M.B.)
| |
Collapse
|
9
|
Xu YL, Li XJ, Cai W, Yu WY, Chen J, Lee Q, Choi YJ, Wu F, Lou YJ, Ying HZ, Yu CH, Wu QF. Diosmetin-7-O-β-D-glucopyranoside from Pogostemonis Herba alleviated SARS-CoV-2-induced pneumonia by reshaping macrophage polarization and limiting viral replication. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118704. [PMID: 39182703 DOI: 10.1016/j.jep.2024.118704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS Diosmetin-7-O-β-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 μM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.
Collapse
Affiliation(s)
- Yun-Lu Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Wei Cai
- College of Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, China
| | - Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jing Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qin Lee
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Yong-Jun Choi
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ying-Jun Lou
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Chen-Huan Yu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China.
| | - Qiao-Feng Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
10
|
Neilsen G, Mathew AM, Castro JM, McFadden WM, Wen X, Ong YT, Tedbury PR, Lan S, Sarafianos SG. Dimming the corona: studying SARS-coronavirus-2 at reduced biocontainment level using replicons and virus-like particles. mBio 2024; 15:e0336823. [PMID: 39530689 PMCID: PMC11633226 DOI: 10.1128/mbio.03368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential. Viral replicon- and virus-like particle (VLP)-based systems are excellent examples of such tools. This review outlines the importance, advantages, and disadvantages of both the replicon- and VLP-based systems that have been developed for SARS-CoV-2 and have helped the scientific community in dimming the intensity of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Grace Neilsen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Asha Maria Mathew
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jose M. Castro
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Pandey RP, Kumar S, Rao DN, Gupta DL. Emerging severe acute respiratory syndrome coronavirus 2 variants and their impact on immune evasion and vaccine-induced immunity. Trans R Soc Trop Med Hyg 2024; 118:761-772. [PMID: 39297227 DOI: 10.1093/trstmh/trae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 12/14/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants harboring mutations in the structural protein, especially in the receptor binding domain (RBD) of spike protein, have raised concern about potential immune escape. The spike protein of SARS-CoV-2 plays a vital role in infection and is an important target for neutralizing antibodies. The mutations that occur in the structural proteins, especially in the spike protein, lead to changes in the virus attributes of transmissibility, an increase in disease severity, a notable reduction in neutralizing antibodies generated and thus a decreased response to vaccines and therapy. The observed multiple mutations in the RBD of the spike protein showed immune escape because it increases the affinity of spike protein binding with the ACE-2 receptor of host cells and increases resistance to neutralizing antibodies. Cytotoxic T-cell responses are crucial in controlling SARS-CoV-2 infections from the infected tissues and clearing them from circulation. Cytotoxic T cells efficiently recognized the infected cells and killed them by releasing soluble mediator's perforin and granzymes. However, the overwhelming response of T cells and, subsequently, the overproduction of inflammatory mediators during severe infections with SARS-CoV-2 may lead to poor outcomes. This review article summarizes the impact of mutations in the spike protein of SARS-CoV-2, especially mutations of RBD, on immunogenicity, immune escape and vaccine-induced immunity, which could contribute to future studies focusing on vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, India-248007
| | - Sachin Kumar
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, India-110017
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India-110029
| | - Dablu Lal Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India-492099
| |
Collapse
|
12
|
Shteinfer-Kuzmine A, Verma A, Bornshten R, Ben Chetrit E, Ben-Ya'acov A, Pahima H, Rubin E, Mograbi Y, Shteyer E, Shoshan-Barmatz V. Elevated serum mtDNA in COVID-19 patients is linked to SARS-CoV-2 envelope protein targeting mitochondrial VDAC1, inducing apoptosis and mtDNA release. Apoptosis 2024; 29:2025-2046. [PMID: 39375263 PMCID: PMC11550248 DOI: 10.1007/s10495-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Mitochondria dysfunction is implicated in cell death, inflammation, and autoimmunity. During viral infections, some viruses employ different strategies to disrupt mitochondria-dependent apoptosis, while others, including SARS-CoV-2, induce host cell apoptosis to facilitate replication and immune system modulation. Given mitochondrial DNAs (mtDNA) role as a pro-inflammatory damage-associated molecular pattern in inflammatory diseases, we examined its levels in the serum of COVID-19 patients and found it to be high relative to levels in healthy donors. Furthermore, comparison of serum protein profiles between healthy individuals and SARS-CoV-2-infected patients revealed unique bands in the COVID-19 patients. Using mass spectroscopy, we identified over 15 proteins, whose levels in the serum of COVID-19 patients were 4- to 780-fold higher. As mtDNA release from the mitochondria is mediated by the oligomeric form of the mitochondrial-gatekeeper-the voltage-dependent anion-selective channel 1 (VDAC1)-we investigated whether SARS-CoV-2 protein alters VDAC1 expression. Among the three selected SARS-CoV-2 proteins, small envelope (E), nucleocapsid (N), and accessory 3b proteins, the E-protein induced VDAC1 overexpression, VDAC1 oligomerization, cell death, and mtDNA release. Additionally, this protein led to mitochondrial dysfunction, as evidenced by increased mitochondrial ROS production and cytosolic Ca2+ levels. These findings suggest that SARS-CoV-2 E-protein induces mitochondrial dysfunction, apoptosis, and mtDNA release via VDAC1 modulation. mtDNA that accumulates in the blood activates the cGAS-STING pathway, triggering inflammatory cytokine and chemokine expression that contribute to the cytokine storm and tissue damage seen in cases of severe COVID-19.
Collapse
Affiliation(s)
| | - Ankit Verma
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rut Bornshten
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Eli Ben Chetrit
- Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Ami Ben-Ya'acov
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Hadas Pahima
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ethan Rubin
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | | | - Eyal Shteyer
- Shaare Zedek Medical Center, The Juliet Keidan Institute of Paediatric Gastroenterology, Jerusalem, Israel
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
13
|
Ciudad CJ, Valiuska S, Rojas JM, Nogales-Altozano P, Aviñó A, Eritja R, Chillón M, Sevilla N, Noé V. Polypurine reverse hoogsteen hairpins as a therapeutic tool for SARS-CoV-2 infection. J Biol Chem 2024; 300:107884. [PMID: 39395809 PMCID: PMC11570937 DOI: 10.1016/j.jbc.2024.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Although the COVID-19 pandemic was declared no longer a global emergency by the World Health Organization in May 2023, SARS-CoV-2 is still infecting people across the world. Many therapeutic oligonucleotides such as ASOs, siRNAs, or CRISPR-based systems emerged as promising antiviral strategies for the treatment of SARS-CoV-2. In this work, we explored the inhibitory potential on SARS-CoV-2 replication of Polypurine Reverse Hoogsteen Hairpins (PPRHs), CC1-PPRH, and CC3-PPRH, targeting specific polypyrimidine sequences within the replicase and Spike regions, respectively, and previously validated for COVID-19 diagnosis. Both PPRHs are bound to their target sequences in the viral genome with high affinity in the order of nM. In vitro, both PPRHs reduced viral replication by more than 92% when transfected into VERO-E6 cells 24 h prior to infection with SARS-CoV-2. In vivo intranasal administration of CC1-PPRH in K18-hACE2 mice expressing the human ACE receptor protected all the animals from SARS-CoV-2 infection. The properties of PPRHs position them as promising candidates for the development of novel therapeutics against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Carlos J Ciudad
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Simonas Valiuska
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal-CISA, INIA, CSIC, Madrid, Spain
| | | | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia, CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia, CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Chillón
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal-CISA, INIA, CSIC, Madrid, Spain
| | - Verónique Noé
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Kumar S, Nan L, Kalodimou G, Jany S, Freudenstein A, Brandmüller C, Müller K, Girl P, Ehmann R, Guggemos W, Seilmaier M, Wendtner CM, Volz A, Sutter G, Fux R, Tscherne A. Implementation of an Immunoassay Based on the MVA-T7pol-Expression System for Rapid Identification of Immunogenic SARS-CoV-2 Antigens: A Proof-of-Concept Study. Int J Mol Sci 2024; 25:10898. [PMID: 39456680 PMCID: PMC11508112 DOI: 10.3390/ijms252010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model. By using this system, we detected severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) nucleoprotein (N)-, and spike (S)-specific antibodies in COVID-19 patient sera, which is in line with the current literature and our observations from previous immunogenicity studies. Furthermore, we detected antibodies directed against the SARS-CoV-2-membrane (M) and -ORF3a proteins in COVID-19 patient sera and aimed to generate recombinant MVA candidate vaccines expressing either the M or ORF3a protein. When testing our candidate vaccines in a prime-boost immunization regimen in humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice, we were able to demonstrate M- and ORF3a-specific cellular and humoral immune responses. Hence, the established workflow using the MVA-T7pol expression system represents a rapid and efficient tool to identify potential immunogenic antigens and provides a basis for future development of candidate vaccines.
Collapse
Affiliation(s)
- Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Liangliang Nan
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Christine Brandmüller
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Katharina Müller
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany
| | - Rosina Ehmann
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Wolfgang Guggemos
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Michael Seilmaier
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Clemens-Martin Wendtner
- Medical Clinic III, University Hospital, Ludwig Maximilians University Munich (LMU Munich), 80336 Munich, Germany;
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| |
Collapse
|
15
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
16
|
Diogo MA, Cabral AGT, de Oliveira RB. Advances in the Search for SARS-CoV-2 M pro and PL pro Inhibitors. Pathogens 2024; 13:825. [PMID: 39452697 PMCID: PMC11510351 DOI: 10.3390/pathogens13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
SARS-CoV-2 is a spherical, positive-sense, single-stranded RNA virus with a large genome, responsible for encoding both structural proteins, vital for the viral particle's architecture, and non-structural proteins, critical for the virus's replication cycle. Among the non-structural proteins, two cysteine proteases emerge as promising molecular targets for the design of new antiviral compounds. The main protease (Mpro) is a homodimeric enzyme that plays a pivotal role in the formation of the viral replication-transcription complex, associated with the papain-like protease (PLpro), a cysteine protease that modulates host immune signaling by reversing post-translational modifications of ubiquitin and interferon-stimulated gene 15 (ISG15) in host cells. Due to the importance of these molecular targets for the design and development of novel anti-SARS-CoV-2 drugs, the purpose of this review is to address aspects related to the structure, mechanism of action and strategies for the design of inhibitors capable of targeting the Mpro and PLpro. Examples of covalent and non-covalent inhibitors that are currently being evaluated in preclinical and clinical studies or already approved for therapy will be also discussed to show the advances in medicinal chemistry in the search for new molecules to treat COVID-19.
Collapse
Affiliation(s)
| | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.D.); (A.G.T.C.)
| |
Collapse
|
17
|
Jagst M, Pottkämper L, Gömer A, Pitarokoili K, Steinmann E. Neuroinvasion and neurotropism of severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Microbiol 2024; 79:102474. [PMID: 38615394 DOI: 10.1016/j.mib.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, contributes to neurological pathologies in nearly 30% of patients, extending beyond respiratory symptoms. These manifestations encompass disorders of both the peripheral and central nervous systems, causing among others cerebrovascular issues and psychiatric manifestations during the acute and/or post-acute infection phases. Despite ongoing research, uncertainties persist about the precise mechanism the virus uses to infiltrate the central nervous system and the involved entry portals. This review discusses the potential entry routes, including hematogenous and anterograde transport. Furthermore, we explore variations in neurotropism, neurovirulence, and neurological manifestations among pandemic-associated variants of concern. In conclusion, SARS-CoV-2 can infect numerous cells within the peripheral and central nervous system, provoke inflammatory responses, and induce neuropathological changes.
Collapse
Affiliation(s)
- Michelle Jagst
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lilli Pottkämper
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
18
|
Gupta T, Kumar M, Kaur UJ, Rao A, Bharti R. Mapping ACE2 and TMPRSS2 co-expression in human brain tissue: implications for SARS-CoV-2 neurological manifestations. J Neurovirol 2024; 30:316-326. [PMID: 38600308 DOI: 10.1007/s13365-024-01206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily targets respiratory cells, but emerging evidence shows neurological involvement, with the virus directly affecting neurons and glia. SARS-CoV-2 entry into a target cell requires co-expression of ACE2 (Angiotensin-converting enzyme-2) and TMPRSS2 (Trans membrane serine protease-2). Relevant literature on human neurological tissue is sparse and mostly focused on the olfactory areas. This prompted our study to map brain-wide expression of these entry proteins and assess age-related changes. The normal brain tissue samples were collected from cerebral cortex, hippocampus, basal ganglia, thalamus, hypothalamus, brain stem and cerebellum; and were divided into two groups - up to 40 years (n = 10) and above 40 years (n = 10). ACE2 and TMPRSS2 gene expression analysis was done using qRT-PCR and protein co-expression was seen by immunofluorescence. The ACE2 and TMPRSS2 gene expression was observed to be highest in hypothalamus and thalamus regions, respectively. Immunoreactivity for both ACE-2 and TMPRSS2 was observed in all examined brain regions, confirming the presence of these viral entry receptors. Co-localisation was maximum in hypothalamus. Our study did not find any trend related to different age groups. The expression of both these viral entry receptors suggests that normal human brain is susceptibility to SARS-CoV-2, perhaps which could be related to the cognitive and neurological impairment that occur in patients.
Collapse
Affiliation(s)
- Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ujjwal Jit Kaur
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Asha Rao
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Bharti
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Alkhalil SS, Alosaimi SE, Alosaimi ME, Mohammedsaleh ZM, Al Abdulmonem W, Alkhamiss AS, Alghsham RS, Aljohani ASM, Shater AF, Saleh FM, Almohaimeed HM, Soliman MH. Enumeration of olive derived lignan, pinoresinol for activity against recent Omicron variant spike protein for structure-based drug design, DFT, molecular dynamics simulations, and MMGBSA studies. J Appl Genet 2024; 65:341-354. [PMID: 38030871 DOI: 10.1007/s13353-023-00802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The coronavirus disease 2019 (COVID-19) was first found in Wuhan, China, in December 2019. Because the virus spreads quickly, it quickly became a global worry. Coronaviridae is the family that contains both SARS-CoV-2 and the viruses that came before (i.e., MERS-CoV and SARS-CoV). Recent sources portray that the COVID-19 virus has affected 344,710,576 people worldwide and killed about 5,598,511 people in the last 2 years. The B.1.1.529 strain, later called "Omicron," was named a Variant of Concern on November 24, 2021. The SARS-CoV-2 virus has gone through a never-ending chain of changes that have never happened before. As a result, it has many different traits. Most of these changes have occurred in the spike protein, where antibodies bind. Because of these changes, the Omicron type is very contagious and easy to pass on. There have been a lot of studies done to try to figure out this new challenge in the COVID-19 strains race, but there is still a lot that needs to be explained. This study focuses on virtual screening, docking, and molecular dynamic analysis; we aimed to identify therapeutic candidates for the SARS-CoV-2 variant Omicron based on their ability to inhibit non-structural proteins. We investigate the prediction of the properties of a substantial database of drug molecules obtained from the OliveNet™ database. Compounds that did not exhibit adequate gastrointestinal absorption and failed the Lipinski test are not considered for further research. The filtered compounds were coupled with our primary target, SARS-CoV-2 Omicron spike protein. We focused on SARS-CoV-2 Omicron spike protein and filtering potent olive compounds. Pinoresinol, the most likely candidate, is bound best (- 8.5 kcal/mol). Pinoresinol's strong interaction with the active site made the complex's dynamic structure more resilient. MD simulations explain the protein-ligand complex's stability and function. Pinoresinol may be a promising SARS-CoV-2 Omicron spike protein receptor lead drug, and additional research may assist the scientific community.
Collapse
Affiliation(s)
- Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia.
| | - Shoruq E Alosaimi
- Respiratory Services Department, King Abdullah Specialized Children's Hospital (KASCH), P.O. Box 14611,, Riyadh, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Abdullah Saleh Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Ruqaih S Alghsham
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman, University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Piubelli C, Treggiari D, Lavezzari D, Deiana M, Dishnica K, Tosato EMS, Mazzi C, Cattaneo P, Mori A, Pomari E, Nicolini L, Leonardi M, Perandin F, Formenti F, Giorgetti A, Conti A, Capobianchi MR, Gobbi FG, Castilletti C. Wide Real-Life Data Support Reduced Sensitivity of Antigen Tests for Omicron SARS-CoV-2 Infections. Viruses 2024; 16:657. [PMID: 38793539 PMCID: PMC11125898 DOI: 10.3390/v16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
With the continuous spread of new SARS-CoV-2 variants of concern (VOCs), the monitoring of diagnostic test performances is mandatory. We evaluated the changes in antigen diagnostic tests' (ADTs) accuracy along the Delta to Omicron VOCs transition, exploring the N protein mutations possibly affecting ADT sensitivity and assessing the best sampling site for the diagnosis of Omicron infections. In total, 5175 subjects were enrolled from 1 October 2021 to 15 July 2022. The inclusion criteria were SARS-CoV-2 ADT combined with a same-day RT-PCR swab test. For the sampling site analysis, 61 patients were prospectively recruited during the Omicron period for nasal and oral swab analyses by RT-PCR. Next-Generation Sequencing data were obtained to evaluate the different sublineages. Using RT-PCR as a reference, 387 subjects resulted in becoming infected and the overall sensitivity of the ADT decreased from 63% in the Delta period to 33% in the Omicron period. This decrease was highly statistically significant (p < 0.001), and no decrease in viral load was detected at the RNA level. The nasal site presented a significantly higher viral load than the oral site during the Omicron wave. The reduced detection rate of Omicron infections by ADT should be considered in the global testing strategy to preserve accurate diagnoses across the changing SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Davide Treggiari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Denise Lavezzari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Michela Deiana
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Klevia Dishnica
- Department of Biotechnology, University of Verona, 37124 Verona, Italy
| | | | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy;
| | - Paolo Cattaneo
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Antonio Mori
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Lavinia Nicolini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Martina Leonardi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Francesca Perandin
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Fabio Formenti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | | | - Antonio Conti
- Clinical Analysis Laboratory and Transfusional Service, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy
| | - Maria Rosaria Capobianchi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Federico Giovanni Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| |
Collapse
|
21
|
Nguyen MC, Bonnaud P, Dibsy R, Maucort G, Lyonnais S, Muriaux D, Bon P. Label-Free Single Nanoparticle Identification and Characterization in Demanding Environment, Including Infectious Emergent Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304564. [PMID: 38009767 DOI: 10.1002/smll.202304564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/02/2023] [Indexed: 11/29/2023]
Abstract
Unknown particle screening-including virus and nanoparticles-are keys in medicine, industry, and also in water pollutant determination. Here, RYtov MIcroscopy for Nanoparticles Identification (RYMINI) is introduced, a staining-free, non-invasive, and non-destructive optical approach that is merging holographic label-free 3D tracking with high-sensitivity quantitative phase imaging into a compact optical setup. Dedicated to the identification and then characterization of single nano-object in solution, it is compatible with highly demanding environments, such as level 3 biological laboratories, with high resilience to external source of mechanical and optical noise. Metrological characterization is performed at the level of each single particle on both absorbing and transparent particles as well as on immature and infectious HIV, SARS-CoV-2 and extracellular vesicles in solution. The capability of RYMINI to determine the nature, concentration, size, complex refractive index and mass of each single particle without knowledge or model of the particles' response is demonstrated. The system surpasses 90% accuracy for automatic identification between dielectric/metallic/biological nanoparticles and ≈80% for intraclass chemical determination of metallic and dielectric. It falls down to 50-70% for type determination inside the biological nanoparticle's class.
Collapse
Affiliation(s)
- Minh-Chau Nguyen
- UMR 7252, CNRS, XLIM, Université de Limoges, Limoges, F-87000, France
| | - Peter Bonnaud
- UMR 7252, CNRS, XLIM, Université de Limoges, Limoges, F-87000, France
| | - Rayane Dibsy
- UMR 9004 CNRS, IRIM (Institut de Recherche en Infectiologie de Montpellier), Université de Montpellier, Montpellier, F-34293, France
| | - Guillaume Maucort
- Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Talence, F-33400, France
- LP2N UMR 5298, Institut d'Optique Graduate School, CNRS, Talence, F-33400, France
| | - Sébastien Lyonnais
- UAR 3725 CNRS, CEMIPAI, Université de Montpellier, Montpellier, F-34000, France
| | - Delphine Muriaux
- UMR 9004 CNRS, IRIM (Institut de Recherche en Infectiologie de Montpellier), Université de Montpellier, Montpellier, F-34293, France
- UAR 3725 CNRS, CEMIPAI, Université de Montpellier, Montpellier, F-34000, France
| | - Pierre Bon
- UMR 7252, CNRS, XLIM, Université de Limoges, Limoges, F-87000, France
| |
Collapse
|
22
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
23
|
da Rocha JAP, da Costa RA, da Costa ADSS, da Rocha ECM, Gomes AJB, Machado AK, Fagan SB, Brasil DDSB, Lima e Lima AH. Harnessing Brazilian biodiversity database: identification of flavonoids as potential inhibitors of SARS-CoV-2 main protease using computational approaches and all-atom molecular dynamics simulation. Front Chem 2024; 12:1336001. [PMID: 38456183 PMCID: PMC10917896 DOI: 10.3389/fchem.2024.1336001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is the etiological agent responsible for the global outbreak of COVID-19 (Coronavirus Disease 2019). The main protease of SARS-CoV-2, Mpro, is a key enzyme that plays a vital role in mediating viral replication and transcription. In this study, a comprehensive computational approach was employed to investigate the binding affinity, selectivity, and stability of natural product candidates as potential new antivirals acting on the viral polyprotein processing mediated by SARS-CoV-2 Mpro. A library of 288 flavonoids extracted from Brazilian biodiversity was screened to select potential Mpro inhibitors. An initial filter based on Lipinski's rule of five was applied, and 204 compounds that did not violate any of the Lipinski rules were selected. The compounds were then docked into the active site of Mpro using the GOLD program, and the poses were subsequently re-scored using MM-GBSA (Molecular Mechanics Generalized Born Surface Area) binding free energy calculations performed by AmberTools23. The top five flavonoids with the best MM-GBSA binding free energy values were selected for analysis of their interactions with the active site residues of the protein. Next, we conducted a toxicity and drug-likeness analysis, and non-toxic compounds were subjected to molecular dynamics simulation and free energy calculation using the MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) method. It was observed that the five selected flavonoids had lower MM-GBSA binding free energy with Mpro than the co-crystal ligand. Furthermore, these compounds also formed hydrogen bonds with two important residues, Cys145 and Glu166, in the active site of Mpro. Two compounds that passed the drug-likeness filter showed stable conformations during the molecular dynamics simulations. Among these, NuBBE_867 exhibited the best MM-PBSA binding free energy value compared to the crystallographic inhibitor. Therefore, this study suggests that NuBBE_867 could be a potential inhibitor against the main protease of SARS-CoV-2 and may be further examined to confirm our results.
Collapse
Affiliation(s)
- João Augusto Pereira da Rocha
- Laboratory of Modeling and Computational Chemistry, Federal Institute of Education, Science and Technology of Paraná (IFPA) Campus Bragança, Bragança, Brazil
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Renato Araújo da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education Science and Technology of Paraná (IFPA) Campus Abaetetuba, Abaetetuba, Brazil
| | - Andreia do Socorro Silva da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Elaine Cristina Medeiros da Rocha
- Laboratory of Modeling and Computational Chemistry, Federal Institute of Education, Science and Technology of Paraná (IFPA) Campus Bragança, Bragança, Brazil
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Anderson José Bahia Gomes
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education Science and Technology of Paraná (IFPA) Campus Abaetetuba, Abaetetuba, Brazil
| | | | | | - Davi do Socorro Barros Brasil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Anderson Henrique Lima e Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
- Graduate Program in Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
24
|
Huang TC, Liang KH, Chang TJ, Hung KF, Wang ML, Cheng YF, Liao YT, Yang DM. Structure-based approaches against COVID-19. J Chin Med Assoc 2024; 87:139-141. [PMID: 38305483 DOI: 10.1097/jcma.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a major impact on human life. This review highlights the versatile roles of both classical and modern structure-based approaches for COVID-19. X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryogenic electron microscopy are the three cornerstones of classical structural biology. These technologies have helped provide fundamental and detailed knowledge regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the related human host proteins as well as enabled the identification of its target sites, facilitating the cessation of its transmission. Further progress into protein structure modeling was made using modern structure-based approaches derived from homology modeling and integrated with artificial intelligence (AI), facilitating advanced computational simulation tools to actively guide the design of new vaccines and the development of anti-SARS-CoV-2 drugs. This review presents the practical contributions and future directions of structure-based approaches for COVID-19.
Collapse
Affiliation(s)
- Ta-Chou Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Biomedical Informatics, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tai-Jay Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - De-Ming Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
25
|
Wang Q, Lu X, Jia R, Yan X, Wang J, Zhao L, Zhong R, Sun G. Recent advances in chemometric modelling of inhibitors against SARS-CoV-2. Heliyon 2024; 10:e24209. [PMID: 38293468 PMCID: PMC10826659 DOI: 10.1016/j.heliyon.2024.e24209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused great harm to all countries worldwide. This disease can be prevented by vaccination and managed using various treatment methods, including injections, oral medications, or aerosol therapies. However, the selection of suitable compounds for the research and development of anti-SARS-CoV-2 drugs is a daunting task because of the vast databases of available compounds. The traditional process of drug research and development is time-consuming, labour-intensive, and costly. The application of chemometrics can significantly expedite drug R&D. This is particularly necessary and important for drug development against pandemic public emergency diseases, such as COVID-19. Through various chemometric techniques, such as quantitative structure-activity relationship (QSAR) modelling, molecular docking, and molecular dynamics (MD) simulations, compounds with inhibitory activity against SARS-CoV-2 can be quickly screened, allowing researchers to focus on the few prioritised candidates. In addition, the ADMET properties of the screened candidate compounds should be further explored to promote the successful discovery of anti-SARS-CoV-2 drugs. In this case, considerable time and economic costs can be saved while minimising the need for extensive animal experiments, in line with the 3R principles. This paper focuses on recent advances in chemometric modelling studies of COVID-19-related inhibitors, highlights current limitations, and outlines potential future directions for development.
Collapse
Affiliation(s)
- Qianqian Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xinyi Lu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Runqing Jia
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xinlong Yan
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
26
|
Mladenovic Stokanic M, Simovic A, Jovanovic V, Radomirovic M, Udovicki B, Krstic Ristivojevic M, Djukic T, Vasovic T, Acimovic J, Sabljic L, Lukic I, Kovacevic A, Cujic D, Gnjatovic M, Smiljanic K, Stojadinovic M, Radosavljevic J, Stanic-Vucinic D, Stojanovic M, Rajkovic A, Cirkovic Velickovic T. Sandwich ELISA for the Quantification of Nucleocapsid Protein of SARS-CoV-2 Based on Polyclonal Antibodies from Two Different Species. Int J Mol Sci 2023; 25:333. [PMID: 38203504 PMCID: PMC10778659 DOI: 10.3390/ijms25010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, a cost-effective sandwich ELISA test, based on polyclonal antibodies, for routine quantification SARS-CoV-2 nucleocapsid (N) protein was developed. The recombinant N protein was produced and used for the production of mice and rabbit antisera. Polyclonal N protein-specific antibodies served as capture and detection antibodies. The prototype ELISA has LOD 0.93 ng/mL and LOQ 5.3 ng/mL, with a linear range of 1.52-48.83 ng/mL. N protein heat pretreatment (56 °C, 1 h) decreased, while pretreatment with 1% Triton X-100 increased analytical ELISA sensitivity. The diagnostic specificity of ELISA was 100% (95% CI, 91.19-100.00%) and sensitivity was 52.94% (95% CI, 35.13-70.22%) compared to rtRT-PCR (Ct < 40). Profoundly higher sensitivity was obtained using patient samples mostly containing Wuhan-similar variants (Wuhan, alpha, and delta), 62.50% (95% CI, 40.59 to 81.20%), in comparison to samples mostly containing Wuhan-distant variants (Omicron) 30.00% (6.67-65.25%). The developed product has relatively high diagnostic sensitivity in relation to its analytical sensitivity due to the usage of polyclonal antibodies from two species, providing a wide repertoire of antibodies against multiple N protein epitopes. Moreover, the fast, simple, and inexpensive production of polyclonal antibodies, as the most expensive assay components, would result in affordable antigen tests.
Collapse
Affiliation(s)
- Maja Mladenovic Stokanic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Ana Simovic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Vesna Jovanovic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Mirjana Radomirovic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Bozidar Udovicki
- Department of Food Safety and Quality Management, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
| | - Maja Krstic Ristivojevic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Teodora Djukic
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
| | - Tamara Vasovic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Jelena Acimovic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Ljiljana Sabljic
- Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia
| | - Ivana Lukic
- Institute of Virology, Vaccines, and Sera–TORLAK, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | - Ana Kovacevic
- Institute of Virology, Vaccines, and Sera–TORLAK, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | - Danica Cujic
- Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia
| | - Marija Gnjatovic
- Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia
| | - Katarina Smiljanic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marija Stojadinovic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Jelena Radosavljevic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dragana Stanic-Vucinic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marijana Stojanovic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia
| | - Andreja Rajkovic
- Department of Food Safety and Quality Management, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Tanja Cirkovic Velickovic
- Centre of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
- Global Campus, Ghent University, 119-5 Songdomunwha-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| |
Collapse
|
27
|
Yevsieieva LV, Lohachova KO, Kyrychenko A, Kovalenko SM, Ivanov VV, Kalugin ON. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv 2023; 13:35500-35524. [PMID: 38077980 PMCID: PMC10698513 DOI: 10.1039/d3ra06479d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The pandemic caused by the coronavirus SARS-CoV-2 led to a global crisis in the world healthcare system. Despite some progress in the creation of antiviral vaccines and mass vaccination of the population, the number of patients continues to grow because of the spread of new SARS-CoV-2 mutations. There is an urgent need for direct-acting drugs capable of suppressing or stopping the main mechanisms of reproduction of the coronavirus SARS-CoV-2. Several studies have shown that the successful replication of the virus in the cell requires proteolytic cleavage of the protein structures of the virus. Two proteases are crucial in replicating SARS-CoV-2 and other coronaviruses: the main protease (Mpro) and the papain-like protease (PLpro). In this review, we summarize the essential viral proteins of SARS-CoV-2 required for its viral life cycle as targets for chemotherapy of coronavirus infection and provide a critical summary of the development of drugs against COVID-19 from the drug repurposing strategy up to the molecular design of novel covalent and non-covalent agents capable of inhibiting virus replication. We overview the main antiviral strategy and the choice of SARS-CoV-2 Mpro and PLpro proteases as promising targets for pharmacological impact on the coronavirus life cycle.
Collapse
Affiliation(s)
- Larysa V Yevsieieva
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Kateryna O Lohachova
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Sergiy M Kovalenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Volodymyr V Ivanov
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Oleg N Kalugin
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| |
Collapse
|
28
|
Yánez Arcos DL, Thirumuruganandham SP. Structural and pKa Estimation of the Amphipathic HR1 in SARS-CoV-2: Insights from Constant pH MD, Linear vs. Nonlinear Normal Mode Analysis. Int J Mol Sci 2023; 24:16190. [PMID: 38003380 PMCID: PMC10671649 DOI: 10.3390/ijms242216190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
A comprehensive understanding of molecular interactions and functions is imperative for unraveling the intricacies of viral protein behavior and conformational dynamics during cellular entry. Focusing on the SARS-CoV-2 spike protein (SARS-CoV-2 sp), a Principal Component Analysis (PCA) on a subset comprising 131 A-chain structures in presence of various inhibitors was conducted. Our analyses unveiled a compelling correlation between PCA modes and Anisotropic Network Model (ANM) modes, underscoring the reliability and functional significance of low-frequency modes in adapting to diverse inhibitor binding scenarios. The role of HR1 in viral processing, both linear Normal Mode Analysis (NMA) and Nonlinear NMA were implemented. Linear NMA exhibited substantial inter-structure variability, as evident from a higher Root Mean Square Deviation (RMSD) range (7.30 Å), nonlinear NMA show stability throughout the simulations (RMSD 4.85 Å). Frequency analysis further emphasized that the energy requirements for conformational changes in nonlinear modes are notably lower compared to their linear counterparts. Using simulations of molecular dynamics at constant pH (cpH-MD), we successfully predicted the pKa order of the interconnected residues within the HR1 mutations at lower pH values, suggesting a transition to a post-fusion structure. The pKa determination study illustrates the profound effects of pH variations on protein structure. Key results include pKa values of 9.5179 for lys-921 in the D936H mutant, 9.50 for the D950N mutant, and a slightly higher value of 10.49 for the D936Y variant. To further understand the behavior and physicochemical characteristics of the protein in a biologically relevant setting, we also examine hydrophobic regions in the prefused states of the HR1 protein mutants D950N, D936Y, and D936H in our study. This analysis was conducted to ascertain the hydrophobic moment of the protein within a lipid environment, shedding light on its behavior and physicochemical properties in a biologically relevant context.
Collapse
|
29
|
Rabaan AA, Alenazy MF, Alshehri AA, Alshahrani MA, Al-Subaie MF, Alrasheed HA, Al Kaabi NA, Thakur N, Bouafia NA, Alissa M, Alsulaiman AM, AlBaadani AM, Alhani HM, Alhaddad AH, Alfouzan WA, Ali BMA, Al-Abdulali KH, Khamis F, Bayahya A, Al Fares MA, Sharma M, Dhawan M. An updated review on pathogenic coronaviruses (CoVs) amid the emergence of SARS-CoV-2 variants: A look into the repercussions and possible solutions. J Infect Public Health 2023; 16:1870-1883. [PMID: 37839310 DOI: 10.1016/j.jiph.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
SARS-CoV-2, responsible for COVID-19, shares 79% and 50% of its identity with SARS-CoV-1 and MERS-CoV, respectively. It uses the same main cell attachment and entry receptor as SARS-CoV-1, which is the ACE-2 receptor. However, key residues in the receptor-binding domain of its S-protein seem to give it a stronger affinity for the receptor and a better ability to hide from the host immune system. Like SARS-CoV-1 and MERS-CoV, cytokine storms in critically ill COVID-19 patients cause ARDS, neurological pathology, multiorgan failure, and increased death. Though many issues remain, the global research effort and lessons from SARS-CoV-1 and MERS-CoV are hopeful. The emergence of novel SARS-CoV-2 variants and subvariants raised serious concerns among the scientific community amid the emergence of other viral diseases like monkeypox and Marburg virus, which are major concerns for healthcare settings worldwide. Hence, an updated review on the comparative analysis of various coronaviruses (CoVs) has been developed, which highlights the evolution of CoVs and their repercussions.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Maha Fahad Alenazy
- Department of Physiology, College of Medicine, King Khalid university hospital, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Hayam A Alrasheed
- Department of pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Pharmacy Department, King Abdullah Bin Abdulaziz University Hospital, Riyadh 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Nabiha A Bouafia
- Infection prevention and control centre of Excellence, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Abeer M AlBaadani
- Internal Medicine Department, Infectious Disease Division, London health science Center, London, Ontario N6G0X2, Canada
| | - Hatem M Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Department of Infection Control, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Preventive Medicine and Infection Prevention and Control Department, Directorate of Ministry of Health, Dammam 32245, Saudi Arabia
| | - Ali H Alhaddad
- Assistant Agency for Hospital Affairs, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Batool Mohammed Abu Ali
- Infectious disease section, Department of internal medicine, King Fahad Hospital Hofuf, Hofuf 36365, Saudi Arabia
| | - Khadija H Al-Abdulali
- Nursing Department, Home health care, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Ali Bayahya
- Microbiology Department, Alqunfudah General Hospital, Alqunfudah 28813, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| |
Collapse
|
30
|
Sanchez Jimenez B, Sterling T, Brown A, Modica B, Gibson K, Collins H, Koch C, Schwarz T, Dye KN. Wastewater surveillance in the COVID-19 post-emergency pandemic period: A promising approach to monitor and predict SARS-CoV-2 surges and evolution. Heliyon 2023; 9:e22356. [PMID: 38045160 PMCID: PMC10689941 DOI: 10.1016/j.heliyon.2023.e22356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/17/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
On May 24, 2023, approximately 3.5 years into the pandemic, the World Health Organization (WHO) declared the end of the COVID-19 global health emergency. However, as there are still ∼3000 COVID-19 deaths per day in May 2023, robust surveillance systems are still warranted to return to normalcy in times of low risk and respond appropriately in times of high risk. The different phases of the pandemic have been defined by infection numbers and variants, both of which have been determined through clinical tests that are subject to many biases. Unfortunately, the end of the COVID-19 emergency threatens to exasperate these biases, thereby warranting alternative tracking methods. We hypothesized that wastewater surveillance could be used as a more accurate and comprehensive method to track SARS-CoV-2 in the post-emergency pandemic period (PEPP). SARS-CoV-2 was quantified and sequenced from wastewater between June 2022 and March 2023 to research the anticipated 2022/23 winter surge. However, in the 2022/23 winter, there was lower-than-expected SARS-CoV-2 circulation, which was hypothesized to be due to diagnostic testing biases but was confirmed by our wastewater analysis, thereby emphasizing the unpredictable nature of SARS-CoV-2 surges while also questioning its winter seasonality. Even in times of low baseline circulation, we found wastewater surveillance to be sensitive enough to detect minor changes in circulation levels ∼30-46 days prior to diagnostic tests, suggesting that wastewater surveillance may be a more appropriate early warning system to prepare for unpredictable surges in the PEPP. Furthermore, sequencing of wastewater detected variants of concern that were positively correlated with clinical samples and also provided a method to identify mutations with a high likelihood of appearing in future variants, necessary for updating vaccines and therapeutics prior to novel variant circulation. Together, these data highlight the effectiveness of wastewater surveillance in the PEPP to limit the global health burden of SARS-CoV-2 due to increases in circulation and/or viral evolution.
Collapse
Affiliation(s)
| | - Trinity Sterling
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Austin Brown
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Brian Modica
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Kaylee Gibson
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Hannah Collins
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Carolyn Koch
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Tyler Schwarz
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
| | - Kristine N. Dye
- Department of Health Sciences, Stetson University, DeLand, FL, 32723, USA
- Department of Biology, Stetson University, DeLand, FL, 32723, USA
| |
Collapse
|
31
|
De Angelis M, Anichini G, Palamara AT, Nencioni L, Gori Savellini G. Dysregulation of intracellular redox homeostasis by the SARS-CoV-2 ORF6 protein. Virol J 2023; 20:239. [PMID: 37853388 PMCID: PMC10585933 DOI: 10.1186/s12985-023-02208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
SARS-CoV-2 has evolved several strategies to overcome host cell defenses by inducing cell injury to favour its replication. Many viruses have been reported to modulate the intracellular redox balance, affecting the Nuclear factor erythroid 2-Related Factor 2 (NRF2) signaling pathway. Although antioxidant modulation by SARS-CoV-2 infection has already been described, the viral factors involved in modulating the NRF2 pathway are still elusive. Given the antagonistic activity of ORF6 on several cellular pathways, we investigated the role of the viral protein towards NRF2-mediated antioxidant response. The ectopic expression of the wt-ORF6 protein negatively impacts redox cell homeostasis, leading to an increase in ROS production, along with a decrease in NRF2 protein and its downstream controlled genes. Moreover, when investigating the Δ61 mutant, previously described as an inactive nucleopore proteins binding mutant, we prove that the oxidative stress induced by ORF6 is substantially related to its C-terminal domain, speculating that ORF6 mechanism of action is associated with the inhibition of nuclear mRNA export processes. In addition, activation by phosphorylation of the serine residue at position 40 of NRF2 is increased in the cytoplasm of wt-ORF6-expressing cells, supporting the presence of an altered redox state, although NRF2 nuclear translocation is hindered by the viral protein to fully antagonize the cell response. Furthermore, wt-ORF6 leads to phosphorylation of a stress-activated serine/threonine protein kinase, p38 MAPK, suggesting a role of the viral protein in regulating p38 activation. These findings strengthen the important role of oxidative stress in the pathogenesis of SARS-CoV-2 and identify ORF6 as an important viral accessory protein hypothetically involved in modulating the antioxidant response during viral infection.
Collapse
Affiliation(s)
- Marta De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Rome, Italy.
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | | |
Collapse
|
32
|
Joshi A, Maurya S, Mahale A, Rath SL, Tripathi T, Padhi AK. Delineating the Structure-Dynamics-Binding Differences among BA.1, BA.4/5, and BF.7 SARS-CoV-2 Variants through Atomistic Simulations: Correlation with Structural and Epidemiological Features. ACS OMEGA 2023; 8:37852-37863. [PMID: 37867647 PMCID: PMC10586286 DOI: 10.1021/acsomega.3c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus possessing a spike (S) protein that facilitates the entry of the virus into human cells. The emergence of highly transmissible and fit SARS-CoV-2 variants has been driven by the positive selection of mutations within the S-protein. Notable among these variants are alpha, beta, gamma, delta, and omicron (BA.1), with the latter contributing to significant global health challenges and impacting populations worldwide. Recently, a novel subvariant of BA.1, named BF.7, has surfaced, purportedly exhibiting elevated transmissibility and infectivity rates. In order to comprehend and compare the transmissibility and disease progression characteristics of distinct SARS-CoV-2 variants, we performed an extensive comparative analysis utilizing all-atom molecular dynamics (MD) simulations (in triplicate) to investigate the structural, dynamic, and binding features of BA.1, BA.4/5, and BF.7. Our simulation findings, energetic analysis, and assessment of physicochemical properties collectively illuminate the dominance of the BA.1 variant over the others, a trend that is further substantiated by the sustained global prevalence of BA.1 relative to BA.4/5 and BF.7. Additionally, our simulation results align well with the reported cryoelectron microscopy (cryo-EM) structural data and epidemiological characteristics obtained from the Global Initiative on Sharing All Influenza Data (GISAID). This study presents a comprehensive comparative elucidation of the critical structural, dynamic, and binding attributes of these variants, providing insights into the predominance of BA.1 and its propensity to continuously generate numerous novel subvariants.
Collapse
Affiliation(s)
- Aryaman Joshi
- Department
of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh India
| | - Shweata Maurya
- Laboratory
for Computational Biology & Biomolecular Design, School of Biochemical
Engineering, Indian Institute of Technology
(BHU), Varanasi 221005, Uttar Pradesh India
| | - Atharva Mahale
- Department
of Biotechnology, National Institute of
Technology, Warangal 506004, Telangana, India
| | - Soumya Lipsa Rath
- Department
of Biotechnology, National Institute of
Technology, Warangal 506004, Telangana, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Aditya K. Padhi
- Laboratory
for Computational Biology & Biomolecular Design, School of Biochemical
Engineering, Indian Institute of Technology
(BHU), Varanasi 221005, Uttar Pradesh India
| |
Collapse
|
33
|
Khan ZA, Hu Y, Ghalandari B, Ahmad M, Abdullah A, Jiang L, Ding X. Pairwise synthetic cytotoxicity between Paxlovid and 100 frequently prescribed FDA-approved small molecule drugs on liver cells. Toxicol Appl Pharmacol 2023; 477:116695. [PMID: 37739321 DOI: 10.1016/j.taap.2023.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Paxlovid is a recent FDA approved specific drug for COVID-19. Extensive prescription of Paxlovid could induce potential synthetic cytotoxicity with drugs. Herein, we aimed to examine pairwise synthetic cytotoxicity between Paxlovid and 100 frequently FDA approved small molecule drugs. Liver cell line HL-7702 or L02 was adopted to evaluate synthetic cytotoxicity between Paxlovid and the 100 small molecule drugs. Inhibitory concentration IC-10 and IC-50 doses for all the 100 small molecule drugs and Paxlovid were experimentally acquired. Then, pairwise synthetic cytotoxicity was examined with the fixed dose IC-10 for each drug. The most 4 significant interactive pairs (2 positively interactive and 2 negatively interactive) were further subjected to molecular docking simulation to reveal the structural modulation with Caspase-8, a key mediator for cell apoptosis.
Collapse
Affiliation(s)
- Zara Ahmad Khan
- Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China; Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuli Hu
- Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Behafarid Ghalandari
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mashaal Ahmad
- Department of Anatomy, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Aynur Abdullah
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China; Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
34
|
Andre M, Lau LS, Pokharel MD, Ramelow J, Owens F, Souchak J, Akkaoui J, Ales E, Brown H, Shil R, Nazaire V, Manevski M, Paul NP, Esteban-Lopez M, Ceyhan Y, El-Hage N. From Alpha to Omicron: How Different Variants of Concern of the SARS-Coronavirus-2 Impacted the World. BIOLOGY 2023; 12:1267. [PMID: 37759666 PMCID: PMC10525159 DOI: 10.3390/biology12091267] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
SARS-CoV-2, the virus that causes COVID-19, is prone to mutations and the generation of genetic variants. Since its first outbreak in 2019, SARS-CoV-2 has continually evolved, resulting in the emergence of several lineages and variants of concern (VOC) that have gained more efficient transmission, severity, and immune evasion properties. The World Health Organization has given these variants names according to the letters of the Greek Alphabet, starting with the Alpha (B.1.1.7) variant, which emerged in 2020, followed by the Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. This review explores the genetic variation among different VOCs of SARS-CoV-2 and how the emergence of variants made a global impact on the pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nazira El-Hage
- Herbert Wertheim College of Medicine, Biomedical Sciences Program Florida International University, Miami, FL 33199, USA; (M.A.); (L.-S.L.); (M.D.P.); (J.R.); (F.O.); (J.S.); (J.A.); (E.A.); (H.B.); (R.S.); (V.N.); (M.M.); (N.P.P.); (M.E.-L.); (Y.C.)
| |
Collapse
|
35
|
Mohammad A, Alshawaf E, Arefanian H, Marafie SK, Khan A, Wei DQ, Al-Mulla F, Abubaker J. Targeting SARS-CoV-2 Macrodomain-1 to Restore the Innate Immune Response Using In Silico Screening of Medicinal Compounds and Free Energy Calculation Approaches. Viruses 2023; 15:1907. [PMID: 37766313 PMCID: PMC10538035 DOI: 10.3390/v15091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Among the different drug targets of SARS-CoV-2, a multi-domain protein known as NSP3 is a critical element of the translational and replication machinery. The macrodomain-I, in particular, has been reported to have an essential role in the viral attack on the innate immune response. In this study, we explore natural medicinal compounds and identify potential inhibitors to target the SARS-CoV-2-NSP3 macrodomain-I. Computational modeling and simulation tools were utilized to investigate the structural-dynamic properties using triplicates of 100 ns MD simulations. In addition, the MM/GBSA method was used to calculate the total binding free energy of each inhibitor bound to macrodomain-I. Two significant hits were identified: 3,5,7,4'-tetrahydroxyflavanone 3'-(4-hydroxybenzoic acid) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid. The structural-dynamic investigation of both compounds with macrodomain-I revealed stable dynamics and compact behavior. In addition, the total binding free energy for each complex demonstrated a robust binding affinity, of ΔG -61.98 ± 0.9 kcal/mol for Compound A, while for Compound B, the ΔG was -45.125 ± 2.8 kcal/mol, indicating the inhibitory potential of these compounds. In silico bioactivity and dissociation constant (KD) determination for both complexes further validated the inhibitory potency of each compound. In conclusion, the aforementioned natural products have the potential to inhibit NSP3, to directly rescue the host immune response. The current study provides the basis for novel drug development against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sulaiman K. Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| |
Collapse
|
36
|
Knecht W, Fisher SZ, Lou J, Sele C, Ma S, Rasmussen AA, Pinotsis N, Kozielski F. Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering. Int J Mol Sci 2023; 24:13649. [PMID: 37686452 PMCID: PMC10563069 DOI: 10.3390/ijms241713649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The β-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions. One such vital protein is non-structural protein 10 (nsp10), acting as a pivotal stimulator of nsp14 and nsp16, thereby influencing RNA proofreading and viral RNA cap formation. Studying nsp10 of pathogenic coronaviruses is central to unraveling its multifunctional roles. Our study involves the biochemical and biophysical characterisation of full-length nsp10 from MERS, SARS and SARS-CoV-2. To elucidate their oligomeric state, we employed a combination of Multi-detection Size exclusion chromatography (Multi-detection SEC) with multi-angle static light scattering (MALS) and small angle X-ray scattering (SAXS) techniques. Our findings reveal that full-length nsp10s primarily exist as monomers in solution, while truncated versions tend to oligomerise. SAXS experiments reveal a globular shape for nsp10, a trait conserved in all three coronaviruses, although MERS nsp10, diverges most from SARS and SARS-CoV-2 nsp10s. In summary, unbound nsp10 proteins from SARS, MERS, and SARS-CoV-2 exhibit a globular and predominantly monomeric state in solution.
Collapse
Affiliation(s)
- Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (W.K.); (S.Z.F.); (C.S.); (A.A.R.)
| | - S. Zoë Fisher
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (W.K.); (S.Z.F.); (C.S.); (A.A.R.)
- European Spallation Source ERIC, P.O. Box 176, 22100 Lund, Sweden
| | - Jiaqi Lou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (S.M.)
| | - Céleste Sele
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (W.K.); (S.Z.F.); (C.S.); (A.A.R.)
| | - Shumeng Ma
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (S.M.)
| | - Anna Andersson Rasmussen
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (W.K.); (S.Z.F.); (C.S.); (A.A.R.)
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Frank Kozielski
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (S.M.)
| |
Collapse
|
37
|
Wang KT, Lee CJ, Lee MC, Chen CY, Tsai YC, Chuang WC. An integrative approach for compressive quality control of RespireAid™, a traditional Chinese medicine formula against SARS-CoV-2. J Food Drug Anal 2023; 31:473-484. [PMID: 39666282 PMCID: PMC10629918 DOI: 10.38212/2224-6614.3467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 12/13/2024] Open
Abstract
RespireAid™ (NRICM101) is an effective anti-SARS-CoV-2 traditional Chinese medicine formula and has been licensed as a drug or dietary supplement in Taiwan, Luxembourg, Australia, Singapore, Cambodia, Philippines, and Canada. In this study, we provided integrated quality control strategy to analyze the ingredient of RespireAid™. In addition, the lot-to-lot efficacy stabilities were also evaluated. We found that RespireAid™ comprised of monosaccharides and disaccharides (34.0%), maltodextrin (23.5%), inorganic elements and ash (12.2%), oligosaccharides and polysaccharides (11.4%), principal components (4.4%), moisture (4.0%), amino acids (3.5%), β-Cyclodextrin (0.25%), menthol (0.25%), and nucleotides (0.14%), while the remainder was unidentified (6.36%). This is the first time that the chemical composition of a complex traditional Chinese medicine was clarified using various analytical instruments. The lot-to-lot anti-oxidation and anti-inflammation efficacies of RespireAid™ were consistent, with average 50% scavenging concentrations of 0.22 ± 0.02 mg/mL and 5.76 ± 0.59 mg/mL, respectively. From a comprehensive quality control strategy point of view, RespireAid™, designed from a traditional Chinese medicine formula, displayed high quality, transparency, and efficacy. This integrated strategy provides a clear and reliable way to evaluate the quality of complex traditional Chinese medicines.
Collapse
Affiliation(s)
| | - Chia-Jung Lee
- PhD Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei,
Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei,
Taiwan
| | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City,
Taiwan
| | | | - Yun-Chen Tsai
- Sun Ten Pharmaceutical Co., Ltd., New Taipei City,
Taiwan
| | | |
Collapse
|
38
|
Pratedrat P, Intharasongkroh D, Chansaenroj J, Vichaiwattana P, Srimuan D, Thatsanatorn T, Klinfueng S, Nilyanimit P, Chirathaworn C, Kupatawintu P, Chaiwanichsiri D, Wanlapakorn N, Poovorawan Y. Dynamics of Cytokine, SARS-CoV-2-Specific IgG, and Neutralizing Antibody Levels in COVID-19 Patients Treated with Convalescent Plasma. Diseases 2023; 11:112. [PMID: 37754308 PMCID: PMC10527804 DOI: 10.3390/diseases11030112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious illness worldwide. While guidelines for the treatment of COVID-19 have been established, the understanding of the relationship among neutralizing antibodies, cytokines, and the combined use of antiviral medications, steroid drugs, and convalescent plasma therapy remains limited. Here, we investigated the connection between the immunological response and the efficacy of convalescent plasma therapy in COVID-19 patients with moderate-to-severe pneumonia. The study included a retrospective analysis of 49 patients aged 35 to 57. We conducted clinical assessments to determine antibody levels, biochemical markers, and cytokine levels. Among the patients, 48 (98%) were discharged, while one died. We observed significantly higher levels of anti-nucleocapsid, anti-spike, and neutralizing antibodies on days 3, 7, and 14 after the transfusion compared to before treatment. Serum CRP and D-dimer levels varied significantly across these four time points. Moreover, convalescent plasma therapy demonstrated an immunoregulatory effect on cytokine parameters, with significant differences in IFN-β, IL-6, IL-10, and IFN-α levels observed at different sampling times. Evaluating the cytokine signature, along with standard clinical and laboratory parameters, may help to identify the onset of a cytokine storm in COVID-19 patients and determine the appropriate indication for anti-cytokine treatment.
Collapse
Affiliation(s)
- Pornpitra Pratedrat
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | | | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Thaksaporn Thatsanatorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pawinee Kupatawintu
- National Blood Centre, Thai Red Cross Society, Bangkok 10330, Thailand; (D.I.); (P.K.); (D.C.)
| | - Dootchai Chaiwanichsiri
- National Blood Centre, Thai Red Cross Society, Bangkok 10330, Thailand; (D.I.); (P.K.); (D.C.)
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
- Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok 10330, Thailand
| |
Collapse
|
39
|
Warpechowski J, Leszczyńska P, Juchnicka D, Olichwier A, Szczerbiński Ł, Krętowski AJ. Assessment of the Immune Response in Patients with Insulin Resistance, Obesity, and Diabetes to COVID-19 Vaccination. Vaccines (Basel) 2023; 11:1203. [PMID: 37515018 PMCID: PMC10383449 DOI: 10.3390/vaccines11071203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The SARS-CoV-19 pandemic overwhelmed multiple healthcare systems across the world. Patients with underlying medical conditions such as obesity or diabetes were particularly vulnerable, had more severe symptoms, and were more frequently hospitalized. To date, there have been many studies on the severity of SARS-CoV-2 in patients with metabolic disorders, but data on the efficiency of vaccines against COVID-19 are still limited. This paper aims to provide a comprehensive overview of the effectiveness of COVID-19 vaccines in individuals with diabetes, insulin resistance, and obesity. A comparison is made between the immune response after vaccination in patients with and without metabolic comorbidities. Additionally, an attempt is made to highlight the mechanisms of immune stimulation affected by SARS-CoV-2 vaccines and how metabolic comorbidities modulate these mechanisms. The focus is on the most common COVID-19 vaccines, which include mRNA vaccines such as Pfizer-BioNTech and Moderna, as well as viral vector vaccines such as AstraZeneca and Johnson & Johnson. Furthermore, an effort is made to clarify how the functional differences between these vaccines may impact the response in individuals with metabolic disorders, drawing from available experimental data. This review summarizes the current knowledge regarding the post-vaccination response to COVID-19 in the context of metabolic comorbidities such as diabetes, insulin resistance, and obesity.
Collapse
Affiliation(s)
- Jędrzej Warpechowski
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Paula Leszczyńska
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Dominika Juchnicka
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Adam Olichwier
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Łukasz Szczerbiński
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Diseases, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Diseases, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
40
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
41
|
Shi Y, Dong L, Ju Z, Li Q, Cui Y, Liu Y, He J, Ding X. Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-GBSA. J Mol Model 2023; 29:138. [PMID: 37055578 PMCID: PMC10100623 DOI: 10.1007/s00894-023-05534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
CONTEXT In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. METHODS In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.
Collapse
Affiliation(s)
- Yunfan Shi
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
- Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat, Chongqing, China.
| | - Liting Dong
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhuang Ju
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat, Chongqing, China
| | - Qiufu Li
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat, Chongqing, China
| | - Yanru Cui
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat, Chongqing, China
| | - Yiran Liu
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat, Chongqing, China
| | - Jiaoyu He
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat, Chongqing, China
| | - Xianping Ding
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
- Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat, Chongqing, China.
| |
Collapse
|
42
|
Mao S, Cai X, Niu S, Wei J, Jiang N, Deng H, Wang W, Zhang J, Shen S, Ma Y, Wu X, Peng Q, Huang A, Wang D. TRIM21 promotes ubiquitination of SARS-CoV-2 nucleocapsid protein to regulate innate immunity. J Med Virol 2023; 95:e28719. [PMID: 37185839 DOI: 10.1002/jmv.28719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.
Collapse
Affiliation(s)
- Shenglan Mao
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Siqiang Niu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Ning Jiang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shimei Shen
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuanyan Ma
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaoli Wu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Deqiang Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Huang C, Shuai H, Qiao J, Hou Y, Zeng R, Xia A, Xie L, Fang Z, Li Y, Yoon C, Huang Q, Hu B, You J, Quan B, Zhao X, Guo N, Zhang S, Ma R, Zhang J, Wang Y, Yang R, Zhang S, Nan J, Xu H, Wang F, Lei J, Chu H, Yang S. A new generation M pro inhibitor with potent activity against SARS-CoV-2 Omicron variants. Signal Transduct Target Ther 2023; 8:128. [PMID: 36928316 PMCID: PMC10018608 DOI: 10.1038/s41392-023-01392-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
Emerging SARS-CoV-2 variants, particularly the Omicron variant and its sublineages, continually threaten the global public health. Small molecule antivirals are an effective treatment strategy to fight against the virus. However, the first-generation antivirals either show limited clinical efficacy and/or have some defects in pharmacokinetic (PK) properties. Moreover, with increased use of these drugs across the globe, they face great pressure of drug resistance. We herein present the discovery and characterization of a new generation antiviral drug candidate (SY110), which is a potent and selective inhibitor of SARS-CoV-2 main protease (Mpro). This compound displayed potent in vitro antiviral activity against not only the predominant SARS-CoV-2 Omicron sublineage BA.5, but also other highly pathogenic human coronaviruses including SARS-CoV-1 and MERS-CoV. In the Omicron-infected K18-hACE2 mouse model, oral treatment with SY110 significantly lowered the viral burdens in lung and alleviated the virus-induced pathology. Importantly, SY110 possesses favorable PK properties with high oral drug exposure and oral bioavailability, and also an outstanding safety profile. Furthermore, SY110 exhibited sensitivity to several drug-resistance Mpro mutations. Collectively, this investigation provides a promising new drug candidate against Omicron and other variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Chong Huang
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jingxin Qiao
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Rui Zeng
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Anjie Xia
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lingwan Xie
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen Fang
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yueyue Li
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Qiao Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jing You
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Baoxue Quan
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu Zhao
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nihong Guo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ronggang Ma
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiahao Zhang
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Wang
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ruicheng Yang
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shanshan Zhang
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinshan Nan
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haixing Xu
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Falu Wang
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Lei
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
44
|
Hanai T. Further quantitative in silico analysis of SARS-CoV-2 S-RBD Omicron BA.4, BA.5, BA.2.75, BQ.1, and BQ.1.1 transmissibility. Talanta 2023; 254:124127. [PMID: 36462284 PMCID: PMC9682881 DOI: 10.1016/j.talanta.2022.124127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The Covid-19 variants' transmissibility was further quantitatively analyzed in silico to study the binding strength with ACE-2 and find the binding inhibitors. The molecular interaction energy values of their optimized complex structures (MIFS) demonstrated that Omicron BA.4 and 5's MIFS value (344.6 kcal mol-1) was equivalent to wild-type MIFS (346.1 kcal mol-1), that of Omicron BQ.1 and BQ. 1.1's MIFS value (309.9 and 364.6 kcal mol-1). Furthermore, the MIFS value of Omicron BA.2.75 (515.1 kcal mol-1) was about Delta-plus (511.3 kcal mol-1). The binding strength of Omicron BA.4, BA. 5, and BQ.1.1 may be neglectable, but that of Omicron BA.2.75 was urging. Furthermore, the 79 medicine candidates were analyzed as the binding inhibitors from binding strength with ACE-2. Only carboxy compounds were repulsed from the ACE-2 binding site indicating that further modification of medical treatment candidates may produce an effective binding inhibitor.
Collapse
Affiliation(s)
- Toshihiko Hanai
- Health Research Foundation, Research Institute for Production Development 4F, Sakyo-Ku, Kyoto, 606-0805, Japan.
| |
Collapse
|
45
|
Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. Int J Mol Sci 2023; 24:ijms24054401. [PMID: 36901832 PMCID: PMC10003049 DOI: 10.3390/ijms24054401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since its outbreak in December 2019, the COVID-19 pandemic has caused the death of more than 6.5 million people around the world. The high transmissibility of its causative agent, the SARS-CoV-2 virus, coupled with its potentially lethal outcome, provoked a profound global economic and social crisis. The urgency of finding suitable pharmacological tools to tame the pandemic shed light on the ever-increasing importance of computer simulations in rationalizing and speeding up the design of new drugs, further stressing the need for developing quick and reliable methods to identify novel active molecules and characterize their mechanism of action. In the present work, we aim at providing the reader with a general overview of the COVID-19 pandemic, discussing the hallmarks in its management, from the initial attempts at drug repurposing to the commercialization of Paxlovid, the first orally available COVID-19 drug. Furthermore, we analyze and discuss the role of computer-aided drug discovery (CADD) techniques, especially those that fall in the structure-based drug design (SBDD) category, in facing present and future pandemics, by showcasing several successful examples of drug discovery campaigns where commonly used methods such as docking and molecular dynamics have been employed in the rational design of effective therapeutic entities against COVID-19.
Collapse
|
46
|
Das NC, Chakraborty P, Bayry J, Mukherjee S. Comparative Binding Ability of Human Monoclonal Antibodies against Omicron Variants of SARS-CoV-2: An In Silico Investigation. Antibodies (Basel) 2023; 12:17. [PMID: 36975364 PMCID: PMC10045060 DOI: 10.3390/antib12010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Mutation(s) in the spike protein is the major characteristic trait of newly emerged SARS-CoV-2 variants such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Delta-plus. Omicron (B.1.1.529) is the latest addition and it has been characterized by high transmissibility and the ability to escape host immunity. Recently developed vaccines and repurposed drugs exert limited action on Omicron strains and hence new therapeutics are immediately needed. Herein, we have explored the efficiency of twelve therapeutic monoclonal antibodies (mAbs) targeting the RBD region of the spike glycoprotein against all the Omicron variants bearing a mutation in spike protein through molecular docking and molecular dynamics simulation. Our in silico evidence reveals that adintivimab, beludivimab, and regadanivimab are the most potent mAbs to form strong biophysical interactions and neutralize most of the Omicron variants. Considering the efficacy of mAbs, we incorporated CDRH3 of beludavimab within the framework of adintrevimab, which displayed a more intense binding affinity towards all of the Omicron variants viz. BA.1, BA.2, BA.2.12.1, BA.4, and BA.5. Furthermore, the cDNA of chimeric mAb was cloned in silico within pET30ax for recombinant production. In conclusion, the present study represents the candidature of human mAbs (beludavimab and adintrevimab) and the therapeutic potential of designed chimeric mAb for treating Omicron-infected patients.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, India
| | - Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, India
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678 623, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713 340, India
| |
Collapse
|
47
|
Teli D, Balar P, Patel K, Sharma A, Chavda V, Vora L. Molnupiravir: A Versatile Prodrug against SARS-CoV-2 Variants. Metabolites 2023; 13:309. [PMID: 36837928 PMCID: PMC9962121 DOI: 10.3390/metabo13020309] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The nucleoside analog β-D-N4-hydroxycytidine is the active metabolite of the prodrug molnupiravir and is accepted as an efficient drug against COVID-19. Molnupiravir targets the RNA-dependent RNA polymerase (RdRp) enzyme, which is responsible for replicating the viral genome during the replication process of certain types of viruses. It works by disrupting the normal function of the RdRp enzyme, causing it to make mistakes during the replication of the viral genome. These mistakes can prevent the viral RNA from being transcribed, converted into a complementary DNA template, translated, or converted into a functional protein. By disrupting these crucial steps in the viral replication process, molnupiravir can effectively inhibit the replication of the virus and reduce its ability to cause disease. This review article sheds light on the impact of molnupiravir and its metabolite on SARS-CoV-2 variants of concern, such as delta, omicron, and hybrid/recombinant variants. The detailed mechanism and molecular interactions using molecular docking and dynamics have also been covered. The safety and tolerability of molnupiravir in patients with comorbidities have also been emphasized.
Collapse
Affiliation(s)
- Divya Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Pankti Balar
- Pharmacy Department, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Kishan Patel
- Department of Chemistry, University at Buffalo, Buffalo, NY 14260, USA
| | - Anu Sharma
- Department Pharmaceutical Sciences, University of Massachusetts, Boston, MA 02125, USA
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, India
| | - Lalit Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
48
|
Santaniello A, Perruolo G, Cristiano S, Agognon AL, Cabaro S, Amato A, Dipineto L, Borrelli L, Formisano P, Fioretti A, Oriente F. SARS-CoV-2 Affects Both Humans and Animals: What Is the Potential Transmission Risk? A Literature Review. Microorganisms 2023; 11:microorganisms11020514. [PMID: 36838479 PMCID: PMC9959838 DOI: 10.3390/microorganisms11020514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In March 2020, the World Health Organization Department declared the coronavirus (COVID-19) outbreak a global pandemic, as a consequence of its rapid spread on all continents. The COVID-19 pandemic has been not only a health emergency but also a serious general problem as fear of contagion and severe restrictions put economic and social activity on hold in many countries. Considering the close link between human and animal health, COVID-19 might infect wild and companion animals, and spawn dangerous viral mutants that could jump back and pose an ulterior threat to us. The purpose of this review is to provide an overview of the pandemic, with a particular focus on the clinical manifestations in humans and animals, the different diagnosis methods, the potential transmission risks, and their potential direct impact on the human-animal relationship.
Collapse
Affiliation(s)
- Antonio Santaniello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cristiano
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Ayewa Lawoe Agognon
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessia Amato
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Francesco Oriente
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
49
|
Du W, Jiang P, Li Q, Wen H, Zheng M, Zhang J, Guo Y, Yang J, Feng W, Ye S, Kamara S, Jiang P, Chen J, Li W, Zhu S, Zhang L. Novel Affibody Molecules Specifically Bind to SARS-CoV-2 Spike Protein and Efficiently Neutralize Delta and Omicron Variants. Microbiol Spectr 2023; 11:e0356222. [PMID: 36511681 PMCID: PMC9927262 DOI: 10.1128/spectrum.03562-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been an unprecedented public health disaster in human history, and its spike (S) protein is the major target for vaccines and antiviral drug development. Although widespread vaccination has been well established, the viral gene is prone to rapid mutation, resulting in multiple global spread waves. Therefore, specific antivirals are needed urgently, especially those against variants. In this study, the domain of the receptor binding motif (RBM) and fusion peptide (FP) (amino acids [aa] 436 to 829; denoted RBMFP) of the SARS-CoV-2 S protein was expressed as a recombinant RBMFP protein in Escherichia coli and identified as being immunogenic and antigenically active. Then, the RBMFP proteins were used for phage display to screen the novel affibody. After prokaryotic expression and selection, four novel affibody molecules (Z14, Z149, Z171, and Z327) were obtained. Through surface plasmon resonance (SPR) and pseudovirus neutralization assay, we showed that affibody molecules specifically bind to the RBMFP protein with high affinity and neutralize against SARS-CoV-2 pseudovirus infection. Especially, Z14 and Z171 displayed strong neutralizing activities against Delta and Omicron variants. Molecular docking predicted that affibody molecule interaction sites with RBM overlapped with ACE2. Thus, the novel affibody molecules could be further developed as specific neutralization agents against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2 and its variants are threatening the whole world. Although a full dose of vaccine injection showed great preventive effects and monoclonal antibody reagents have also been used for a specific treatment, the global pandemic persists. So, developing new vaccines and specific agents are needed urgently. In this work, we expressed the recombinant RBMFP protein as an antigen, identified its antigenicity, and used it as an antigen for affibody phage-display selection. After the prokaryotic expression, the specific affibody molecules were obtained and tested for pseudovirus neutralization. Results showed that the serum antibody induced by RBMFP neutralized Omicron variants. The screened affibody molecules specifically bound the RBMFP of SARS-CoV-2 with high affinity and neutralized the Delta and Omicron pseudovirus in vitro. So, the RBMFP induced serum provides neutralizing effects against pseudovirus in vitro, and the affibodies have the potential to be developed into specific prophylactic agents for SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Wangqi Du
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peipei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingfeng Li
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - He Wen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maolin Zheng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanru Guo
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Yang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixu Feng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saidu Kamara
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenshu Li
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
50
|
Tornesello AL, Botti C, Micillo A, Labonia F, Arpino S, Isgrò MA, Meola S, Russo L, Cavalcanti E, Sale S, Nicastro C, Atripaldi L, Starita N, Cerasuolo A, Reimer U, Holenya P, Buonaguro L, Buonaguro FM, Tornesello ML. Immune profiling of SARS-CoV-2 epitopes in asymptomatic and symptomatic pediatric and adult patients. J Transl Med 2023; 21:123. [PMID: 36788606 PMCID: PMC9927035 DOI: 10.1186/s12967-023-03963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has unpredictable manifestations of coronavirus disease (COVID-19) and variable clinical course with some patients being asymptomatic whereas others experiencing severe respiratory distress, or even death. We aimed to evaluate the immunoglobulin G (IgG) response towards linear peptides on a peptide array containing sequences from SARS-CoV-2, Middle East respiratory syndrome-related coronavirus (MERS) and common-cold coronaviruses 229E, OC43, NL63 and HKU1 antigens, in order to identify immunological indicators of disease outcome in SARS-CoV-2 infected patients. METHODS We included in the study 79 subjects, comprising 19 pediatric and 30 adult SARS-CoV-2 infected patients with increasing disease severity, from mild to critical illness, and 30 uninfected subjects who were vaccinated with one dose of SARS-CoV-2 spike mRNA BNT162b2 vaccine. Serum samples were analyzed by a peptide microarray containing 5828 overlapping 15-mer synthetic peptides corresponding to the full SARS-CoV-2 proteome and selected linear epitopes of spike (S), envelope (E) and membrane (M) glycoproteins as well as nucleoprotein (N) of MERS, SARS and coronaviruses 229E, OC43, NL63 and HKU1 (isolates 1, 2 and 5). RESULTS All patients exhibited high IgG reactivity against the central region and C-terminus peptides of both SARS-CoV-2 N and S proteins. Setting the threshold value for serum reactivity above 25,000 units, 100% and 81% of patients with severe disease, 36% and 29% of subjects with mild symptoms, and 8% and 17% of children younger than 8-years reacted against N and S proteins, respectively. Overall, the total number of peptides in the SARS-CoV-2 proteome targeted by serum samples was much higher in children compared to adults. Notably, we revealed a differential antibody response to SARS-CoV-2 peptides of M protein between adults, mainly reacting against the C-terminus epitopes, and children, who were highly responsive to the N-terminus of M protein. In addition, IgG signals against NS7B, NS8 and ORF10 peptides were found elevated mainly among adults with mild (63%) symptoms. Antibodies towards S and N proteins of other coronaviruses (MERS, 229E, OC43, NL63 and HKU1) were detected in all groups without a significant correlation with SARS-CoV-2 antibody levels. CONCLUSIONS Overall, our results showed that antibodies elicited by specific linear epitopes of SARS-CoV-2 proteome are age dependent and related to COVID-19 clinical severity. Cross-reaction of antibodies to epitopes of other human coronaviruses was evident in all patients with distinct profiles between children and adult patients. Several SARS-CoV-2 peptides identified in this study are of particular interest for the development of vaccines and diagnostic tests to predict the clinical outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy.
| | - Chiara Botti
- Laboratory of Clinical Pathology, Santobono-Pausilipon Children's Hospital, 80129, Napoli, Italy
| | - Alberto Micillo
- Laboratory of Clinical Pathology, Santobono-Pausilipon Children's Hospital, 80129, Napoli, Italy
| | - Francesco Labonia
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Sergio Arpino
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Maria Antonietta Isgrò
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Serena Meola
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Luigi Russo
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Silvia Sale
- UOC Biochimica Chimica, AORN Ospedali dei Colli P.O. Monaldi, Naples, Italy
| | - Carmine Nicastro
- UOC Biochimica Chimica, AORN Ospedali dei Colli P.O. Monaldi, Naples, Italy
| | - Luigi Atripaldi
- UOC Biochimica Chimica, AORN Ospedali dei Colli P.O. Monaldi, Naples, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | | | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Via Mariano Semmola, 80131, Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy.
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| |
Collapse
|