1
|
Berry D, Moldoveanu D, Rajkumar S, Lajoie M, Lin T, Tchelougou D, Sakthivel S, Sharon I, Bernard A, Pelletier S, Ripstein Y, Spatz A, Miller WH, Jamal R, Lapointe R, Mes-Masson AM, Petrecca K, Meguerditchian AN, Richardson K, Wang B, Chergui M, Guiot MC, Watters K, Stagg J, Schmeing TM, Rodier F, Turcotte S, Mihalcioiu C, Meterissian S, Watson IR. The NF1 tumor suppressor regulates PD-L1 and immune evasion in melanoma. Cell Rep 2025; 44:115365. [PMID: 40023845 DOI: 10.1016/j.celrep.2025.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Hotspot BRAF, hotspot NRAS, and NF1 loss-of-function mutations are found in approximately 50%, 25%, and 15% of cutaneous melanomas, respectively. Compared to mutant BRAF and NRAS, the role of NF1 loss in melanoma remains understudied. NF1 has a RAS GTPase-activating protein (GAP) function; however, studies also support NF1 RAS-independent tumor-suppressor functions. Recent reports indicate that patients with NF1 mutant melanoma have high response rates to anti-PD-1 immune checkpoint inhibitors (ICIs) for reasons that are not entirely clear. Here, we present data demonstrating that NF1 interacts with PD-L1. Furthermore, NF1 loss in melanoma lines increases PD-L1 cell surface expression through a RAS-GAP-independent mechanism. Co-culture experiments demonstrate that NF1 depletion in melanoma increases resistance to T cell killing, which can be abrogated with anti-PD-1/PD-L1 ICIs. These results support a model whereby NF1 loss leads to immune evasion through the PD-L1/PD-1 axis, providing support for the examination of anti-PD-1 therapies in other NF1 mutant cancers.
Collapse
Affiliation(s)
- Diana Berry
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Dan Moldoveanu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Shivshankari Rajkumar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Mathieu Lajoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Tiffany Lin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Samridhi Sakthivel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Itai Sharon
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Antoine Bernard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Sandy Pelletier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Yael Ripstein
- Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Alan Spatz
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada; Lady Davis Institute, McGill University, Montréal, QC H3T 1E1, Canada
| | - Wilson H Miller
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E1, Canada
| | - Rahima Jamal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Réjean Lapointe
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Neurological Institute and Hospital, Montréal, QC H3A 2B4, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute and Hospital, Montréal, QC H3A 2B4, Canada
| | | | | | - Beatrice Wang
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - May Chergui
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | | | - Kevin Watters
- McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | | | - Ian R Watson
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; McGill University Health Centre, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
2
|
Boumpas A, Papaioannou AS, Bousounis P, Grigoriou M, Bergo V, Papafragkos I, Tasis A, Iskas M, Boon L, Makridakis M, Vlachou A, Gavriilaki E, Hatzioannou A, Mitroulis I, Trompouki E, Verginis P. PD-L1 blockade immunotherapy rewires cancer-induced emergency myelopoiesis. Front Immunol 2024; 15:1386838. [PMID: 39464894 PMCID: PMC11502414 DOI: 10.3389/fimmu.2024.1386838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/06/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit. Methods In this study, we treated tumour-bearing mice with PD-L1 blockage antibody (aPD-L1) immunotherapy, to investigate its effects on cancer-induced emergency myelopoiesis, focusing on bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). We examined the impact of aPD-L1 treatment on HSPC quiescence, proliferation, transcriptomic profile, and functionality. Results Herein, we reveal that aPD-L1 in tumour-bearing mice targets the HSPCs in the BM, mediating their exit from quiescence and promoting their proliferation. Notably, disruption of the PDL1/PD1 axis induces transcriptomic reprogramming in HSPCs, observed in both individuals with Hodgkin lymphoma (HL) and tumour-bearing mice, shifting towards an inflammatory state. Furthermore, HSPCs from aPDL1-treated mice demonstrated resistance to cancer-induced emergency myelopoiesis, evidenced by a lower generation of MDSCs compared to control-treated mice. Discussion Our findings shed light on unrecognized mechanisms of action of ICB immunotherapy in cancer, which involves targeting of BM-driven HSPCs and reprogramming of cancer-induced emergency myelopoiesis.
Collapse
Affiliation(s)
- Athina Boumpas
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Antonis S. Papaioannou
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Pavlos Bousounis
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Grigoriou
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Veronica Bergo
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Cellular and Molecular Immunology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Athanasios Tasis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Iskas
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlachou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Eleni Gavriilaki
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Mitroulis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Côte, Nice, France
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
3
|
Chen L, Chao Y, Li W, Wu Z, Wang Q. Soluble immune checkpoint molecules in cancer risk, outcomes prediction, and therapeutic applications. Biomark Res 2024; 12:95. [PMID: 39218939 PMCID: PMC11368031 DOI: 10.1186/s40364-024-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy has emerged as a pivotal modality in cancer treatment, with immune checkpoint inhibitors effectively combating malignancies by impeding crucial pathways within the immune system and stimulating patients' immune responses. Soluble forms of immune checkpoints exhibit a remarkable diversity and can be readily tracked in circulation, holding immense potential as biomarkers for cancer treatment. An increasing number of studies focused on soluble immune checkpoints in cancer have emerged thanks to technological advancements. In this systematic review, we comprehensively summarized the recent studies on soluble immune checkpoints in human cancer risk prediction, outcome prediction, therapeutic applications, and potential molecular mechanisms, which demonstrated the promising future of soluble immune checkpoints in clinical applications. The clinical relevance of soluble immune checkpoints has been recognized in multiple cancers, yet the therapeutic applications and mechanisms remain obscure. Interpreting the impacts and mechanisms of soluble immune checkpoints could shed a light on the novel strategies of cancer screening, treatments, and outcome prediction.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqing Chao
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Li
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhixia Wu
- Department of Service and Purchase, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China.
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ortega MA, Boaru DL, De Leon-Oliva D, Fraile-Martinez O, García-Montero C, Rios L, Garrido-Gil MJ, Barrena-Blázquez S, Minaya-Bravo AM, Rios-Parra A, Álvarez-Mon M, Jiménez-Álvarez L, López-González L, Guijarro LG, Diaz R, Saez MA. PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications. J Mol Med (Berl) 2024; 102:987-1000. [PMID: 38935130 DOI: 10.1007/s00109-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The PD-1/PD-L1 axis is a complex signaling pathway that has an important role in the immune system cells. Programmed cell death protein 1 (PD-1) acts as an immune checkpoint on the T lymphocytes, B lymphocytes, natural killer (NK), macrophages, dendritic cells (DCs), monocytes, and myeloid cells. Its ligand, the programmed cell death 1 ligand (PD-L1), is expressed in the surface of the antigen-presenting cells (APCs). The binding of both promotes the downregulation of the T cell response to ensure the activation to prevent the onset of chronic immune inflammation. This axis in the tumor microenvironment (TME) performs a crucial role in the tumor progression and the escape of the tumor by neutralizing the immune system, the engagement of PD-L1 with PD-1 in the T cell causes dysfunctions, neutralization, and exhaustion, providing the tumor mass production. This review will provide a comprehensive overview of the functions of the PD-1/PD-L1 system in immune function, cancer, and the potential therapeutic implications of the PD-1/PD-L1 pathway for cancer management.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain.
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Laura Rios
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Ana M Minaya-Bravo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, CIBEREHD, 28801, Alcala de Henares, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain.
- Surgery Service, University Hospital Principe de Asturias, 28801, Alcala de Henares, Spain.
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| |
Collapse
|
5
|
Wang Y, Ran T, Li Y, Tian L, Yang L, Liu Z, Yao B. Identification of JUN gene and cellular microenvironment in response to PD-1 blockade treatment in lung cancer patients via single-cell RNA sequencing. Aging (Albany NY) 2024; 16:10348-10365. [PMID: 38874497 PMCID: PMC11236306 DOI: 10.18632/aging.205932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
Exploring the molecular mechanisms of PD-1/PDL-1 blockade for non-small cell lung cancer (NSCLC) would facilitate understanding for tumor microenvironment (TME) and development of individualized medicine. To date, biomarkers of response to PD-1 blockade therapy were still limited. In this study, we hypothesize that cell type in the tumor microenvironment can influence the effect of PD-1 blockade immunotherapy through specific genes. Therefore, we re-analyze the single-cell RNA sequencing data and validation in tissue from lung adenocarcinoma patients. Dynamic changes of cellular subpopulation were observed after anti-PD-1 immunotherapy among TMEs between primary/metastasis or good/poor response patients. Non-exhausted CD8 T cells and dysregulated genes were observed in responsing patients from PD-1 blockade therapy. Among all changed genes, JUN, involved in PD-1 blockade immunotherapy pathway, and could be considered as a PD-1 responsing biomarker.
Collapse
Affiliation(s)
- Yuxuan Wang
- No.2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Ran
- Department of Oncology, Tongren People’s Hospital, Tongren, Guizhou, China
| | - Yunke Li
- Beijing Digitf Biotechnology Co., Ltd, Beijing, China
| | - Lei Tian
- Department of Oncology, Tongren People’s Hospital, Tongren, Guizhou, China
| | - Lifeng Yang
- Department of Oncology, Tongren People’s Hospital, Tongren, Guizhou, China
| | - Zhidong Liu
- No.2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Biao Yao
- Department of Oncology, Tongren People’s Hospital, Tongren, Guizhou, China
| |
Collapse
|
6
|
Müller‐Meinhard B, Seifert N, Grund J, Reinke S, Yalcin F, Kaul H, Borchmann S, von Tresckow B, Borchmann P, Plütschow A, Richter J, Engert A, Altenbuchinger M, Bröckelmann PJ, Klapper W. Human leukocyte antigen (HLA) class I expression on Hodgkin-Reed-Sternberg cells is an EBV-independent major determinant of microenvironment composition in classic Hodgkin lymphoma. Hemasphere 2024; 8:e84. [PMID: 38836098 PMCID: PMC11145947 DOI: 10.1002/hem3.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Hodgkin-Reed-Sternberg cells (HRSCs) in classic Hodgkin Lymphoma (HL) frequently lack expression of human leukocyte antigen class I (HLA-I), considered to hamper activation of cytotoxic T cells in the tumor microenvironment (TME). Here, we demonstrate HLA-I expression on HRSCs to be a strong determinant of TME composition whereas expression of HLA-II was associated with only minor differential gene expression in the TME. In HLA-I-positive HL the HRSC content and expression of CCL17/TARC in HRSCs are low, independent of the presence of Epstein-Barr virus in HRSCs. Additionally, HLA-I-positive HL shows a high content of CD8+ cytotoxic T cells. However, an increased expression of the inhibitory immune checkpoint LAG3 on CD8+ T cells in close proximity to HRSCs is observed. Suggesting interference with cytotoxic activity, we observed an absence of clonally expanded T cells in the TME. While HLA-I-positive HL is not associated with an unfavorable clinical course in our cohorts, they share features with the recently described H2 subtype of HL. Given the major differences in TME composition, immune checkpoint inhibitors may differ in their mechanism of action in HLA-I-positive compared to HLA-I-negative HL.
Collapse
Affiliation(s)
- Berit Müller‐Meinhard
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Nicole Seifert
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Johanna Grund
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Sarah Reinke
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Fatih Yalcin
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Helen Kaul
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Bastian von Tresckow
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Peter Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Annette Plütschow
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Julia Richter
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Andreas Engert
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | | | - Paul J. Bröckelmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD)CologneGermany
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| |
Collapse
|
7
|
Kosydar S, Ansell SM. The biology of classical Hodgkin lymphoma. Semin Hematol 2024:S0037-1963(24)00059-3. [PMID: 38824068 DOI: 10.1053/j.seminhematol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Classical Hodgkin lymphoma (cHL) is distinguished by several important biological characteristics. The presence of Hodgkin Reed Sternberg (HRS) cells is a defining feature of this disease. The tumor microenvironment with relatively few HRS cells in an expansive infiltrate of immune cells is another key feature. Numerous cell-cell mediated interactions and a plethora of cytokines in the tumor microenvironment collectively work to promote HRS cell growth and survival. Aberrancy and constitutive activation of core signal transduction pathways are a hallmark trait of cHL. Genetic lesions contribute to these dysregulated pathways and evasion of the immune system through a variety of mechanisms is another notable feature of cHL. While substantial elucidation of the biology of cHL has enabled advancements in therapy, increased understanding in the future of additional mechanisms driving cHL may lead to new treatment opportunities.
Collapse
Affiliation(s)
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
8
|
Milrod CJ, Pelcovits A, Ollila TA. Immune checkpoint inhibitors in advanced and relapsed/refractory Hodgkin lymphoma: current applications and future prospects. Front Oncol 2024; 14:1397053. [PMID: 38699638 PMCID: PMC11063339 DOI: 10.3389/fonc.2024.1397053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Classic Hodgkin lymphoma (cHL) treatment paradigms are undergoing a shift with the integration of immune checkpoint inhibitors (ICIs) into both first-line and relapsed/refractory (R/R) regimens. In first-line therapy, the synergy between ICIs and chemotherapy may surpass the previous standards of ABVD and BV-AVD established by landmark trials including RATHL and ECHELON-1. In R/R disease, the combination of ICIs with chemotherapy has begun to challenge the paradigm of chemotherapy as a bridge to consolidative autologous stem cell transplantation. The clinical advances heralded by ICI offer unique challenges to management. ICI treatment and the associated inflammatory response can make the traditional timing and modalities of treatment response assessment difficult to interpret. In contrast to ABVD and BV-AVD, pembrolizumab-AVD results in PET2 positivity rates that are higher and less predictive of treatment response even when ultimate outcomes may be superior. This suggests that the predictive value of PET2 may be less reliable in the ICI era, prompting a reevaluation of response assessment strategies. Looking forward, circulating tumor DNA (ctDNA) may be a promising tool in response-adapted therapy. Its potential to complement or even supersede PET scans in predicting response to ICIs represents a critical advancement. The integration of ctDNA analysis holds the promise of refining response-adapted approaches and enhancing precision in therapeutic decision-making for patients with cHL. This review navigates the evolving landscape of cHL therapy, emphasizing the paradigmatic shift brought about by ICIs. This article explores the impact of combining ICIs with chemotherapy in both relapsed/refractory and first-line settings, scrutinizes the challenges posed to response-adapted therapy by ICIs, and highlights the potential role of ctDNA as an adjunct in refining response-adapted strategies for cHL.
Collapse
|
9
|
Bibas M. Plasmablastic Lymphoma. A State-of-the-Art Review: Part 2-Focus on Therapy. Mediterr J Hematol Infect Dis 2024; 16:e2024015. [PMID: 38468838 PMCID: PMC10927196 DOI: 10.4084/mjhid.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
The objective of this two-part review is to present a current and comprehensive understanding of the diagnosis and management of plasmablastic lymphoma. The first part, which was published previously, focused on the study of epidemiology, etiology, clinicopathological characteristics, differential diagnosis, prognostic variables, and the impact of plasmablastic lymphoma on specific populations. This second part addresses the difficult topic of the treatment of plasmablastic lymphoma, specifically examining both the conventional, consolidated approach and the novel therapeutic strategy.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.S.S. Via Portuense 292 00148 Rome Italy
| |
Collapse
|
10
|
Yang H, Ma L, Deng W, Fu B, Nie J, Liu X. Prognostic biomarker DARS2 correlated with immune infiltrates in bladder tumor. Front Immunol 2024; 14:1301945. [PMID: 38299141 PMCID: PMC10827901 DOI: 10.3389/fimmu.2023.1301945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024] Open
Abstract
Background DARS2 is a pivotal member of the Aminoacyl-tRNA synthetases family that is critical for regulating protein translation. However, the biological role of DARS2 in bladder cancer remains elusive. Methods We analyzed the correlation between DARS2 expression and prognosis, tumor stage, and immune infiltration in bladder cancer using The Cancer Genome Atlas (TCGA) database. We validated findings in clinical samples from The First Affiliated Hospital of Nanchang University and explored the biological functions of DARS2 using cell and animal models. Results We found DARS2 to be upregulated in bladder cancer, associated with tumor progression and poor prognosis. Immune infiltration analysis suggested that DARS2 may facilitate immune evasion by modulating PD-L1. Cell and animal experiments validated that DARS2 knockdown and overexpress can inhibit or increase cancer cell proliferation, metastasis, tumorigenesis, immune escape, and PD-L1 levels. Conclusions Our study reveals DARS2 as a potential prognostic biomarker and immunotherapy target in BLCA.
Collapse
Affiliation(s)
- Hailang Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Ma
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jianqiang Nie
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
11
|
Masel R, Roche ME, Martinez-Outschoorn U. Hodgkin Lymphoma: A disease shaped by the tumor micro- and macroenvironment. Best Pract Res Clin Haematol 2023; 36:101514. [PMID: 38092473 DOI: 10.1016/j.beha.2023.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/18/2023]
Abstract
The tumor microenvironment (TMicroE) and tumor macroenvironment (TMacroE) are defining features of classical Hodgkin lymphoma (cHL). They are of critical importance to clinicians since they explain the common signs and symptoms, allow us to classify these neoplasms, develop prognostic and predictive biomarkers, bioimaging and novel treatments. The TMicroE is defined by effects of cancer cells to their immediate surrounding and within the tumor. Effects of cancer cells at a distance or outside of the tumor define the TMacroE. Paraneoplastic syndromes are signs and symptoms due to effects of cancer at a distance or the TMacroE, which are not due to direct cancer cell infiltration. The most common paraneoplastic symptoms are B-symptoms, which manifest as fevers, chills, drenching night sweats, and/or weight loss. Less common paraneoplastic syndromes include those that affect the central nervous system, skin, kidney, and hematological autoimmune phenomena including hemophagocytic lymphohistiocytosis (HLH). Paraneoplastic signs such as leukocytosis, lymphopenia, anemia, and hypoalbuminemia are prognostic biomarkers. The neoplastic cells in cHL are the Hodgkin and Reed Sternberg (HRS) cells, which are preapoptotic germinal center B cells with a high mutational burden and almost universal genetic alterations at the 9p24.1 locus primarily through copy gain and amplification with strong activation of signaling via PD-L1, JAK-STAT, NFkB, and c-MYC. In the majority of cases of cHL over 95% of the tumor cells are non-neoplastic. In the TMicroE, HRS cells recruit and mold non-neoplastic cells vigorously via extracellular vesicles, chemokines, cytokines and growth factors such as CCL5, CCL17, IL6, and TGF-β to promote a feed-forward inflammatory loop, which drives cancer aggressiveness and anti-cancer immune evasion. Novel single cell profiling techniques provide critical information on the role in cHL of monocytes-macrophages, neutrophils, T helper, Tregs, cytotoxic CD8+ T cells, eosinophils, mast cells and fibroblasts. Here, we summarize the effects of EBV on the TMicroE and TMacroE. In addition, how the metabolism of the TMicroE of cHL affects bioimaging and contributes to cancer aggressiveness is reviewed. Finally, we discuss how the TMicroE is being leveraged for risk adapted treatment strategies based on bioimaging results and novel immune therapies. In sum, it is clear that we cannot effectively manage patients with cHL without understanding the TMicroE and TMacroE and its clinical importance is expected to continue to grow rapidly.
Collapse
Affiliation(s)
- Rebecca Masel
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University-Philadelphia, USA; Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA
| | - Megan E Roche
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA.
| |
Collapse
|
12
|
Sun H, Song X, Li C, Li Q, Liu S, Deng N. Humanized disulfide-stabilized diabody against fibroblast growth factor-2 inhibits PD-L1 expression and epithelial-mesenchymal transition in hepatoma cells through STAT3. IUBMB Life 2023; 75:957-968. [PMID: 37489553 DOI: 10.1002/iub.2766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023]
Abstract
Fibroblast growth factor 2 (FGF2) plays an important role in tumor angiogenesis. Humanized disulfide-stable double-chain antibody against fibroblast growth factor-2 (anti-FGF2 ds-Diabody) is a small molecule antibody with good tissue permeability and low immunogenicity, which has potential in tumor-targeted therapy. This study intended to investigate the effect of anti-FGF2 ds-Diabody on the migration and expression of programmed death-ligand1 (PD-L1) in hepatocellular carcinoma (HCC) cells. The anti-FGF2 ds-Diabody was expressed under methanol induction and purified with Ni2+ -affinity chromatography. Anti-FGF2 ds-Diabody significantly inhibited cell viability and proliferation in SK-Hep1 and HepG2 cells as confirmed by CCK-8 assays and colony formation assays. Western blot assays indicated that the proliferation of SK-Hep1 and HepG2 cells was inhibited by anti-FGF2 ds-Diabody through inhibiting the phosphorylation activation of AKT and MAPK. The results of transwell and western blot assays showed that the migration and invasion of SK-Hep1 and HepG2 cells were suppressed by anti-FGF2 ds-Diabody by affecting the epithelial-mesenchymal transition (EMT) process. Meanwhile, anti-FGF2 ds-Diabody inhibited the expression of PD-L1, and STAT3 participated in this process. Analysis of RT-PCR and Western blot suggested that fibroblast growth factor receptor 4 inhibitor 1 (FGFR4-IN-1) suppressed the expression of PD-L1, while STAT3 overexpression reversed this inhibitory effect. In addition, overexpression of STAT3 promoted migration and invasion and restored the suppressive effect of anti-FGF2 ds-Diabody on EMT. In conclusion, anti-FGF2 ds-Diabody could inhibit the expression of PD-L1 and EMT of hepatoma cells through FGF2/FGFR4/STAT3 axis. These results suggested that anti-FGF2 ds-Diabody has potential clinical application in inhibiting metastasis and immune escape of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huamin Sun
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Xinran Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Cunjie Li
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Qing Li
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Shifeng Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Barnwal A, Tamang R, Sanjeev Das, Bhattacharyya J. Ponatinib delays the growth of solid tumours by remodelling immunosuppressive tumour microenvironment through the inhibition of induced PD-L1 expression. Br J Cancer 2023; 129:1007-1021. [PMID: 37400678 PMCID: PMC10491662 DOI: 10.1038/s41416-023-02316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Therapeutic modalities including chemo, radiation, immunotherapy, etc. induce PD-L1 expression that facilitates the adaptive immune resistance to evade the antitumour immune response. IFN-γ and hypoxia are some of the crucial inducers of PD-L1 expression in tumour and systemic microenvironment which regulate the expression of PD-L1 via various factors including HIF-1α and MAPK signalling. Hence, inhibition of these factors is crucial to regulate the induced PD-L1 expression and to achieve a durable therapeutic outcome by averting the immunosuppression. METHODS B16-F10 melanoma, 4T1 breast carcinoma, and GL261 glioblastoma murine models were established to investigate the in vivo antitumour efficacy of Ponatinib. Western blot, immunohistochemistry, and ELISA were performed to determine the effect of Ponatinib on the immunomodulation of tumour microenvironment (TME). CTL assay and flow cytometry were such as p-MAPK, p-JNK, p-Erk, and cleaved caspase-3 carried out to evaluate the systemic immunity induced by Ponatinib. RNA sequencing, immunofluorescence and Western blot analysis were used to determine the mechanism of PD-L1 regulation by Ponatinib. Antitumour immunity induced by Ponatinib were compared with Dasatinib. RESULTS Here, Ponatinib treatment delayed the growth of tumours by inhibiting PD-L1 and modulating TME. It also downregulated the level of PD-L1 downstream signalling molecules. Ponatinib enhanced the CD8 T cell infiltration, regulated Th1/Th2 ratio and depleted tumour associated macrophages (TAMs) in TME. It induced a favourable systemic antitumour immunity by enhancing CD8 T cell population, tumour specific CTL activity, balancing the Th1/Th2 ratio and lowering PD-L1 expression. Ponatinib inhibited FoxP3 expression in tumour and spleen. RNA sequencing data revealed that Ponatinib treatment downregulated the genes related to transcription including HIF-1α. Further mechanistic studies showed that it inhibited the IFN-γ and hypoxia induced PD-L1 expression via regulating HIF-1α. Dasatinib was used as control to prove that Ponatinib induced antitumour immunity is via PD-L1 inhibition mediated T cell activation. CONCLUSIONS RNA sequencing data along with rigorous in vitro and in vivo studies revealed a novel molecular mechanism by which Ponatinib can inhibit the induced PD-L1 levels via regulating HIF-1α expression which leads to modulation of tumour microenvironment. Thus, our study provides a novel therapeutic insight of Ponatinib for the treatment of solid tumours where it can be used alone or in combination with other drugs which are known to induce PD-L1 expression and generate adaptive resistance.
Collapse
Affiliation(s)
- Anjali Barnwal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India
| | | | - Sanjeev Das
- National Institute of Immunology, Delhi, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India.
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India.
| |
Collapse
|
14
|
Chohan KL, Ansell SM. SOHO State of the Art Updates and Next Questions | From Biology to Therapy: Progress in Hodgkin Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:705-713. [PMID: 37344332 DOI: 10.1016/j.clml.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
Classic Hodgkin lymphoma (HL) is a unique lymphoid malignancy where the malignant cells comprise only 1% to 2% of the total tumor cellularity. Over the past 2 decades, the treatment of HL has evolved drastically based on the advent of novel targeted therapies. Novel agents including programmed death-1 (PD-1) inhibitors, antibody-drug conjugates such as brentuximab vedotin, bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapies have served to shape the management of HL in the frontline as well as the relapsed and refractory (R/R) setting. Some of these agents have been incorporated into treatment algorithms, while others are currently under investigation demonstrating promising results. This review focuses on highlighting the underlying tumor biology forming the basis of therapeutics in HL, and reviews some of the emerging and established novel therapies.
Collapse
|
15
|
Spangenberg SH, Palermo A, Gazaniga NR, Martínez-Peña F, Guijas C, Chin EN, Rinschen MM, Sander PN, Webb B, Pereira LE, Jia Y, Meitz L, Siuzdak G, Lairson LL. Hydroxyproline metabolism enhances IFN-γ-induced PD-L1 expression and inhibits autophagic flux. Cell Chem Biol 2023; 30:1115-1134.e10. [PMID: 37467751 PMCID: PMC11426993 DOI: 10.1016/j.chembiol.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The immune checkpoint protein PD-L1 plays critical roles in both immune system homeostasis and tumor progression. Impaired PD-1/PD-L1 function promotes autoimmunity and PD-L1 expression within tumors promotes immune evasion. If and how changes in metabolism or defined metabolites regulate PD-L1 expression is not fully understood. Here, using a metabolomics activity screening-based approach, we have determined that hydroxyproline (Hyp) significantly and directly enhances adaptive (i.e., IFN-γ-induced) PD-L1 expression in multiple relevant myeloid and cancer cell types. Mechanistic studies reveal that Hyp acts as an inhibitor of autophagic flux, which allows it to regulate this negative feedback mechanism, thereby contributing to its overall effect on PD-L1 expression. Due to its prevalence in fibrotic tumors, these findings suggest that hydroxyproline could contribute to the establishment of an immunosuppressive tumor microenvironment and that Hyp metabolism could be targeted to pharmacologically control PD-L1 expression for the treatment of cancer or autoimmune diseases.
Collapse
Affiliation(s)
| | - Amelia Palermo
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathalia R Gazaniga
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Carlos Guijas
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Markus M Rinschen
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp N Sander
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bill Webb
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura E Pereira
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying Jia
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lance Meitz
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA.
| | - Luke L Lairson
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Mariotti FR, Ingegnere T, Landolina N, Vacca P, Munari E, Moretta L. Analysis of the mechanisms regulating soluble PD-1 production and function in human NK cells. Front Immunol 2023; 14:1229341. [PMID: 37638041 PMCID: PMC10449250 DOI: 10.3389/fimmu.2023.1229341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
NK cells represent important effectors that play a major role in innate defences against pathogens and display potent cytolytic activity against tumor cells. An array of surface receptors finely regulate their function and inhibitory checkpoints, such as PD-1, can dampen the immune response inducing an immunosuppressive state. Indeed, PD-1 expression in human NK cells correlated with impaired effector function and tumor immune evasion. Importantly, blockade of the PD-1/PD-L1 axis has been shown to reverse NK cell exhaustion and increase their cytotoxicity. Recently, soluble counterparts of checkpoint receptors, such as soluble PD-1 (sPD-1), are rising high interest due to their biological activity and ability to modulate immune responses. It has been widely demonstrated that sPD-1 can modulate T cell effector functions and tumor growth. Tumor-infiltrating T cells are considered the main source of circulating sPD-1. In addition, recently, also stimulated macrophages have been demonstrated to release sPD-1. However, no data are present on the role of sPD-1 in the context of other innate immune cell subsets and therefore this study is aimed to unveil the effect of sPD-1 on human NK cell function. We produced the recombinant sPD-1 protein and demonstrated that it binds PD-L1 and that its presence results in increased NK cell cytotoxicity. Notably, we also identified a pathway regulating endogenous sPD-1 synthesis and release in human NK cells. Secreted endogenous sPD-1, retained its biological function and could modulate NK cell effector function. Overall, these data reveal a pivotal role of sPD-1 in regulating NK-mediated innate immune responses.
Collapse
Affiliation(s)
| | - Tiziano Ingegnere
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Lymphoid Cells of Innate Immunity Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Lymphoid Cells of Innate Immunity Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
17
|
Bouzari B, Basi A, Dadkhah S, Panahi M, Mohammadi S. Programmed Death 1 (PD-1) Expression in Relapsing and Remitting Hodgkin Lymphoma as Prognostic Factor. Asian Pac J Cancer Prev 2023; 24:2829-2835. [PMID: 37642071 PMCID: PMC10685244 DOI: 10.31557/apjcp.2023.24.8.2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Programmed death ligand 1 (PD-L1) plays critical role in PD-1-dependent immunity suppress. Abnormal PD-L1 expression has shown to be directly related to poor prognosis and drug resistance in cancer patients. Hence, we aimed to evaluate PD-L1 expression in relapsing and remitting Hodgkin lymphoma (HL) as a prognostic factor. METHODS In this cross-sectional study, 100 patients with HL between 2007 and 2015, were included. A thin section of tumor tissue fixed and processed on slides, stained by immunohistochemistry (IHC) PD-L1 specific antibodies. The clinical, imaging and pathology information of patients were obtained using case reading and by retrospective follow-up. The status of recurrence or improvement was determined after 5 years of diagnosis. GraphPad Prism v.8 was used for analysis. RESULTS of 100 HL cases, the mean age of 33 relapsed group cases was significantly higher than remission group (p-value = 0.006), and gender was not significant however majority of cases in both groups were male. The frequency of PD-L1 expression found in 49% of all patients. A significant relationship was found between the expression of PD-L1 and disease progression, HL subtype, stage of tumor (p-value<0.05). High expression of PD-L1 found in majority of relapse group and low expression in remission group. CONCLUSION PD-L1 expression assessment in HL patients is a valuable tool for prediction of the disease subtype, progression, stage, and treatment outcome. IHC method as an available, simple, rather cheap, and efficient tool could use for evaluation of PD-L1 expression and predicting the prognosis of HL disease, elsewhere.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Basi
- Department of Hematology Oncology, School of Medicine, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Shadi Dadkhah
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahshid Panahi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soha Mohammadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Sadaf H, Ambroziak M, Binkowski R, Kluebsoongnoen J, Paszkiewicz-Kozik E, Steciuk J, Markowicz S, Walewski J, Sarnowska E, Sarnowski TJ, Konopinski R. New molecular targets in Hodgkin and Reed-Sternberg cells. Front Immunol 2023; 14:1155468. [PMID: 37266436 PMCID: PMC10230546 DOI: 10.3389/fimmu.2023.1155468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Recent discoveries shed light on molecular mechanisms responsible for classical Hodgkin lymphoma (HL) development and progression, along with features of Hodgkin - Reed and Sternberg cells (HRS). Here, we summarize current knowledge on characteristic molecular alterations in HL, as well as existing targeted therapies and potential novel treatments for this disease. We discuss the importance of cluster of differentiation molecule 30 (CD30) and the programmed cell death-1 protein (PD-1) and ligands (PD-L1/2), and other molecules involved in immune modulation in HL. We highlight emerging evidence indicating that the altered function of SWI/SNF-type chromatin remodeling complexes, PRC2, and other epigenetic modifiers, contribute to variations in chromatin status, which are typical for HL. We postulate that despite of the existence of plentiful molecular data, the understanding of HL development remains incomplete. We therefore propose research directions involving analysis of reverse signaling in the PD-1/PD-L1 mechanism, chromatin remodeling, and epigenetics-related alterations, in order to identify HL features at the molecular level. Such attempts may lead to the identification of new molecular targets, and thus will likely substantially contribute to the future development of more effective targeted therapies.
Collapse
Affiliation(s)
- Hummaira Sadaf
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biotechnology, Sardar Bahadur Khan Womens’ University, Balochistan, Pakistan
| | - Maciej Ambroziak
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Robert Binkowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Sergiusz Markowicz
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elzbieta Sarnowska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Ryszard Konopinski
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
19
|
Carbone A, Gloghini A, Carlo-Stella C. Tumor microenvironment contribution to checkpoint blockade therapy: lessons learned from Hodgkin lymphoma. Blood 2023; 141:2187-2193. [PMID: 36898085 PMCID: PMC10646787 DOI: 10.1182/blood.2022016590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Classic Hodgkin lymphoma (cHL) is characterized by a tumor microenvironment (TME) containing inflammatory/immune cells. Follicular lymphoma, mediastinal gray zone lymphoma, and diffuse large B-cell lymphomas may show a TME containing inflammatory/immune cells, but the TMEs are quite different. In B-cell lymphomas and cHL, programmed cell death 1 (PD-1)-PD ligand 1 pathway blockade drugs differ in their effectiveness among patients with refractory/relapsed disease. Further research should explore innovative assays that could reveal which molecules influence sensitivity or resistance to therapy in an individual patient.
Collapse
Affiliation(s)
- Antonino Carbone
- Department of Pathology, Centro di Riferimento Oncologico Aviano, Istituto Nazionale Tumori, IRCCS, Aviano, Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
20
|
Manjili MH. The Adaptation Model of Immunity: Signal IV Matters Most in Determining the Functional Outcomes of Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:521-530. [PMID: 36881868 PMCID: PMC10000300 DOI: 10.4049/jimmunol.2200672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 03/09/2023]
Abstract
Current research in immunology and immunotherapy is fully influenced by the self-nonself model of immunity. This theoretical model suggests that alloreactivity results in graft rejection, whereas tolerance toward self-antigens expressed by malignant cells facilitates cancer development. Similarly, breakage of immunological tolerance toward self-antigens results in autoimmune diseases. Accordingly, immune suppression is recommended for the management of autoimmune diseases, allergy, and organ transplantation, whereas immune inducers are used for the treatment of cancers. Although the danger model, the discontinuity model, and the adaptation model are proposed for a better understanding of the immune system, the self-nonself model continues to dominate the field. Nevertheless, a cure for these human diseases remains elusive. This essay discusses current theoretical models of immunity, as well as their impacts and limitations, and expands on the adaptation model of immunity to galvanize a new direction for the treatment of autoimmune diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Masoud H. Manjili
- Department of Microbiology & Immunology, VCU Institute of Molecular Medicine, VCU School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Richmond, VA, USA
| |
Collapse
|
21
|
Maaroufi M. Immunotherapy for Hodgkin lymphoma: From monoclonal antibodies to chimeric antigen receptor T-cell therapy. Crit Rev Oncol Hematol 2023; 182:103923. [PMID: 36702422 DOI: 10.1016/j.critrevonc.2023.103923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/11/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Although up to 80 % of Hodgkin lymphoma (HL) patients are cured with first-line therapy, relapsed/refractory HL remains a major clinical obstacle and is fatal for patients who are not candidates for autologous stem cell transplantation (ASCT) or relapse after treatment. Several immune-based approaches have been investigated in recent years with the aim of exerting a possible antitumor effect through the immune system response to cancer cells. Clinical studies on novel agents, including brentuximab vedotin (BV) and PD-1 inhibitors, have successfully demonstrated their effectiveness in relapsed disease after ASCT. Additionally, studies examining combination strategies with the goal of reducing the risk of relapse and chemotherapy-related toxicity have showed encouraging results, mainly in untreated early unfavorable or advanced stage classical HL (cHL). Other non-approved immunotherapies such as camidanlumab tesirine, bispecific CD30/CD16A antibody, and CD30 chimeric antigen receptor (CAR) T-cell therapy are promising approaches that may reinforce the therapeutic arsenal available to patients.
Collapse
Affiliation(s)
- Marouane Maaroufi
- Department of Medicine, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco.
| |
Collapse
|
22
|
Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:269-310. [PMID: 36631195 DOI: 10.1016/bs.pmbts.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer is now the leading cause of mortality across the world. Inflammatory immune cells are functionally important in the genesis and progression of tumors, as demonstrated by their presence in human tumors. Numerous research has recently been conducted to determine if the innate and adaptive immune systems' cytotoxic cells can inhibit tumor growth and spread. Majority of cancers, when growing into identifiable tumors use multiple strategies to elude immune monitoring by lowering tumor immunity. Immunological suppression in the tumor microenvironment is achieved through interfering with antigen-presenting cells and effector T cells. Treatment of cancer requires managing both the tumor as well as tumor microenvironment (TME). Most patients will not be able to gain benefits from immunotherapy because of the immunosuppressive tumor microenvironment. The actions of many stromal myeloid and lymphoid cells are regulated to suppress tumor-specific T lymphocytes. These frequently exhibit inducible suppressive processes brought on by the same anti-tumor inflammatory response the immunotherapy aims to produce. Therefore, a deeper comprehensive understanding of how the immunosuppressive environment arises and endures is essential. Here in this chapter, we will talk about how immune cells, particularly macrophages and lymphocytes, and their receptors affect the ability of tumors to mount an immune response.
Collapse
|
23
|
Ferrarini I, Bernardelli A, Lovato E, Schena A, Krampera M, Visco C. An updated portrait of monocyte-macrophages in classical Hodgkin lymphoma. Front Oncol 2023; 13:1149616. [PMID: 36910620 PMCID: PMC10001882 DOI: 10.3389/fonc.2023.1149616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a unique neoplastic ecosystem characterized by a heterogeneous immune infiltrate surrounding the rare malignant Hodgkin Reed-Sternberg cells. Though less abundant than T-cells, tumor-infiltrating macrophages play a pivotal role in supporting HRS survival through cell-to-cell and paracrine interactions. Traditional immunohistochemistry based upon the M1-M2 dichotomy yielded controversial results about the composition, functional role and prognostic impact of macrophages in cHL. More recent studies exploiting single-cell technologies and image analyses have highlighted the heterogeneity and the peculiar spatial arrangement of the macrophagic infiltrate, with the most immunosuppressive subpopulations lying in close proximity of HRS cells and the most tumor-hostile subsets kept far away from the neoplastic niches. High-throughput analysis of peripheral blood mononuclear cells in cHL patients have also identified a novel, potentially cytotoxic, subpopulation predicting better response to PD-1 blockade. This review examines the phenotypic profile, spatial localization and clinical impact of tumor-infiltrating macrophages and circulating monocytes in cHL, providing an up-do-date portrait of these innate immune cells with possible translational applications.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Bernardelli
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Ester Lovato
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alberto Schena
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Carlo Visco
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Meerschaert KA, Edwards BS, Epouhe AY, Jefferson B, Friedman R, Babyok OL, Moy JK, Kehinde F, Liu C, Workman CJ, Vignali DAA, Albers KM, Koerber HR, Gold MS, Davis BM, Scheff NN, Saloman JL. Neuronally expressed PDL1, not PD1, suppresses acute nociception. Brain Behav Immun 2022; 106:233-246. [PMID: 36089217 PMCID: PMC10343937 DOI: 10.1016/j.bbi.2022.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 11/20/2022] Open
Abstract
PDL1 is a protein that induces immunosuppression by binding to PD1 expressed on immune cells. In line with historical studies, we found that membrane-bound PD1 expression was largely restricted to immune cells; PD1 was not detectable at either the mRNA or protein level in peripheral neurons using single neuron qPCR, immunolabeling and flow cytometry. However, we observed widespread expression of PDL1 in both sensory and sympathetic neurons that could have important implications for patients receiving immunotherapies targeting this pathway that include unexpected autonomic and sensory related effects. While signaling pathways downstream of PD1 are well established, little to no information is available regarding the intracellular signaling downstream of membrane-bound PDL1 (also known as reverse signaling). Here, we administered soluble PD1 to engage neuronally expressed PDL1 and found that PD1 significantly reduced nocifensive behaviors evoked by algogenic capsaicin. We used calcium imaging to examine the underlying neural mechanism of this reduction and found that exogenous PD1 diminished TRPV1-dependent calcium transients in dissociated sensory neurons. Furthermore, we observed a reduction in membrane expression of TRPV1 following administration of PD1. Exogenous PD1 had no effect on pain-related behaviors in sensory neuron specific PDL1 knockout mice. These data indicate that neuronal PDL1 activation is sufficient to modulate sensitivity to noxious stimuli and as such, may be an important homeostatic mechanism for regulating acute nociception.
Collapse
Affiliation(s)
- Kimberly A Meerschaert
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brian S Edwards
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ariel Y Epouhe
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bahiyyah Jefferson
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert Friedman
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Olivia L Babyok
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jamie K Moy
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Faith Kehinde
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Kathryn M Albers
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - H Richard Koerber
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael S Gold
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brian M Davis
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Biobehavioral Cancer Control Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Jami L Saloman
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Biobehavioral Cancer Control Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
25
|
Alkholifi FK, Alsaffar RM. Dostarlimab an Inhibitor of PD-1/PD-L1: A New Paradigm for the Treatment of Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1572. [PMID: 36363529 PMCID: PMC9694305 DOI: 10.3390/medicina58111572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/04/2024]
Abstract
Immunomodulation checkpoints usually adopted by healthy cells by tumors might cause an imbalance between host surveillance and tumor progression. Several tumors are incredibly resistant to standard treatment. The dynamic and long-lasting tumor regressions caused by antibodies targeting the PD-1/PD-L1 checkpoint have suggested a rebalancing of the host-tumor relationship. Checkpoint antibody inhibitors, like anti-PD-1/PD-L1, are unique inhibitors that reduce tumor growth by modulating the interaction between immune cells and tumor cells. These checkpoint inhibitors are swiftly emerging as a highly promising strategy for treating cancer because they produce impressive antitumor responses while having a limited number of adverse effects. Over the past several years, numerous checkpoint antibody inhibitors pointing to PD-1, PDL-1, and CTLA-4 have been available on the market. Despite its enormous success and usefulness, the anti-PD treatment response is restricted to certain kinds of cancer. This restriction can be attributed to the inadequate and diverse PD-1 expression in the tumor (MET) micro-environment. Dostarlimab (TSR-042), a drug that interferes with the PD-1/PD-L1 pathway, eliminates a crucial inhibitory response of an immune system and, as a result, has the potential to cause severe or deadly immune-mediated adverse effects. As cancer immunotherapy, dostarlimab enhances the antitumor immune response of the body.
Collapse
Affiliation(s)
- Faisal K. Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
26
|
Immune Biomarkers in the Peripheral Blood and Tumor Microenvironment of Classical Hodgkin Lymphoma Patients in Relation to Tumor Burden and Response to Treatment. Hemasphere 2022; 6:e794. [PMID: 36325271 PMCID: PMC9619233 DOI: 10.1097/hs9.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022] Open
Abstract
In classical Hodgkin lymphoma (cHL), the malignant cells represent only a small fraction of the tumor. Yet, they orchestrate a lymphocyte-dominated tumor microenvironment (TME) that supports their survival and growth. The systemic effects of this local immunomodulation are not fully elucidated. Here, we aimed at characterizing circulating lymphocytes and plasma proteins in relation to clinical parameters and treatment effect. Peripheral blood (PB) samples were obtained from 48 consecutive patients at diagnosis and at 2 time points after successful primary treatment. Single-cell suspensions were prepared from lymph node (LN) biopsies obtained for routine diagnostic purposes. Twenty healthy individuals were included as controls. Cells from PB and LN were analyzed by flow cytometry, and plasma proteins by Proximity Extension Assay. We found that the frequencies of T and B cells positively correlated between the LN and the PB compartments. Compared to controls, cHL patients had higher frequencies of proliferating T cells as well as higher expression of programmed death (PD)-1 and cytotoxic T lymphocyte antigen (CTLA)-4 in circulating T cells, and lower naive T-cell frequencies. Advanced-stage patients had fewer NK cells with a functionally impaired phenotype. Differences in the immune profile were observed in patients with a high tumor burden and with high inflammation, respectively. Most of these deviations disappeared after standard first-line treatment. Patients who received radiotherapy involving the mediastinum had low T-cell counts for a prolonged period. Our findings suggest that the immunomodulation of lymphocytes in the TME of cHL might affect immune biomarkers in the PB.
Collapse
|
27
|
Xie W, Medeiros LJ, Li S, Tang G, Fan G, Xu J. PD-1/PD-L1 Pathway: A Therapeutic Target in CD30+ Large Cell Lymphomas. Biomedicines 2022; 10:biomedicines10071587. [PMID: 35884893 PMCID: PMC9313053 DOI: 10.3390/biomedicines10071587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
The programmed death-ligands, PD-L1 and PD-L2, reside on tumor cells and can bind with programmed death-1 protein (PD-1) on T-cells, resulting in tumor immune escape. PD-1 ligands are highly expressed in some CD30+ large cell lymphomas, including classic Hodgkin lymphoma (CHL), primary mediastinal large B-cell lymphoma (PMBL), Epstein–Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL), and anaplastic large cell lymphoma (ALCL). The genetic alteration of the chromosome 9p24.1 locus, the location of PD-L1, PD-L2, and JAK2 are the main mechanisms leading to PD-L1 and PD-L2 overexpression and are frequently observed in these CD30+ large cell lymphomas. The JAK/STAT pathway is also commonly constitutively activated in these lymphomas, further contributing to the upregulated expression of PD-L1 and PD-L2. Other mechanisms underlying the overexpression of PD-L1 and PD-L2 in some cases include EBV infection and the activation of the mitogen-activated protein kinase (MAPK) pathway. These cellular and molecular mechanisms provide a scientific rationale for PD-1/PD-L1 blockade in treating patients with relapsed/refractory (R/R) disease and, possibly, in newly diagnosed patients. Given the high efficacy of PD-1 inhibitors in patients with R/R CHL and PMBL, these agents have become a standard treatment in these patient subgroups. Preliminary studies of PD-1 inhibitors in patients with R/R EBV+ DLBCL and R/R ALCL have also shown promising results. Future directions for these patients will likely include PD-1/PD-L1 blockade in combination with other therapeutic agents, such as brentuximab or traditional chemotherapy regimens.
Collapse
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
- Correspondence: ; Tel.: +1-713-794-1220; Fax: +1-713-563-3166
| |
Collapse
|
28
|
Casagrande N, Borghese C, Aldinucci D. Current and Emerging Approaches to Study Microenvironmental Interactions and Drug Activity in Classical Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14102427. [PMID: 35626032 PMCID: PMC9139207 DOI: 10.3390/cancers14102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In classical Hodgkin Lymphoma (cHL), the tumor microenvironment (TME) plays an important role in tumor progression and treatment response, making its evaluation critical for determining prognosis, treatment strategies and predicting an increase in drug toxicity. Therefore, there is a need to utilize more complex systems to study the cHL-TME and its interplay with tumor cells. To evaluate new anticancer drugs and to find the mechanisms of drug resistance, this review summarizes emerging approaches for the analysis of the TME composition and to identify the state of the disease; the in vitro techniques used to determine the mechanisms involved in the building of an immunosuppressive and protective TME; new 3-dimensional (3D) models, the heterospheroids (HS), developed to mimic TME interactions. Here, we describe the present and likely future clinical applications indicated by the results of these studies and propose a classification for the in vitro culture methods used to study TME interactions in cHL. Abstract Classic Hodgkin lymphoma is characterized by a few tumor cells surrounded by a protective and immunosuppressive tumor microenvironment (TME) composed by a wide variety of noncancerous cells that are an active part of the disease. Therefore, new techniques to study the cHL-TME and new therapeutic strategies targeting specifically tumor cells, reactivating the antitumor immunity, counteracting the protective effects of the TME, were developed. Here, we describe new methods used to study the cell composition, the phenotype, and the spatial distribution of Hodgkin and Reed–Sternberg (HRS) cells and of noncancerous cells in tumor tissues. Moreover, we propose a classification, with increasing complexity, of the in vitro functional studies used to clarify the interactions leading not only to HRS cell survival, growth and drug resistance, but also to the immunosuppressive tumor education of monocytes, T lymphocytes and fibroblasts. This classification also includes new 3-dimensional (3D) models, obtained by cultivating HRS cells in extracellular matrix scaffolds or in sponge scaffolds, under non-adherent conditions with noncancerous cells to form heterospheroids (HS), implanted in developing chick eggs (ovo model). We report results obtained with these approaches and their applications in clinical setting.
Collapse
|
29
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
30
|
Abstract
The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, USA
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA.
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
31
|
Gao X, Li W, Syed F, Yuan F, Li P, Yu Q. PD-L1 signaling in reactive astrocytes counteracts neuroinflammation and ameliorates neuronal damage after traumatic brain injury. J Neuroinflammation 2022; 19:43. [PMID: 35135580 PMCID: PMC8822654 DOI: 10.1186/s12974-022-02398-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tissue damage and cellular destruction are the major events in traumatic brain injury (TBI), which trigger sterile neuroimmune and neuroinflammatory responses in the brain. While appropriate acute and transient neuroimmune and neuroinflammatory responses facilitate the repair and adaptation of injured brain tissues, prolonged and excessive neuroimmune and neuroinflammatory responses exacerbate brain damage. The mechanisms that control the intensity and duration of neuroimmune and neuroinflammatory responses in TBI largely remain elusive. METHODS We used the controlled cortical impact (CCI) model of TBI to study the role of immune checkpoints (ICPs), key regulators of immune homeostasis, in the regulation of neuroimmune and neuroinflammatory responses in the brain in vivo. RESULTS We found that de novo expression of PD-L1, a potent inhibitory ICP, was robustly and transiently induced in reactive astrocytes, but not in microglia, neurons, or oligodendrocyte progenitor cells (OPCs). These PD-L1+ reactive astrocytes were highly enriched to form a dense zone around the TBI lesion. Blockade of PD-L1 signaling enlarged brain tissue cavity size, increased infiltration of inflammatory Ly-6CHigh monocytes/macrophages (M/Mɸ) but not tissue-repairing Ly-6CLowF4/80+ M/Mɸ, and worsened TBI outcomes in mice. PD-L1 gene knockout enhanced production of CCL2 that is best known for its ability to interact with its cognate receptor CCR2 on Ly-6CHigh M/Mϕ to chemotactically recruit these cells into inflammatory sites. Mechanically, PD-L1 signaling in astrocytes likely exhibits dual inhibitory activities for the prevention of excessive neuroimmune and neuroinflammatory responses to TBI through (1) the PD-1/PD-L1 axis to suppress the activity of brain-infiltrating PD-1+ immune cells, such as PD-1+ T cells, and (2) PD-L1 intrinsic signaling to regulate the timing and intensity of astrocyte reactions to TBI. CONCLUSIONS PD-L1+ astrocytes act as a gatekeeper to the brain to control TBI-related neuroimmune and neuroinflammatory responses, thereby opening a novel avenue to study the role of ICP-neuroimmune axes in the pathophysiology of TBI and other neurological disorders.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Group, Department of Neurological Surgery, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202, USA.
| | - Wei Li
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Fahim Syed
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Fang Yuan
- Spinal Cord and Brain Injury Research Group, Department of Neurological Surgery, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202, USA
| | - Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qigui Yu
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|
32
|
Reinfeld BI, Rathmell WK, Kim TK, Rathmell JC. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cell Mol Immunol 2022; 19:46-58. [PMID: 34239083 PMCID: PMC8752729 DOI: 10.1038/s41423-021-00727-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
In 2011, Hanahan and Weinberg added "Deregulating Cellular Energetics" and "Avoiding Immune Destruction" to the six previous hallmarks of cancer. Since this seminal paper, there has been a growing consensus that these new hallmarks are not mutually exclusive but rather interdependent. The following review summarizes how founding genetic events for tumorigenesis ultimately increase tumor cell glycolysis, which not only supports the metabolic demands of malignancy but also provides an immunoprotective niche, promoting malignant cell proliferation, maintenance and progression. The mechanisms by which altered metabolism contributes to immune impairment are multifactorial: (1) the metabolic demands of proliferating tumor cells and activated immune cells are similar, thus creating a situation where immune cells may be in competition for key nutrients; (2) the metabolic byproducts of aerobic glycolysis directly inhibit antitumor immunity while promoting a regulatory immune phenotype; and (3) the gene programs associated with the upregulation of glycolysis also result in the generation of immunosuppressive cytokines and metabolites. From this perspective, we shed light on important considerations for the development of new classes of agents targeting cancer metabolism. These types of therapies can impair tumor growth but also pose a significant risk of stifling antitumor immunity.
Collapse
Affiliation(s)
- Bradley I Reinfeld
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tae Kon Kim
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
33
|
Cheon H, Holvey-Bates EG, McGrail DJ, Stark GR. PD-L1 sustains chronic, cancer cell-intrinsic responses to type I interferon, enhancing resistance to DNA damage. Proc Natl Acad Sci U S A 2021; 118:e2112258118. [PMID: 34799452 PMCID: PMC8617513 DOI: 10.1073/pnas.2112258118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Programmed death ligand 1 (PD-L1), an immune-checkpoint protein expressed on cancer cells, also functions independently of the immune system. We found that PD-L1 inhibits the killing of cancer cells in response to DNA damage in an immune-independent manner by suppressing their acute response to type I interferon (IFN; IFN-I). In addition, PD-L1 plays a critical role in sustaining high levels of constitutive expression in cancer cells of a subset of IFN-induced genes, the IFN-related DNA damage resistance signature (IRDS) which, paradoxically, protects cancer cells. The cyclic GMP-AMP synthase-stimulator of the IFN genes (cGAS-STING) pathway is constitutively activated in a subset of cancer cells in the presence of high levels of PD-L1, thus leading to a constitutive, low level of IFN-β expression, which in turn increases IRDS expression. The constitutive low level of IFN-β expression is critical for the survival of cancer cells addicted to self-produced IFN-β. Our study reveals immune-independent functions of PD-L1 that inhibit cytotoxic acute responses to IFN-I and promote protective IRDS expression by supporting protective chronic IFN-I responses, both of which enhance the resistance of cancer cells to DNA damage.
Collapse
Affiliation(s)
- HyeonJoo Cheon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| | - Elise G Holvey-Bates
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Daniel J McGrail
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
34
|
Immunotherapy of cancer tumors with inhibition of PD-1 membrane protein and its ligands interaction. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The identification of the PD-1 receptor by Tasuku Honjo and CTLA-4 by James Ellison marked the beginning of the study of new regulatory pathways activating the immune response. The term “immune checkpoints” was introduced to denote the system of inhibitory mechanisms that include these proteins. The review presents the literature data on the molecular characteristics of the membrane protein PD-1 (programmed cell death 1 receptor) and its role in the regulation of immunity. We consider the PD-1 pathways used of by tumor cells to escape the immune response. The discovery of immune checkpoints made it possible to develop a new type of targeting therapy for cancer. The review presents the results of clinical trials of drugs that block the interaction between the PD-1 and its ligands in various types of cancer. These drugs include nivolumab, pembrolizumab, and avelumab. Studies of these drugs efficacy in patients with various types of cancer localization were conducted within the CheckMate, KEYNOTE and JAVELIN Solid Tumor programs, with some research being in progress. We analyze the results of studying the clinical efficacy of the drugs in patients with melanoma, lung cancer, renal cell cancer, colorectal cancer, classical Hodgkin’s lymphoma, Merkel carcinoma and stomach cancer. Both positive and inconclusive results in the treatment of patients are noted. These data made it possible to identify promising directions for the use of the drugs in certain localizations of the malignant process, as well as to determine the dose and time of their use to obtain an objective positive response to treatment.
Collapse
|
35
|
Elevated Plasma Soluble PD-L1 Levels in Out-of-Hospital Cardiac Arrest Patients. J Clin Med 2021; 10:jcm10184188. [PMID: 34575296 PMCID: PMC8468744 DOI: 10.3390/jcm10184188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: A deregulated immune system has been implicated in the pathogenesis of post-cardiac arrest syndrome (PCAS). A soluble form of programmed cell death-1 (PD-1) ligand (sPD-L1) has been found at increased levels in cancer and sustained inflammation, thereby deregulating immune functions. Here, we aim to study the possible involvement of sPD-L1 in PCAS. Methods: Thirty out-of-hospital cardiac arrest (OHCA) patients consecutively admitted to the ER of Mie University Hospital were prospectively enrolled. Plasma concentrations of sPD-L1 were measured by an enzyme-linked immunosorbent assay in blood samples of all 30 OHCA patients obtained during cardiopulmonary resuscitation (CPR). In 13 patients who achieved return-of-spontaneous-circulation (ROSC), sPD-L1 levels were also measured daily in the ICU. Results: The plasma concentrations of sPD-L1 in OHCA were significantly increased; in fact, to levels as high as those observed in sepsis. sPD-L1 levels during CPR correlated with reduced peripheral lymphocyte counts and increased C-reactive protein levels. Of 13 ROSC patients, 7 cases survived in the ICU for more than 4 days. A longitudinal analysis of sPD-L1 levels in the 7 ROSC cases revealed that sPD-L1 levels occurred in parallel with organ failure. Conclusions: This study suggests that ischemia- reperfusion during CPR may aberrantly activate immune and endothelial cells to release sPD-L1 into circulation, which may play a role in the pathogenesis of immune exhaustion and organ failures associated with PCAS.
Collapse
|
36
|
Vautrot V, Bentayeb H, Causse S, Garrido C, Gobbo J. Tumor-Derived Exosomes: Hidden Players in PD-1/PD-L1 Resistance. Cancers (Basel) 2021; 13:cancers13184537. [PMID: 34572764 PMCID: PMC8467727 DOI: 10.3390/cancers13184537] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Immunotherapies such as anti-PD-1/PD-L1 have garnered increasing importance in cancer therapy, leading to substantial improvements in patient care and survival. However, a certain proportion of patients present tumors that resist these treatments. Exosomes, small vesicles secreted by almost every cell, including tumor cells, have proven to be key actors in this resistance. In this review, we describe the involvement of immune checkpoints and immune modulators in tumor-derived exosomes (TEXs) in the context of cancer. We will focus on the most promising proteins under scrutiny for use in combination with PD-1 blockade therapy in a clinical setting: PD-L1, CTLA-4, TIM-3, CD73/39, LAG-3, and TIGIT. Finally, we will discuss how they can change the game in immunotherapy, notably through their role in immunoresistance and how they can guide therapeutic decisions, as well as the current obstacles in the field. Abstract Recently, immunotherapy has garnered increasing importance in cancer therapy, leading to substantial improvements in patient care and survival. By blocking the immune checkpoints—protein regulators of the immune system—immunotherapy prevents immune tolerance toward tumors and reactivates the immune system, prompting it to fight cancer cell growth and diffusion. A widespread strategy for this is the blockade of the interaction between PD-L1 and PD-1. However, while patients generally respond well to immunotherapy, a certain proportion of patients present tumors that resist these treatments. This portion can be very high in some cancers and hinders cancer curability. For this reason, current efforts are focusing on combining PD-1/PD-L1 immunotherapy with the targeting of other immune checkpoints to counter resistance and achieve better results. Exosomes, small vesicles secreted by almost any cell, including tumor cells, have proven to be key actors in this resistance. The exosomes released by tumor cells spread the immune-suppressive properties of the tumor throughout the tumor microenvironment and participate in establishing metastatic niches. In this review, we will describe immune checkpoints and immune modulators whose presence in tumor-derived exosomes (TEXs) has been established. We will focus on the most promising proteins under scrutiny for use in combination with PD-1 blockade therapy in a clinical setting, such as PD-L1, CTLA-4, TIM-3, CD73/39, LAG-3, and TIGIT. We will explore the immunosuppressive impact of these exosomal proteins on a variety of immune cells. Finally, we will discuss how they can change the game in immunotherapy and guide therapeutic decisions, as well as the current limits of this approach. Depending on the viewpoint, these exosomal proteins may either provide key missing information on tumor growth and resistance mechanisms or they may be the next big challenge to overcome in improving cancer treatment.
Collapse
Affiliation(s)
- Valentin Vautrot
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Hafidha Bentayeb
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Sébastien Causse
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Carmen Garrido
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
| | - Jessica Gobbo
- Research Center UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC, INSERM, F-21000 Dijon, France; (V.V.); (H.B.); (S.C.); (C.G.)
- Unité de Formation et de Recherches Sciences de la Santé, University of Bourgogne Franche-Comté, F-21000 Dijon, France
- Centre Georges-François Leclerc, F-21079 Dijon, France
- Centre Georges-François Leclerc, Early Phase Unit INCa CLIP², Department of Oncology, F-21079 Dijon, France
- Clinical Investigation Center CIC1432, Module Plurithématique, INSERM, F-21079 Dijon, France
- Correspondence:
| |
Collapse
|
37
|
Efficacy and safety of GLS-010 (zimberelimab) in patients with relapsed or refractory classical Hodgkin lymphoma: A multicenter, single-arm, phase II study. Eur J Cancer 2021; 164:117-126. [PMID: 34462189 DOI: 10.1016/j.ejca.2021.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND GLS-010 (zimberelimab) is a novel, fully human, anti-programmed death-1 monoclonal antibody that shows promising efficacy and safety in advanced solid tumors. This trial aimed to evaluate the efficacy and safety of GLS-010 (zimberelimab) in Chinese patients with relapsed or refractory classical Hodgkin lymphoma (r/r-cHL). METHODS This phase II, single-arm, open-label, multicenter clinical trial was conducted at 24 centers in China and enrolled patients with r/r-cHL after two or more lines of therapy. The patients were administered intravenous GLS-010 (zimberelimab) (240 mg, once every 2 weeks) until progression, death, unacceptable toxicity, or consent withdrawal. The primary end-point was the objective response rate assessed by an independent radiology review committee (IRC). This study was registered (NCT03655483). RESULTS Eighty-five patients were enrolled between August 2018 and August 2019. The median follow-up was 15.8 months. Seventy-seven patients (90.6%; 95% confidence interval [CI] 82.3-95.9) had an IRC-assessed objective response. The complete response rate was 32.9% (n = 28). The 12-month progression-free survival and overall survival rates were 78% (95% CI 67.5-85.6) and 99% (95% CI 91.9-99.8), respectively. Treatment-related adverse events (TRAEs) were observed in 92.9% of participants. Grade III or IV TRAEs occurred in 24 (28.2%) of the 85 participants. The most common grade III or IV TRAEs were abnormal hepatic function (5.9%), hyperuricemia (4.7%), decreased neutrophil count (3.5%), and increased weight (3.5%). Only one grade V AE, gastrointestinal infection, occurred. CONCLUSIONS GLS-010 (zimberelimab) appears to be effective and safe for the treatment of Chinese patients with r/r-cHL. Long-term follow-up is required to confirm these clinical benefits.
Collapse
|
38
|
Lee J, Han Y, Wang W, Jo H, Kim H, Kim S, Yang KM, Kim SJ, Dhanasekaran DN, Song YS. Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy. Biomolecules 2021; 11:1107. [PMID: 34439774 PMCID: PMC8393583 DOI: 10.3390/biom11081107] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction of immune checkpoint molecules in the tumor microenvironment reduces the anti-tumor immune response by suppressing the recognition of T cells to tumor cells. Immune checkpoint inhibitor (ICI) therapy is emerging as a promising therapeutic option for cancer treatment. However, modulating the immune system with ICIs still faces obstacles with severe immunogenic side effects and a lack of response against many cancer types. Plant-derived natural compounds offer regulation on various signaling cascades and have been applied for the treatment of multiple diseases, including cancer. Accumulated evidence provides the possibility of efficacy of phytochemicals in combinational with other therapeutic agents of ICIs, effectively modulating immune checkpoint-related signaling molecules. Recently, several phytochemicals have been reported to show the modulatory effects of immune checkpoints in various cancers in in vivo or in vitro models. This review summarizes druggable immune checkpoints and their regulatory factors. In addition, phytochemicals that are capable of suppressing PD-1/PD-L1 binding, the best-studied target of ICI therapy, were comprehensively summarized and classified according to chemical structure subgroups. It may help extend further research on phytochemicals as candidates of combinational adjuvants. Future clinical trials may validate the synergetic effects of preclinically investigated phytochemicals with ICI therapy.
Collapse
Affiliation(s)
- Juwon Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- SK Biopharmaceuticals Co., Ltd., Seongnam-si 13494, Korea
| | - Wenyu Wang
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea
| | - HyunA Jo
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Heeyeon Kim
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94304, USA;
| | - Kyung-Min Yang
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea; (K.-M.Y.); (S.-J.K.)
| | - Seong-Jin Kim
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea; (K.-M.Y.); (S.-J.K.)
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Korea
| | - Danny N. Dhanasekaran
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
39
|
Tumor and microenvironment response but no cytotoxic T-cell activation in classic Hodgkin lymphoma treated with anti-PD1. Blood 2021; 136:2851-2863. [PMID: 33113552 DOI: 10.1182/blood.2020008553] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Classic Hodgkin lymphoma (cHL) is the cancer type most susceptible to antibodies targeting programmed cell death protein 1 (PD1) and is characterized by scarce Hodgkin and Reed-Sternberg cells (HRSCs), perpetuating a unique tumor microenvironment (TME). Although anti-PD1 effects appear to be largely mediated by cytotoxic CD8+ T cells in solid tumors, HRSCs frequently lack major histocompatibility complex expression, and the mechanism of anti-PD1 efficacy in cHL is unclear. Rapid clinical responses and high interim complete response rates to anti-PD1 based first-line treatment were recently reported for patients with early-stage unfavorable cHL treated in the German Hodgkin Study Group phase 2 NIVAHL trial. To investigate the mechanisms underlying this very early response to anti-PD1 treatment, we analyzed paired biopsies and blood samples obtained from NIVAHL patients before and during the first days of nivolumab first-line cHL therapy. Mirroring the rapid clinical response, HRSCs had disappeared from the tissue within days after the first nivolumab application. The TME already shows a reduction in type 1 regulatory T cells and PD-L1+ tumor-associated macrophages at this early time point of treatment. Interestingly, a cytotoxic immune response and a clonal T-cell expansion were not observed in the tumors or peripheral blood. These early changes in the TME were distinct from alterations found in a separate set of cHL biopsies at relapse during anti-PD1 therapy. We identify a unique very early histologic response pattern to anti-PD1 therapy in cHL that is suggestive of withdrawal of prosurvival factors, rather than induction of an adaptive antitumor immune response, as the main mechanism of action.
Collapse
|
40
|
Veldman J, Alsada ZND, van den Berg A, Plattel WJ, Diepstra A, Visser L. Soluble PD-L1 is a promising disease biomarker but does not reflect tissue expression in classic Hodgkin lymphoma. Br J Haematol 2021; 193:506-514. [PMID: 33620088 PMCID: PMC8247981 DOI: 10.1111/bjh.17362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Individually, tissue and soluble markers involved in the programmed cell death protein 1/programmed death-ligand (PD-1/PD-L) axis have been described as biomarkers with clinical value in classical Hodgkin lymphoma (cHL). In the context of the success of immune checkpoint blockade therapy in cHL, it is interesting to discover whether plasma levels of proteins in the PD-1/PD-L axis are a reflection of expression by the corresponding tissue. Paired tissue and plasma samples of cHL patients were collected and analysed for PD-1, PD-L1 and PD-L2 levels. In addition, vascular endothelial growth factor (VEGF) and CD83, molecules regarded to influence the expression of PD-1, PD-L1 and/or PD-L2, were included. PD-L1 was upregulated in the plasma of cHL patients compared to healthy controls and correlated well with several clinical parameters. Strong PD-L1 expression in the tumour microenvironment contributed to high soluble (s)PD-L1 levels, although there was no direct correlation between plasma PD-L1 levels and total expression of PD-L1 in corresponding cHL tissue. Interestingly, we observed a positive correlation between VEGF and PD-1 levels in both tissue and plasma. In conclusion, although PD-L1 is a promising soluble biomarker in cHL, its levels do not reflect the total tissue expression. Future studies focusing on PD-L1 as a predictor for immune checkpoint treatment response, should include both biopsy and plasma samples.
Collapse
Affiliation(s)
- Johanna Veldman
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zainab N D Alsada
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wouter J Plattel
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Zha H, Jiang Y, Wang X, Shang J, Wang N, Yu L, Zhao W, Li Z, An J, Zhang X, Chen H, Zhu B, Li Z. Non-canonical PD-1 signaling in cancer and its potential implications in clinic. J Immunother Cancer 2021; 9:jitc-2020-001230. [PMID: 33593825 PMCID: PMC7888367 DOI: 10.1136/jitc-2020-001230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death 1 (PD-1)-based immunotherapy has revolutionized the treatment of various cancers. However, only a certain group of patients benefit from PD-1 blockade therapy and many patients succumb to hyperprogressive disease. Although, CD8 T cells and conventional T cells are generally considered to be the primary source of PD-1 in cancer, accumulating evidence suggests that other distinct cell types, including B cells, regulatory T cells, natural killer cells, dendritic cells, tumor-associated macrophages and cancer cells, also express PD-1. Hence, the response of patients with cancer to PD-1 blockade therapy is a cumulative effect of anti-PD-1 antibodies acting on a myriad of cell types. Although, the contribution of CD8 T cells to PD-1 blockade therapy has been well-established, recent studies also suggest the involvement of non-canonical PD-1 signaling in blockade therapy. This review discusses the role of non-canonical PD-1 signaling in distinct cell types and explores how the available knowledge can improve PD-1 blockade immunotherapy, particularly in identifying novel biomarkers and combination treatment strategies.
Collapse
Affiliation(s)
- Haoran Zha
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Ying Jiang
- Postgraduate Training Base in Rocket Army Special Medical Center of the PLA, Jinzhou Medical University, Jinzhou, P.R. China
| | - Xi Wang
- Otorhinolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Jin Shang
- Department of Health Service, Guard Bureau of the Joint Staff Department, Central Military Commission of PLA, Beijing, P.R. China
| | - Ning Wang
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Lei Yu
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Wei Zhao
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Zhihua Li
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Juan An
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Xiaochun Zhang
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Huoming Chen
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Zhaoxia Li
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
42
|
|
43
|
Ferrarini I, Rigo A, Visco C, Krampera M, Vinante F. The Evolving Knowledge on T and NK Cells in Classic Hodgkin Lymphoma: Insights into Novel Subsets Populating the Immune Microenvironment. Cancers (Basel) 2020; 12:cancers12123757. [PMID: 33327433 PMCID: PMC7764890 DOI: 10.3390/cancers12123757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary In classic Hodgkin lymphoma, T and NK cells constitute a significant fraction of the reactive microenvironment established by malignant Hodgkin Reed–Sternberg cells. Despite their abundance, T and NK cells remain largely ineffective because of two coordinated levels of immune evasion. The first is based on the acquisition of regulatory properties or exhausted phenotypes that cripple their antitumor activity. The second is represented by their peculiar spatial distribution, with the most immunosuppressive subpopulations lying in close proximity of neoplastic cells. Recent discoveries about the functional role and the spatial orientation of T and NK cells in classic Hodgkin lymphoma are the focus of this review. Abstract Classic Hodgkin lymphoma (cHL) is a unique lymphoid neoplasm characterized by extensive immune infiltrates surrounding rare malignant Hodgkin Reed–Sternberg (HRS) cells. Different subsets of T and NK cells have long been recognized in the cHL microenvironment, yet their distinct contribution to disease pathogenesis has remained enigmatic. Very recently, novel platforms for high dimensional analysis of immune cells, such as single-cell RNA sequencing and mass cytometry, have revealed unanticipated insights into the composition of T- and NK-cell compartments in cHL. Advances in imaging techniques have better defined specific T-helper subpopulations physically interacting with neoplastic cells. In addition, the identification of novel cytotoxic subsets with an exhausted phenotype, typically enriched in cHL milieu, is shedding light on previously unrecognized immune evasion mechanisms. This review examines the immunological features and the functional properties of T and NK subsets recently identified in the cHL microenvironment, highlighting their pathological interplay with HRS cells. We also discuss how this knowledge can be exploited to predict response to immunotherapy and to design novel strategies to improve PD-1 blockade efficacy.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
- Cancer Research and Cell Biology Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-812-8411
| | - Antonella Rigo
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
- Cancer Research and Cell Biology Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Carlo Visco
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
| | - Fabrizio Vinante
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
- Cancer Research and Cell Biology Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
44
|
Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Revisiting the PD-1 pathway. SCIENCE ADVANCES 2020; 6:6/38/eabd2712. [PMID: 32948597 PMCID: PMC7500922 DOI: 10.1126/sciadv.abd2712] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/31/2020] [Indexed: 05/21/2023]
Abstract
Programmed Death-1 (PD-1; CD279) is an inhibitory receptor induced in activated T cells. PD-1 engagement by its ligands, PD-L1 and PD-L2, maintains peripheral tolerance but also compromises anti-tumor immunity. Blocking antibodies against PD-1 or its ligands have revolutionized cancer immunotherapy. However, only a fraction of patients develop durable antitumor responses. Clinical outcomes have reached a plateau without substantial advances by combinatorial approaches. Thus, great interest has recently emerged to investigate, in depth, the mechanisms by which the PD-1 pathway transmits inhibitory signals with the goal to identify molecular targets for improvement of the therapeutic success. These efforts have revealed unpredictable dimensions of the pathway and uncovered novel mechanisms involved in PD-1 and PD-L1 regulation and function. Here, we provide an overview of the recent advances on the mechanistic aspects of the PD-1 pathway and discuss the implications of these new discoveries and the gaps that remain to be filled.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qi Wang
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laura Strauss
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
45
|
Cocco S, Piezzo M, Calabrese A, Cianniello D, Caputo R, Di Lauro V, Fusco G, di Gioia G, Licenziato M, de Laurentiis M. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:E4579. [PMID: 32605126 PMCID: PMC7369987 DOI: 10.3390/ijms21134579] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by aggressive behavior, high risk of distant recurrence, and poor survival. Chemotherapy is still the main therapeutic approach for this subgroup of patients, therefore, progress in the treatment of TNBC remains an important challenge. Data derived from molecular technologies have identified TNBCs with different gene expression and mutation profiles that may help developing targeted therapies. So far, however, only a few of these have shown to improve the prognosis and outcomes of TNBC patients. Robust predictive biomarkers to accelerate clinical progress are needed. Herein, we review prognostic and predictive biomarkers in TNBC, discuss the current evidence supporting their use, and look at the future of this research field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michelino de Laurentiis
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Napoli NA, Italy; (S.C.); (M.P.); (A.C.); (D.C.); (R.C.); (V.D.L.); (G.F.); (G.d.G.); (M.L.)
| |
Collapse
|
46
|
Chocarro de Erauso L, Zuazo M, Arasanz H, Bocanegra A, Hernandez C, Fernandez G, Garcia-Granda MJ, Blanco E, Vera R, Kochan G, Escors D. Resistance to PD-L1/PD-1 Blockade Immunotherapy. A Tumor-Intrinsic or Tumor-Extrinsic Phenomenon? Front Pharmacol 2020; 11:441. [PMID: 32317979 PMCID: PMC7154133 DOI: 10.3389/fphar.2020.00441] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapies targeting immune checkpoints such as programmed cell-death protein 1 (PD-1) and its ligand programmed cell-death 1 ligand 1 (PD-L1), are revolutionizing cancer treatment and transforming the practice of medical oncology. However, despite all the recent successes of this type of immunotherapies, most patients are still refractory and present either intrinsic resistance or acquired resistance. Either way, this is a major clinical problem and one of the most significant challenges in oncology. Therefore, the identification of biomarkers to predict clinical responses or for patient stratification by probability of response has become a clinical necessity. However, the mechanisms leading to PD-L1/PD-1 blockade resistance are still poorly understood. A deeper understanding of the basic mechanisms underlying resistance to cancer immunotherapies will provide insight for further development of novel strategies designed to overcome resistance and treatment failure. Here we discuss some of the major molecular mechanisms of resistance to PD-L1/PD-1 immune checkpoint blockade and argue whether tumor intrinsic or extrinsic factors constitute main determinants of response and resistance.
Collapse
Affiliation(s)
| | - Miren Zuazo
- Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain.,Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain
| | - Carlos Hernandez
- Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain
| | - Gonzalo Fernandez
- Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain.,Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, Pamplona, Spain
| | | | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain
| | - Ruth Vera
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain
| | - David Escors
- Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain
| |
Collapse
|
47
|
Pringle S, van der Vegt B, Wang X, van Bakelen N, Hiltermann TJN, Spijkervet FKL, Vissink A, Kroese FGM, Bootsma H. Lack of Conventional Acinar Cells in Parotid Salivary Gland of Patient Taking an Anti-PD-L1 Immune Checkpoint Inhibitor. Front Oncol 2020; 10:420. [PMID: 32300556 PMCID: PMC7142242 DOI: 10.3389/fonc.2020.00420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Salivary glands (SGs) can be damaged by immune checkpoint inhibitor (ICI) therapy. In patients with ICI-induced SG dysfunction, 60% progress to fulfill classification criteria for primary Sjögren's syndrome (pSS), owing to immune foci in SGs and/or anti-SSA autoantibody positivity. We report the SG tissue analysis of a patient with SG dysfunction after treatment with a programmed death ligand-1 (PD-L1) inhibitor, compared to that of a dry mouth (“sicca”) control and pSS patient. Case presentation: The patient received the PD-L1 inhibitor durvalumab (10 mg/kg, every 2 weeks by intravenous infusion) as adjuvant treatment for stage 3 non-small cell lung carcinoma, following concurrent chemo radiotherapy. At 43 weeks after 21 cycles of Durvalumab, the patient was not capable of producing unstimulated or stimulated parotid gland saliva, and a biopsy was taken. Immunohistochemical analysis showed no classical AQP5+ CK7− acinar cell clusters (CK7 marks intercalated ducts, IDs). In contrast, the parenchyma was dominated by hybrid epithelial “structures” with ID-like morphology, containing a mixture of AQP5+CK7−, AQP5−CK7+, and AQP5+CK7+ cells (30 structures/mm2). These structures were present at lower frequencies in sicca control (2/mm2) and pSS (10/mm2) tissue. Hybrid structures contained proliferating (Ki67+) cells and senescent (p16+) cells. Striated ducts showed no abnormal morphology post PD-L1 treatment, in contrast to pSS tissue. PD-L1 expression was detected in the SG parenchyma following anti-PD-L1 therapy. The SG post-PD-L1 therapy further demonstrated focal lymphocytic sialadentitis, harboring disperse, and focal CD4+ T cell-rich infiltrates. CD8+ T cells were also present. In this patient, these CD4+ and CD8+ T cells were observed in-between and inside hybrid structures. CD20+ B-cells were infrequently detected following PD-L1 blockade, in contrast to their preponderance in pSS SG tissue. Conclusion: This patient lacked conventional SG acinar cells following anti-PD-L1 therapy and demonstrated presence of hybrid intercalated duct-like structures. Understanding which mechanisms and dynamics underpinning this aberrant parenchyma may be crucial to understand how SG dysfunction post ICI therapy, and potentially other affected organs. Furthermore, although the patient treated with anti-PD-L1 antibody examined here fulfills the criteria for pSS and demonstrated focal lymphocytic sialadentitis, the further histopathological characteristics do not resemble pSS.
Collapse
Affiliation(s)
- Sarah Pringle
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Xiaoyan Wang
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nico van Bakelen
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Disease, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fred K L Spijkervet
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
48
|
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 2020; 10:727-742. [PMID: 32266087 PMCID: PMC7136921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023] Open
Abstract
Cancer immunotherapy has been accompanied by promising results over the past few years. Programmed Cell Death Protein 1 (PD-1) plays a vital role in inhibiting immune responses and promoting self-tolerance through modulating the activity of T-cells, activating apoptosis of antigen-specific T cells and inhibiting apoptosis of regulatory T cells. Programmed Cell Death Ligand 1 (PD-L1) is a trans-membrane protein that is considered to be a co-inhibitory factor of the immune response, it can combine with PD-1 to reduce the proliferation of PD-1 positive cells, inhibit their cytokine secretion and induce apoptosis. PD-L1 also plays an important role in various malignancies where it can attenuate the host immune response to tumor cells. Based on these perspectives, PD-1/PD-L1 axis is responsible for cancer immune escape and makes a huge effect on cancer therapy. This review is aimed to summarize the role of PD-1 and PD-L1 in cancer, looking forward to improve the therapy of cancer.
Collapse
Affiliation(s)
- Yanyan Han
- Pathology Department of Dalian Medical UniversityLiaoning 116044, China
| | - Dandan Liu
- The Fourth Medical Center of The General Hospital of The Chinese People’s Liberation ArmyBeijing 100048, China
| | - Lianhong Li
- Pathology Department of Dalian Medical UniversityLiaoning 116044, China
| |
Collapse
|
49
|
Lopci E, Meignan M. Current Evidence on PET Response Assessment to Immunotherapy in Lymphomas. PET Clin 2020; 15:23-34. [DOI: 10.1016/j.cpet.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Merryman RW, LaCasce A. Novel agents and immune invasion in Hodgkin lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:243-248. [PMID: 31808827 PMCID: PMC6913426 DOI: 10.1182/hematology.2019000029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The approval of brentuximab vedotin (BV) and the PD-1 inhibitors nivolumab and pembrolizumab has dramatically improved outcomes for patients with relapsed or refractory (R/R) classic Hodgkin lymphoma (HL). With the goal of increasing long-term disease control rates and decreasing late toxicities, these agents are currently being tested in earlier phases of treatment in combination with chemotherapy agents. In the R/R setting, our expanding understanding of HL's various mechanisms of immune evasion and treatment resistance has spurred a growing number of rationally designed combination trials. Beyond BV and PD-1 blockade, other novel therapies have demonstrated encouraging preliminary results, including targeted agents, like the CD25 antibody-drug conjugate ADCT-301, and cellular therapies, including CD30 chimeric antigen receptor T cells and Epstein-Barr virus (EBV)-directed cytotoxic T cells. These trials, coupled with the rapid development of prognostic and predictive biomarkers, should drive additional breakthroughs that promise safer and more effective therapies for patients with HL in the future.
Collapse
Affiliation(s)
- Reid W Merryman
- Department of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ann LaCasce
- Department of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|