1
|
Cheng Y, Li JR, Yu H, Li S, Tychhon B, Cheng C, Weng YL. Perfluoroalkyl substance pollutants disrupt microglia function and trigger transcriptional and epigenomic changes. Toxicology 2025; 517:154198. [PMID: 40419075 DOI: 10.1016/j.tox.2025.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/22/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals", are widely utilized in various industries and consumer products worldwide. Their exposure has been associated with numerous diseases and malignancies, including neurodevelopmental and neurodegenerative disorders. However, the molecular mechanisms underlying PFAS-induced adverse effects on the central nervous system (CNS) remain poorly understood. In this study, we investigated the transcriptomic and epigenetic changes in microglia exposed to perfluorooctane sulfonate (PFOS), a prevalent PFAS compound. Our findings demonstrate that 24-hour PFOS exposure (25 and 50 µM) disrupts the microglial transcriptome and compromises their homeostatic state, marked by increased inflammation and impaired actin cytoskeleton remodeling. Comparative analysis with in vivo transcriptional states revealed that PFOS-exposed microglia exhibit gene expression profiles resembling those of aged microglia. Additionally, profiling of active chromatin regions uncovered significant alterations in the H3K27ac landscape in PFOS-exposed microglia. Notably, these epigenetic disruptions persisted even after PFOS withdrawal, with a subset of H3K27ac-enriched regions remaining altered, suggesting the presence of lasting epigenetic scars. Furthermore, transcription factor analysis implicated the AP-1 and TEAD families as potential upstream regulators connecting the altered chromatin landscape to transcriptomic changes. Collectively, these findings provide mechanistic insights into how PFOS exposure disrupts microglial function and highlight its potential role in exacerbating neurodegenerative processes.
Collapse
Affiliation(s)
- Yating Cheng
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hangjin Yu
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Shuang Li
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Boranai Tychhon
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Lan Weng
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Wang Q, Zhang Y, Ma K, Lin P, Wang Y, Wang R, Li H, Li Z, Wang G. Plexin B2 in physiology and pathophysiology of the central nervous system. Int Immunopharmacol 2025; 155:114627. [PMID: 40220620 DOI: 10.1016/j.intimp.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
The Plexin protein family was initially found in 1995, comprising subfamilies from Plexin A to Plexin D. Plexin B2, a member of the Plexin subfamily, has widespread expression in many human organs and tissues, particularly in the nervous system where expression levels are significantly heightened. The biological roles of Plexin B2 are mostly determined by its protein structure and functional domains. These domains regulate the binding selectivity and affinity for ligands. Ligand binding activates signal transduction pathways, resulting in regulatory effects on several biological processes. This includes managing brain growth and change, keeping angiogenesis and vascular homeostasis in check, and preventing the start, growth, and metastasis of cancer. Plexin B2 has also been associated with the onset of many nervous system illnesses. Plexin B2 aids in the invasion and spread of malignant cells, facilitates nerve healing following spinal cord damage, and plays a role in the etiology of schizophrenia. This article thoroughly examines the existing research on Plexin B2 and its importance in central nervous system biology. Simultaneously, it investigates the regulatory function of Plexin B2 across many cell types in the central nervous system, specifically neural stem cells, neurons, microglia, and astrocytes. This study examines the current knowledge of Plexin B2's role in central nervous system diseases, including schizophrenia, spinal cord injury, neuroblastoma, and fear memory. Overall, the prospects for the clinical translation of Plexin B2 are promising. However, challenges related to specificity and drug delivery must be addressed. Future research could explore the integration of nanodrug delivery systems to enhance the clinical application of Plexin B2-targeted therapies.
Collapse
Affiliation(s)
- Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Kaixuan Ma
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Peng Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Ran Wang
- School of Pharmacy, Harbin Medical University, Daqing, Heilongjiang 163319, China
| | - He Li
- Department of Parasitology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Guangtian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China; Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
3
|
Yang TT, Liu Y, Shao YT, Li L, Pan DD, Wang T, Jiang ZZ, Li BJ, Qian ST, Yan M, Zhu X, Heng C, Liu JJ, Lu Q, Yin XX. Activation of MST1 protects filtration barrier integrity of diabetic kidney disease in mice through restoring the tight junctions of glomerular endothelial cells. Acta Pharmacol Sin 2025; 46:1345-1360. [PMID: 39643641 PMCID: PMC12032108 DOI: 10.1038/s41401-024-01421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024]
Abstract
As a pathological feature of diabetic kidney disease (DKD), dysregulated glomerular filtration barrier function could lead to the increased levels of proteinuria. The integrity of tight junctions (TJs) of glomerular endothelial cells (GECs) is a guarantee of physiological function of glomerular filtration barrier. Mammalian sterile 20-like kinase (MST1) is a key regulatory protein in the blood-brain barrier (BBB), and it regulates the expression of TJs-related proteins in cerebral vascular endothelial cells. Our previous study showed that MST1 was involved in renal tubulointerstitial fibrosis of DKD. In the present study we investigated the role of MST1 in barrier function of GECs of DKD, and explored its regulatory mechanisms. In kidney tissue section of DKD patients and db/db mice, and high glucose (HG)-cultured mouse glomerular endothelial cells (mGECs), we showed that MST1 was inactivated in the GECs of DKD accompanied by disrupted glomerular endothelial barrier. In db/db mice and HG-cultured mGECs, knockdown of MST1 increased proteinuria levels, and disrupted glomerular endothelial barrier through decreasing TJs-related proteins, whereas MST1 overexpression restored glomerular endothelial barrier through regaining TJs-related proteins. In db/db mice and HG-cultured mGECs, we demonstrated that MST1 inhibition induced TJs's disruption of GECs via activating YAP1/TEAD signaling. Verteporfin (an inhibitor of YAP1-TEAD interaction) and PY-60 (a YAP1 agonist) were used to verify the role of YAP1/TEAD signaling in the regulation effect of MST1 on barrier function of mGECs. In conclusion, MST1 activation recovers glomerular endothelial barrier of DKD by regaining TJs-related proteins via inhibiting YAP1/TEAD signaling. This study highlights the multiple regulation of MST1 activation on kidney injury.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Li
- Department of Pharmacy, Yuncheng Central Hospital affiliated to Shanxi Medical University, Yuncheng, 044000, China
| | - Dan-Dan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zhen-Zhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Bao-Jing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Si-Tong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang, 214500, China
| | - Jun-Jie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
4
|
Gao Z, Li Y, Yang YJ, Guo LY, Yu SF, Wang J, Li J. Anatomical study of the lateral plantar ligament of the population in the southwest of Shandong Province. Surg Radiol Anat 2025; 47:133. [PMID: 40307612 DOI: 10.1007/s00276-025-03651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
PURPOSE To clarify the anatomical characteristics of the lateral plantar ligament (LPL) of the transverse metatarsal arch (TMA) in the population of southwest Shandong Province, so as to complement the anatomical structures of the midfoot and Lisfranc joint complexes. METHODS A total of 100 adult lower limbs were dissected and the types of LPL were divided according to their insertions, among them, 63 were (63%) and 37 were female (37%); 50 were on the left side (50%) and 50 were on the right side (50%). The fiber bundle length, origin width, insertion width, and thickness of the LPL were measured. RESULTS (1) According to the insertions of the LPL, they were divided into: ① Type I, the LPL was inserted at the base of the second metatarsal (M2) in 47 cases; ② Type II, the LPL was inserted at the base of M2 and fused with tibialis posterior tendon (TPT) in 16 cases; ③ Type III, the LPL was absent in 16 cases; ④ Type IV, the LPL was inserted at TPT in 6 cases; ⑤ Type V, the LPL was inserted at the intermediate cuneiform (IC) in 1 case; ⑥ Type VI, bifid LPL with one bundle inserted at the base of M2, and the other bundle inserted at the medial cuneiform (MC) in 4 cases; ⑦ Type VII, two bundles of LPL inserted at the base of M2 in 8 cases; ⑧ Type VIII, the LPL consisted of 3 bundles; the distal, middle and proximal bundles was inserted at the base of M2, the TPT and the lateral side of navicular bone in 2 cases, respectively. (2) There was a statistical significance in the length of LPL between male (31.62 ± 3.83) mm and female (28.07 ± 3.46) mm (t=-3.050, P = 0.003). There was no statistical significance in the types of LPL between male and female (Z=-1.721, P > 0.05), and no statistical significance in the types between left and right sides (Z=-0.026, P > 0.05). CONCLUSION According to our research, LPL originates from M5 and is divided into 8 types according to its insertion location, of which insertion at the base of M2 is the most common. In addition, we found that LPL has fibrous fusion with the long plantar ligament and the TPT, which may be involved in maintaining arch stability. The classification of LPL in this study is a supplement to the anatomical structure of the middle foot and Lisfranc joint complex, providing a new direction for the diagnosis and treatment of middle foot and arch injury in the future.
Collapse
Affiliation(s)
- Zhuan Gao
- Academy of Clinical Medicine, Jining Medical University, Jining, 272067, China
| | - Yue Li
- Academy of Clinical Medicine, Jining Medical University, Jining, 272067, China
| | - Yu-Jie Yang
- Academy of Clinical Medicine, Jining Medical University, Jining, 272067, China
| | - Li-Ying Guo
- Academy of Clinical Medicine, Jining Medical University, Jining, 272067, China
| | - Shuang-Fei Yu
- Academy of Clinical Medicine, Jining Medical University, Jining, 272067, China
| | - Jing Wang
- Academy of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, 272067, China
| | - Jing Li
- Academy of Basic Medicine, Jining Medical University, Hehua Road 133, Taibaihu District, Jining, Shandong, 272067, China.
| |
Collapse
|
5
|
Cassani M, Niro F, Fernandes S, Pereira-Sousa D, Faes Morazzo S, Durikova H, Wang T, González-Cabaleiro L, Vrbsky J, Oliver-De La Cruz J, Klimovic S, Pribyl J, Loja T, Skladal P, Caruso F, Forte G. Regulation of Cell-Nanoparticle Interactions through Mechanobiology. NANO LETTERS 2025; 25:2600-2609. [PMID: 39772635 PMCID: PMC11849000 DOI: 10.1021/acs.nanolett.4c04290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Bio-nano interactions have been extensively explored in nanomedicine to develop selective delivery strategies and reduce systemic toxicity. To enhance the delivery of nanocarriers to cancer cells and improve the therapeutic efficiency, different nanomaterials have been developed. However, the limited clinical translation of nanoparticle-based therapies, largely due to issues associated with poor targeting, requires a deeper understanding of the biological phenomena underlying cell-nanoparticle interactions. In this context, we investigate the molecular and cellular mechanobiology parameters that control such interactions. We demonstrate that the pharmacological inhibition or the genetic ablation of the key mechanosensitive component of the Hippo pathway, i.e., yes-associated protein, enhances nanoparticle internalization by 1.5-fold. Importantly, this phenomenon occurs independently of nanoparticle properties, such as size, or cell properties such as surface area and stiffness. Our study reveals that the internalization of nanoparticles in target cells can be controlled by modulating cell mechanosensing pathways, potentially enhancing nanotherapy specificity.
Collapse
Affiliation(s)
- Marco Cassani
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Francesco Niro
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- School of
Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London WC2R 2LS, U.K.
- Faculty of
Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech
Republic
| | - Soraia Fernandes
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Pereira-Sousa
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Faculty of
Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech
Republic
| | - Sofia Faes Morazzo
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Faculty of
Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech
Republic
| | - Helena Durikova
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Tianzheng Wang
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Lara González-Cabaleiro
- Departamento
de Química Física, Universidade
de Vigo, Campus Universitario As Lagoas
Marcosende, Vigo 36310, Spain
| | - Jan Vrbsky
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
| | - Jorge Oliver-De La Cruz
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for
Science and Technology (BIST), 08028 Barcelona, Spain
| | - Simon Klimovic
- Nanobiotechnology
Core Facility, CEITEC Masaryk University, 62500 Brno, Czech Republic
- Department
of Biochemistry, Faculty of Science, Masaryk
University, 62500 Brno, Czech Republic
| | - Jan Pribyl
- Nanobiotechnology
Core Facility, CEITEC Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Loja
- Molecular
Medicine, CEITEC Masaryk University, 62500 Brno, Czech Republic
| | - Petr Skladal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, 62500 Brno, Czech Republic
| | - Frank Caruso
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
| | - Giancarlo Forte
- International
Clinical Research Center, St. Anne’s
University Hospital, 65691 Brno, Czech Republic
- School of
Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London WC2R 2LS, U.K.
| |
Collapse
|
6
|
Peng Y, Yuan Q, Zhou S, Gan J, Shen Z, Xia X, Jiang Y, Chen Q, Yuan Y, He G, Wei Q, Feng X. FAK mediates mechanical signaling to maintain epithelial homeostasis through YAP/TAZ-TEADs. Histochem Cell Biol 2025; 163:31. [PMID: 39918604 DOI: 10.1007/s00418-025-02360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Epithelial homeostasis ensures that the epithelium can perform its normal physiological functions. Mechanical signaling response through integrin-mediated adhesions of the basement membrane (BM) is crucial for maintaining epithelial homeostasis. The essential mechanosensors YAP and the paralog TAZ (YAP/TAZ) have been shown to play a critical role in epithelial homeostasis, but the key regulator that mediates mechanical signaling to YAP/TAZ in maintaining epithelial homeostasis has not been fully understood. In this study, we noticed that mechanical signals correlated with YAP/TAZ activation and basal state maintenance in epithelial stem/progenitor cells through immunohistochemistry. Subsequently, we found that inhibition of focal adhesion kinase (FAK) suppressed YAP/TAZ activation in the human keratinocyte line HaCaT cells. Furthermore, inhibition of the interaction between YAP/TAZ and the transcriptional enhanced associate domains (TEADs) resulted in the differentiation of HaCaT cells. Finally, we used primary mouse epithelial cells to reconstruct the epithelium in vitro and found that FAK inhibition led to both a reduction in YAP/TAZ activity and an increase of differentiation in the basal layer cells. In conclusion, our findings reveal that FAK mediates mechanical signaling to maintain epithelial homeostasis via YAP/TAZ-TEADs.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianguo Gan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengzhong Shen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, 310000, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Gu He
- Department of Dermatology and Venerology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus and Research Unit of Oral Carcinogenesis and Management and Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Tian Y, Liao F, Sun H, Lei Y, Fu Y, Xia F, Wang J. Effect of Electric Fields on the Mechanical Mechanism of Regorafenib-VEGFR2 Interaction to Enhance Inhibition of Hepatocellular Carcinoma. Biomolecules 2025; 15:42. [PMID: 39858437 PMCID: PMC11764289 DOI: 10.3390/biom15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The interaction between molecular targeted therapy drugs and target proteins is crucial with regard to the drugs' anti-tumor effects. Electric fields can change the structure of proteins, which determines the interaction between drugs and proteins. However, the regulation of the interaction between drugs and target proteins and the anti-tumor effects of electric fields have not been studied thoroughly. Here, we explored how electric fields enhance the inhibition of regorafenib with regard to the activity, invasion, and metastasis of hepatocellular carcinoma cells. We found that electric fields lead to an increase in the normal (adhesion) and transverse (friction) interaction forces between regorafenib and VEGFR2. In single molecule pair interactions, there are changes in specific and nonspecific forces. Hydrogen bonds, hydrophobic interactions, and van der Waals forces are the main influencing factors. Importantly, the increase in the adhesion force and friction force between regorafenib and VEGFR2 caused by electric fields is related to the activity and migration ability of hepatocellular carcinoma cells. The morphological changes in VEGFR2 prove that electric fields regulate protein conformation. Overall, our work proves the drug-protein mechanical mechanism by which electric fields enhance the anti-tumor effect of regorafenib and provides insights into the application of electric fields in clinical tumor treatment.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.T.); (F.L.); (H.S.); (Y.L.); (Y.F.)
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to AMU (Southwest Hospital), Chongqing 400038, China
| | - Fenghui Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.T.); (F.L.); (H.S.); (Y.L.); (Y.F.)
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.T.); (F.L.); (H.S.); (Y.L.); (Y.F.)
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.T.); (F.L.); (H.S.); (Y.L.); (Y.F.)
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to AMU (Southwest Hospital), Chongqing 400038, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.T.); (F.L.); (H.S.); (Y.L.); (Y.F.)
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to AMU (Southwest Hospital), Chongqing 400038, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (Y.T.); (F.L.); (H.S.); (Y.L.); (Y.F.)
| |
Collapse
|
8
|
Meyer NP, Singh T, Kutys ML, Nystul TG, Barber DL. Arp2/3 complex activity enables nuclear YAP for naïve pluripotency of human embryonic stem cells. eLife 2024; 13:e89725. [PMID: 39319536 PMCID: PMC11509671 DOI: 10.7554/elife.89725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Our understanding of the transitions of human embryonic stem cells (hESCs) between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of hESCs as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for formation of the actin ring, to establish uniform cell mechanics within naïve colonies, to promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and for effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.
Collapse
Affiliation(s)
- Nathaniel Paul Meyer
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Tania Singh
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Matthew L Kutys
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Todd G Nystul
- Departments of Anatomy and OB-GYN/RS, University of California, San FranciscoSan FranciscoUnited States
| | - Diane L Barber
- Department of Cell & Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
Puspita L, Juwono VB, Shim JW. Advances in human pluripotent stem cell reporter systems. iScience 2024; 27:110856. [PMID: 39290832 PMCID: PMC11407076 DOI: 10.1016/j.isci.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to self-renew and differentiate into any cell type has greatly contributed to the advancement of biomedicine. Reporter lines derived from hPSCs have played a crucial role in elucidating the mechanisms underlying human development and diseases by acting as an alternative reporter system that cannot be used in living humans. To bring hPSCs closer to clinical application in transplantation, scientists have generated reporter lines for isolating the desired cell populations, as well as improving graft quality and treatment outcomes. This review presents an overview of the applications of hPSC reporter lines and the important variables in designing a reporter system, including options for gene delivery and editing tools, design of reporter constructs, and selection of reporter genes. It also provides insights into the prospects of hPSC reporter lines and the challenges that must be overcome to maximize the potential of hPSC reporter lines.
Collapse
Affiliation(s)
- Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| |
Collapse
|
10
|
Jiang L, Yan C, Yi Y, Zhu L, Liu Z, Zhang D, Jiang W. Cell size regulates human endoderm specification through actomyosin-dependent AMOT-YAP signaling. Stem Cell Reports 2024; 19:1137-1155. [PMID: 39094563 PMCID: PMC11368700 DOI: 10.1016/j.stemcr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Cell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation.
Collapse
Affiliation(s)
- Lai Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China; Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
11
|
Su W, Guo Y, Wang Q, Ma L, Zhang Q, Zhang Y, Geng Y, Jin T, Guo J, Yang R, Niu Z, Ren L, Wang Y, Ning Z, Li W, He W, Sun J, Li T, Li Z, Shan H, Liang H. YAP1 inhibits the senescence of alveolar epithelial cells by targeting Prdx3 to alleviate pulmonary fibrosis. Exp Mol Med 2024; 56:1643-1654. [PMID: 38945958 PMCID: PMC11297023 DOI: 10.1038/s12276-024-01277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 07/02/2024] Open
Abstract
The senescence of alveolar type II (AT2) cells impedes self-repair of the lung epithelium and contributes to lung injury in the setting of idiopathic pulmonary fibrosis (IPF). Yes-associated protein 1 (YAP1) is essential for cell growth and organ development; however, the role of YAP1 in AT2 cells during pulmonary fibrosis is still unclear. YAP1 expression was found to be downregulated in the AT2 cells of PF patients. Deletion of YAP1 in AT2 cells resulted in lung injury, exacerbated extracellular matrix (ECM) deposition, and worsened lung function. In contrast, overexpression of YAP1 in AT2 cells promoted alveolar regeneration, mitigated pulmonary fibrosis, and improved lung function. In addition, overexpression of YAP1 alleviated bleomycin (BLM) -induced senescence of alveolar epithelial cells both in vivo and in vitro. Moreover, YAP1 promoted the expression of peroxiredoxin 3 (Prdx3) by directly interacting with TEAD1. Forced expression of Prdx3 inhibited senescence and improved mitochondrial dysfunction in BLM-treated MLE-12 cells, whereas depletion of Prdx3 partially abrogated the protective effect of YAP1. Furthermore, overexpression of Prdx3 facilitated self-repair of the injured lung and reduced ECM deposition, while silencing Prdx3 attenuated the antifibrotic effect of YAP1. In conclusion, this study demonstrated that YAP1 alleviates lung injury and pulmonary fibrosis by regulating Prdx3 expression to improve mitochondrial dysfunction and block senescence in AT2 cells, revealing a potential novel therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yingying Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Qianqian Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Lu Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Qing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yuhan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yiding Geng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Jiayu Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Ruoxuan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Zhihui Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Lingxue Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Zhiwei Ning
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Wenyue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Wenxin He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Zhixin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
12
|
Piszker W, Simunovic M. The fusion of physics and biology in early mammalian embryogenesis. Curr Top Dev Biol 2024; 160:31-64. [PMID: 38937030 DOI: 10.1016/bs.ctdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.
Collapse
Affiliation(s)
- Walter Piszker
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States
| | - Mijo Simunovic
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States; Department of Genetics and Development, Columbia Irving Medical Center, New York, NY, United States.
| |
Collapse
|
13
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
14
|
Kashihara T, Sadoshima J. Regulation of myocardial glucose metabolism by YAP/TAZ signaling. J Cardiol 2024; 83:323-329. [PMID: 38266816 DOI: 10.1016/j.jjcc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The heart utilizes glucose and its metabolites as both energy sources and building blocks for cardiac growth and survival under both physiological and pathophysiological conditions. YAP/TAZ, transcriptional co-activators of the Hippo pathway, are key regulators of cell proliferation, survival, and metabolism in many cell types. Increasing lines of evidence suggest that the Hippo-YAP/TAZ signaling pathway is involved in the regulation of both physiological and pathophysiological processes in the heart. In particular, YAP/TAZ play a critical role in mediating aerobic glycolysis, the Warburg effect, in cardiomyocytes. Here, we summarize what is currently known about YAP/TAZ signaling in the heart by focusing on the regulation of glucose metabolism and its functional significance.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
15
|
Pichol-Thievend C, Anezo O, Pettiwala AM, Bourmeau G, Montagne R, Lyne AM, Guichet PO, Deshors P, Ballestín A, Blanchard B, Reveilles J, Ravi VM, Joseph K, Heiland DH, Julien B, Leboucher S, Besse L, Legoix P, Dingli F, Liva S, Loew D, Giani E, Ribecco V, Furumaya C, Marcos-Kovandzic L, Masliantsev K, Daubon T, Wang L, Diaz AA, Schnell O, Beck J, Servant N, Karayan-Tapon L, Cavalli FMG, Seano G. VC-resist glioblastoma cell state: vessel co-option as a key driver of chemoradiation resistance. Nat Commun 2024; 15:3602. [PMID: 38684700 PMCID: PMC11058782 DOI: 10.1038/s41467-024-47985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.
Collapse
Affiliation(s)
- Cathy Pichol-Thievend
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Oceane Anezo
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Aafrin M Pettiwala
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
- Institut Curie, PSL University, 75005, Paris, France
| | - Guillaume Bourmeau
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Remi Montagne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Anne-Marie Lyne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Pauline Deshors
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Alberto Ballestín
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Benjamin Blanchard
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Juliette Reveilles
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Boris Julien
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | | | - Laetitia Besse
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UMS2016, INSERM US43, Multimodal Imaging Center, 91400, Orsay, France
| | - Patricia Legoix
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
| | - Florent Dingli
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Stephane Liva
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Damarys Loew
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Elisa Giani
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Valentino Ribecco
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Charita Furumaya
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Laura Marcos-Kovandzic
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Thomas Daubon
- Université Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Hematologic Malignancies Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicolas Servant
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Florence M G Cavalli
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Giorgio Seano
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France.
| |
Collapse
|
16
|
Wang Z, Numada A, Wagai F, Oda Y, Ohgushi M, Maki K, Adachi T, Eiraku M. Spatial cell fate manipulation of human pluripotent stem cells by controlling the microenvironment using photocurable hydrogel. Development 2024; 151:dev201621. [PMID: 38512805 PMCID: PMC11006369 DOI: 10.1242/dev.201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Human pluripotent stem cells (hPSCs) dynamically respond to their chemical and physical microenvironment, dictating their behavior. However, conventional in vitro studies predominantly employ plastic culture wares, which offer a simplified representation of the in vivo microenvironment. Emerging evidence underscores the pivotal role of mechanical and topological cues in hPSC differentiation and maintenance. In this study, we cultured hPSCs on hydrogel substrates with spatially controlled stiffness. The use of culture substrates that enable precise manipulation of spatial mechanical properties holds promise for better mimicking in vivo conditions and advancing tissue engineering techniques. We designed a photocurable polyethylene glycol-polyvinyl alcohol (PVA-PEG) hydrogel, allowing the spatial control of surface stiffness and geometry at a micrometer scale. This versatile hydrogel can be functionalized with various extracellular matrix proteins. Laminin 511-functionalized PVA-PEG gel effectively supports the growth and differentiation of hPSCs. Moreover, by spatially modulating the stiffness of the patterned gel, we achieved spatially selective cell differentiation, resulting in the generation of intricate patterned structures.
Collapse
Affiliation(s)
- Zhe Wang
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Numada
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
| | - Fumi Wagai
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Oda
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Ohgushi
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
- Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Turnbull IC, Gaitas A. Characterizing induced pluripotent stem cells and derived cardiomyocytes: insights from nano scale mass measurements and mechanical properties. NANOSCALE ADVANCES 2024; 6:1059-1064. [PMID: 38356620 PMCID: PMC10863719 DOI: 10.1039/d3na00727h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Our study reveals that the nano-mechanical measures of elasticity and cell mass change significantly through induced pluripotent stem cell (iPSC) differentiation to cardiomyocytes, providing a reliable method to evaluate such processes. The findings support the importance of identifying these properties, and highlight the potential of AFM for comprehensive characterization of iPSC at the nanoscale.
Collapse
Affiliation(s)
- Irene C Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai New York NY 10029 USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine New York NY 10029 USA
| |
Collapse
|
18
|
Wang Y. Erdr1 Drives Macrophage Programming via Dynamic Interplay with YAP1 and Mid1. Immunohorizons 2024; 8:198-213. [PMID: 38392560 PMCID: PMC10916360 DOI: 10.4049/immunohorizons.2400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely expressed, highly conserved secreted factor found in both humans and mice. Erdr1 is linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, Erdr1 emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in regulating T cells and NK cell function, its role in macrophage remains unclear. This study explored the function and mechanism of Erdr1 in macrophage inflammatory response. The data demonstrated that Erdr1 could promote anti-inflammatory cytokine production, a function that also has been reported by previous research. However, I found Erdr1 also could play a proinflammatory role. The function of Erdr1 in macrophages depends on its dose and cell density. I observed that Erdr1 expression was inhibited in M1 macrophages but was upregulated in M2 macrophages compared with unpolarized macrophages. I hypothesized that Erdr1 balances the inflammatory response by binding with distinct adaptors dependent on varying concentrations. Mechanistically, I demonstrated YAP1 and Mid1 as the two adaptor proteins of Erdr1. The Erdr1-YAP1 interaction promotes anti-inflammatory cytokine production when Erdr1 levels are elevated, whereas the Erdr1-Mid1 interaction induces proinflammatory cytokine production when Erdr1 levels are decreased. This study highlights the effects of Erdr1 on regulating cytokine production from polarized macrophages potentially by regulating YAP1 in the nonclassical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, IA City, IA
| |
Collapse
|
19
|
Cassani M, Fernandes S, Oliver‐De La Cruz J, Durikova H, Vrbsky J, Patočka M, Hegrova V, Klimovic S, Pribyl J, Debellis D, Skladal P, Cavalieri F, Caruso F, Forte G. YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302965. [PMID: 37946710 PMCID: PMC10787066 DOI: 10.1002/advs.202302965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jorge Oliver‐De La Cruz
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)BarcelonaSpain
| | - Helena Durikova
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
| | - Jan Vrbsky
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
| | - Marek Patočka
- NenoVisionPurkynova 649/127Brno61200Czech Republic
- Faculty of Mechanical EngineeringBrno University of TechnologyTechnicka 2896/2Brno61669Czech Republic
| | | | - Simon Klimovic
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Jan Pribyl
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Doriana Debellis
- Electron Microscopy FacilityFondazione Istituto Italiano Di TecnologiaVia Morego 30Genoa16163Italy
| | - Petr Skladal
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Francesca Cavalieri
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourne3000VictoriaAustralia
- Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma “Tor Vergata”Via Della Ricerca ScientificaRome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
20
|
Wang Y. Erdr1 orchestrates macrophage polarization and determines cell fate via dynamic interplay with YAP1 and Mid1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.557960. [PMID: 37781614 PMCID: PMC10541097 DOI: 10.1101/2023.09.17.557960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely distributed, extremely conserved secreted factor found in both humans and mice. Erdr1 is highly linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, it has emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in T cells and NK cell function, its role in macrophage remains unclear. This study aims to explore the function and mechanism of Erdr1 in IL-1β production in macrophages. Data manifest Erdr1 could play an inhibition role in IL-1β production, which also has been reported by previous research. What significance is we discovered Erdr1 can promote IL-1β production which is associated with Erdr1 dose and cell density. We observed that Erdr1 was inhibited in pro-inflammatory (M1) macrophages but was upregulated in anti-inflammatory (M2) macrophages compared to naive macrophages. We hypothesized that Erdr1 dual drives and modulates IL-1β production by binding with distinct adaptors via concentration change. Mechanistically, we demonstrated that Erdr1 dual regulates IL-1β production by dynamic interaction with YAP1 and Mid1 by distinct domains. Erdr1-YAP1 interplay mediates macrophage M2 polarization by promoting an anti-inflammatory response, enhancing catabolic metabolism, and leading to sterile cell death. Whereas, Erdr1-Mid1 interplay mediates macrophage M1 polarization by initiating a pro-inflammatory response, facilitating anabolic metabolism, and causing inflammatory cell death. This study highlights Erdr1 orchestrates macrophage polarization and determines cell date by regulating YAP1 through non-classical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA (Current)
| |
Collapse
|
21
|
Krajnik A, Nimmer E, Brazzo JA, Biber JC, Drewes R, Tumenbayar BI, Sullivan A, Pham K, Krug A, Heo Y, Kolega J, Heo SJ, Lee K, Weil BR, Kim DH, Gupte SA, Bae Y. Survivin regulates intracellular stiffness and extracellular matrix production in vascular smooth muscle cells. APL Bioeng 2023; 7:046104. [PMID: 37868708 PMCID: PMC10590228 DOI: 10.1063/5.0157549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Vascular dysfunction is a common cause of cardiovascular diseases characterized by the narrowing and stiffening of arteries, such as atherosclerosis, restenosis, and hypertension. Arterial narrowing results from the aberrant proliferation of vascular smooth muscle cells (VSMCs) and their increased synthesis and deposition of extracellular matrix (ECM) proteins. These, in turn, are modulated by arterial stiffness, but the mechanism for this is not fully understood. We found that survivin is an important regulator of stiffness-mediated ECM synthesis and intracellular stiffness in VSMCs. Whole-transcriptome analysis and cell culture experiments showed that survivin expression is upregulated in injured femoral arteries in mice and in human VSMCs cultured on stiff fibronectin-coated hydrogels. Suppressed expression of survivin in human VSMCs significantly decreased the stiffness-mediated expression of ECM components related to arterial stiffening, such as collagen-I, fibronectin, and lysyl oxidase. By contrast, expression of these ECM proteins was rescued by ectopic expression of survivin in human VSMCs cultured on soft hydrogels. Interestingly, atomic force microscopy analysis showed that suppressed or ectopic expression of survivin decreases or increases intracellular stiffness, respectively. Furthermore, we observed that inhibiting Rac and Rho reduces survivin expression, elucidating a mechanical pathway connecting intracellular tension, mediated by Rac and Rho, to survivin induction. Finally, we found that survivin inhibition decreases FAK phosphorylation, indicating that survivin-dependent intracellular tension feeds back to maintain signaling through FAK. These findings suggest a novel mechanism by which survivin potentially modulates arterial stiffness.
Collapse
Affiliation(s)
- Amanda Krajnik
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Erik Nimmer
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - John C. Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Rhonda Drewes
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Andra Sullivan
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Khanh Pham
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Alanna Krug
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | | | - John Kolega
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Su-Jin Heo
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Brian R. Weil
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | - Yongho Bae
- Author to whom correspondence should be addressed:
| |
Collapse
|
22
|
Cruz-Acuña R, Kariuki SW, Sugiura K, Karaiskos S, Plaster EM, Loebel C, Efe G, Karakasheva T, Gabre JT, Hu J, Burdick JA, Rustgi AK. Engineered hydrogel reveals contribution of matrix mechanics to esophageal adenocarcinoma and identifies matrix-activated therapeutic targets. J Clin Invest 2023; 133:e168146. [PMID: 37788109 PMCID: PMC10688988 DOI: 10.1172/jci168146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Increased extracellular matrix (ECM) stiffness has been implicated in esophageal adenocarcinoma (EAC) progression, metastasis, and resistance to therapy. However, the underlying protumorigenic pathways are yet to be defined. Additional work is needed to develop physiologically relevant in vitro 3D culture models that better recapitulate the human tumor microenvironment and can be used to dissect the contributions of matrix stiffness to EAC pathogenesis. Here, we describe a modular, tumor ECM-mimetic hydrogel platform with tunable mechanical properties, defined presentation of cell-adhesive ligands, and protease-dependent degradation that supports robust in vitro growth and expansion of patient-derived EAC 3D organoids (EAC PDOs). Hydrogel mechanical properties control EAC PDO formation, growth, proliferation, and activation of tumor-associated pathways that elicit stem-like properties in the cancer cells, as highlighted through in vitro and in vivo environments. We also demonstrate that the engineered hydrogel serves as a platform for identifying potential therapeutic targets to disrupt the contribution of protumorigenic matrix mechanics in EAC. Together, these studies show that an engineered PDO culture platform can be used to elucidate underlying matrix-mediated mechanisms of EAC and inform the development of therapeutics that target ECM stiffness in EAC.
Collapse
Affiliation(s)
- Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Secunda W. Kariuki
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Kensuke Sugiura
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Spyros Karaiskos
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Claudia Loebel
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Tatiana Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joel T. Gabre
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jianhua Hu
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
23
|
Zhang Y, Kitagawa T, Furutani-Seiki M, Yoshimura SH. Yes-associated protein regulates cortical actin architecture and dynamics through intracellular translocation of Rho GTPase-activating protein 18. FASEB J 2023; 37:e23161. [PMID: 37638562 DOI: 10.1096/fj.202201992r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Yes-associated protein (YAP) is a transcriptional co-activator that controls the transcription of target genes and modulates the structures of various cytoskeletal architecture as mechanical responses. Although it has been known that YAP regulates actin-regulatory proteins, the detailed molecular mechanism of how they control and coordinate intracellular actin architecture remains elusive. Herein, we aimed to examine the structure and dynamics of intracellular actin architecture from molecular to cellular scales in normal and YAP-knockout (YAP-KO) cells utilizing high-speed atomic force microscopy (HS-AFM) for live-cell imaging and other microscope-based mechanical manipulation and measurement techniques. YAP-KO Madin-Darby canine kidney cells had a higher density and turnover of actin filaments in the cell cortex and a higher elastic modulus. Laser aberration assay demonstrated that YAP-KO cells were more resistant to damage than normal cells. We also found that Rho GTPase-activating protein 18 (ARHGAP18), a downstream factor of YAP, translocated from the cortex to the edge of sparsely cultured YAP-KO cells. It resulted in high RhoA activity and promotion of actin polymerization in the cell cortex and their reductions at the edge. HS-AFM imaging of live cell edge and a cell-migration assay demonstrated lower membrane dynamics and motility of YAP-KO cells than those of normal cells, suggesting lower actin dynamics at the edge. Together, these results demonstrate that a YAP-dependent pathway changes the intracellular distribution of RhoGAP and modulates actin dynamics in different parts of the cell, providing a mechanistic insight into how a mechano-sensitive transcription cofactor regulates multiple intracellular actin architecture and coordinates mechano-responses.
Collapse
Affiliation(s)
- Yanshu Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takao Kitagawa
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | |
Collapse
|
24
|
Sousa-Ortega A, Vázquez-Marín J, Sanabria-Reinoso E, Corbacho J, Polvillo R, Campoy-López A, Buono L, Loosli F, Almuedo-Castillo M, Martínez-Morales JR. A Yap-dependent mechanoregulatory program sustains cell migration for embryo axis assembly. Nat Commun 2023; 14:2804. [PMID: 37193708 DOI: 10.1038/s41467-023-38482-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The assembly of the embryo's primary axis is a fundamental landmark for the establishment of the vertebrate body plan. Although the morphogenetic movements directing cell convergence towards the midline have been described extensively, little is known on how gastrulating cells interpret mechanical cues. Yap proteins are well-known transcriptional mechanotransducers, yet their role in gastrulation remains elusive. Here we show that the double knockout of yap and its paralog yap1b in medaka results in an axis assembly failure, due to reduced displacement and migratory persistence in mutant cells. Accordingly, we identified genes involved in cytoskeletal organization and cell-ECM adhesion as potentially direct Yap targets. Dynamic analysis of live sensors and downstream targets reveal that Yap is acting in migratory cells, promoting cortical actin and focal adhesions recruitment. Our results indicate that Yap coordinates a mechanoregulatory program to sustain intracellular tension and maintain the directed cell migration for embryo axis development.
Collapse
Affiliation(s)
- Ana Sousa-Ortega
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | | | | | - Jorge Corbacho
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | - Rocío Polvillo
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | | | - Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | | |
Collapse
|
25
|
Poli A, Pennacchio FA, Ghisleni A, di Gennaro M, Lecacheur M, Nastały P, Crestani M, Pramotton FM, Iannelli F, Beznusenko G, Mironov AA, Panzetta V, Fusco S, Sheth B, Poulikakos D, Ferrari A, Gauthier N, Netti PA, Divecha N, Maiuri P. PIP4K2B is mechanoresponsive and controls heterochromatin-driven nuclear softening through UHRF1. Nat Commun 2023; 14:1432. [PMID: 36918565 PMCID: PMC10015053 DOI: 10.1038/s41467-023-37064-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated phosphoinositide kinases able to phosphorylate PtdIns5P to PtdIns(4,5)P2. In cancer patients their expression is typically associated with bad prognosis. Among the three PIP4K isoforms expressed in mammalian cells, PIP4K2B is the one with more prominent nuclear localisation. Here, we unveil the role of PIP4K2B as a mechanoresponsive enzyme. PIP4K2B protein level strongly decreases in cells growing on soft substrates. Its direct silencing or pharmacological inhibition, mimicking cell response to softness, triggers a concomitant reduction of the epigenetic regulator UHRF1 and induces changes in nuclear polarity, nuclear envelope tension and chromatin compaction. This substantial rewiring of the nucleus mechanical state drives YAP cytoplasmic retention and impairment of its activity as transcriptional regulator, finally leading to defects in cell spreading and motility. Since YAP signalling is essential for initiation and growth of human malignancies, our data suggest that potential therapeutic approaches targeting PIP4K2B could be beneficial in the control of the altered mechanical properties of cancer cells.
Collapse
Affiliation(s)
- Alessandro Poli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
| | | | - Andrea Ghisleni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | - Paulina Nastały
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdansk, Poland
| | - Michele Crestani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesca M Pramotton
- EMPA-Materials Science and Technology, Dubenforf, Switzerland
- Institute for Mechanical Systems, ETH, Zurich, Switzerland
| | - Fabio Iannelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | - Valeria Panzetta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Aldo Ferrari
- Institute for Mechanical Systems, ETH, Zurich, Switzerland
| | - Nils Gauthier
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo A Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Paolo Maiuri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
26
|
Srivastava P, Romanazzo S, Kopecky C, Nemec S, Ireland J, Molley TG, Lin K, Jayathilaka PB, Pandzic E, Yeola A, Chandrakanthan V, Pimanda J, Kilian K. Defined Microenvironments Trigger In Vitro Gastrulation in Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203614. [PMID: 36519269 PMCID: PMC9929265 DOI: 10.1002/advs.202203614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Gastrulation is a stage in embryo development where three germ layers arise to dictate the human body plan. In vitro models of gastrulation have been demonstrated by treating pluripotent stem cells with soluble morphogens to trigger differentiation. However, in vivo gastrulation is a multistage process coordinated through feedback between soluble gradients and biophysical forces, with the multipotent epiblast transforming to the primitive streak followed by germ layer segregation. Here, the authors show how constraining pluripotent stem cells to hydrogel islands triggers morphogenesis that mirrors the stages preceding in vivo gastrulation, without the need for exogenous supplements. Within hours of initial seeding, cells display a contractile phenotype at the boundary, which leads to enhanced proliferation, yes-associated protein (YAP) translocation, epithelial to mesenchymal transition, and emergence of SRY-box transcription factor 17 (SOX17)+ T/BRACHYURY+ cells. Molecular profiling and pathway analysis reveals a role for mechanotransduction-coupled wingless-type (WNT) signaling in orchestrating differentiation, which bears similarities to processes observed in whole organism models of development. After two days, the colonies form multilayered aggregates, which can be removed for further growth and differentiation. This approach demonstrates how materials alone can initiate gastrulation, thereby providing in vitro models of development and a tool to support organoid bioengineering efforts.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Stephanie Nemec
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jake Ireland
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Thomas G. Molley
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kang Lin
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Pavithra B. Jayathilaka
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Avani Yeola
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Vashe Chandrakanthan
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - John Pimanda
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- Department of HaematologyPrince of Wales HospitalRandwickNSW2031Australia
| | - Kristopher Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
27
|
Kim KW, Shin YJ, Lee SCS. Novel ROCK Inhibitors, Sovesudil and PHP-0961, Enhance Proliferation, Adhesion and Migration of Corneal Endothelial Cells. Int J Mol Sci 2022; 23:ijms232314690. [PMID: 36499014 PMCID: PMC9740482 DOI: 10.3390/ijms232314690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The loss or dysfunction of human corneal endothelial cells (hCEnCs) is a leading cause of blindness due to corneal failure. Corneal transplantation with a healthy donor cornea has been the only available treatment for corneal endothelial disease. However, the need for way to regenerate the CEnCs has been increased due to the global shortage of donor corneas. The aim of the study is to investigate whether novel Rho-kinase (ROCK) inhibitors can induce the cultivation and regeneration of hCEnCs. Cultured hCEnCs were treated with Y-27632, sovesudil, or PHP-0961 for 24 h. Cellular responses, including cell viability, cytotoxicity, proliferation, and Ki67 expression with ROCK inhibitors were evaluated. We also evaluated wound healing and cell adhesion assays. Porcine corneas were used ex vivo to evaluate the effects of Y-27632, sovesudil, and PHP-0961 on wound healing and regeneration. We performed live/dead cell assays and immunofluorescence staining for SRY (sex determining region Y)-box 2 (SOX2), β-catenin, and ZO-1 on porcine corneas after ROCK inhibitor treatments. Cell viability, cell proliferation rate, and the number of Ki67-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated cells compared to the control. There was no difference in LDH cytotoxicity test between any groups. Cells treated with Y-27632, sovesudil and PHP-0961 showed faster migration, wound healing, and cell adhesion. In the porcine ex vivo experiments, wound healing, the number of live cells, and SOX2-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated corneas. In all experiments, sovesudil and PHP-0961, the novel ROCK inhibitors, were equal or superior to the results of the ROCK inhibitor positive control, Y-27632. In conclusion, sovesudil and PHP-0961, novel ROCK inhibitors have the capacity to regenerate hCEnCs by enhancing cell proliferation and adhesion between cells.
Collapse
Affiliation(s)
- Kyung Wook Kim
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
- Correspondence: ; Tel.: +82-2-6960-1240
| | - Sammy Chi Sam Lee
- pH Pharma Co., Ltd., B-1009, U-Space, 670 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13494, Republic of Korea
| |
Collapse
|
28
|
Ergir E, Oliver-De La Cruz J, Fernandes S, Cassani M, Niro F, Pereira-Sousa D, Vrbský J, Vinarský V, Perestrelo AR, Debellis D, Vadovičová N, Uldrijan S, Cavalieri F, Pagliari S, Redl H, Ertl P, Forte G. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci Rep 2022; 12:17409. [PMID: 36257968 PMCID: PMC9579206 DOI: 10.1038/s41598-022-22225-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.
Collapse
Affiliation(s)
- Ece Ergir
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.5329.d0000 0001 2348 4034Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040 Vienna, Austria
| | - Jorge Oliver-De La Cruz
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Soraia Fernandes
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Marco Cassani
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Francesco Niro
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Daniel Pereira-Sousa
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Vrbský
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Vladimír Vinarský
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Doriana Debellis
- grid.25786.3e0000 0004 1764 2907Electron Microscopy Facility, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Natália Vadovičová
- grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Stjepan Uldrijan
- grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Francesca Cavalieri
- grid.1008.90000 0001 2179 088XDepartment of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.6530.00000 0001 2300 0941Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefania Pagliari
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Heinz Redl
- grid.454388.6Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria ,grid.511951.8Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- grid.5329.d0000 0001 2348 4034Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040 Vienna, Austria ,grid.511951.8Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Giancarlo Forte
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.1374.10000 0001 2097 1371Department of Biomaterials Science, Institute of Dentistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
29
|
Maeso-Alonso L, Alonso-Olivares H, Martínez-García N, López-Ferreras L, Villoch-Fernández J, Puente-Santamaría L, Colas-Algora N, Fernández-Corona A, Lorenzo-Marcos ME, Jiménez B, Holmgren L, Wilhelm M, Millan J, Del Peso L, Claesson-Welsh L, Marques MM, Marin MC. p73 is required for vessel integrity controlling endothelial junctional dynamics through Angiomotin. Cell Mol Life Sci 2022; 79:535. [PMID: 36180740 PMCID: PMC9525397 DOI: 10.1007/s00018-022-04560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Preservation of blood vessel integrity, which is critical for normal physiology and organ function, is controlled at multiple levels, including endothelial junctions. However, the mechanism that controls the adequate assembly of endothelial cell junctions is not fully defined. Here, we uncover TAp73 transcription factor as a vascular architect that orchestrates transcriptional programs involved in cell junction establishment and developmental blood vessel morphogenesis and identify Angiomotin (AMOT) as a TAp73 direct transcriptional target. Knockdown of p73 in endothelial cells not only results in decreased Angiomotin expression and localization at intercellular junctions, but also affects its downstream function regarding Yes-associated protein (YAP) cytoplasmic sequestration upon cell–cell contact. Analysis of adherens junctional morphology after p73-knockdown in human endothelial cells revealed striking alterations, particularly a sharp increase in serrated junctions and actin bundles appearing as stress fibers, both features associated with enhanced barrier permeability. In turn, stabilization of Angiomotin levels rescued those junctional defects, confirming that TAp73 controls endothelial junction dynamics, at least in part, through the regulation of Angiomotin. The observed defects in monolayer integrity were linked to hyperpermeability and reduced transendothelial electric resistance. Moreover, p73-knockout retinas showed a defective sprout morphology coupled with hemorrhages, highlighting the physiological relevance of p73 regulation in the maintenance of vessel integrity in vivo. We propose a new model in which TAp73 acts as a vascular architect integrating transcriptional programs that will impinge with Angiomotin/YAP signaling to maintain junctional dynamics and integrity, while balancing endothelial cell rearrangements in angiogenic vessels.
Collapse
Affiliation(s)
- Laura Maeso-Alonso
- Instituto de Biomedicina y Departamento de Biología Molecular, Universidad de León, 24071, León, Spain
| | - Hugo Alonso-Olivares
- Instituto de Biomedicina y Departamento de Biología Molecular, Universidad de León, 24071, León, Spain
| | - Nicole Martínez-García
- Instituto de Biomedicina y Departamento de Producción Animal, Universidad de León, 24071, León, Spain
| | - Lorena López-Ferreras
- Instituto de Biomedicina y Departamento de Biología Molecular, Universidad de León, 24071, León, Spain
| | - Javier Villoch-Fernández
- Instituto de Biomedicina y Departamento de Biología Molecular, Universidad de León, 24071, León, Spain
| | - Laura Puente-Santamaría
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | | | | | | | - Benilde Jiménez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain
| | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Margareta Wilhelm
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Jaime Millan
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Luis Del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, Spain
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Margarita M Marques
- Instituto de Desarrollo Ganadero y Sanidad Animal, y Departamento de Producción Animal, Universidad de León, 24071, León, Spain
| | - Maria C Marin
- Instituto de Biomedicina y Departamento de Biología Molecular, Universidad de León, 24071, León, Spain.
| |
Collapse
|
30
|
Tang C, Wang X, D'Urso M, van der Putten C, Kurniawan NA. 3D Interfacial and Spatiotemporal Regulation of Human Neuroepithelial Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201106. [PMID: 35667878 PMCID: PMC9353482 DOI: 10.1002/advs.202201106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Neuroepithelial (NE) organoids with dorsal-ventral patterning provide a useful three-dimensional (3D) in vitro model to interrogate neural tube formation during early development of the central nervous system. Understanding the fundamental processes behind the cellular self-organization in NE organoids holds the key to the engineering of organoids with higher, more in vivo-like complexity. However, little is known about the cellular regulation driving the NE development, especially in the presence of interfacial cues from the microenvironment. Here a simple 3D culture system that allows generation and manipulation of NE organoids from human-induced pluripotent stem cells (hiPSCs), displaying developmental phases of hiPSC differentiation and self-aggregation, first into NE cysts with lumen structure and then toward NE organoids with floor-plate patterning, is established. Longitudinal inhibition reveals distinct and dynamic roles of actomyosin contractility and yes-associated protein (YAP) signaling in governing these phases. By growing NE organoids on culture chips containing anisotropic surfaces or confining microniches, it is further demonstrated that interfacial cues can sensitively exert dimension-dependent influence on luminal cyst and organoid morphology, successful floor-plate patterning, as well as cytoskeletal regulation and YAP activity. This study therefore sheds new light on how organoid and tissue architecture can be steered through intracellular and extracellular means.
Collapse
Affiliation(s)
- Chunling Tang
- Department of Biomedical EngineeringEindhoven University of TechnologyPO Box 513Eindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsPO Box 513Eindhoven5600 MBThe Netherlands
| | - Xinhui Wang
- Department of Biomedical EngineeringEindhoven University of TechnologyPO Box 513Eindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsPO Box 513Eindhoven5600 MBThe Netherlands
| | - Mirko D'Urso
- Department of Biomedical EngineeringEindhoven University of TechnologyPO Box 513Eindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsPO Box 513Eindhoven5600 MBThe Netherlands
| | - Cas van der Putten
- Department of Biomedical EngineeringEindhoven University of TechnologyPO Box 513Eindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsPO Box 513Eindhoven5600 MBThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyPO Box 513Eindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsPO Box 513Eindhoven5600 MBThe Netherlands
| |
Collapse
|
31
|
Li Y, Yang S, Liu Y, Yang S. Mice with Trp53 and Rb1 deficiency in chondrocytes spontaneously develop chondrosarcoma via overactivation of YAP signaling. Cell Death Dis 2022; 13:570. [PMID: 35760773 PMCID: PMC9237030 DOI: 10.1038/s41419-022-04916-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/21/2023]
Abstract
Chondrosarcoma (CHS) is a rare type of soft sarcoma with increased production of cartilage matrix arising from soft bone tissues. Currently, surgical resection is the primary clinical treatment for chondrosarcoma due to the poor response to radiotherapy and chemotherapy. However, the therapeutic effect is not satisfactory due to the higher local recurrence rate. Thus, management and elucidation of the pathological mechanism of chondrosarcoma remain an ongoing challenge, and the development of effective chondrosarcoma mouse models and treatment options are urgently needed. Here, we generated a new transgenic chondrosarcoma model by double conditional deletions of Trp53 and Rb1 in chondrocyte lineage which spontaneously caused spinal chondrosarcoma and lung metastasis. Bioinformatic analysis of the human soft sarcoma database showed that Trp53 and Rb1 genes had higher mutations, reaching up to approximately 33.5% and 8.7%, respectively. Additionally, Trp53 and Rb1 signatures were decreased in the human and mouse chondrosarcoma tissues. Mechanistically, we found that YAP expression and activity were significantly increased in mouse Col2-Cre;Trp53f/f/Rb1f/f chondrosarcoma tissues compared to the adjacent normal cartilage. Knockdown of YAP in primary chondrosarcoma cells significantly inhibited chondrosarcoma proliferation, invasion, and tumorsphere formation. Chondrocyte lineage ablation of YAP delayed chondrosarcoma progression and lung metastasis in Col2-Cre;Trp53f/f/Rb1f/f mice. Moreover, we found that metformin served as a YAP inhibitor, which bound to the activity area of YAP protein, and inhibited chondrosarcoma cell proliferation, migration, invasion, and progression in vitro and significantly suppressed chondrosarcoma formation in vivo. Collectively, this study identifies the inhibition of YAP may be an effective therapeutic strategy for the treatment of chondrosarcoma.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
33
|
Qi Y, Ye Y, Wang R, Yu S, Zhang Y, Lv J, Jin W, Xia S, Jiang W, Li Y, Zhang D. Mitochondrial dysfunction by TFAM depletion disrupts self-renewal and lineage differentiation of human PSCs by affecting cell proliferation and YAP response. Redox Biol 2022; 50:102248. [PMID: 35091324 PMCID: PMC8802056 DOI: 10.1016/j.redox.2022.102248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 02/08/2023] Open
Abstract
Genetic mitochondrial dysfunction is frequently associated with various embryonic developmental defects. However, how mitochondria contribute to early development and cell fate determination is poorly studied, especially in humans. Using human pluripotent stem cells (hPSCs), we established a Dox-induced knockout model with mitochondrial dysfunction and evaluated the effect of mitochondrial dysfunction on human pluripotency maintenance and lineage differentiation. The nucleus-encoded gene TFAM (transcription factor A, mitochondrial), essential for mitochondrial gene transcription and mitochondrial DNA replication, is targeted to construct the mitochondrial dysfunction model. The hPSCs with TFAM depletion exhibit the decrease of mtDNA level and oxidative respiration efficiency, representing a typical mitochondrial dysfunction phenotype. Mitochondrial dysfunction leads to impaired self-renewal in hPSCs due to proliferation arrest. Although the mitochondrial dysfunction does not affect pluripotent gene expression, it results in a severe defect in lineage differentiation. Further study in mesoderm differentiation reveals that mitochondrial dysfunction causes proliferation disability and YAP nuclear translocalization and thus together blocks mesoderm lineage differentiation. These findings provide new insights into understanding the mitochondrial function in human pluripotency maintenance and mesoderm differentiation.
Collapse
Affiliation(s)
- Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yida Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Ruxiang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Senlin Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yue Zhang
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Lv
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Wenwen Jin
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Wei Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Yifei Li
- Department of Pediatrics and Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
34
|
Zancla A, Mozetic P, Orsini M, Forte G, Rainer A. A primer to traction force microscopy. J Biol Chem 2022; 298:101867. [PMID: 35351517 PMCID: PMC9092999 DOI: 10.1016/j.jbc.2022.101867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Traction force microscopy (TFM) has emerged as a versatile technique for the measurement of single-cell-generated forces. TFM has gained wide use among mechanobiology laboratories, and several variants of the original methodology have been proposed. However, issues related to the experimental setup and, most importantly, data analysis of cell traction datasets may restrain the adoption of TFM by a wider community. In this review, we summarize the state of the art in TFM-related research, with a focus on the analytical methods underlying data analysis. We aim to provide the reader with a friendly compendium underlying the potential of TFM and emphasizing the methodological framework required for a thorough understanding of experimental data. We also compile a list of data analytics tools freely available to the scientific community for the furtherance of knowledge on this powerful technique.
Collapse
Affiliation(s)
- Andrea Zancla
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy; Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy; Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Monica Orsini
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, Czechia.
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy.
| |
Collapse
|
35
|
Quan Y, Shan X, Hu M, Jin P, Ma J, Fan J, Yang J, Zhang H, Fan X, Gong Y, Li M, Wang Y. YAP inhibition promotes endothelial cell differentiation from pluripotent stem cell through EC master transcription factor FLI1. J Mol Cell Cardiol 2021; 163:81-96. [PMID: 34666000 DOI: 10.1016/j.yjmcc.2021.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Endothelial cells (ECs) derived from pluripotent stem cells (PSCs) provide great resource for vascular disease modeling and cell-based regeneration therapy. However, the molecular mechanisms of EC differentiation are not completely understood. In this study, we checked transcriptional profile by microarray and found Hippo pathway is changed and the activity of YAP decreased during mesoderm-mediated EC differentiation from human embryonic stem cells (hESCs). Knockdown of YAP in hESCs promoted both mesoderm and EC differentiation indicating by mesodermal- or EC-specific marker gene expression increased both in mRNA and protein level. In contrast, overexpression of YAP inhibited mesoderm and EC differentiation. Microarray data showed that several key transcription factors of EC differentiation, such as FLI1, ERG, SOX17 are upregulated. Interestingly, knockdown YAP enhanced the expression of these master transcription factors. Bioinformation analysis revealed that TEAD, a YAP binds transcription factors, might regulate the expression of EC master TFs, including FLI1. Luciferase assay confirmed that YAP binds to TEAD1, which would inhibit FLI1 expression. Finally, FLI1 overexpression rescued the effects of YAP overexpression-mediated inhibition of EC differentiation. In conclusion, we revealed the inhibitory effects of YAP on EC differentiation from PSCs, and YAP inhibition might promote expression of master TFs FLI1 for EC commitment through interacting with TEAD1, which might provide an idea for EC differentiation and vascular regeneration via manipulating YAP signaling.
Collapse
Affiliation(s)
- Yingyi Quan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiaoqiong Shan
- The Third People's Hospital of Hangzhou. Hangzhou 310009, Zhejiang, China
| | - Minjie Hu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Peifeng Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Jiwen Yang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Huan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| |
Collapse
|
36
|
Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion. Nat Commun 2021; 12:6019. [PMID: 34650052 PMCID: PMC8517024 DOI: 10.1038/s41467-021-26296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
During morphogenesis, molecular mechanisms that orchestrate biomechanical dynamics across cells remain unclear. Here, we show a role of guidance receptor Plexin-B2 in organizing actomyosin network and adhesion complexes during multicellular development of human embryonic stem cells and neuroprogenitor cells. Plexin-B2 manipulations affect actomyosin contractility, leading to changes in cell stiffness and cytoskeletal tension, as well as cell-cell and cell-matrix adhesion. We have delineated the functional domains of Plexin-B2, RAP1/2 effectors, and the signaling association with ERK1/2, calcium activation, and YAP mechanosensor, thus providing a mechanistic link between Plexin-B2-mediated cytoskeletal tension and stem cell physiology. Plexin-B2-deficient stem cells exhibit premature lineage commitment, and a balanced level of Plexin-B2 activity is critical for maintaining cytoarchitectural integrity of the developing neuroepithelium, as modeled in cerebral organoids. Our studies thus establish a significant function of Plexin-B2 in orchestrating cytoskeletal tension and cell-cell/cell-matrix adhesion, therefore solidifying the importance of collective cell mechanics in governing stem cell physiology and tissue morphogenesis.
Collapse
|
37
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021; 11:824. [PMID: 34073044 PMCID: PMC8228498 DOI: 10.3390/biom11060824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
- Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| |
Collapse
|
38
|
Cai X, Wang KC, Meng Z. Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. Front Cell Dev Biol 2021; 9:673599. [PMID: 34109179 PMCID: PMC8182050 DOI: 10.3389/fcell.2021.673599] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Biophysical cues, such as mechanical properties, play a critical role in tissue growth and homeostasis. During organ development and tissue injury repair, compressive and tensional forces generated by cell-extracellular matrix or cell-cell interaction are key factors for cell fate determination. In the vascular system, hemodynamic forces, shear stress, and cyclic stretch modulate vascular cell phenotypes and susceptibility to atherosclerosis. Despite that emerging efforts have been made to investigate how mechanotransduction is involved in tuning cell and tissue functions in various contexts, the regulatory mechanisms remain largely unknown. One of the challenges is to understand the signaling cascades that transmit mechanical cues from the plasma membrane to the cytoplasm and then to the nuclei to generate mechanoresponsive transcriptomes. YAP and its homolog TAZ, the Hippo pathway effectors, have been identified as key mechanotransducers that sense mechanical stimuli and relay the signals to control transcriptional programs for cell proliferation, differentiation, and transformation. However, the upstream mechanosensors for YAP/TAZ signaling and downstream transcriptome responses following YAP/TAZ activation or repression have not been well characterized. Moreover, the mechanoregulation of YAP/TAZ in literature is highly context-dependent. In this review, we summarize the biomechanical cues in the tissue microenvironment and provide an update on the roles of YAP/TAZ in mechanotransduction in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|