1
|
Kannan A, Jeffrey K, Misbah S, Ramasamy K. Practical guidance on the prevention and management of infection in multiple myeloma patients: A case-based approach. Blood Rev 2025:101287. [PMID: 40240231 DOI: 10.1016/j.blre.2025.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
The risk of infection in multiple myeloma patients is significant, due to immune dysfunction secondary to myeloma, immunosenescence and age-related comorbidities, given the elderly myeloma patient demographic. Newer treatments, despite providing unprecedented improvements in disease-control, have further elevated infection risk. This risk is so substantial that we are approaching a period where a subset of older myeloma patients may be more likely to die secondary to infectious complications imposed by redirected T-cell therapy rather than from myeloma. As a result, it is essential to provide myeloma patients with the appropriate prophylaxis and monitoring against infection. In this review, we discuss disease-related, patient-related and treatment-related reasons for the increased infection risk in myeloma patients, and how to both prevent and manage this risk through creating a dynamic, infection prevention plan that is personalised to the individual patient.
Collapse
Affiliation(s)
- A Kannan
- Medical Sciences Division, Medical Sciences Division, Academic Centre, John Radcliffe Hospital, University of Oxford, Headington OX3 9DU, United Kingdom.
| | - K Jeffrey
- Oxford University Hospitals, John Radcliffe Hospital, NHS Foundation Trust, Oxford OX3 9DU, UK; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK.
| | - S Misbah
- Oxford University Hospitals, John Radcliffe Hospital, NHS Foundation Trust, Oxford OX3 9DU, UK.
| | - K Ramasamy
- Oxford University Hospitals, John Radcliffe Hospital, NHS Foundation Trust, Oxford OX3 9DU, UK; Oxford Translational Myeloma Centre, NDORMS, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
2
|
Raimondi V, Storti P, Vescovini R, Franceschi V, Toscani D, Notarfranchi L, Dalla Palma AB, Iannozzi NT, Minesso S, Scita M, Lungu O, Dessena M, Donofrio G, Giuliani N. Follow-up of humoral and cellular immune responses after the third SARS-CoV-2 vaccine dose in multiple myeloma patients. Front Immunol 2025; 16:1532947. [PMID: 40040701 PMCID: PMC11876378 DOI: 10.3389/fimmu.2025.1532947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025] Open
Abstract
The stability of immune responses to SARS-CoV-2 vaccines, especially concerning the cross-reactive recognition of the Omicron variant, remains incompletely characterized in multiple myeloma (MM) patients. This study evaluated humoral responses in 29 MM patients and cellular responses in a subset of 19 MM patients, specific to Wuhan and Omicron spike proteins, between 16 and 26 weeks following the third vaccine dose. After 26 weeks, we highlighted a significant reduction in the neutralizing antibodies to both spikes and the percentages of IFN-γ+CD107a+ spike-specific CD8+ T cells. On the other hand, patients who underwent an additional stimulation between the two time points, through either a fourth vaccine dose or breakthrough infection, showed a significant increase in neutralizing antibodies and stable levels of cytotoxic CD8+ T cells. Additionally, those with only three doses experienced a higher rate of breakthrough infections during the 32-week follow-up period. These findings underscore the waning of vaccine-induced immunity over time and may help benefit-risk evaluation in vaccination strategies in MM patients.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Sergio Minesso
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Matteo Scita
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy
| | - Oxana Lungu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mattia Dessena
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy
| |
Collapse
|
3
|
Shoumariyeh K, Csernalabics B, Salimi Alizei E, Reinscheid M, Giese S, Ciminski K, Kochs G, Schwemmle M, Lang-Meli J, Maas M, Roehlen N, Karl V, Graeser A, Sogukpinar O, von Metzler I, Grathwohl D, Rasche L, Hebart H, Kull M, Emmerich F, Waller CF, Duyster J, Engelhardt M, Hartmann TN, Bengsch B, Boettler T, Neumann-Haefelin C, Hofmann M, Thimme R, Luxenburger H. Impaired SARS-CoV-2-Specific CD8+ T Cells After Infection or Vaccination but Robust Hybrid T Cell Immunity in Patients with Multiple Myeloma. Vaccines (Basel) 2024; 12:1249. [PMID: 39591152 PMCID: PMC11598869 DOI: 10.3390/vaccines12111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) patients are at high risk of severe infections including COVID-19 due to an immune dysregulation affecting both innate and adaptive immune responses. However, our understanding of the immune responses to infection and vaccination in MM patients is limited. To gain more detailed insights into infection- and vaccine-elicited T cell immunity in MM, we studied the CD8+ T cell response on the single-epitope level in SARS-CoV-2 convalescent and mRNA-vaccinated MM patients. METHODS We compared peptide/MHC class I tetramer-enriched SARS-CoV-2-specific CD8+ T cells and antibody responses in MM patients (convalescent: n = 16, fully vaccinated: n = 5, vaccinated convalescent: n = 5) and healthy controls (HCs) (convalescent: n = 58, fully vaccinated: n = 7) either after infection with SARS-CoV-2 alone, complete mRNA vaccination or SARS-CoV-2 infection and single-shot mRNA vaccination (hybrid immunity). RESULTS MM patients have lower frequencies and a lower proportion of fully functional virus-specific CD8+ T cells compared to HCs, after both SARS-CoV-2 infection and vaccination. CD8+ T cell memory subset distribution in MM patients is skewed towards reduced frequencies of central memory (TCM) T cells and higher frequencies of effector memory 1 (TEM1) T cells. In contrast, the humoral immune response was comparable in both cohorts after viral clearance. Notably, CD8+ T cell frequencies as well as the humoral immune response were improved by a single dose of mRNA vaccine in convalescent MM patients. CONCLUSIONS MM patients have relative immunological deficiencies in SARS-CoV-2 immunity but benefit from hybrid immunity. These findings underline the relevance of vaccinations in this vulnerable patient group.
Collapse
Affiliation(s)
- Khalid Shoumariyeh
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and University Medical Center Freiburg, 79098 Freiburg, Germany
| | - Benedikt Csernalabics
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79098 Freiburg, Germany
| | - Matthias Reinscheid
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79098 Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Julia Lang-Meli
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Michelle Maas
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79098 Freiburg, Germany
| | - Natascha Roehlen
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Vivien Karl
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79098 Freiburg, Germany
| | - Anne Graeser
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Oezlem Sogukpinar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Ivana von Metzler
- Department of Medicine II—Hematology and Oncology, Goethe-University Frankfurt, University Hospital, 60629 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a Partnership Between DKFZ and University Hospital Frankfurt, 60596 Frankfurt am Main, Germany
| | - Denise Grathwohl
- Department of Internal Medicine II, University of Würzburg, 97070 Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University of Würzburg, 97070 Würzburg, Germany
| | - Holger Hebart
- Clinics Ostalb, Stauferklinikum, 73557 Mutlangen, Germany
| | - Miriam Kull
- Department of Internal Medicine III, Ulm University Hospital, 89081 Ulm, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Cornelius Florian Waller
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and University Medical Center Freiburg, 79098 Freiburg, Germany
| | - Monika Engelhardt
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Bertram Bengsch
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and University Medical Center Freiburg, 79098 Freiburg, Germany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79098 Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Hendrik Luxenburger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| |
Collapse
|
4
|
Gressens SB, Enouf V, Créon A, Melica G, Lemonnier F, Dupuis J, El Gnaoui T, Hammoud M, Belhadj K, Haioun C, Le Bouter A, Gallien S, Bras FL, Fourati S. Serological responses against seasonal influenza viruses in patients with multiple myeloma treated or untreated with daratumumab after two doses of tetravalent vaccine. Int J Infect Dis 2024; 146:107108. [PMID: 38795841 DOI: 10.1016/j.ijid.2024.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVES Daratumumab-treated myeloma patients may face increased seasonal influenza risk due to weakened postvaccination immune responses, especially with daratumumab treatment. We aimed to assess humoral responses to boosted influenza vaccination in daratumumab-treated or -untreated patients. METHODS In a single-center study, we evaluated humoral responses (hemagglutination-inhibition assay) one month following a two-injection (4-weeks apart) influenza vaccination (standard dose) in 84 patients with multiple myeloma (40 with daratumumab in the past year). RESULTS Seroprotection rates (titer ≥1/40) after the second vaccine injection were low across vaccinal subtypes (except for A-H3N2): 71.3% (A-H3N2), 19.7% (A-H1N1pdm09), 9.9% (B-Victoria), 11.3% (B-Yamagata). Only A-H3N2 seroprotection rates significantly increased with the booster in daratumumab-treated patients (30% (12/40) after one injection vs 55% (22/40) after the boost; P = 0.01).After propensity score weighting, daratumumab was not significantly associated with a reduced likelihood of seroprotection against at least one vaccine strain (OR 0.65 [95% CI: 0.22-1.88]). CONCLUSION While daratumumab treatment did not lead to a significant reduction in seroprotection rates following influenza vaccination, a booster vaccine injection demonstrated potential benefit for specific strains (A-H3N2) in patients undergoing daratumumab treatment. Nevertheless, the overall low response rates in patients with multiple myeloma necessitates the development of alternative vaccination and prophylaxis strategies.
Collapse
Affiliation(s)
- Simon B Gressens
- Infectious Diseases and Immunology Department, Hôpital Universitaire Henri Mondor, Assistance Publique Hôpitaux de Paris - University Paris Est Créteil, Créteil, France.
| | - Vincent Enouf
- Centre National de Référence des Virus des infections respiratoires, Institut Pasteur, Paris, France
| | - Antoine Créon
- Centre for Research in Epidemiology and Population Health, Paris-Saclay University, Inserm U1018, Versailles Saint-Quentin University, Clinical Epidemiology Team, Villejuif, France
| | - Giovanna Melica
- Infectious Diseases and Immunology Department, Hôpital Universitaire Henri Mondor, Assistance Publique Hôpitaux de Paris - University Paris Est Créteil, Créteil, France
| | - Francois Lemonnier
- AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoïdes, Créteil, France
| | - Jehan Dupuis
- AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoïdes, Créteil, France
| | - Taoufik El Gnaoui
- AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoïdes, Créteil, France
| | - Mohammad Hammoud
- AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoïdes, Créteil, France
| | - Karim Belhadj
- AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoïdes, Créteil, France
| | - Corinne Haioun
- AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoïdes, Créteil, France
| | - Anne Le Bouter
- Department of Prevention, Diagnosis and Treatment of Infections, Hôpital Henri Mondor (AP-HP), Université Paris-Est Créteil, France
| | - Sebastien Gallien
- Infectious Diseases and Immunology Department, Hôpital Universitaire Henri Mondor, Assistance Publique Hôpitaux de Paris - University Paris Est Créteil, Créteil, France; University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Fabien Le Bras
- AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoïdes, Créteil, France
| | - Slim Fourati
- Department of Prevention, Diagnosis and Treatment of Infections, Hôpital Henri Mondor (AP-HP), Université Paris-Est Créteil, France
| |
Collapse
|
5
|
Benhamouda N, Besbes A, Bauer R, Mabrouk N, Gadouas G, Desaint C, Chevrier L, Lefebvre M, Radenne A, Roelens M, Parfait B, Weiskopf D, Sette A, Gruel N, Courbebaisse M, Appay V, Paul S, Gorochov G, Ropers J, Lebbah S, Lelievre JD, Johannes L, Ulmer J, Lebeaux D, Friedlander G, De Lamballerie X, Ravel P, Kieny MP, Batteux F, Durier C, Launay O, Tartour E. Cytokine profile of anti-spike CD4 +T cells predicts humoral and CD8 +T cell responses after anti-SARS-CoV-2 mRNA vaccination. iScience 2024; 27:110441. [PMID: 39104410 PMCID: PMC11298648 DOI: 10.1016/j.isci.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Coordinating immune responses - humoral and cellular - is vital for protection against severe Covid-19. Our study evaluates a multicytokine CD4+T cell signature's predictive for post-vaccinal serological and CD8+T cell responses. A cytokine signature composed of four cytokines (IL-2, TNF-α, IP10, IL-9) excluding IFN-γ, and generated through machine learning, effectively predicted the CD8+T cell response following mRNA-1273 or BNT162b2 vaccine administration. Its applicability extends to murine vaccination models, encompassing diverse immunization routes (such as intranasal) and vaccine platforms (including adjuvanted proteins). Notably, we found correlation between CD4+T lymphocyte-produced IL-21 and the humoral response. Consequently, we propose a test that offers a rapid overview of integrated immune responses. This approach holds particular relevance for scenarios involving immunocompromised patients because they often have low cell counts (lymphopenia) or pandemics. This study also underscores the pivotal role of CD4+T cells during a vaccine response and highlights their value in vaccine immunomonitoring.
Collapse
Affiliation(s)
- Nadine Benhamouda
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Anissa Besbes
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | | | - Nesrine Mabrouk
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Gauthier Gadouas
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Corinne Desaint
- INSERM SC10-US019, Villejuif, France
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Lucie Chevrier
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | - Maeva Lefebvre
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes, Nantes, France
| | - Anne Radenne
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière-Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, APHP, Paris, France
| | - Marie Roelens
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Béatrice Parfait
- Centre de ressources Biologiques, Hôpital Cochin, APHP, Paris, France
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, School of Medicine in Health Sciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, Centre de Recherche, Institut Curie, Université PSL, Paris, France
- Department of Translational Research, Centre de Recherche, Institut Curie, Université PSL, Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital Européen Georges-Pompidou, APHP, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team GIMAP, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, CIC 1408 INSERM Vaccinology, Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Ropers
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Said Lebbah
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Jean-Daniel Lelievre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Groupe Henri-Mondor Albert-Chenevier, APHP, Créteil, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - Jonathan Ulmer
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - David Lebeaux
- Université Paris Cité, Service de maladies infectieuses Hôpital Saint Louis/Lariboisère APHP, INSERM, Paris, France
| | - Gerard Friedlander
- Department of « Croissance et Signalisation », Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Université de Paris Cité, Paris, France
| | - Xavier De Lamballerie
- Unité des Virus Émergents, UVE: Aix-Marseille Université, IRD 190, INSERM 1207 Marseille, France
| | - Patrice Ravel
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Marie Paule Kieny
- Institut National de la Santé et de la Recherche Médicale, INSERM, Paris, France
| | - Fréderic Batteux
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | | | - Odile Launay
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Eric Tartour
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| |
Collapse
|
6
|
Braitsch K, Jeske SD, Stroh J, Hefter M, Platen L, Bachmann Q, Renders L, Protzer U, Götze KS, Herhaus P, Verbeek M, Spinner CD, Bassermann F, Högner M, Haller B, Schneider J, Heider M. Tixagevimab/Cilgavimab for COVID-19 Pre-Exposure Prophylaxis in Hematologic Patients-A Tailored Approach Based on SARS-CoV-2 Vaccine Response. Vaccines (Basel) 2024; 12:871. [PMID: 39203997 PMCID: PMC11359694 DOI: 10.3390/vaccines12080871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Patients with hematologic malignancies still face a significant risk of severe coronavirus disease 2019 (COVID-19). The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-neutralizing monoclonal antibody combination tixagevimab/cilgavimab (TIX/CGB) could be administered to immunocompromised patients for pre-exposure prophylaxis (PrEP) before the emergence of TIX/CGB-resistant COVID-19 Omicron variants. TIX/CGB application could be carried out regardless of the host's immune response to previous active SARS-CoV-2 vaccinations or infections. Because the efficacy of COVID-19 PrEP remains unclear, especially in SARS-CoV-2-seropositive patients, German national guidelines recommended TIX/CGB PrEP only for SARS-CoV-2-seronegative patients in addition to an intensified active vaccination schedule. Having followed these guidelines, we now report the characteristics and outcomes of 54 recipients of TIX/CGB PrEP in SARS-CoV-2-seronegative patients with hematological disease from a German tertiary medical center and compare them to 125 seropositive patients who did not receive any PrEP. While the number of patients with B-cell lymphomas was significantly higher in the seronegative cohort (33 (61%) vs. 18 (14%) cases, p < 0.01), patients with myeloid diseases were significantly more frequent in the seropositive cohort (51 (41%) vs. 5 (9%) cases, p < 0.01). Strikingly, patients who had undergone allogeneic hematopoietic stem cell transplantation were significantly more likely (forty-nine (39%) vs. six (11%) cases, p < 0.01) to be SARS-CoV-2 seropositive. We observed that prophylactic application of TIX/CGB PrEP to a highly vulnerable group of SARS-CoV-2-seronegative patients resulted in a similar number of COVID-19 breakthrough infections compared to the untreated seropositive control group (16 (32%) vs. 39 (36%), p = 0.62) and comparable COVID-19-related outcomes like hospitalization and oxygen requirement throughout an extended follow-up period of 12 months. In conclusion, our results support the tailored approach of administering TIX/CGB PrEP only to SARS-CoV-2-seronegative patients during the COVID-19 pandemic and might provide a rationale for similar strategies during future outbreaks/diseases, especially in times of initial limited availability and/or financial constraints.
Collapse
Affiliation(s)
- Krischan Braitsch
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
| | - Samuel D. Jeske
- TUM School of Medicine and Health, Institute of Virology, University Medical Center, Technical University of Munich, 81675 Munich, Germany
| | - Jacob Stroh
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
| | - Maike Hefter
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
| | - Louise Platen
- TUM School of Medicine and Health, Department of Nephrology, University Medical Center, Technical University of Munich, 81675 Munich, Germany
| | - Quirin Bachmann
- TUM School of Medicine and Health, Department of Nephrology, University Medical Center, Technical University of Munich, 81675 Munich, Germany
| | - Lutz Renders
- TUM School of Medicine and Health, Department of Nephrology, University Medical Center, Technical University of Munich, 81675 Munich, Germany
| | - Ulrike Protzer
- TUM School of Medicine and Health, Institute of Virology, University Medical Center, Technical University of Munich, 81675 Munich, Germany
| | - Katharina S. Götze
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
| | - Peter Herhaus
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
| | - Mareike Verbeek
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
| | - Christoph D. Spinner
- TUM School of Medicine and Health, Department of Internal Medicine II, University Medical Center, Technical University of Munich, 81675 Munich, Germany
| | - Florian Bassermann
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, 81675 Munich, Germany
- German Consortium for Translational Cancer Research (DKTK) Partner Site TUM, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 81675 Munich, Germany
| | - Marion Högner
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
| | - Bernhard Haller
- TUM School of Medicine and Health, Institute of AI and Informatics in Medicine, University Medical Center, Technical University of Munich, 81675 Munich, Germany
| | - Jochen Schneider
- TUM School of Medicine and Health, Department of Internal Medicine II, University Medical Center, Technical University of Munich, 81675 Munich, Germany
| | - Michael Heider
- TUM School of Medicine and Health, Department of Internal Medicine III, University Medical Center, Technical University of Munich, 81675 Munich, Germany (M.H.)
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
7
|
Wagner A, Garner-Spitzer E, Auer C, Gattinger P, Zwazl I, Platzer R, Orola-Taus M, Pichler P, Amman F, Bergthaler A, Huppa JB, Stockinger H, Zielinski CC, Valenta R, Kundi M, Wiedermann U. Breakthrough Infections in SARS-CoV-2-Vaccinated Multiple Myeloma Patients Improve Cross-Protection against Omicron Variants. Vaccines (Basel) 2024; 12:518. [PMID: 38793769 PMCID: PMC11125692 DOI: 10.3390/vaccines12050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Patients with multiple myeloma (MM) are a heterogenous, immunocompromised group with increased risk for COVID-19 morbidity and mortality but impaired responses to primary mRNA SARS-CoV-2 vaccination. The effects of booster vaccinations and breakthrough infections (BTIs) on antibody (Ab) levels and cross-protection to variants of concern (VOCs) are, however, not sufficiently evaluated. Therefore, we analysed humoral and cellular vaccine responses in MM patients stratified according to disease stage/treatment into group (1) monoclonal gammopathy of undetermined significance, (2) after stem cell transplant (SCT) without immunotherapy (IT), (3) after SCT with IT, and (4) progressed MM, and in healthy subjects (prospective cohort study). In contrast to SARS-CoV-2 hu-1-specific Ab levels, Omicron-specific Abs and their cross-neutralisation capacity remained low even after three booster doses in a majority of MM patients. In particular, progressed MM patients receiving anti-CD38 mAb and those after SCT with IT were Ab low responders and showed delayed formation of spike-specific B memory cells. However, MM patients with hybrid immunity (i.e., vaccination and breakthrough infection) had improved cross-neutralisation capacity against VOCs, yet in the absence of severe COVID-19 disease. Our results indicate that MM patients require frequent variant-adapted booster vaccinations and/or changes to other vaccine formulations/platforms, which might have similar immunological effects as BTIs.
Collapse
Affiliation(s)
- Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Erika Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Claudia Auer
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Pia Gattinger
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (P.G.); (R.V.)
| | - Ines Zwazl
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - René Platzer
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
| | - Maria Orola-Taus
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Peter Pichler
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| | - Fabian Amman
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, 1090 Vienna, Austria
| | - Andreas Bergthaler
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, 1090 Vienna, Austria
| | - Johannes B. Huppa
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
| | - Hannes Stockinger
- Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University Vienna, 1090 Vienna, Austria; (R.P.); (F.A.); (A.B.); (J.B.H.); (H.S.)
| | - Christoph C. Zielinski
- Wiener Privatklinik, and Central European Cooperative Oncology Group (CECOG), Central European Cancer Center, 1090 Vienna, Austria;
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (P.G.); (R.V.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Michael Kundi
- Center for Public Health, Medical University Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria; (A.W.); (E.G.-S.); (C.A.); (I.Z.); (M.O.-T.); (P.P.)
| |
Collapse
|
8
|
Garnica M, Crusoe EDQ, Ribeiro G, Bittencourt R, Magalhães RJP, Zanella KR, Hallack Neto AE, Lima JS, Solo CB, Souza EG, Fernandes AM, Maiolino A, Hungria V. COVID-19 in multiple myeloma patients: frequencies and risk factors for hospitalization, ventilatory support, intensive care admission and mortality -cooperative registry from the Grupo Brasileiro de Mieloma Multiplo (GBRAM). Hematol Transfus Cell Ther 2024; 46:153-160. [PMID: 37718131 DOI: 10.1016/j.htct.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION This study evaluated outcomes and risk factors for COVID-19 in 91 Brazilian multiple myeloma (MM) patients between April 2020 and January 2022. RESULTS Of the 91 MM patients diagnosed with COVID-19, 64% had comorbidities and 66% required hospitalization due to COVID-19, with 44% needing ventilatory support and 37% intensive care. Age (OR 2.02; 95%CI 1.02 - 7.7) and hypertension OR 4.5; 95%CI 1.3 - 15.5) were independently associated with hospitalization and certain MM therapies (corticosteroids and monoclonal drugs) were associated with ventilatory support (OR 4.3; 95%CI 1.3 - 14 and OR 5.7; 95%CI 1.8 - 18, respectively), while corticosteroids and immunomodulatory drugs were linked to ICU admission (OR 5.1; 95% CI 1.4 - 18 and OR 3.4; 95%CI 1.1 - 10, respectively). The overall mortality rate was 30%, with the highest rate observed in the ICU (73%). Additionally, the ECOG performance status was linked to increased mortality (OR 11.5; 95%CI 1.9 - 69). The MM treatment was delayed in 63% of patients who recovered from COVID-19. CONCLUSIONS The findings highlight the need for preventing COVID-19 and prioritizing vaccination among MM patients, as they have high rates of severe outcomes in the event of COVID-19. It is also essential to monitor the potential clinical impacts of COVID-19 on MM patients in the long-term. Given the limited resources available in treating MM patients in Brazil during the COVID-19 pandemic, outcomes might be worse in this population.
Collapse
Affiliation(s)
- Marcia Garnica
- Universidade Federal do Rio de Janeiro (UFRJ), Brazil; Tranplant Unit, Complexo Hospitalar de Niterói (DASA - CHN), Brazil.
| | - Edvan De Queiroz Crusoe
- Hospital Universitário Professor Edgar Santos (HUPES), Universidade Federal da Bahia, Brazil
| | | | | | | | | | | | | | | | | | | | - Angelo Maiolino
- Universidade Federal do Rio de Janeiro (UFRJ), Brazil; Américas Centro de Oncologia Integrado, Brazil
| | - Vania Hungria
- Hematology, Santa Casa Medical School, Brazil; São Germano Clinic, Brazil
| |
Collapse
|
9
|
Demel I, Skopal D, Šafránková E, Rozsívalová P, Jindra P, Šrámek J, Turková A, Vydra J, Labská K, Vedrová J, Čerňan M, Szotkowski T, Móciková H, Hynková L, Šušol O, Kováčová I, Belada D, Hájek R. Effectiveness of tixagevimab/cilgavimab in patients with hematological malignancies as a pre-exposure prophylaxis to prevent severe COVID-19: a Czech retrospective multicenter study. Ann Hematol 2024; 103:981-992. [PMID: 38092996 PMCID: PMC10866774 DOI: 10.1007/s00277-023-05572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/28/2023] [Indexed: 02/15/2024]
Abstract
Despite lower virulence, the omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) still poses a relevant threat for immunocompromised patients. A retrospective multicentric study was conducted to evaluate the efficacy of pre-exposure prophylaxis with tixagevimab/cilgavimab (Evusheld) with a 6-month follow-up for preventing severe COVID-19 in adult patients with hematology malignancy. Among the 606 patients in the cohort, 96 (16%) contracted COVID-19 with a median of 98.5 days after Evusheld administration. A total of 75% of patients had asymptomatic or mild severity of COVID-19, while just 25% of patients with SARS-CoV-2 positivity had to be hospitalized. Two patients (2%) died directly, and one patient (1%) in association with COVID-19. Eight patients (1.3%) of every cohort experienced adverse events related to Evusheld, mostly grade 1 and of reversible character. It was found that complete vaccination status or positive seroconversion was not associated with lower risk of COVID-19 infection. Previous treatment with an anti-CD20 monoclonal antibody was associated with higher rates of COVID-19, while previous treatment with anti-CD38 monoclonal antibody was not, as was the case for recipients of hematopoietic stem cell transplantation or CAR-T cell therapy. Presence of other comorbidities was not associated with more severe COVID-19. The results support the growing evidence for Evusheld's efficacy against severe COVID-19 in patients with hematology malignancies.
Collapse
Affiliation(s)
- Ivo Demel
- Department of Haematooncology, University Hospital Ostrava, 17. Listopadu 1790/5, 708 52, Ostrava, Czech Republic.
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - David Skopal
- 4th Department of Internal Medicine - Haematology, Hospital and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Eliška Šafránková
- 4th Department of Internal Medicine - Haematology, Hospital and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Petra Rozsívalová
- Hospital Pharmacy, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Pavel Jindra
- Department of Haematology & Oncology, University Hospital Pilsen, Pilsen, Czech Republic
| | - Jiří Šrámek
- Department of Haematology & Oncology, University Hospital Pilsen, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Pilsen, Czech Republic
| | - Adéla Turková
- Department of Haematology & Oncology, University Hospital Pilsen, Pilsen, Czech Republic
| | - Jan Vydra
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Klára Labská
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Vedrová
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Martin Čerňan
- Department of Haemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Tomáš Szotkowski
- Department of Haemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Heidi Móciková
- Department of Internal Medicine and Haematology, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lenka Hynková
- Department of Internal Medicine and Haematology, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ondrej Šušol
- Department of Haematooncology, University Hospital Ostrava, 17. Listopadu 1790/5, 708 52, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Ingrid Kováčová
- Department of Haematooncology, University Hospital Ostrava, 17. Listopadu 1790/5, 708 52, Ostrava, Czech Republic
| | - David Belada
- 4th Department of Internal Medicine - Haematology, Hospital and Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, University Hospital Ostrava, 17. Listopadu 1790/5, 708 52, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
10
|
Sgherza N, Mestice A, Larocca AMV, Musto P. Antibody Response to Breakthrough SARS-CoV-2 Infection in "Booster" Vaccinated Patients with Multiple Myeloma According to B/T/NK Lymphocyte Absolute Counts and anti-CD38 Treatments. Mediterr J Hematol Infect Dis 2024; 16:e2024022. [PMID: 38468827 PMCID: PMC10927213 DOI: 10.4084/mjhid.2024.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Nicola Sgherza
- Hematology and Stem Cell Transplantation Unit, AOUC Policlinico, Bari, Italy
| | - Anna Mestice
- Hematology and Stem Cell Transplantation Unit, AOUC Policlinico, Bari, Italy
| | | | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, AOUC Policlinico, Bari, Italy
- Department of Precision and Regenerative Medicine and Ionian Area, “Aldo Moro” University School of Medicine, Bari, Italy
| |
Collapse
|
11
|
Verma A, Manojkumar A, Dhasmana A, Tripathi MK, Jaggi M, Chauhan SC, Chauhan DS, Yallapu MM. Recurring SARS-CoV-2 variants: an update on post-pandemic, co-infections and immune response. Nanotheranostics 2024; 8:247-269. [PMID: 38444741 PMCID: PMC10911975 DOI: 10.7150/ntno.91910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
The post-pandemic era following the global spread of the SARS-CoV-2 virus has brought about persistent concerns regarding recurring coinfections. While significant strides in genome mapping, diagnostics, and vaccine development have controlled the pandemic and reduced fatalities, ongoing virus mutations necessitate a deeper exploration of the interplay between SARS-CoV-2 mutations and the host's immune response. Various vaccines, including RNA-based ones like Pfizer and Moderna, viral vector vaccines like Johnson & Johnson and AstraZeneca, and protein subunit vaccines like Novavax, have played critical roles in mitigating the impact of COVID-19. Understanding their strengths and limitations is crucial for tailoring future vaccines to specific variants and individual needs. The intricate relationship between SARS-CoV-2 mutations and the immune response remains a focus of intense research, providing insights into personalized treatment strategies and long-term effects like long-COVID. This article offers an overview of the post-pandemic landscape, highlighting emerging variants, summarizing vaccine platforms, and delving into immunological responses and the phenomenon of long-COVID. By presenting clinical findings, it aims to contribute to the ongoing understanding of COVID-19's progression in the aftermath of the pandemic.
Collapse
Affiliation(s)
- Ashmit Verma
- Divyasampark iHub Roorkee for Devices Materials and Technology Foundation, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
- Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh, 464001, India
| | - Anjali Manojkumar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- Department of Biology, College of Science, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Manish K. Tripathi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Deepak S. Chauhan
- Faculté de Pharmacie, Université de Montréal, Montréal H3C 3J7, QC, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Research Center, Halifax, NS, Canada
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| |
Collapse
|
12
|
Campbell A, Teh B, Mulligan S, Ross DM, Weinkove R, Gilroy N, Gangatharan S, Prince HM, Szer J, Trotman J, Lane S, Dickinson M, Quach H, Enjeti AK, Ku M, Gregory G, Hapgood G, Ho PJ, Cochrane T, Cheah C, Greenwood M, Latimer M, Berkahn L, Wight J, Armytage T, Diamond P, Tam CS, Hamad N. Australia and New Zealand consensus position statement: use of COVID-19 therapeutics in patients with haematological malignancies. Intern Med J 2024; 54:328-336. [PMID: 38146232 DOI: 10.1111/imj.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Despite widespread vaccination rates, we are living with high transmission rates of SARS-CoV-2. Although overall hospitalisation rates are falling, the risk of serious infection remains high for patients who are immunocompromised because of haematological malignancies. In light of the ongoing pandemic and the development of multiple agents for treatment, representatives from the Haematology Society of Australia and New Zealand and infectious diseases specialists have collaborated on this consensus position statement regarding COVID-19 management in patients with haematological disorders. It is our recommendation that both patients with haematological malignancies and treating specialists be educated regarding the preventive and treatment options available and that patients continue to receive adequate vaccinations, keeping in mind the suboptimal vaccine responses that occur in haematology patients, in particular, those with B-cell malignancies and on B-cell-targeting or depleting therapy. Patients with haematological malignancies should receive treatment for COVID-19 in accordance with the severity of their symptoms, but even mild infections should prompt early treatment with antiviral agents. The issue of de-isolation following COVID-19 infection and optimal time to treatment for haematological malignancies is discussed but remains an area with evolving data. This position statement is to be used in conjunction with advice from infectious disease, respiratory and intensive care specialists, and current guidelines from the National COVID-19 Clinical Evidence Taskforce and the New Zealand Ministry of Health and Cancer Agency Te Aho o Te Kahu COVID-19 Guidelines.
Collapse
Affiliation(s)
- Ashlea Campbell
- Department of Haematology, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Benjamin Teh
- National Centre for Infections in Cancer and Department of Infectious Diseases, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | - Stephen Mulligan
- Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - David M Ross
- SA Pathology and Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, South Australia, Australia
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Nicole Gilroy
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Shane Gangatharan
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
- University of Western Australia, Perth, Western Australia, Australia
| | - Henry Miles Prince
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Haematology, Epworth Healthcare, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Jeff Szer
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Judith Trotman
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
- Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Steven Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Hang Quach
- University of Melbourne, Melbourne, Victoria, Australia
- Department of Haematology, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia
- New South Wales Health Pathology, John Hunter Hospital, Newcastle, New South Wales, Australia
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Matthew Ku
- University of Melbourne, Melbourne, Victoria, Australia
- Department of Haematology, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Gareth Gregory
- Department of Haematology, Monash Health, Melbourne, Victoria, Australia
| | - Gregory Hapgood
- Department of Haematology, Princess Alexandra Hospital, Melbourne, Victoria, Australia
| | - Phoebe Joy Ho
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Melbourne, Victoria, Australia
| | - Tara Cochrane
- Department of Haematology, Gold Coast University Hospital, Gold Coast, Queensland, Australia
| | - Chan Cheah
- University of Western Australia, Perth, Western Australia, Australia
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Department of Haematology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia
| | - Matthew Greenwood
- Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Maya Latimer
- Department of Haematology, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Leanne Berkahn
- Department of Haematology, The Auckland City Hospital, Auckland, New Zealand
- University of Auckland, Auckland, New Zealand
| | - Joel Wight
- Townsville University Hospital, Townsville, Queensland, Australia
| | | | - Peter Diamond
- Leukaemia Foundation, Sydney, New South Wales, Australia
| | - Constantine S Tam
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- School of Medicine, University of Notre Dame Australia, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Frerichs KA, Verkleij CPM, Mateos MV, Martin TG, Rodriguez C, Nooka A, Banerjee A, Chastain K, Perales-Puchalt A, Stephenson T, Uhlar C, Kobos R, van der Holt B, Kruyswijk S, Kuipers MT, Groen K, Vishwamitra D, Skerget S, Cortes-Selva D, Doyle M, Zaaijer HL, Zweegman S, Verona RI, van de Donk NWCJ. Teclistamab impairs humoral immunity in patients with heavily pretreated myeloma: importance of immunoglobulin supplementation. Blood Adv 2024; 8:194-206. [PMID: 38052042 PMCID: PMC10787247 DOI: 10.1182/bloodadvances.2023011658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Teclistamab and other B-cell maturation antigen (BCMA)-targeting bispecific antibodies (BsAbs) have substantial activity in patients with heavily pretreated multiple myeloma (MM) but are associated with a high rate of infections. BCMA is also expressed on normal plasma cells and mature B cells, which are essential for the generation of a humoral immune response. The aim of this study was to improve the understanding of the impact of BCMA-targeting BsAbs on humoral immunity. The impact of teclistamab on polyclonal immunoglobulins and B cell counts was evaluated in patients with MM who received once-weekly teclistamab 1.5 mg/kg subcutaneously. Vaccination responses were assessed in a subset of patients. Teclistamabinduced rapid depletion of peripheral blood B cells in patients with MM and eliminated normal plasma cells in ex vivo assays. In addition, teclistamab reduced the levels of polyclonal immunoglobulins (immunoglobulin G [IgG], IgA, IgE, and IgM), without recovery over time while receiving teclistamab therapy. Furthermore, response to vaccines against Streptococcus pneumoniae, Haemophilus influenzae type B, and severe acute respiratory syndrome coronavirus 2 was severely impaired in patients treated with teclistamab compared with vaccination responses observed in patients with newly diagnosed MM or relapsed/refractory MM. Intravenous immunoglobulin (IVIG) use was associated with a significantly lower risk of serious infections among patients treated with teclistamab (cumulative incidence of infections at 6 months: 5.3% with IVIG vs 54.8% with observation only [P < .001]). In conclusion, our data show severe defects in humoral immunity induced by teclistamab, the impact of which can be mitigated by the use of immunoglobulin supplementation. This trial was registered at www.ClinicalTrials.gov as #NCT04557098.
Collapse
Affiliation(s)
- Kristine A Frerichs
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Christie P M Verkleij
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | | | | | - Ajay Nooka
- Winship Cancer Institute, Emory University, Atlanta, GA
| | | | | | | | | | | | - Rachel Kobos
- Janssen Research & Development, Spring House, PA
| | - Bronno van der Holt
- HOVON Foundation, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Sandy Kruyswijk
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maria T Kuipers
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kaz Groen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | | | | | | | - Hans L Zaaijer
- Department of Medical Microbiology, Amsterdam UMC location, Academic Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Fillmore NR, La J, Wu JTY, Corrigan JK, Branch-Elliman W, Monach P, Brophy MT, Do NV, Munshi NC. Even after SARS-CoV-2 booster, there is increased COVID-19 breakthrough infection in patients with plasma cell disorders. Blood Adv 2023; 7:6767-6770. [PMID: 37647600 PMCID: PMC10659994 DOI: 10.1182/bloodadvances.2023011063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Nathanael R. Fillmore
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer La
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Julie Tsu-Yu Wu
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Medicine, Stanford University, Stanford, CA
| | | | - Westyn Branch-Elliman
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Paul Monach
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Mary T. Brophy
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Nhan V. Do
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Nikhil C. Munshi
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
15
|
He Q, Dou X, Liu Y, Wen L, Wang F, Peng N, Gong L, Li Y, Lu Y, Wang L, Zhang X, Huang X, Lu J. Characteristics and outcomes of COVID-19 in patients with plasma cell dyscrasias during the first Omicron wave in Beijing since December 2022: a retrospective study at a National Clinical Research Center for Hematologic Disease. Ann Hematol 2023; 102:2857-2864. [PMID: 37436471 DOI: 10.1007/s00277-023-05350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
The wave of coronavirus disease 2019 (COVID-19) with Omicron variant reached its first peak in Beijing, China in December 2022. We delineated characteristics and factors associated with adverse outcome of patients with plasma cell dyscrasias (PCDs) and COVID-19 during the first month of the wave. A total of 104 patients with a median age of 65 years were included in the study, with multiple myeloma (74%, n=77) and primary Immunoglobulin light chain amyloidosis (16.3%, n=17) being the two most common disease. Overall, severe or critical COVID-19 was developed in 18 (17.3%) patients, with a total all-cause mortality rate of 4.8% (n=5). The vaccination coverage was 41% and 48.1%, before and during the upsurge of Omicron, respectively, calling for the improvement of vaccination in PCD patients. Multivariable analysis revealed that age was the only independent risk factors (OR=1.14, 95% CI: 1.06-1.26, p = 0.002) associated with the development of severe or critical disease. Among patients with severe or critical group, low levels of albumin (HR=18.29; 95% CI: 1.82-183.44, p = 0.013) and high levels of lactic dehydrogenase (LDH) (HR=0.08; 95% CI: 0.01-0.65, p = 0.018) were associated with longer time to negative conversion of COVID-19.
Collapse
Affiliation(s)
- Qing He
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Xuelin Dou
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Yang Liu
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Lei Wen
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Fengrong Wang
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Nan Peng
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Lizhong Gong
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Yue Li
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Yao Lu
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Liru Wang
- Department of Hematology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaohui Zhang
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaojun Huang
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China
| | - Jin Lu
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, 100044, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
16
|
Faizan U, Nair LG, Bou Zerdan M, Jaberi-Douraki M, Anwer F, Raza S. COVID-19 vaccine immune response in patients with plasma cell dyscrasia: a systematic review. Ther Adv Vaccines Immunother 2023; 11:25151355231190497. [PMID: 37645011 PMCID: PMC10461737 DOI: 10.1177/25151355231190497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
Background Patients with plasma cell dyscrasia are at a higher risk of developing a severe Coronavirus-2019 (COVID-19) infection. Here we present a systematic review of clinical studies focusing on the immune response to the COVID-19 vaccination in patients with plasma cell dyscrasia. Objectives This study aims to evaluate the immune response to COVID-19 vaccines in patients with plasma cell dyscrasia and to utilize the results to improve day-to-day practice. Design Systematic Review. Methods Online databases (PubMed, CINAHL, Ovid, and Cochrane) were searched following the preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines. Only articles published in the English language were included. Out of 59 studies, nine articles (seven prospective and two retrospective studies) were included in this systematic review. Abstracts, case reports, and case series were excluded. Results In all nine studies (N = 1429), seroconversion post-vaccination was the primary endpoint. Patients with plasma cell disorders had a lower seroconversion rate compared to healthy vaccinated individuals and the overall percentage of seroconversion ranged between 23% and 95.5%. Among patients on active therapy, lower seroconversion rates were seen on an anti-CD38 agent, ranging from 6.5 up to 100%. In addition, a significantly lower percentage was recorded in older patients, especially in those aged equal to or greater than 65 years and those who have been treated with multiple therapies previously. Only one study reported a statistically significant better humoral response rate with the mRNA vaccine compared to ADZ1222/Ad26.Cov.S. Conclusion Variable seropositive rates are seen in patients with plasma cell dyscrasia. Lower rates are reported in patients on active therapy, anti-CD38 therapy, and elderly patients. Hence, we propose patients with plasma cell dyscrasias should receive periodic boosters to maintain clinically significant levels of antibodies against COVID-19. Registration PROSPERO ID: CRD42023404989.
Collapse
Affiliation(s)
- Unaiza Faizan
- Department of Internal Medicine, Rochester General Hospital, 65 Onondaga Road, Apt B, Rochester, NY 14621, USA
| | - Lakshmi G. Nair
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY, USA
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Suny Upstate Medical University, Syracuse, NY, USA
| | | | - Faiz Anwer
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Shahzad Raza
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
17
|
Zheng R, Mieth K, Bennett C, Miller C, Anderson LD, Chen M, Cao J. Clinical Features and Risk Stratification of Multiple Myeloma Patients with COVID-19. Cancers (Basel) 2023; 15:3598. [PMID: 37509261 PMCID: PMC10377341 DOI: 10.3390/cancers15143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
SARS-CoV-2 infection often results in a more severe COVID-19 disease course in multiple myeloma (MM) patients compared to immunocompetent individuals. The aim of this report is to summarize the clinical features of the MM patients with COVID-19 and the impact of MM treatment on outcomes to guide risk stratification and ensure the appropriate management of the patients. Serological responses in MM patients post-infection or -vaccination are also reviewed to better understand the strategy of prevention. Along with reports from the literature, we presented findings from a retrospective analysis of the clinical characteristics and outcomes of COVID-19 infection in MM patients in our institution. Study population includes 34 MM patients with a median age of 61 (range: 35-82 years) who tested positive for SARS-CoV-2 between 1 March 2020-15 August 2021. We examined the effect of chemotherapy, the benefit of neutralizing monoclonal antibody (Bamlanivimab) and the impact of anti-CD38 antibody (daratumumab) on the hospitalization and mortality of the patients, as well as the efficacy of native antibody production. Our results showed that MM patients have increased hospitalization and mortality rates from COVID-19 compared with that of general population, especially those on active chemotherapy. Advanced age, high-risk myeloma, renal disease, and suboptimal disease control are independent predictors of adverse outcomes. The use of daratumumab does not increase the disease severity/hospitalization or the post-infection/vaccination seropositivity of SARS-CoV-2. The neutralizing antibody decreases overall mortality. Evidence from the current study and previous publications suggest that testing of neutralizing antibody post-SARS-CoV-2 vaccination in MM patients may be needed in reducing COVID-19 risk.
Collapse
Affiliation(s)
- Ruifang Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelsey Mieth
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christen Bennett
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carol Miller
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Larry D Anderson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Hofsink Q, Haggenburg S, Lissenberg-Witte BI, Broers AEC, van Doesum JA, van Binnendijk RS, den Hartog G, Bhoekhan MS, Haverkate NJE, van Meerloo J, Burger JA, Bouhuijs JH, Smits GP, Wouters D, van Leeuwen EMM, Bontkes HJ, Kootstra NA, Vogels-Nooijen S, Rots N, van Beek J, Heemskerk MHM, Groen K, van Meerten T, Mutsaers PGNJ, van Gils MJ, Goorhuis A, Rutten CE, Hazenberg MD, Nijhof IS. Fourth mRNA COVID-19 vaccination in immunocompromised patients with haematological malignancies (COBRA KAI): a cohort study. EClinicalMedicine 2023; 61:102040. [PMID: 37337616 PMCID: PMC10270678 DOI: 10.1016/j.eclinm.2023.102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Background Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration >10 BAU/mL and a previous SARS-CoV-2 infection as N IgG >14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding The Netherlands Organisation for Health Research and Development and Amsterdam UMC.
Collapse
Affiliation(s)
- Quincy Hofsink
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Sabine Haggenburg
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit, Amsterdam, Netherlands
| | - Annoek E C Broers
- Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Jaap A van Doesum
- Department of Haematology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Rob S van Binnendijk
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gerco den Hartog
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Laboratory of Medical Immunology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Michel S Bhoekhan
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Nienke J E Haverkate
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Johan van Meerloo
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Centre Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Judith A Burger
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joey H Bouhuijs
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Gaby P Smits
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Dorine Wouters
- Central Diagnostic Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Ester M M van Leeuwen
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Hetty J Bontkes
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam UMC, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | | | - Nynke Rots
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Kazimierz Groen
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, Netherlands
| | - Tom van Meerten
- Department of Haematology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Pim G N J Mutsaers
- Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Abraham Goorhuis
- Department of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Caroline E Rutten
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Mette D Hazenberg
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Cancer Centre Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
- Department of Haematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Inger S Nijhof
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, Netherlands
- Department of Internal Medicine-Haematology, St. Antonius Hospital, Nieuwegein, Netherlands
| |
Collapse
|
19
|
Fattizzo B, Rampi N, Barcellini W. Vaccinations in hematological patients in the era of target therapies: Lesson learnt from SARS-CoV-2. Blood Rev 2023; 60:101077. [PMID: 37029066 PMCID: PMC10043962 DOI: 10.1016/j.blre.2023.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Novel targeting agents for hematologic diseases often exert on- or off-target immunomodulatory effects, possibly impacting on response to anti-SARS-CoV-2 vaccinations and other vaccines. Agents that primarily affect B cells, particularly anti-CD20 monoclonal antibodies (MoAbs), Bruton tyrosine kinase inhibitors, and anti-CD19 chimeric antigen T-cells, have the strongest impact on seroconversion. JAK2, BCL-2 inhibitors and hypomethylating agents may hamper immunity but show a less prominent effect on humoral response to vaccines. Conversely, vaccine efficacy seems not impaired by anti-myeloma agents such as proteasome inhibitors and immunomodulatory agents, although lower seroconversion rates are observed with anti-CD38 and anti-BCMA MoAbs. Complement inhibitors for complement-mediated hematologic diseases and immunosuppressants used in aplastic anemia do not generally affect seroconversion rate, but the extent of the immune response is reduced under steroids or anti-thymocyte globulin. Vaccination is recommended prior to treatment or as far as possible from anti-CD20 MoAb (at least 6 months). No clearcut indications for interrupting continuous treatment emerged, and booster doses significantly improved seroconversion. Cellular immune response appeared preserved in several settings.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Nicolò Rampi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
20
|
Faustini SE, Hall A, Brown S, Roberts S, Hill H, Stamataki Z, Jenner MW, Owen RG, Pratt G, Cook G, Richter A, Drayson MT, Kaiser MF, Heaney JLJ. Immune responses to COVID-19 booster vaccinations in intensively anti-CD38 antibody treated patients with ultra-high-risk multiple myeloma: results from the Myeloma UK (MUK) nine OPTIMUM trial. Br J Haematol 2023; 201:845-850. [PMID: 36895158 DOI: 10.1111/bjh.18714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
Multiple myeloma (MM) and anti-MM therapy cause profound immunosuppression, leaving patients vulnerable to coronavirus disease 2019 (COVID-19) and other infections. We investigated anti-severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antibodies longitudinally in ultra-high-risk patients with MM receiving risk-adapted, intensive anti-CD38 combined therapy in the Myeloma UK (MUK) nine trial. Despite continuous intensive therapy, seroconversion was achieved in all patients, but required a greater number of vaccinations compared to healthy individuals, highlighting the importance of booster vaccinations in this population. Reassuringly, high antibody cross-reactivity was found with current variants of concern, prior to Omicron subvariant adapted boostering. Multiple booster vaccine doses can provide effective protection from COVID-19, even with intensive anti-CD38 therapy for high-risk MM.
Collapse
Affiliation(s)
- Sian E Faustini
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrew Hall
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sarah Brown
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sadie Roberts
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Harriet Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Matthew W Jenner
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Roger G Owen
- The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Guy Pratt
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gordon Cook
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
- The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Alex Richter
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mark T Drayson
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin F Kaiser
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| | - Jennifer L J Heaney
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Mancuso K, Zamagni E, Solli V, Gabrielli L, Leone M, Pantani L, Rocchi S, Rizzello I, Tacchetti P, Ghibellini S, Favero E, Ursi M, Talarico M, Barbato S, Kanapari A, Bigi F, Puppi M, Terragna C, Borsi E, Martello M, Poletti A, Scatà A, Nepoti G, Ruffini B, Lazzarotto T, Cavo M. Long term follow-up of humoral and cellular response to mRNA-based vaccines for SARS-CoV-2 in patients with active multiple myeloma. Front Oncol 2023; 13:1208741. [PMID: 37305577 PMCID: PMC10249866 DOI: 10.3389/fonc.2023.1208741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Long-term kinetics of antibody (Ab) and cell-mediated immune (CMI) response to full anti-SARS-CoV-2 vaccine schedule and booster doses in Multiple Myeloma (MM) patients remain unclear. We prospectively evaluated Ab and CMI response to mRNA vaccines in 103 SARS-CoV-2-naïve MM patients (median age 66, 1 median prior line of therapy) and 63 health-workers. Anti-S-RBD IgG (Elecsys®assay) were measured before vaccination and after 1 (T1), 3 (T3), 6 (T6), 9 (T9) and 12 (T12) months from second dose (D2) and 1 month after the introduction of the booster dose (T1D3). CMI response (IGRA test) was evaluated at T3 and T12. Fully vaccinated MM patients displayed high seropositivity rate (88.2%), but low CMI response (36.2%). At T6 the median serological titer was halved (p=0.0391) in MM patients and 35% reduced (p=0.0026) in controls. D3 (94 patients) increased the seroconversion rate to 99% in MM patients and the median IgG titer in both groups (up to 2500 U/mL), maintained at T12. 47% of MM patients displayed a positive CMI at T12 and double-negativity for humoral and CMI (9.6% at T3) decreased to 1%. Anti-S-RBD IgG level ≥346 U/mL showed 20-times higher probability of positive CMI response (OR 20.6, p<0.0001). Hematological response ≥CR and ongoing lenalidomide maintenance enhanced response to vaccination, hindered by proteasome inhibitors/anti-CD38 monoclonal antibodies. In conclusion, MM elicited excellent humoral, but insufficient cellular responses to anti-SARS-CoV-2 mRNA vaccines. Third dose improved immunogenicity renewal, even when undetectable after D2. Hematological response and ongoing treatment at vaccination were the main predictive factors of vaccine immunogenicity, emphasizing the role of vaccine response assessment to identify patients requiring salvage approaches.
Collapse
Affiliation(s)
- Katia Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Vincenza Solli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Liliana Gabrielli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marta Leone
- Microbiology, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Lucia Pantani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Serena Rocchi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Ilaria Rizzello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Paola Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Stefano Ghibellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Favero
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Margherita Ursi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Marco Talarico
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Simona Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Ajsi Kanapari
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Flavia Bigi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Michele Puppi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Enrica Borsi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Marina Martello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Andrea Poletti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Alessandra Scatà
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Giuliana Nepoti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Barbara Ruffini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Microbiology, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| |
Collapse
|
22
|
Terpos E, Musto P, Engelhardt M, Delforge M, Cook G, Gay F, van de Donk NWCJ, Ntanasis-Stathopoulos I, Vangsted AJ, Driessen C, Schjesvold F, Cerchione C, Zweegman S, Hajek R, Moreau P, Einsele H, San-Miguel J, Boccadoro M, Dimopoulos MA, Sonneveld P, Ludwig H. Management of patients with multiple myeloma and COVID-19 in the post pandemic era: a consensus paper from the European Myeloma Network (EMN). Leukemia 2023:10.1038/s41375-023-01920-1. [PMID: 37142661 PMCID: PMC10157596 DOI: 10.1038/s41375-023-01920-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
In the post-pandemic COVID-19 period, human activities have returned to normal and COVID-19 cases are usually mild. However, patients with multiple myeloma (MM) present an increased risk for breakthrough infections and severe COVID-19 outcomes, including hospitalization and death. The European Myeloma Network has provided an expert consensus to guide patient management in this era. Vaccination with variant-specific booster vaccines, such as the bivalent vaccine for the ancestral Wuhan strain and the Omicron BA.4/5 strains, is essential as novel strains emerge and become dominant in the community. Boosters should be administered every 6-12 months after the last vaccine shot or documented COVID-19 infection (hybrid immunity). Booster shots seem to overcome the negative effect of anti-CD38 monoclonal antibodies on humoral responses; however, anti-BCMA treatment remains an adverse predictive factor for humoral immune response. Evaluation of the immune response after vaccination may identify a particularly vulnerable subset of patients who may need additional boosters, prophylactic therapies and prevention measures. Pre-exposure prophylaxis with tixagevimab/cilgavimab is not effective against the new dominant variants and thus is no longer recommended. Oral antivirals (nirmatrelvir/ritonavir and molnupiravir) and remdesivir are effective against Omicron subvariants BA.2.12.1, BA.4, BA.5, BQ.1.1 and/or XBB.1.5 and should be administered in MM patients at the time of a positive COVID-19 test or within 5 days post symptoms onset. Convalescent plasma seems to have low value in the post-pandemic era. Prevention measures during SARS-CoV-2 outbreaks, including mask wearing and avoiding crowded places, seem prudent to continue for MM patients.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Pellegrino Musto
- Department of Precision and Regenerative Medicine and Ionian Area, "Aldo Moro" University School of Medicine, Bari, Italy
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, Bari, Italy
| | - Monika Engelhardt
- Department of Hematology and Oncology, Interdisciplinary Cancer Center and Comprehensive Cancer Center Freiburg, University of Freiburg, Faculty of Freiburg, Freiburg, Germany
| | - Michel Delforge
- Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Gordon Cook
- CRUK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds, Leeds, UK
| | - Francesca Gay
- Division of Hematology, University of Turin, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Annette Juul Vangsted
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christoph Driessen
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-Cell Malignancies, University of Oslo, Oslo, Norway
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roman Hajek
- Department of Hemato-Oncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Philippe Moreau
- Department of Hematology, University Hospital Hotel-Dieu, Nantes, France
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Jesus San-Miguel
- Cancer Center Clínica Universidad de Navarra, CCUN, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Cáncer, Pamplona, Spain
| | - Mario Boccadoro
- Division of Hematology, University of Turin, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, First Department of Medicine, Center for Oncology, Hematology, and Palliative Care, Clinic Ottakring, Vienna, Austria
| |
Collapse
|
23
|
Liatsou E, Ntanasis-Stathopoulos I, Lykos S, Ntanasis-Stathopoulos A, Gavriatopoulou M, Psaltopoulou T, Sergentanis TN, Terpos E. Adult Patients with Cancer Have Impaired Humoral Responses to Complete and Booster COVID-19 Vaccination, Especially Those with Hematologic Cancer on Active Treatment: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15082266. [PMID: 37190194 DOI: 10.3390/cancers15082266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The exclusion of patients with cancer in clinical trials evaluating COVID-19 vaccine efficacy and safety, in combination with the high rate of severe infections, highlights the need for optimizing vaccination strategies. The aim of this study was to perform a systematic review and meta-analysis of the published available data from prospective and retrospective cohort studies that included patients with either solid or hematological malignancies according to the PRISMA Guidelines. A literature search was performed in the following databases: Medline (Pubmed), Scopus, Clinicaltrials.gov, EMBASE, CENTRAL and Google Scholar. Overall, 70 studies were included for the first and second vaccine dose and 60 studies for the third dose. The Effect Size (ES) of the seroconversion rate after the first dose was 0.41 (95%CI: 0.33-0.50) for hematological malignancies and 0.56 (95%CI: 0.47-0.64) for solid tumors. The seroconversion rates after the second dose were 0.62 (95%CI: 0.57-0.67) for hematological malignancies and 0.88 (95%CI: 0.82-0.93) for solid tumors. After the third dose, the ES for seroconversion was estimated at 0.63 (95%CI: 0.54-0.72) for hematological cancer and 0.88 (95%CI: 0.75-0.97) for solid tumors. A subgroup analysis was performed to evaluate potential factors affecting immune response. Production of anti-SARS-CoV-2 antibodies was found to be more affected in patients with hematological malignancies, which was attributed to the type of malignancy and treatment with monoclonal antibodies according to the subgroup analyses. Overall, this study highlights that patients with cancer present suboptimal humoral responses after COVID-19 vaccination. Several factors including timing of vaccination in relevance with active therapy, type of therapy, and type of cancer should be considered throughout the immunization process.
Collapse
Affiliation(s)
- Efstathia Liatsou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Stavros Lykos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Theodora Psaltopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Theodoros N Sergentanis
- Department of Public Health Policy, School of Public Health, University of West Attica, 12243 Aigaleo, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
24
|
Lancman G, Moshier E, Cho HJ, Parekh S, Richard S, Richter J, Rodriguez C, Rossi A, Sanchez L, Jagannath S, Chari A. Trial designs and endpoints for immune therapies in multiple myeloma. Am J Hematol 2023; 98 Suppl 2:S35-S45. [PMID: 36200130 DOI: 10.1002/ajh.26753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
Immune therapies, including CAR-T cells, bispecific antibodies, and antibody-drug conjugates, are revolutionizing the treatment of multiple myeloma. In this review, we discuss clinical trial design considerations relevant to immune therapies. We first examine issues pertinent to specific populations, including elderly, patients with renal impairment, high-risk/extramedullary disease, and prior immune therapies. We then highlight trial designs to optimize the selection of dose and schedule, explore rational combination therapies based on preclinical data, and evaluate the nuances of commonly used endpoints. By exploiting their pharmacokinetic/pharmacodynamic profiles and utilizing novel translational insights, we can optimize the use of immune therapies in multiple myeloma.
Collapse
Affiliation(s)
- Guido Lancman
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Erin Moshier
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Hearn Jay Cho
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Samir Parekh
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Shambavi Richard
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Joshua Richter
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Cesar Rodriguez
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Adriana Rossi
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Larysa Sanchez
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Sundar Jagannath
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ajai Chari
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
25
|
Helfgott DC, Racine-Brzostek S, Short KJ, Zhao Z, Christos P, Nino I, Niu T, Contreras J, Ritchie EK, Desai P, Samuel M, Roboz GJ. Immunogenicity of COVID-19 mRNA vaccines in patients with acute myeloid leukemia and myelodysplastic syndrome. Leuk Lymphoma 2023; 64:662-670. [PMID: 36282213 DOI: 10.1080/10428194.2022.2131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immunocompromised patients are susceptible to complications from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The mRNA vaccines BNT162b2 and mRNA-1273 are effective in immunocompetent adults, but have diminished activity in immunocompromised patients. We measured anti-spike SARS-CoV-2 antibody (anti-S) response, avidity, and surrogate neutralizing antibody activity in COVID-19 vaccinated patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Anti-S was induced in 89% of AML and 88% of MDS patients, but median levels were significantly lower than in healthy controls. SARS-CoV-2 antibody avidity and neutralizing activity from AML patients were significantly lower than controls. Antibody avidity was significantly greater in patients after mRNA-1273 versus BNT162b2; there were trends toward higher anti-S levels and greater neutralizing antibody activity after mRNA-1273 vaccination. Patients with AML and MDS are likely to respond to COVID-19 mRNA vaccination, but differences in anti-S levels, avidity, and neutralizing antibody activity may affect clinical outcomes and require further study.
Collapse
Affiliation(s)
- David C Helfgott
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Sabrina Racine-Brzostek
- Department of Pathology and Laboratory Medicine, Translational Research Program, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Kelsey J Short
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Translational Research Program, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Paul Christos
- Department of Biostatistics, Weill Cornell Medicine, New York, NY, USA
| | - Itzel Nino
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Tina Niu
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Jorge Contreras
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Ellen K Ritchie
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Pinkal Desai
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Michael Samuel
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Gail J Roboz
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
26
|
Azeem MI, Nooka AK, Shanmugasundaram U, Cheedarla N, Potdar S, Manalo RJ, Moreno A, Switchenko JM, Cheedarla S, Doxie DB, Radzievski R, Ellis ML, Manning KE, Wali B, Valanparambil RM, Maples KT, Baymon E, Kaufman JL, Hofmeister CC, Joseph NS, Lonial S, Roback JD, Sette A, Ahmed R, Suthar MS, Neish AS, Dhodapkar MV, Dhodapkar KM. Impaired SARS-CoV-2 Variant Neutralization and CD8+ T-cell Responses Following 3 Doses of mRNA Vaccines in Myeloma: Correlation with Breakthrough Infections. Blood Cancer Discov 2023; 4:106-117. [PMID: 36511813 PMCID: PMC9975771 DOI: 10.1158/2643-3230.bcd-22-0173] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with multiple myeloma (MM) mount suboptimal neutralizing antibodies (nAb) following 2 doses of SARS-CoV-2 mRNA vaccines. Currently, circulating SARS-CoV-2 variants of concern (VOC) carry the risk of breakthrough infections. We evaluated immune recognition of current VOC including BA.1, BA.2, and BA.5 in 331 racially representative patients with MM following 2 or 3 doses of mRNA vaccines. The third dose increased nAbs against WA1 in 82%, but against BA variants in only 33% to 44% of patients. Vaccine-induced nAbs correlated with receptor-binding domain (RBD)-specific class-switched memory B cells. Vaccine-induced spike-specific T cells were detected in patients without seroconversion and cross-recognized variant-specific peptides but were predominantly CD4+ T cells. Detailed clinical/immunophenotypic analysis identified features correlating with nAb/B/T-cell responses. Patients who developed breakthrough infections following 3 vaccine doses had lower live-virus nAbs, including against VOC. Patients with MM remain susceptible to SARS-CoV-2 variants following 3 vaccine doses and should be prioritized for emerging approaches to elicit variant-nAb and CD8+ T cells. SIGNIFICANCE Three doses of SARS-CoV-2 mRNA vaccines fail to yield detectable VOC nAbs in nearly 60% and spike-specific CD8+ T cells in >80% of myeloma patients. Patients who develop breakthrough infections following vaccination have low levels of live-virus nAb. This article is highlighted in the In This Issue feature, p. 101.
Collapse
Affiliation(s)
- Maryam I. Azeem
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Ajay K. Nooka
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | | | | | - Sayalee Potdar
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Renee Julia Manalo
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
| | - Alberto Moreno
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | | | | | | | | | - Madison Leigh Ellis
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Kelly E. Manning
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | - Bushra Wali
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
| | | | | | | | - Jonathan L. Kaufman
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Craig C. Hofmeister
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Nisha S. Joseph
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - John D. Roback
- Winship Cancer Institute, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | | | - Rafi Ahmed
- Winship Cancer Institute, Atlanta, Georgia
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
| | - Mehul S. Suthar
- Emory Vaccine Center, Emory University, Atlanta, Georgia
- Emory National Primate Research Center, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew S. Neish
- Winship Cancer Institute, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Madhav V. Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
| | - Kavita M. Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Atlanta, Georgia
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
27
|
Ludwig H, Kumar S. Prevention of infections including vaccination strategies in multiple myeloma. Am J Hematol 2023; 98 Suppl 2:S46-S62. [PMID: 36251367 DOI: 10.1002/ajh.26766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022]
Abstract
Infections are a major cause of morbidity and mortality in multiple myeloma. The increased risk for bacterial and viral infections results mainly from the disease-inherent and treatment-induced immunosuppression. Additional risk factors are older age with immune senescence, T cell depletion, polymorbidity, and male gender. Hence, every effort should be taken to reduce the risk for infections by identifying patients at higher risk for these complications and by implementing prophylactic measures, including chemoprophylaxis and immunization against various relevant pathogens. Here, we review the available evidence and provide recommendations for medical prophylaxis and vaccination in clinical practice.
Collapse
Affiliation(s)
- Heinz Ludwig
- Department of Medicine I, Center for Medical Oncology and Hematology with Outpatient Department and Palliative Care, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Effectiveness and Safety of COVID-19 Vaccination in Patients with Malignant Disease. Vaccines (Basel) 2023; 11:vaccines11020486. [PMID: 36851363 PMCID: PMC9962104 DOI: 10.3390/vaccines11020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
A novel virus named SARS-CoV-2 has caused a worldwide pandemic, resulting in a disastrous impact to the public health since 2019. The disease is much more lethal among patients with malignant disease. Vaccination plays an important role in the prevention of infection and subsequent severe COVID-19. However, the efficacy and safety of vaccines for cancer patients needs further investigation. Encouragingly, there have been important findings deduced from research so far. In this review, an overview of the immunogenicity, effectiveness, and safeness of COVID-19 vaccines in patients with cancer to date is to be shown. We also highlight important questions to consider and directions that could be followed in future research.
Collapse
|
29
|
Palumbo GA, Cambria D, La Spina E, Duminuco A, Laneri A, Longo A, Vetro C, Giallongo S, Romano A, Di Raimondo F, Tibullo D, Giallongo C. Ruxolitinib treatment in myelofibrosis and polycythemia vera causes suboptimal humoral immune response following standard and booster vaccination with BNT162b2 mRNA COVID-19 vaccine. Front Oncol 2023; 13:1117815. [PMID: 36865808 PMCID: PMC9974162 DOI: 10.3389/fonc.2023.1117815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Patients affected by myelofibrosis (MF) or polycythemia vera (PV) and treated with ruxolitinib are at high risk for severe coronavirus disease 2019. Now a vaccine against the virus SARS-CoV-2, which is responsible for this disease, is available. However, sensitivity to vaccines is usually lower in these patients. Moreover, fragile patients were not included in large trials investigating the efficacy of vaccines. Thus, little is known about the efficacy of this approach in this group of patients. In this prospective single-center study, we evaluated 43 patients (30 MF patients and 13 with PV) receiving ruxolitinib as a treatment for their myeloproliferative disease. We measured anti-spike and anti-nucleocapsid IgG against SARS-CoV2 15-30 days after the second and the third BNT162b2 mRNA vaccine booster dose. Patients receiving ruxolitinib showed an impaired antibody response to complete vaccination (2 doses), as 32.5% of patients did not develop any response. After the third booster dose with Comirnaty, results slightly improved, as 80% of these patients produced antibodies above the threshold positivity. However, the quantity of produced antibodies was well below that reached than those reported for healthy individuals. PV patients elicited a better response than patients affected by MF. Thus, different strategies should be considered for this high-risk group of patients.
Collapse
Affiliation(s)
- Giuseppe A. Palumbo
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, Catania, Italy,*Correspondence: Giuseppe A. Palumbo, ; Daniele Tibullo,
| | - Daniela Cambria
- Unità Operativa Complessa di Ematologia con Trapianto di Midollo Osseo, Azienda Ospedaliero-Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Enrico La Spina
- Unità Operativa Complessa di Ematologia con Trapianto di Midollo Osseo, Azienda Ospedaliero-Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, Catania, Italy
| | - Antonio Laneri
- Servizio Immuno-Trasfusionale, Azienda Ospedaliero-Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Anna Longo
- Unità Operativa Complessa di Ematologia con Trapianto di Midollo Osseo, Azienda Ospedaliero-Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Calogero Vetro
- Unità Operativa Complessa di Ematologia con Trapianto di Midollo Osseo, Azienda Ospedaliero-Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Sebastiano Giallongo
- Dipartimento di Chirurgia Generale e Specialità Medico-Chirurgiche, University of Catania, Catania, Italy
| | - Alessandra Romano
- Dipartimento di Chirurgia Generale e Specialità Medico-Chirurgiche, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Dipartimento di Chirurgia Generale e Specialità Medico-Chirurgiche, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, Catania, Italy,*Correspondence: Giuseppe A. Palumbo, ; Daniele Tibullo,
| | - Cesarina Giallongo
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Alexopoulos H, Trougakos IP, Dimopoulos MA, Terpos E. Clinical usefulness of testing for severe acute respiratory syndrome coronavirus 2 antibodies. Eur J Intern Med 2023; 107:7-16. [PMID: 36379820 PMCID: PMC9647045 DOI: 10.1016/j.ejim.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
In the COVID-19 pandemic era, antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has proven an invaluable tool and herein we highlight some of the most useful clinical and/or epidemiological applications of humoral immune responses recording. Anti-spike circulating IgGs and SARS-CoV-2 neutralizing antibodies can serve as predictors of disease progression or disease prevention, whereas anti-nucleocapsid antibodies can help distinguishing infection from vaccination. Also, in the era of immunotherapies we address the validity of anti-SARS-CoV-2 antibody monitoring post-infection and/or vaccination following therapies with the popular anti-CD20 monoclonals, as well as in the context of various cancers or autoimmune conditions such as rheumatoid arthritis and multiple sclerosis. Additional crucial applications include population immunosurveillance, either at the general population or at specific communities such as health workers. Finally, we discuss how testing of antibodies in cerebrospinal fluid can inform us on the neurological complications that often accompany COVID-19.
Collapse
Affiliation(s)
- Harry Alexopoulos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, 11528, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, 11528, Greece.
| |
Collapse
|
31
|
Osaki K, Morishita S, Shimokawa T, Kamimura A, Sekiyama T, Kanehiro C, Shindo A, Shiga K, Kawata E. Physical Therapy for a Multiple Myeloma Patient with COVID-19: A Case Report. Prog Rehabil Med 2023; 8:20230007. [PMID: 36909301 PMCID: PMC9998245 DOI: 10.2490/prm.20230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Background This case report describes the successful management of rehabilitation therapy for a hematological malignancy patient who was receiving chemotherapy and had coronavirus disease 2019 (COVID-19). Case A 76-year-old man receiving chemotherapy for relapsed refractory multiple myeloma (MM) presented to our hospital with fever and dyspnea and was hospitalized with a diagnosis of COVID-19. Physical therapy (20 min/day, 5 days/week) was started on day 6 of hospitalization while the patient was receiving oxygen therapy. Conditioning exercises and movement exercises were performed in an isolation room, and blood counts, fracture susceptibility, and respiratory status were monitored. The patient was severely immunocompromised and required 34 days of isolation due to persistent severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection. Physical function was assessed by manual muscle testing of the lower extremities and by the extent of lower extremity fatigue and dyspnea on exertion, as assessed using the Borg scale. Motor capacity was assessed using the de Morton Mobility Index (DEMMI) score and the Barthel Index (BI). Muscle weakness and severe dyspnea developed 4 days after physical therapy was started. However, physical therapy led to improvements in DEMMI score and BI. The patient was discharged home on day 43 with home medical care. Discussion Careful management of MM and COVID-19 facilitated safe treatment with physical therapy. The patient's physical function improved with a carefully planned physical therapy program. Moreover, the patient required prolonged isolation due to persistent viral shedding; however, as a result of the treatment, which was coordinated between physicians and nurses, the patient could be discharged home.
Collapse
Affiliation(s)
- Keiichi Osaki
- Department of Rehabilitation, Panasonic Health Insurance Organization, Matsushita Memorial Hospital, Osaka, Japan
| | - Shinichiro Morishita
- Department of Physical Therapy, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Tetsuhiro Shimokawa
- Department of Rehabilitation, Panasonic Health Insurance Organization, Matsushita Memorial Hospital, Osaka, Japan
| | - Akiho Kamimura
- Department of Rehabilitation, Panasonic Health Insurance Organization, Matsushita Memorial Hospital, Osaka, Japan
| | - Takashi Sekiyama
- Department of Rehabilitation, Panasonic Health Insurance Organization, Matsushita Memorial Hospital, Osaka, Japan
| | - Chisaki Kanehiro
- Department of Rehabilitation, Panasonic Health Insurance Organization, Matsushita Memorial Hospital, Osaka, Japan
| | - Atsushi Shindo
- Department of Rehabilitation, Panasonic Health Insurance Organization, Matsushita Memorial Hospital, Osaka, Japan
| | - Kensuke Shiga
- Department of General Medicine, Panasonic Health Insurance Organization, Matsushita Memorial Hospital, Osaka, Japan
| | - Eri Kawata
- Department of Hematology, Panasonic Health Insurance Organization, Matsushita Memorial Hospital, Osaka, Japan
| |
Collapse
|
32
|
John L, Miah K, Benner A, Mai EK, Kriegsmann K, Hundemer M, Kaudewitz D, Müller-Tidow C, Jordan K, Goldschmidt H, Raab MS, Giesen N. Impact of novel agent therapies on immune cell subsets and infectious complications in patients with relapsed/refractory multiple myeloma. Front Oncol 2023; 13:1078725. [PMID: 37152008 PMCID: PMC10160457 DOI: 10.3389/fonc.2023.1078725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Infections are a leading cause of morbidity and mortality in patients with multiple myeloma (MM). Methods To examine the effects of modern second-generation novel agent therapy on immune cell subsets, in particular CD4+-T-cells, and infectious complications in patients with relapsed/refractory MM (RRMM), we conducted a prospective cohort study in 112 RRMM patients. Results Substantially decreased CD4+-T-cells <200/µl before initiation of relapse therapy were detected in 27.7% of patients and were associated with a higher number of previous lines of therapy. Relapse therapy with carfilzomib or pomalidomide showed a significant further decrease of CD4+-T-cells. All novel agents led to a significant decrease of B-cell counts. Overall, infections were frequent with 21.3% of patients requiring antibacterial therapy within the first 3 months of relapse therapy, 5.6% requiring hospitalization. However, in the setting of standard antimicrobial prophylaxis in RRMM patients with very low CD4+-T-cells, no significant association of CD4+T-cell count and an increased risk of infection could be detected. Discussion Our findings imply that reduced CD4+-T-cell numbers and infections are common in patients with RRMM. We also demonstrate an association with the number of previous therapies and certain substances suggesting an increased need for personalized prophylaxis strategies for opportunistic infections in this patient cohort.
Collapse
Affiliation(s)
- Lukas John
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, Heidelberg University Hospital, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Lukas John,
| | - Kaya Miah
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elias K. Mai
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Katharina Kriegsmann
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Hundemer
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dorothee Kaudewitz
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Karin Jordan
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Hematology, Oncology and Palliative Medicine, Ernst von Bergmann Hospital, Potsdam, Germany
| | - Hartmut Goldschmidt
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marc S. Raab
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, Heidelberg University Hospital, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicola Giesen
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Ho M, Zanwar S, Buadi FK, Ailawadhi S, Larsen J, Bergsagel L, Binder M, Chanan‐Khan A, Dingli D, Dispenzieri A, Fonseca R, Gertz MA, Gonsalves W, Go RS, Hayman S, Kapoor P, Kourelis T, Lacy MQ, Leung N, Lin Y, Muchtar E, Roy V, Sher T, Warsame R, Fonder A, Hobbs M, Hwa YL, Kyle RA, Rajkumar SV, Kumar S. Risk factors for severe infection and mortality In patients with COVID-19 in patients with multiple myeloma and AL amyloidosis. Am J Hematol 2023; 98:49-55. [PMID: 36226510 PMCID: PMC9874728 DOI: 10.1002/ajh.26762] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023]
Abstract
Patients with multiple myeloma (MM) have a lower efficacy from COVID-19 vaccination and a high rate of mortality from COVID-19 in hospitalized patients. However, the overall rate and severity of COVID-19 infection in all settings (including non-hospitalized patients) and the independent impact of plasma cell-directed therapies on outcomes needs further study. We reviewed the medical records of 9225 patients with MM or AL amyloidosis (AL) seen at Mayo Clinic Rochester, Arizona, and Florida between 12/01/2019 and 8/31/2021 and identified 187 patients with a COVID-19 infection (n = 174 MM, n = 13 AL). The infection rate in our cohort was relatively low at 2% but one-fourth of the COVID-19 infections were severe. Nineteen (10%) patients required intensive care unit (ICU) admission and 5 (3%) patients required mechanical ventilation. The mortality rate among hospitalized patients with COVID-19 was 22% (16/72 patients). Among patients that were fully vaccinated at the time of infection (n = 12), two (17%) developed severe COVID-19 infection, without any COVID-related death. On multivariable analysis, treatment with CD38 antibody within 6 months of COVID-19 infection [Risk ratio (RR) 3.6 (95% CI: 1.2, 10.5), p = .02], cardiac [RR 4.1 (95% CI: 1.3, 12.4), p = .014] or pulmonary comorbidities [RR 3.6 (95% CI 1.1, 11.6); p = .029] were independent predictors for ICU admission. Cardiac comorbidity [RR 2.6 (95% CI: 1.1, 6.5), p = .038] was an independent predictor of mortality whereas MM/AL in remission was associated with lower mortality [RR 0.4 (95% CI: 0.2-0.8); p = .008].
Collapse
Affiliation(s)
- Matthew Ho
- Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Saurabh Zanwar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Francis K. Buadi
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Jeremy Larsen
- Division of HematologyMayo ClinicScottsdaleArizonaUSA
| | | | - Moritz Binder
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - David Dingli
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Angela Dispenzieri
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Morie A. Gertz
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Wilson Gonsalves
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Ronald S. Go
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Suzanne Hayman
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Prashant Kapoor
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Taxiarchis Kourelis
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Martha Q. Lacy
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Nelson Leung
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Yi Lin
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Eli Muchtar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Vivek Roy
- Division of HematologyMayo ClinicJacksonvilleFloridaUSA
| | - Taimur Sher
- Division of HematologyMayo ClinicJacksonvilleFloridaUSA
| | - Rahma Warsame
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Amie Fonder
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Miriam Hobbs
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Yi L. Hwa
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Robert A. Kyle
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - S. Vincent Rajkumar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Shaji Kumar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
34
|
Humoral Immune Response after anti-SARS-CoV-2 Vaccine "Booster" Dose in Patients with Monoclonal Gammopathy of Undetermined Significance (MGUS). Mediterr J Hematol Infect Dis 2023; 15:e2023011. [PMID: 36660353 PMCID: PMC9833302 DOI: 10.4084/mjhid.2023.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Not Applicable.
Collapse
|
35
|
Goldwater MS, Stampfer SD, Sean Regidor B, Bujarski S, Jew S, Chen H, Xu N, Kim C, Kim S, Berenson JR. Third dose of an mRNA COVID-19 vaccine for patients with multiple myeloma. CLINICAL INFECTION IN PRACTICE 2023; 17:100214. [PMID: 36530752 PMCID: PMC9744558 DOI: 10.1016/j.clinpr.2022.100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
We have reported that IgG antibody responses following two mRNA COVID-19 vaccinations are impaired among patients with multiple myeloma (MM). In the current study, sixty-seven patients with MM were tested for anti-spike IgG antibodies 0-60 days prior to their first vaccination, 14-28 days following the second dose, and both before and 14-28 days after their third dose of the mRNA-1273 or BNT162b2 vaccines. After the first two doses, most patients' (93 %) antibody levels declined to ineffective levels (<250 BAU/mL) prior to their third dose (D3). D3 elicited responses in 84 % of patients (61 % full response and 22 % partial response). The third vaccination increased antibody levels (average = 370.4 BAU/mL; range, 1.0-8977.3 BAU/mL) relative to just prior to D3 (average = 25.0 BAU/mL; range, 1.0-683.8 BAU/mL) and achieved higher levels than peak levels after the first two doses (average = 144.8 BAU/mL; range, 1.0-4,284.1 BAU/mL). D3 response positively correlated with mRNA-1273, a > 10-fold change from baseline for the two-dose series, switching from BNT162b2 to mRNA-1273 for D3, and treatment with elotuzumab and an immunomodulatory agent. Lower antibody levels prior to D3, poorer overall response to first two doses, and ruxolitinib or anti-CD38 monoclonal antibody treatment negatively correlated with D3 response. Our results show encouraging activity of the third vaccine, even among patients who failed to respond to the first two vaccinations. The finding of specific factors that predict COVID-19 antibody levels will help advise patients and healthcare professionals on the likelihood of responses to further vaccinations.
Collapse
Affiliation(s)
| | - Samuel D. Stampfer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Sean Bujarski
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, United States
| | - Scott Jew
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, United States
| | - Haiming Chen
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, United States
| | - Ning Xu
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, United States
| | - Clara Kim
- ONCOtherapeutics, West Hollywood, CA, United States
| | - Susanna Kim
- ONCOtherapeutics, West Hollywood, CA, United States
| | - James R. Berenson
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA, United States,Berenson Cancer Center, West Hollywood, CA, United States,ONCOtherapeutics, West Hollywood, CA, United States,Corresponding author at: Institute for Myeloma and Bone Cancer Research, 9201 W. Sunset Blvd., Ste. 300, West Hollywood, CA 90069, United States
| |
Collapse
|
36
|
Storti P, Marchica V, Vescovini R, Franceschi V, Russo L, Notarfranchi L, Raimondi V, Toscani D, Burroughs Garcia J, Costa F, Dalla Palma B, Iannozzi NT, Sammarelli G, Donofrio G, Giuliani N. Immune response to SARS-CoV-2 mRNA vaccination and booster dose in patients with multiple myeloma and monoclonal gammopathies: impact of Omicron variant on the humoral response. Oncoimmunology 2022; 11:2120275. [PMID: 36105747 PMCID: PMC9467550 DOI: 10.1080/2162402x.2022.2120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Luca Russo
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | | | - Vincenzo Raimondi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Federica Costa
- School of Medicine, “Università del Piemonte Orientale”, Novara, Italy
| | | | | | | | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy
| |
Collapse
|
37
|
Chong SH, Burn LA, Cheng TKM, Warr IS, Kenyon JC. A review of COVID vaccines: success against a moving target. Br Med Bull 2022; 144:12-44. [PMID: 36335919 DOI: 10.1093/bmb/ldac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Multiple vaccine platforms against COVID-19 have been developed and found safe and efficacious at a record speed. Although most are effective, they vary in their ease of production and distribution, their potential speed of modification against new variants, and their durability of protection and safety in certain target groups. SOURCES OF DATA Our discussion is based on published reports of clinical trials and analyses from national and global health agencies. AREAS OF AGREEMENT The production of neutralizing antibodies against the viral spike protein is protective, and all vaccines for which published data exist have been found to be effective against severe disease caused by the viral strain they target. AREAS OF CONTROVERSY The degree to which vaccines protect against emerging variants, moderate disease and asymptomatic infection remains somewhat unclear. GROWING POINTS Knowledge of the duration of protection and its decay is increasing, and discussions of booster frequency and target strains are ongoing. AREAS TIMELY FOR DEVELOPING RESEARCH The global effort to combat transmission and disease continues to rely upon intense epidemiological surveillance, whilst real-world data and clinical trials shape vaccination schedules and formulae.
Collapse
Affiliation(s)
- S H Chong
- Homerton College, University of Cambridge, Hills Rd, Cambridge CB2 8PH, UK
| | - L A Burn
- Homerton College, University of Cambridge, Hills Rd, Cambridge CB2 8PH, UK
| | - T K M Cheng
- Homerton College, University of Cambridge, Hills Rd, Cambridge CB2 8PH, UK.,Department of Medicine, Level 5 Addenbrookes Hospital, Hills Rd, Cambridge CB2 0QQ, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - I S Warr
- Homerton College, University of Cambridge, Hills Rd, Cambridge CB2 8PH, UK
| | - J C Kenyon
- Homerton College, University of Cambridge, Hills Rd, Cambridge CB2 8PH, UK.,Department of Medicine, Level 5 Addenbrookes Hospital, Hills Rd, Cambridge CB2 0QQ, UK.,Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
38
|
Low Spike Antibody Levels and Impaired BA.4/5 Neutralization in Patients with Multiple Myeloma or Waldenstrom's Macroglobulinemia after BNT162b2 Booster Vaccination. Cancers (Basel) 2022; 14:cancers14235816. [PMID: 36497296 PMCID: PMC9737406 DOI: 10.3390/cancers14235816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Patients with symptomatic monoclonal gammopathies have impaired humoral responses to COVID-19 vaccination. Their ability to recognize SARS-CoV-2 Omicron variants is of concern. We compared the response to BNT162b2 mRNA vaccinations of patients with multiple myeloma (MM, n = 60) or Waldenstrom's macroglobulinemia (WM, n = 20) with healthy vaccine recipients (n = 37). Patient cohorts on active therapy affecting B cell development had impaired binding and neutralizing antibody (NAb) response rate and magnitude, including several patients lacking responses, even after a 3rd vaccine dose, whereas non-B cell depleting therapies had a lesser effect. In contrast, MM and WM cohorts off-therapy showed increased NAb with a broad response range. ELISA Spike-Receptor Binding Domain (RBD) Ab titers in healthy vaccine recipients and patient cohorts were good predictors of the ability to neutralize not only the original WA1 but also the most divergent Omicron variants BA.4/5. Compared to WA1, significantly lower NAb responses to BA.4/5 were found in all patient cohorts on-therapy. In contrast, the MM and WM cohorts off-therapy showed a higher probability to neutralize BA.4/5 after the 3rd vaccination. Overall, the boost in NAb after the 3rd dose suggests that repeat vaccination of MM and WM patients is beneficial even under active therapy.
Collapse
|
39
|
Second symptomatic COVID-19 infections in patients with an underlying monoclonal gammopathy. Blood Cancer J 2022; 12:160. [PMID: 36424376 PMCID: PMC9686231 DOI: 10.1038/s41408-022-00752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
|
40
|
Wang X, Sima L. Antibody response after vaccination against SARS-CoV-2 in adults with hematological malignancies: a systematic review and meta-analysis. J Infect 2022:S0163-4453(22)00674-0. [PMID: 36417984 PMCID: PMC9675635 DOI: 10.1016/j.jinf.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Vaccines against SARS-CoV-2 have shown remarkable efficacy and thus constitute an important preventive option against coronavirus disease 2019 (COVID-19), especially in fragile patients. We aimed to systematically analyze the outcomes of patients with hematological malignancies who received vaccination and to identify specific groups with differences in outcomes. The primary end point was antibody response after full vaccination (2 doses of mRNA or one dose of vector- based vaccines). We identified 49 studies comprising 11,086 individuals. Overall risk of bias was low. The pooled response for hematological malignancies was 64% (95% confidence interval [CI]: 59-69; I²=93%) versus 96% (95% CI: 92-97; I²=44%) for solid cancer and 98% (95% CI: 96-99; I²=55%) for healthy controls (P<0.001). Outcome was different across hematological malignancies (P<0.001). The pooled response was 50% (95% CI: 43-57; I²=84%) for chronic lymphocytic leukemia, 76% (95% CI: 67-83; I²=92%) for multiple myeloma, 83% (95% CI: 69-91; I²=85%) for myeloproliferative neoplasms, 91% (95% CI: 82-96; I²=12%) for Hodgkin lymphoma, and 58% (95% CI: 44-70; I²=84%) for aggressive and 61% (95% CI: 48-72; I²=85%) for indolent non-Hodgkin lymphoma. The pooled response for allogeneic and autologous hematopoietic cell transplantation was 82% and 83%, respectively. Being in remission and prior COVID-19 showed significantly higher responses. Low pooled response was identified for active treatment (35%), anti-CD20 therapy ≤1 year (15%), Bruton kinase inhibition (23%), venetoclax (26%), ruxolitinib (42%), and chimeric antigen receptor T-cell therapy (42%). Studies on timing, value of boosters, and long-term efficacy are needed. This study is registered with PROSPERO (clinicaltrials gov. Identifier: CRD42021279051).
Collapse
Affiliation(s)
- Xia Wang
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Laozei Sima
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
SARS-CoV-2 Infection Incidence and Outcome Before and After Full Vaccination in Patients With Monoclonal Gammopathy of Undetermined Significance. Hemasphere 2022; 6:e800. [PMID: 36382051 PMCID: PMC9649266 DOI: 10.1097/hs9.0000000000000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
|
42
|
Immunogenicity of SARS-CoV-2 vaccines in patients with multiple myeloma: a systematic review and meta-analysis. Blood Adv 2022; 6:6198-6207. [PMID: 36538342 PMCID: PMC9561400 DOI: 10.1182/bloodadvances.2022008530] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Patients with multiple myeloma (MM) have a diminished immune response to coronavirus disease 2019 (COVID-19) vaccines. Risk factors for an impaired immune response are yet to be determined. We aimed to summarize the COVID-19 vaccine immunogenicity and to identify factors that influence the humoral immune response in patients with MM. Two reviewers independently conducted a literature search in MEDLINE, Embase, ISI Web of Science, Cochrane library, and Clinicaltrials.gov from existence until 24 May 24 2022. (PROSPERO: CRD42021277005). A total of 15 studies were included in the systematic review and 5 were included in the meta-analysis. The average rate (range) of positive functional T-lymphocyte response was 44.2% (34.2%-48.5%) after 2 doses of messenger RNA (mRNA) COVID-19 vaccines. The average antispike antibody response rates (range) were 42.7% (20.8%-88.5%) and 78.2% (55.8%-94.2%) after 1 and 2 doses of mRNA COVID-19 vaccines, respectively. The average neutralizing antibody response rates (range) were 25% (1 study) and 62.7% (53.3%-68.6%) after 1 and 2 doses of mRNA COVID-19 vaccines, respectively. Patients with high-risk cytogenetics or receiving anti-CD38 therapy were less likely to have a humoral immune response with pooled odds ratios of 0.36 (95% confidence interval [95% CI], 0.18, 0.69), I2 = 0% and 0.42 (95% CI, 0.22, 0.79), I2 = 14%, respectively. Patients who were not on active MM treatment were more likely to respond with pooled odds ratio of 2.42 (95% CI, 1.10, 5.33), I2 = 7%. Patients with MM had low rates of humoral and cellular immune responses to the mRNA COVID-19 vaccines. Further studies are needed to determine the optimal doses of vaccines and evaluate the use of monoclonal antibodies for pre-exposure prophylaxis in this population.
Collapse
|
43
|
Howells L, Chan WY, Sanchez E, Horder J, Newrick F, Marfil J, McMillan A, Wisniowski B, Mahmood S, Papanikolaou X, Lee L, Wechalekar A, Popat R, Sive J, Kyriakou C, Xu K, Nastouli E, Yong KL, Rabin N. Patients with plasma cell disorders undergoing autologous stem cell transplant retain their humoral response to COVID-19 vaccination but falling titers emphasize the importance of re-vaccination. Leuk Lymphoma 2022; 63:2489-2493. [PMID: 35570744 DOI: 10.1080/10428194.2022.2074989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Lara Howells
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Wei Yee Chan
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emilie Sanchez
- Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jacqueline Horder
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Fiona Newrick
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jotham Marfil
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Annabel McMillan
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Brendan Wisniowski
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Shameem Mahmood
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Xenofon Papanikolaou
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Lydia Lee
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- Research Department of Haematology, UCL Cancer Institute, London, UK
| | - Ashutosh Wechalekar
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rakesh Popat
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jonathan Sive
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Charalampia Kyriakou
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ke Xu
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Eleni Nastouli
- Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Kwee L Yong
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- Research Department of Haematology, UCL Cancer Institute, London, UK
| | - Neil Rabin
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
44
|
Nakazawa H, Sakai K, Sudo Y, Iwabuchi R, Sakai H, Nishina S, Kawakami T, Kawakami F, Matsuzawa S, Ito T, Kitahara M, Kamijo Y, Umemura T, Ushiki A, Kanai S, Tsuchiya H, Ishida F. Comparative analysis of humoral responses to BNT162b2 vaccine among patients with hematologic disorders and organ transplant recipients. Transpl Immunol 2022; 75:101713. [PMID: 36100196 PMCID: PMC9465495 DOI: 10.1016/j.trim.2022.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022]
Abstract
Vaccination against SARS-COV-2 is considered the most promising approach to curbing the pandemic. Patients with an immunocompromised state, such as those with hematological malignancies and organ transplantation recipients, are considered more susceptible to infection, but these at-risk patients were underrepresented in early clinical trials for vaccination. Although a growing body of studies suggests that the humoral response to COVID-19 vaccination in each of these at-risk groups of patients may be suboptimal in comparison to healthy controls, a clinical and strategic information for the further comparative analysis among these groups is not fully described. The humoral responses after two doses of BNT162b2 vaccination were evaluated in a total of 187 patients either with allogeneic hematopoietic transplantation, with renal transplantation, with anti-CD20 antibody therapy, or with anti-CD38 antibody therapy, and in 66 healthy controls. The early response at one to three months after vaccination was significantly inferior among patients with renal transplantation, patients with anti-CD20 antibody therapy, and patients with anti-CD38 antibody therapy in comparison to healthy control. But the patients with allogeneic hematopoietic transplantation showed early humoral response comparable to healthy control. The late response at 6 months after vaccination was still suboptimal among patients with renal transplantation and patients with anti-CD20 therapy. Among our patient group, renal transplant recipients had the lowest antibody titers after vaccination regardless of timing of vaccination. Patients who had received allogeneic hematopoietic transplantation attained a comparable serological response to the control group especially if they are vaccinated >300 days after transplantation, but the response was suboptimal if the vaccination was within 300 days after transplantation. Our results may provide policy makers with critical information for the further stratification of at-risk groups, helping contribute to a better allocation of resources, including additional booster vaccination.
Collapse
Affiliation(s)
- Hideyuki Nakazawa
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Kaoko Sakai
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuriko Sudo
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryohei Iwabuchi
- Division of Nephrology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hitoshi Sakai
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Sayaka Nishina
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toru Kawakami
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Fumihiro Kawakami
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shuji Matsuzawa
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshiro Ito
- Department of Hematology, National Hospital Organization Matsumoto Medical Center, Matsumoto, Japan
| | - Mari Kitahara
- Department of Hematology, Nagano Red-Cross Hospital, Nagano, Japan
| | - Yuji Kamijo
- Division of Nephrology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- The Second Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsuhito Ushiki
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinichiro Kanai
- Infection Control Room, Shinshu University Hospital, Matsumoto, Japan
| | - Hiroyuki Tsuchiya
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan
| | - Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
45
|
Addo IY, Dadzie FA, Okeke SR, Boadi C, Boadu EF. Duration of immunity following full vaccination against SARS-CoV-2: a systematic review. Arch Public Health 2022; 80:200. [PMID: 36050781 PMCID: PMC9436729 DOI: 10.1186/s13690-022-00935-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background As vaccine roll-out continues across the globe as part of the efforts to protect humanity against SARS-CoV-2, concerns are increasingly shifting to the duration of vaccine-induced immunity. Responses to these concerns are critical in determining if, when, and who will need booster doses following full vaccination against SARS-CoV-2. However, synthesised studies about the durability of vaccine-induced immunity against SARS-CoV-2 are scarce. This systematic review synthesised available global evidence on the duration of immunity following full vaccination against SARS-CoV-2. Methods We searched through Psych Info, Web of Science, Scopus, Google Scholar, PubMed, and WHO COVID-19 databases for relevant studies published before December 2021. Five eligibility criteria were used in scrutinising studies for inclusion. The quality of the included studies was assessed based on Joana Briggs Institute’s (JBI) Critical Appraisal tool and Cochrane’s Risk of Bias tool—version 2 (RoB 2), while the reporting of the results was guided by the Synthesis Without Meta-analysis (SWiM) guidelines. Results Twenty-seven out of the 666 identified studies met the inclusion criteria. The findings showed that vaccine-induced protection against SARS-CoV-2 infections builds rapidly after the first dose of vaccines and peaks within 4 to 42 days after the second dose, before waning begins in subsequent months, typically from 3 to 24 weeks. Vaccine-induced antibody response levels varied across different demographic and population characteristics and were higher in people who reported no underlying health conditions compared to those with immunosuppressed conditions. Conclusions Waning of immunity against SARS-CoV-2 begins as early as the first month after full vaccination and this decline continues till the sixth month when the level of immunity may not be able to provide adequate protection against SARS-CoV-2. While the evidence synthesised in this review could effectively inform and shape vaccine policies regarding the administration of booster doses, more evidence, especially clinical trials, are still needed to ascertain, with greater precision, the exact duration of immunity offered by different vaccine types, across diverse population characteristics, and in different vulnerability parameters. Registration The protocol for this review was pre-registered with the International Prospective Register of Systematic Reviews [PROSPERO] (Registration ID: CRD420212818).
Collapse
|
46
|
Noori M, Azizi S, Abbasi Varaki F, Nejadghaderi SA, Bashash D. A systematic review and meta-analysis of immune response against first and second doses of SARS-CoV-2 vaccines in adult patients with hematological malignancies. Int Immunopharmacol 2022; 110:109046. [PMID: 35843148 PMCID: PMC9273573 DOI: 10.1016/j.intimp.2022.109046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cancer patients particularly those with hematological malignancies are at higher risk of affecting by severe coronavirus disease 2019 (COVID-19). Due to the immunocompromised nature of the disease and the immunosuppressive treatments, they are more likely to develop less antibody protection; therefore, we aimed to evaluate the immunogenicity of COVID-19 vaccines in patients with hematological malignancies. METHODS A comprehensive systematic search was conducted in PubMed, Scopus, and Web of Science databases, as well as Google scholar search engine as of December 10, 2021. Our primary outcomes of interest comprised of estimating the antibody seropositive rate following COVID-19 vaccination in patients with hematological malignancies and to compare it with those who were affected by solid tumors or healthy subjects. The secondary outcomes were to assess the vaccine's immunogenicity based on different treatments, status of the disease, and type of vaccine. After the two-step screening, the data were extracted and the summary measures were calculated using a random-effect model. RESULTS A total of 82 articles recording 13,804 patients with a diagnosis of malignancy were included in the present review. The seropositive rates in patients with hematological malignancies after first and second vaccine doses were 30.0% (95% confidence interval (95%CI): 11.9-52.0) and 62.3% (95%CI 56.0-68.5), respectively. These patients were less likely to develop antibody response as compared to cases with solid tumors (RR 0.73, 95%CI 0.67-0.79) and healthy subjects (RR 0.62, 95%CI 0.54-0.71) following complete immunization. Chronic lymphocytic leukemia (CLL) patients had the lowest response rate among all subtypes of hematological malignancies (first dose: 22.0%, 95%CI 13.5-31.8 and second dose: 47.8%, 95%CI 41.2-54.4). Besides, anti-CD20 therapies (5.7%, 95%CI 2.0-10.6) and bruton's tyrosine kinase inhibitors (26.8%, 95%CI 16.9-37.8) represented the lowest seropositiveness post first and second doses, respectively. Notably, patients who were in active status of disease showed lower antibody detection rate compared to those on remission status (RR 0.87, 95%CI 0.76-0.99). Furthermore, lower rate of seropositivity was found in patients received BNT162.b2 compared to ones who received mRNA-1273 (RR 0.89, 95%CI 0.79-0.99). CONCLUSION Our findings highlight the substantially low rate of seroprotection in patients with hematological malignancies with a wide range of rates among disease subgroups and different treatments; further highlighting the fact that booster doses might be acquired for these patients to improve immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Azizi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhan Abbasi Varaki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Chung A, Banbury B, Vignali M, Huang CY, Asoori S, Johnson R, Kurtz T, Arora S, Wong SW, Shah N, Martin TG, Wolf JL. Antibody and T-cell responses by ultra-deep T-cell receptor immunosequencing after COVID-19 vaccination in patients with plasma cell dyscrasias. Br J Haematol 2022; 199:520-528. [PMID: 36041779 PMCID: PMC9538250 DOI: 10.1111/bjh.18434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
We investigated antibody and coronavirus disease 2019 (COVID‐19)‐specific T‐cell mediated responses via ultra‐deep immunosequencing of the T‐cell receptor (TCR) repertoire in patients with plasma cell dyscrasias (PCD). We identified 364 patients with PCD who underwent spike antibody testing using commercially available spike‐receptor binding domain immunoglobulin G antibodies ≥2 weeks after completion of the initial two doses of mRNA vaccines or one dose of JNJ‐78436735. A total of 56 patients underwent TCR immunosequencing after vaccination. Overall, 86% tested within 6 months of vaccination had detectable spike antibodies. Increasing age, use of anti‐CD38 or anti‐B‐cell maturation antigen therapy, and receipt of BNT162b2 (vs. mRNA‐1273) were associated with lower antibody titres. We observed an increased proportion of TCRs associated with surface glycoprotein regions of the COVID‐19 genome after vaccination, consistent with spike‐specific T‐cell responses. The median spike‐specific T‐cell breadth was 3.11 × 10−5, comparable to those in healthy populations after vaccination. Although spike‐specific T‐cell breadth correlated with antibody titres, patients without antibody responses also demonstrated spike‐specific T‐cell responses. Patients receiving mRNA‐1273 had higher median spike‐specific T‐cell breadth than those receiving BNT162b2 (p = 0.01). Although patients with PCD are often immunocompromised due to underlying disease and treatments, COVID‐19 vaccination can still elicit humoral and T‐cell responses and remain an important intervention in this patient population.
Collapse
Affiliation(s)
- Alfred Chung
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | | | | | - Chiung-Yu Huang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Sireesha Asoori
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Rachel Johnson
- American University of the Caribbean School of Medicine, St. Maarten
| | - Theodore Kurtz
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Shagun Arora
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Sandy W Wong
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Nina Shah
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Thomas G Martin
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey L Wolf
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
48
|
La J, Wu JTY, Branch-Elliman W, Huhmann L, Han SS, Brophy M, Do NV, Lin AY, Fillmore NR, Munshi NC. Increased COVID-19 breakthrough infection risk in patients with plasma cell disorders. Blood 2022; 140:782-785. [PMID: 35605185 PMCID: PMC9130311 DOI: 10.1182/blood.2022016317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/30/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jennifer La
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
| | - Julie Tsu-Yu Wu
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Division of Oncology, VA Palo Alto Healthcare System; Palo Alto, CA
| | - Westyn Branch-Elliman
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
- VA Boston Center for Healthcare Organization and Implementation Research (CHOIR), Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Linden Huhmann
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
| | - Summer S Han
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, CA
| | - Mary Brophy
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Nhan V Do
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
- Section of General Internal Medicine, Boston University School of Medicine, Boston, MA
| | - Albert Y Lin
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Division of Oncology, VA Palo Alto Healthcare System; Palo Alto, CA
| | - Nathanael R Fillmore
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
| | - Nikhil C Munshi
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; and
- Section of Hematology/Oncology, VA Boston Healthcare System, Boston, MA
| |
Collapse
|
49
|
Abella E, Trigueros M, Pradenas E, Muñoz-Lopez F, Garcia-Pallarols F, Ben Azaiz Ben Lahsen R, Trinité B, Urrea V, Marfil S, Rovirosa C, Puig T, Grau E, Chamorro A, Toledo R, Font M, Palacín D, Lopez-Segui F, Carrillo J, Prat N, Mateu L, Clotet B, Blanco J, Massanella M. Efficacy of SARS-CoV-2 vaccination in patients with monoclonal gammopathies: A cross sectional study. Life Sci Alliance 2022; 5:e202201479. [PMID: 35961779 PMCID: PMC9375155 DOI: 10.26508/lsa.202201479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 vaccination is the most effective strategy to protect individuals with haematologic malignancies against severe COVID-19, while eliciting limited vaccine responses. We characterized the humoral responses following 3 mo after mRNA-based vaccines in individuals at different plasma-cell disease stages: monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma on first-line therapy (MM), compared with a healthy population. Plasma samples from uninfected MM patients showed lower SARS-CoV-2-specific antibody levels and neutralization capacity compared with MGUS, SMM, and healthy individuals. Importantly, COVID-19 recovered MM individuals presented significantly higher plasma neutralization capacity compared with their uninfected counterparts, highlighting that hybrid immunity elicit stronger immunity even in this immunocompromised population. No differences in the vaccine-induced humoral responses were observed between uninfected MGUS, SMM and healthy individuals. In conclusion, MGUS and SMM patients could be SARS-CoV-2 vaccinated following the vaccine recommendations for the general population, whereas a tailored monitoring of the vaccine-induced immune responses should be considered in uninfected MM patients.
Collapse
Affiliation(s)
- Eugenia Abella
- Department of Hematology, Hospital del Mar-IMIM, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
| | - Macedonia Trigueros
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Edwards Pradenas
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Francisco Muñoz-Lopez
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | | | | | - Benjamin Trinité
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Victor Urrea
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Silvia Marfil
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Carla Rovirosa
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Teresa Puig
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Eulàlia Grau
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Anna Chamorro
- Fundació Lluita Contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Ruth Toledo
- Fundació Lluita Contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Marta Font
- Fundació Lluita Contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Dolors Palacín
- Direcció d'Atenció Primària-Metropolitana Nord, Sabadell, Spain
| | - Francesc Lopez-Segui
- Fundació Lluita Contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Jorge Carrillo
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, Madrid, Spain
| | - Nuria Prat
- Direcció d'Atenció Primària-Metropolitana Nord, Sabadell, Spain
| | - Lourdes Mateu
- Fundació Lluita Contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Bonaventura Clotet
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Fundació Lluita Contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
| | - Julià Blanco
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Badalona Barcelona, Spain
| | - Marta Massanella
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, Madrid, Spain
| |
Collapse
|
50
|
Mehrabi Nejad MM, Shobeiri P, Dehghanbanadaki H, Tabary M, Aryannejad A, Haji Ghadery A, Shabani M, Moosaie F, SeyedAlinaghi S, Rezaei N. Seroconversion following the first, second, and third dose of SARS-CoV-2 vaccines in immunocompromised population: a systematic review and meta-analysis. Virol J 2022; 19:132. [PMID: 35941646 PMCID: PMC9358061 DOI: 10.1186/s12985-022-01858-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Immunocompromised (IC) patients are at higher risk of more severe COVID-19 infections than the general population. Special considerations should be dedicated to such patients. We aimed to investigate the efficacy of COVID-19 vaccines based on the vaccine type and etiology as well as the necessity of booster dose in this high-risk population. MATERIALS AND METHODS We searched PubMed, Web of Science, and Scopus databases for observational studies published between June 1st, 2020, and September 1st, 2021, which investigated the seroconversion after COVID-19 vaccine administration in adult patients with IC conditions. For investigation of sources of heterogeneity, subgroup analysis and sensitivity analysis were conducted. Statistical analysis was performed using R software. RESULTS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, we included 81 articles in the meta-analysis. The overall crude prevalence of seroconversion after the first (n: 7460), second (n: 13,181), and third (n: 909, all population were transplant patients with mRNA vaccine administration) dose administration was 26.17% (95% CI 19.01%, 33.99%, I2 = 97.1%), 57.11% (95% CI: 49.22%, 64.83%, I2 = 98.4%), and 48.65% (95% CI: 34.63%, 62.79%, I2 = 94.4%). Despite the relatively same immunogenicity of mRNA and vector-based vaccines after the first dose, the mRNA vaccines induced higher immunity after the second dose. Regarding the etiologic factor, transplant patients were less likely to develop immunity after both first and second dose rather than patients with malignancy (17.0% vs 37.0% after first dose, P = 0.02; 38.3% vs 72.1% after second dose, P < 0.001) or autoimmune disease (17.0% vs 36.4%, P = 0.04; 38.3% vs 80.2%, P < 0.001). To evaluate the efficacy of the third dose, we observed an increasing trend in transplant patients after the first (17.0%), second (38.3%), and third (48.6%) dose. CONCLUSION The rising pattern of seroconversion after boosting tends to be promising. In this case, more attention should be devoted to transplant patients who possess the lowest response rate.
Collapse
Affiliation(s)
- Mohammad-Mehdi Mehrabi Nejad
- Department of Radiology, School of Medicine, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Qarib St, Keshavarz Blvd, Tehran, 1419733141, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hojat Dehghanbanadaki
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Armin Aryannejad
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Haji Ghadery
- Department of Radiology, School of Medicine, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahya Shabani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moosaie
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Keshavarz Blvd., Tehran, 1419733141, Iran.
| | - Nima Rezaei
- Department of Immunology, Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Qarib St, Keshavarz Blvd, Tehran, 1419733141, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|