1
|
Tonini L, Ahn C. Latest Advanced Techniques for Improving Intestinal Organoids Limitations. Stem Cell Rev Rep 2025:10.1007/s12015-025-10894-9. [PMID: 40388043 DOI: 10.1007/s12015-025-10894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Intestinal organoids are valuable tools across different disciplines, from a clinical aspect to the biomedical research, providing a unique perspective on the complexity of the gastrointestinal system. They are alternatives to common cell lines as they can offer insights into architectural functionality and reduce the use of animal models. A deeper understanding of their organoid characteristics is required to harness their full potential. Despite their beneficial uses and multiple advantages, organoids have limitations that remain unaddressed. This review aims to elucidate the principal limitations of intestinal organoids, investigate structural defects such as the deficiency in a vascularized and lymphatic system, and absence of the microbiome, restrictions in mimicking the physiological gut model, including the lack of an acid-neutralizing system or a shortage of digestive enzymes, and the difficulties in their long-term maintenance and polarity accessibility. Development of innovative techniques to address these limitations will lead to improve in vivo recapitulation and pioneering further advancements in this field.
Collapse
Affiliation(s)
- Lisa Tonini
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
Yang M, Xuan Y, Hao P, Li Y, Zhang C, Zhao W, Zhang Y, Zhang X, Zhou X, Zhu H, Li H, Yang Y, Wang J, Yan R, Qu Y, Ke X. TRAF2 mediates Wnt-induced β-catenin nuclear translocation by associating with the nuclear pore complex. Life Sci 2025:123722. [PMID: 40393561 DOI: 10.1016/j.lfs.2025.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/25/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
AIMS Colorectal cancer (CRC), driven by Wnt/β-catenin hyperactivation, relies on nuclear import of β-catenin, but the underlying mechanism is not fully clarified. Given that tumor necrosis factor receptor-associated factor 2 (TRAF2) is a positive regulator of Wnt signaling by directly interacting with β-catenin, we aim to demonstrate the role of TRAF2 in Wnt-induced β-catenin nuclear translocation. MATERIALS AND METHODS Wild-type and TRAF2 knockout cells (generated via CRISPR-Cas9) were utilized to validate the role of TRAF2 in β-catenin nuclear translocation through immunofluorescence and nucleoplasm separation assay. Proteomic profiling of TRAF2 condensates and interactomes was performed to identify proteins linked to nucleocytoplasmic transport. The interactions among TRAF2, β-catenin, nucleoporins (Nups) and B-cell lymphoma 9 (BCL9), as well as the inhibitory effects of small molecule liquidambaric acid (LDA) on these interactions were confirmed using proximity ligation assay (PLA), fluorescence resonance energy transfer (FRET), and co-immunoprecipitation (Co-IP) in cellular models and small intestine of mice. KEY FINDINGS TRAF2 is required for Wnt-induced β-catenin nuclear translocation. TRAF2 interacts with numerous Nups within the nuclear pore complex (NPC), and is upregulated upon Wnt stimulation. In the small intestine of mice, TRAF2/Nups interaction is mainly detected in the crypts-regions known to harbor colorectal cancer stem cells, as well as in APCmin/+ intestinal organoids. Of note, TRAF2 is indispensable for β-catenin interaction with Nups and the known chaperone BCL9. Finally, LDA blocks TRAF2/Nups interaction, inhibiting β-catenin nuclear translocation. SIGNIFICANCE This study unveils TRAF2-mediated nucleocytoplasmic transport as a druggable mechanism, advancing targeted therapies against Wnt-driven colorectal cancers.
Collapse
Affiliation(s)
- Min Yang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Ying Xuan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Piliang Hao
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Yushu Li
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Chengqian Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Weiwei Zhao
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yiyuan Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xianglian Zhou
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Hongyan Zhu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Huihui Li
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yan Yang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jiaqi Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025; 26:371-388. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Xu Q, Halle L, Hediyeh-Zadeh S, Kuijs M, Riedweg R, Kilik U, Recaldin T, Yu Q, Rall I, Frum T, Adam L, Parikh S, Kfuri-Rubens R, Gander M, Klein D, Curion F, He Z, Fleck JS, Oost K, Kahnwald M, Barbiero S, Mitrofanova O, Maciag GJ, Jensen KB, Lutolf M, Liberali P, Spence JR, Gjorevski N, Beumer J, Treutlein B, Theis FJ, Camp JG. An integrated transcriptomic cell atlas of human endoderm-derived organoids. Nat Genet 2025; 57:1201-1212. [PMID: 40355592 DOI: 10.1038/s41588-025-02182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/27/2025] [Indexed: 05/14/2025]
Abstract
Human pluripotent stem cells and tissue-resident fetal and adult stem cells can generate epithelial tissues of endodermal origin in vitro that recapitulate aspects of developing and adult human physiology. Here, we integrate single-cell transcriptomes from 218 samples covering organoids and other models of diverse endoderm-derived tissues to establish an initial version of a human endoderm-derived organoid cell atlas. The integration includes nearly one million cells across diverse conditions, data sources and protocols. We compare cell types and states between organoid models and harmonize cell annotations through mapping to primary tissue counterparts. Focusing on the intestine and lung, we provide examples of mapping data from new protocols and show how the atlas can be used as a diverse cohort to assess perturbations and disease models. The human endoderm-derived organoid cell atlas makes diverse datasets centrally available and will be valuable to assess fidelity, characterize perturbed and diseased states, and streamline protocol development.
Collapse
Affiliation(s)
- Quan Xu
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
| | - Lennard Halle
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Soroor Hediyeh-Zadeh
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Merel Kuijs
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Rya Riedweg
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Timothy Recaldin
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Qianhui Yu
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Isabell Rall
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Tristan Frum
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lukas Adam
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Shrey Parikh
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Raphael Kfuri-Rubens
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, Munich, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Manuel Gander
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Dominik Klein
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Fabiola Curion
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jonas Simon Fleck
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Koen Oost
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Maurice Kahnwald
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Silvia Barbiero
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Olga Mitrofanova
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Grzegorz Jerzy Maciag
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Lutolf
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
- Laboratory of Stem Cell Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Prisca Liberali
- Biozentrum, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Nikolche Gjorevski
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Fabian J Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- School of Life Sciences, Technical University of Munich, Munich, Germany.
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Han R, Wang Z, Li Y, Ke L, Li X, Li C, Tian Z, Liu X. Gut microbiota Lactobacillus johnsonii alleviates hyperuricemia by modulating intestinal urate and gut microbiota-derived butyrate. Chin Med J (Engl) 2025:00029330-990000000-01534. [PMID: 40304365 DOI: 10.1097/cm9.0000000000003603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Gut microbiota are important for uric acid (UA) metabolism within hyperuricemia (HUA); however, the underlying mechanisms of how the gut microbiota regulate intestinal UA metabolism remain unclear. This study aimed to explore the function of the intestine in HUA and to further reveal the possible mechanism. METHODS We conducted gut microbiota depletion to validate the role of gut microbiota in UA metabolism. A mouse model of HUA was established, and the gut microbiota and microbiome-derived metabolites were analyzed via 16S RNA gene sequencing and metabolomics analysis. The mechanism of the gut microbiota in HUA was elucidated by in vivo and in vitro experiments. RESULTS Antibiotic treatment elevated serum UA, disturbed purine metabolism, and decreased the relative abundance of Lactobacillus. HUA mice had a lower relative abundance of Lactobacillus johnsonii (L. johnsonii) and decreased gut butyrate concentration. Supplementation of L. johnsonii significantly reduces serum UA in hyperuricemia mice by preventing UA synthesis and promoting the excretion of gut purine metabolites. In addition, L. johnsonii enhanced intestinal UA excretion by heightening the urate transporter ABCG2 (adenosine triphosphate-binding cassette transporter, subfamily G, member 2) expression, and increasing the levels of butyrate, which upregulated ABCG2 expression via the Wnt5a/b/β-catenin signaling pathway. CONCLUSION Our results suggest that gut microbiota and microbiota-derived metabolites directly regulate gut UA metabolism, highlighting potential applications in the treatment of diet-induced HUA by targeting gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Rongshuang Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Zan Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yukun Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Leyong Ke
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, China
| | - Xiang Li
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, China
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266003, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xin Liu
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, China
| |
Collapse
|
6
|
Hwang S, Sung SI, Kim YE, Yang M, Koh A, Ahn SY, Chang YS. Thrombin-preconditioned mesenchymal stromal cell-derived extracellular vesicles attenuate experimental necrotizing enterocolitis. Stem Cell Res Ther 2025; 16:101. [PMID: 40022236 PMCID: PMC11871789 DOI: 10.1186/s13287-025-04243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a critical gastrointestinal disease in preterm infants, for which no specific treatment is established. We previously demonstrated that thrombin-preconditioned mesenchymal stromal cell-derived extracellular vesicles (thMSC-EVs) enhance protection against other neonatal tissue injuries. Therefore, this study aimed to evaluate the therapeutic potential of thMSC-EVs in modified in vitro, in vivo, and organoid models of NEC. METHODS In vitro, the effects of thMSC-EVs and naïveMSC-EVs were compared in hyperosmotic, ischemic, and hypothermic (HIT)-stressed IEC-6 cells and LPS-treated peritoneal macrophages. In vivo, NEC was induced in P4 mouse pups by three cycles of formula feeding, oral LPS administration, hypoxia, and hypothermia, followed by overnight dam care. 2 × 109 thMSC-EVs were intraperitoneally administered daily for three days, and the therapeutic effects were assessed macroscopically, histologically, and biochemically. NEC mouse-derived organoids were established to evaluate the thMSC-EVs' effect in mature enterocytes. LC-MS/MS was performed to analyze the EV proteomics. RESULTS In vitro, compared with naïveMSC-EVs, thMSC-EVs significantly improved cellular viability in HIT-induced IEC-6 cells and reduced pro-inflammatory (IL-1α, IL-1β, TNF-α) but increased anti-inflammatory (TGF-b) cytokine levels in LPS-treated peritoneal macrophages. In vivo, thMSC-EVs significantly attenuated clinical symptoms, reduced intestinal damage, and retained intestinal stem cell markers, showing more significant localization in NEC-induced intestines than in healthy intestines. In NEC mouse-derived organoids, thMSC-EVs significantly increased OLFM4 and claudin-4 expression and reduced stress-related markers such as sucrase-isomaltase, defensin, and chromogranin A. Proteomic analysis revealed that thMSC-EVs were greater enriched in anti-apoptotic, anti-inflammatory, cell adhesion, and Wnt signaling pathways than naïveMSC-EVs. CONCLUSION thMSC-EVs improved cellular viability, reduced apoptosis, attenuated inflammation, and upregulated key intestinal stem cell markers, collectively suggesting their tissue-protective effects and highlighting their potential as a treatment for NEC.
Collapse
Affiliation(s)
- Sein Hwang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
- Cell and Gene Therapy Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Se In Sung
- Cell and Gene Therapy Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Misun Yang
- Cell and Gene Therapy Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - So Yoon Ahn
- Cell and Gene Therapy Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yun Sil Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Cell and Gene Therapy Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
7
|
Ma X, Li M, Zhang Y, Xu T, Zhou X, Qian M, Yang Z, Han X. Akkermansia muciniphila identified as key strain to alleviate gut barrier injury through Wnt signaling pathway. eLife 2025; 12:RP92906. [PMID: 39912727 PMCID: PMC11801796 DOI: 10.7554/elife.92906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
As the largest mucosal surface, the gut has built a physical, chemical, microbial, and immune barrier to protect the body against pathogen invasion. The disturbance of gut microbiota aggravates pathogenic bacteria invasion and gut barrier injury. Fecal microbiota transplantation (FMT) is a promising treatment for microbiome-related disorders, where beneficial strain engraftment is a significant factor influencing FMT outcomes. The aim of this research was to explore the effect of FMT on antibiotic-induced microbiome-disordered (AIMD) models infected with enterotoxigenic Escherichia coli (ETEC). We used piglet, mouse, and intestinal organoid models to explore the protective effects and mechanisms of FMT on ETEC infection. The results showed that FMT regulated gut microbiota and enhanced the protection of AIMD piglets against ETEC K88 challenge, as demonstrated by reduced intestinal pathogen colonization and alleviated gut barrier injury. Akkermansia muciniphila (A. muciniphila) and Bacteroides fragilis (B. fragilis) were identified as two strains that may play key roles in FMT. We further investigated the alleviatory effects of these two strains on ETEC infection in the AIMD mice model, which revealed that A. muciniphila and B. fragilis relieved ETEC-induced intestinal inflammation by maintaining the proportion of Treg/Th17 cells and epithelial damage by moderately activating the Wnt/β-catenin signaling pathway, while the effect of A. muciniphila was better than B. fragilis. We, therefore, identified whether A. muciniphila protected against ETEC infection using basal-out and apical-out intestinal organoid models. A. muciniphila did protect the intestinal stem cells and stimulate the proliferation and differentiation of intestinal epithelium, and the protective effects of A. muciniphila were reversed by Wnt inhibitor. FMT alleviated ETEC-induced gut barrier injury and intestinal inflammation in the AIMD model. A. muciniphila was identified as a key strain in FMT to promote the proliferation and differentiation of intestinal stem cells by mediating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Meng Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Xinchen Zhou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech CitySanyaChina
| |
Collapse
|
8
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2025; 54:790-826. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
9
|
Zhang X, Wen J, Pan Z, Liu Y, Zhu Y. Celastrus orbiculatus Thunb. extract inhibits inflammatory metabolic adaptation in macrophages and regulates polarization via modulating PKM2. Int Immunopharmacol 2025; 144:113665. [PMID: 39591823 DOI: 10.1016/j.intimp.2024.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Precancerous lesions of gastric cancer (PLGC) are considered critical stages for the prevention and treatment of gastric cancer (GC), with gastric mucosal inflammation being a prerequisite for PLGC. Macrophages, integral to the immune system, typically respond to external stimuli triggering inflammation. Celastrus orbiculatus Thunb. extract (COE) has been shown to exhibit anti-inflammatory effects in treating PLGC. However, it remains unclear how COE modulates macrophage metabolic adaptation and polarization in the inflammatory response to reverse PLGC. This study utilized a composite modeling approach to establish a PLGC mouse model, assessing COE's impact on polarization and metabolic adaptation markers such as inflammatory factors in gastric mucosa and RAW264.7 macrophages. The results confirm that COE significantly reduces M1 macrophage polarization markers while increasing M2 macrophage polarization markers and lowering inflammatory factor levels. Additionally, COE effectively inhibits the expression of pyruvate kinase M2 (PKM2). Our findings suggest that COE may act through regulating PKM2 expression to modulate inflammatory responses and reverse PLGC.
Collapse
Affiliation(s)
- Xiaoze Zhang
- Chinese Integrative Medicine Oncology Depatrment, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Junsong Wen
- Chinese Integrative Medicine Oncology Depatrment, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Ziwei Pan
- Chinese Integrative Medicine Oncology Depatrment, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Yanqing Liu
- Institute of Traditional Chinese Medicine & Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yaodong Zhu
- Chinese Integrative Medicine Oncology Depatrment, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China.
| |
Collapse
|
10
|
Zhu Z, Cheng Y, Liu X, Ding W, Liu J, Ling Z, Wu L. Advances in the Development and Application of Human Organoids: Techniques, Applications, and Future Perspectives. Cell Transplant 2025; 34:9636897241303271. [PMID: 39874083 PMCID: PMC11775963 DOI: 10.1177/09636897241303271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing. Recent advancements have led to the successful development of a variety of organoid types, reflecting a broad range of human organs and tissues. This progress has expanded their application across several domains, including regenerative medicine, where organoids offer potential for tissue replacement and repair; disease modeling, which allows for the study of disease mechanisms and progression in a controlled environment; drug discovery and evaluation, where organoids provide a more accurate platform for testing drug efficacy and safety; and microecological research, where they contribute to understanding the interactions between microbes and host tissues. This review provides a comprehensive overview of the historical development of organoid technology, highlights the key achievements and ongoing challenges in the field, and discusses the current and emerging applications of organoids in both laboratory research and clinical practice.
Collapse
Affiliation(s)
- Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
11
|
Moro LG, Guarnier LP, Azevedo MF, Fracasso JAR, Lucio MA, de Castro MV, Dias ML, Lívero FADR, Ribeiro-Paes JT. A Brief History of Cell Culture: From Harrison to Organs-on-a-Chip. Cells 2024; 13:2068. [PMID: 39768159 PMCID: PMC11674496 DOI: 10.3390/cells13242068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive overview of the historical milestones in cell culture underscores key breakthroughs that have shaped the field over time. It begins with Wilhelm Roux's seminal experiments in the 1880s, followed by the pioneering efforts of Ross Granville Harrison, who initiated groundbreaking experiments that fundamentally shaped the landscape of cell culture in the early 20th century. Carrel's influential contributions, notably the immortalization of chicken heart cells, have marked a significant advancement in cell culture techniques. Subsequently, Johannes Holtfreter, Aron Moscona, and Joseph Leighton introduced methodological innovations in three-dimensional (3D) cell culture, initiated by Alexis Carrel, laying the groundwork for future consolidation and expansion of the use of 3D cell culture in different areas of biomedical sciences. The advent of induced pluripotent stem cells by Takahashi and Yamanaka in 2006 was revolutionary, enabling the reprogramming of differentiated cells into a pluripotent state. Since then, recent innovations have included spheroids, organoids, and organ-on-a-chip technologies, aiming to mimic the structure and function of tissues and organs in vitro, pushing the boundaries of biological modeling and disease understanding. In this review, we overview the history of cell culture shedding light on the main discoveries, pitfalls and hurdles that were overcome during the transition from 2D to 3D cell culture techniques. Finally, we discussed the future directions for cell culture research that may accelerate the development of more effective and personalized treatments.
Collapse
Affiliation(s)
- Lincoln Gozzi Moro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
| | | | | | - Marco Aurélio Lucio
- Graduate Program in Environment and Regional Development, University of Western São Paulo, Presidente Prudente 19050-920, Brazil;
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Marlon Lemos Dias
- Precision Medicine Research Center, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro 21941-630, Brazil;
| | | | - João Tadeu Ribeiro-Paes
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University—UNESP, Assis 19806-900, Brazil
| |
Collapse
|
12
|
Zhang Y, Meng R, Sha D, Gao H, Wang S, Zhou J, Wang X, Li F, Li X, Song W. Advances in the application of colorectal cancer organoids in precision medicine. Front Oncol 2024; 14:1506606. [PMID: 39697234 PMCID: PMC11653019 DOI: 10.3389/fonc.2024.1506606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent gastrointestinal tumors globally and poses a significant threat to human health. In recent years, tumor organoids have emerged as ideal models for clinical disease research owing to their ability to closely mimic the original tumor tissue and maintain a stable phenotypic structure. Organoid technology has found widespread application in basic tumor research, precision therapy, and new drug development, establishing itself as a reliable preclinical model in CRC research. This has significantly advanced individualized and precise tumor therapies. Additionally, the integration of single-cell technology has enhanced the precision of organoid studies, offering deeper insights into tumor heterogeneity and treatment response, thereby contributing to the development of personalized treatment approaches. This review outlines the evolution of colorectal cancer organoid technology and highlights its strengths in modeling colorectal malignancies. This review also summarizes the progress made in precision tumor medicine and addresses the challenges in organoid research, particularly when organoid research is combined with single-cell technology. Furthermore, this review explores the future potential of organoid technology in the standardization of culture techniques, high-throughput screening applications, and single-cell multi-omics integration, offering novel directions for future colorectal cancer research.
Collapse
Affiliation(s)
- Yanan Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Oncology, Zibo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Ruoyu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Sha
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiquan Gao
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shengxi Wang
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Zhou
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoshan Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fuxia Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
13
|
Wang L, Guo W, Tian Y, Wang J, Xu S, Shu W, Liang H, Chen M. Carboxypeptidase inhibitor Latexin (LXN) regulates intestinal organogenesis and intestinal remodeling involved in intestinal injury repair in mice. Int J Biol Macromol 2024; 279:135129. [PMID: 39208900 DOI: 10.1016/j.ijbiomac.2024.135129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The self-renewal and regeneration of intestinal epithelium are mainly driven by intestinal stem cells resided in crypts, which are crucial for rapid recovery intestinal tissue following injury. Latexin (LXN) is a highly expressed stem cell proliferation and differentiation related gene in intestinal tissue. However, it is still ambiguous whether LXN participates in intestine regeneration by regulating intestinal stem cells (ISCs). Here, we report that LXN colocalizes with Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) in intestinal crypts, and deletion of LXN upregulates the expression of Lgr5 in intestinal crypts. LXN deficiency promotes the proliferation of ISCs, thereby enhances the development of intestinal organoids. Mechanically, we show that LXN deficiency enhances the expression of Lgr5 in ISCs by activating the Yes-associated protein (YAP) and wingless (Wnt) signal pathways, thus accelerating intestinal normal growth and regeneration post-injury. In summary, these findings uncover a novel function of LXN in intestinal regeneration post-injury and intestinal organogenesis, suggesting the potential role of LXN in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wenwen Guo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Yang Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Jingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Shaohua Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wei Shu
- College of Biotechnology, Guilin Medical University, Guilin, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| |
Collapse
|
14
|
Du J, Fang L, Wang Y, Zhao J, Feng Z, Yu Y, Fang D, Huang D, Zhai X, Cheng Y, Min R, Gao F, Liu C. Gelsolin regulates intestinal stem cell regeneration and Th17 cellular function. Cell Commun Signal 2024; 22:524. [PMID: 39472865 PMCID: PMC11520831 DOI: 10.1186/s12964-024-01902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Intestinal stem cells (ISCs) are responsible for intestinal homeostasis and are important for the regeneration of damaged intestine. We established an ionizing radiation (IR)-induced intestinal injury model and observed that Gelsolin KO mice had increased radiosensitivity. The deletion of Gelsolin aggravated intestinal damage and reduced the number of ISCs after lethal IR. The intestinal organoid experiments showed that Gelsolin deletion inhibited ISCs function after IR. Notably, RNA sequencing and RT-PCR results showed IL-17 signaling pathway was down-regulated and Th17 cells differentiation was inhibited in Gelsolin KO mice. Moreover, recombinant IL-17 A ameliorated IR-induced intestinal injury and promoted ISCs regeneration. To figure out the role of Gelsolin in Th17 cells differentiation, flow cytometry was used and we found that Gelsolin targets Th17 cells functionality via the p-STAT3/RORγt axis. By establishing the co-culture system, we proved that Th17 cells promoted self-renewal and budding abilities in Gelsolin-deficient organoids. Finally, we found that Gelsolin was protective against DSS-induced colitis and that this protective effect was not specific or limited to the IR induced intestinal injury model. Based on these results, we proved Gelsolin maintained the regeneration of ISCs by sustaining Th17 cells functions via the p-STAT3/RORγt axis.
Collapse
Affiliation(s)
- Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Lan Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Yuedong Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Jianpeng Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Zhenlan Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Yike Yu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Duo Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Daqian Huang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Xuanlu Zhai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Rui Min
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China.
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, P.R. China.
| |
Collapse
|
15
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
16
|
Feng C, Yan J, Luo T, Zhang H, Zhang H, Yuan Y, Chen Y, Chen H. Vitamin B12 ameliorates gut epithelial injury via modulating the HIF-1 pathway and gut microbiota. Cell Mol Life Sci 2024; 81:397. [PMID: 39261351 PMCID: PMC11391010 DOI: 10.1007/s00018-024-05435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.
Collapse
Affiliation(s)
- Chenxi Feng
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinhua Yan
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hu Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Yuan
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Haiyang Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Fang L, Cheng Y, Fang D, Feng Z, Wang Y, Yu Y, Zhao J, Huang D, Zhai X, Liu C, Du J. CL429 enhances the renewal of intestinal stem cells by upregulating TLR2-YAP1. Int Immunopharmacol 2024; 138:112614. [PMID: 38972212 DOI: 10.1016/j.intimp.2024.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Intestinal stem cells (ISCs) play a crucial role in maintaining the equilibrium and regenerative potential of intestinal tissue, thereby ensuring tissue homeostasis and promoting effective tissue regeneration following injury. It has been proven that targeting Toll-like receptors (TLRs) can help prevent radiation-induced damage to the intestine. In this study, we established an intestinal injury model using IR and evaluated the effects of CL429 on ISC regeneration both in vivo and in vitro. Following radiation exposure, mice treated with CL429 showed a significant increase in survival rates (100% survival in the treated group compared to 54.54% in the control group). CL429 also showed remarkable efficacy in inhibiting radiation-induced intestinal damage and promoting ISC proliferation and regeneration. In addition, CL429 protected intestinal organoids against IR-induced injury. Mechanistically, RNA sequencing and Western blot analysis revealed the activation of the Wnt and Hippo signaling pathways by CL429. Specifically, we observed a significant upregulation of YAP1, a key transcription factor in the Hippo pathway, upon CL429 stimulation. Furthermore, knockdown of YAP1 significantly attenuated the radioprotective effect of CL429 on intestinal organoids, indicating that CL429-mediated intestinal radioprotection is dependent on YAP1. In addition, we investigated the relationship between TLR2 and YAP1 using TLR2 knockout mice, and our results showed that TLR2 knockout abolished the activation of CL429 on YAP1. Taken together, our study provides evidence supporting the role of CL429 in promoting ISC regeneration through activation of TLR2-YAP1. And further investigation of the interaction between TLRs and other signaling pathways may enhance our understanding of ISC regeneration after injury.
Collapse
Affiliation(s)
- Lan Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Duo Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Zhenlan Feng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Yuedong Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Yike Yu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Jianpeng Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Daqian Huang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Xuanlu Zhai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China.
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433, Shanghai, PR China.
| |
Collapse
|
18
|
Guo P, Yang R, Zhong S, Ding Y, Wu J, Wang Z, Wang H, Zhang J, Tu N, Zhou H, Chen S, Wang Q, Li D, Chen W, Chen L. Urolithin A attenuates hexavalent chromium-induced small intestinal injury by modulating PP2A/Hippo/YAP1 pathway. J Biol Chem 2024; 300:107669. [PMID: 39128717 PMCID: PMC11408861 DOI: 10.1016/j.jbc.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.
Collapse
Affiliation(s)
- Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingying Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Pathology, Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Huiqi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nannan Tu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Zhou
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Ma W, Zheng Y, Yang G, Zhang H, Lu M, Ma H, Wu C, Lu H. A bioactive calcium silicate nanowire-containing hydrogel for organoid formation and functionalization. MATERIALS HORIZONS 2024; 11:2957-2973. [PMID: 38586926 DOI: 10.1039/d4mh00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Organoids, which are 3D multicellular constructs, have garnered significant attention in recent years. Existing organoid culture methods predominantly utilize natural and synthetic polymeric hydrogels. This study explored the potential of a composite hydrogel mainly consisting of calcium silicate (CS) nanowires and methacrylated gelatin (GelMA) as a substrate for organoid formation and functionalization, specifically for intestinal and liver organoids. Furthermore, the research delved into the mechanisms by which CS nanowires promote the structure formation and development of organoids. It was discovered that CS nanowires can influence the stiffness of the hydrogel, thereby regulating the expression of the mechanosensory factor yes-associated protein (YAP). Additionally, the bioactive ions released by CS nanowires in the culture medium could accelerate Wnt/β-catenin signaling, further stimulating organoid development. Moreover, bioactive ions were found to enhance the nutrient absorption and ATP metabolic activity of intestinal organoids. Overall, the CS/GelMA composite hydrogel proves to be a promising substrate for organoid formation and development. This research suggested that inorganic biomaterials hold significant potential in organoid research, offering bioactivities, biosafety, and cost-effectiveness.
Collapse
Affiliation(s)
- Wenping Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yi Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Guangzhen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Mingxia Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hongxu Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
21
|
Tucker SA, Hu SH, Vyas S, Park A, Joshi S, Inal A, Lam T, Tan E, Haigis KM, Haigis MC. SIRT4 loss reprograms intestinal nucleotide metabolism to support proliferation following perturbation of homeostasis. Cell Rep 2024; 43:113975. [PMID: 38507411 PMCID: PMC11639042 DOI: 10.1016/j.celrep.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.
Collapse
Affiliation(s)
- Sarah A Tucker
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sejal Vyas
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Park
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aslihan Inal
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tiffany Lam
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Tan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
23
|
Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone Organoids: Recent Advances and Future Challenges. Adv Healthc Mater 2024; 13:e2302088. [PMID: 38079529 DOI: 10.1002/adhm.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Bone defects stemming from tumorous growths, traumatic events, and diverse conditions present a profound conundrum in clinical practice and research. While bone has the inherent ability to regenerate, substantial bone anomalies require bone regeneration techniques. Bone organoids represent a new concept in this field, involving the 3D self-assembly of bone-associated stem cells guided in vitro with or without extracellular matrix material, resulting in a tissue that mimics the structural, functional, and genetic properties of native bone tissue. Within the scientific panorama, bone organoids ascend to an esteemed status, securing significant experimental endorsement. Through a synthesis of current literature and pioneering studies, this review offers a comprehensive survey of the bone organoid paradigm, delves into the quintessential architecture and ontogeny of bone, and highlights the latest progress in bone organoid fabrication. Further, existing challenges and prospective directions for future research are identified, advocating for interdisciplinary collaboration to fully harness the potential of this burgeoning domain. Conclusively, as bone organoid technology continues to mature, its implications for both clinical and research landscapes are poised to be profound.
Collapse
Affiliation(s)
- Ding Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yihan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
24
|
Yvon S, Beaumont M, Dayonnet A, Eutamène H, Lambert W, Tondereau V, Chalvon-Demersay T, Belloir P, Paës C. Effect of diet supplemented with functional amino acids and polyphenols on gut health in broilers subjected to a corticosterone-induced stress. Sci Rep 2024; 14:1032. [PMID: 38200093 PMCID: PMC10781708 DOI: 10.1038/s41598-023-50852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
To address the overuse of antimicrobials in poultry production, new functional feed ingredients, i.e. ingredients with benefits beyond meeting basic nutritional requirements, can play a crucial role thanks to their prophylactic effects. This study evaluated the effects of the supplementation of arginine, threonine and glutamine together with grape polyphenols on the gut integrity and functionality of broilers facing a stress condition. 108 straight-run newly hatched Ross PM3 chicks were kept until 35 days and were allocated to 3 treatments. Broilers in the control group were raised in standard conditions. In experimental groups, birds were administered with corticosterone in drinking water (CORT groups) to impair the global health of the animal and were fed a well-balanced diet supplemented or not with a mix of functional amino acids together with grape extracts (1 g/kg of diet-CORT + MIX group). Gut permeability was significantly increased by corticosterone in non-supplemented birds. This corticosterone-induced stress effect was alleviated in the CORT + MIX group. MIX supplementation attenuated the reduction of crypt depth induced by corticosterone. Mucin 2 and TNF-α gene expression was up-regulated in the CORT + MIX group compared to the CORT group. Caecal microbiota remained similar between the groups. These findings indicate that a balanced diet supplemented with functional AA and polyphenols can help to restore broiler intestinal barrier after a stress exposure.
Collapse
Affiliation(s)
- Sophie Yvon
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | - Martin Beaumont
- GenPhySE, INRAE, ENVT, Université De Toulouse, Toulouse, France
| | | | - Hélène Eutamène
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | | | - Valérie Tondereau
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | | | | | - Charlotte Paës
- INP-Purpan, Toulouse, France.
- GenPhySE, INRAE, ENVT, Université De Toulouse, Toulouse, France.
| |
Collapse
|
25
|
Mishra I, Gupta K, Mishra R, Chaudhary K, Sharma V. An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles. Curr Pharm Biotechnol 2024; 25:1000-1020. [PMID: 37807405 DOI: 10.2174/0113892010273024230925075231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures. OBJECTIVES This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research. METHODS The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases. RESULTS The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases. CONCLUSION The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Komal Gupta
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kajal Chaudhary
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
26
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Wang M, Shi J, Yu C, Zhang X, Xu G, Xu Z, Ma Y. Emerging strategy towards mucosal healing in inflammatory bowel disease: what the future holds? Front Immunol 2023; 14:1298186. [PMID: 38155971 PMCID: PMC10752988 DOI: 10.3389/fimmu.2023.1298186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
For decades, the therapeutic goal of conventional treatment among inflammatory bowel disease (IBD) patients is alleviating exacerbations in acute phase, maintaining remission, reducing recurrence, preventing complications, and increasing quality of life. However, the persistent mucosal/submucosal inflammation tends to cause irreversible changes in the intestinal structure, which can barely be redressed by conventional treatment. In the late 1990s, monoclonal biologics, mainly anti-TNF (tumor necrosis factor) drugs, were proven significantly helpful in inhibiting mucosal inflammation and improving prognosis in clinical trials. Meanwhile, mucosal healing (MH), as a key endoscopic and histological measurement closely associated with the severity of symptoms, has been proposed as primary outcome measures. With deeper comprehension of the mucosal microenvironment, stem cell niche, and underlying mucosal repair mechanisms, diverse potential strategies apart from monoclonal antibodies have been arising or undergoing clinical trials. Herein, we elucidate key steps or targets during the course of MH and review some promising treatment strategies capable of promoting MH in IBD.
Collapse
Affiliation(s)
- Min Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyan Shi
- Medical School, Nanjing University, Nanjing, China
| | - Chao Yu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyi Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gaoxin Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyan Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Gall L, Duckworth C, Jardi F, Lammens L, Parker A, Bianco A, Kimko H, Pritchard DM, Pin C. Homeostasis, injury, and recovery dynamics at multiple scales in a self-organizing mouse intestinal crypt. eLife 2023; 12:e85478. [PMID: 38063302 PMCID: PMC10789491 DOI: 10.7554/elife.85478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
The maintenance of the functional integrity of the intestinal epithelium requires a tight coordination between cell production, migration, and shedding along the crypt-villus axis. Dysregulation of these processes may result in loss of the intestinal barrier and disease. With the aim of generating a more complete and integrated understanding of how the epithelium maintains homeostasis and recovers after injury, we have built a multi-scale agent-based model (ABM) of the mouse intestinal epithelium. We demonstrate that stable, self-organizing behaviour in the crypt emerges from the dynamic interaction of multiple signalling pathways, such as Wnt, Notch, BMP, ZNRF3/RNF43, and YAP-Hippo pathways, which regulate proliferation and differentiation, respond to environmental mechanical cues, form feedback mechanisms, and modulate the dynamics of the cell cycle protein network. The model recapitulates the crypt phenotype reported after persistent stem cell ablation and after the inhibition of the CDK1 cycle protein. Moreover, we simulated 5-fluorouracil (5-FU)-induced toxicity at multiple scales starting from DNA and RNA damage, which disrupts the cell cycle, cell signalling, proliferation, differentiation, and migration and leads to loss of barrier integrity. During recovery, our in silico crypt regenerates its structure in a self-organizing, dynamic fashion driven by dedifferentiation and enhanced by negative feedback loops. Thus, the model enables the simulation of xenobiotic-, in particular chemotherapy-, induced mechanisms of intestinal toxicity and epithelial recovery. Overall, we present a systems model able to simulate the disruption of molecular events and its impact across multiple levels of epithelial organization and demonstrate its application to epithelial research and drug development.
Collapse
Affiliation(s)
- Louis Gall
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaCambridgeUnited Kingdom
| | - Carrie Duckworth
- Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Ferran Jardi
- Preclinical Sciences and Translational Safety, JanssenBeerseBelgium
| | - Lieve Lammens
- Preclinical Sciences and Translational Safety, JanssenBeerseBelgium
| | - Aimee Parker
- Gut Microbes and Health Programme, Quadram InstituteNorwichUnited Kingdom
| | - Ambra Bianco
- Clinical Pharmacology and Safety Sciences, AstraZenecaCambridgeUnited Kingdom
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaCambridgeUnited Kingdom
| | - David Mark Pritchard
- Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Carmen Pin
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaCambridgeUnited Kingdom
| |
Collapse
|
29
|
Hopton RE, Jahahn NJ, Zemper AE. Lrig1 drives cryptogenesis and restrains proliferation during colon development. Am J Physiol Gastrointest Liver Physiol 2023; 325:G570-G581. [PMID: 37873577 PMCID: PMC11192189 DOI: 10.1152/ajpgi.00094.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Growth and specification of the mouse intestine occurs in utero and concludes after birth. Although numerous studies have examined this developmental process in the small intestine, far less is known about the cellular and molecular cues required for colon development. In this study, we examine the morphological events leading to crypt formation, epithelial cell differentiation, proliferation, and the emergence and expression of a stem and progenitor cell marker Lrig1. Through multicolor lineage tracing, we show Lrig1-expressing cells are present at birth and behave as stem cells to establish clonal crypts within 3 wk of life. In addition, we use an inducible knockout mouse to eliminate Lrig1 and show Lrig1 restrains proliferation within a critical developmental time window, without impacting colonic epithelial cell differentiation. Our study illustrates morphological changes during crypt development and the importance of Lrig1 in the developing colon.NEW & NOTEWORTHY Our studies define the importance of studying Lrig1 in colon development. We address a critical gap in the intestinal development literature and provide new information about the molecular cues that guide colon development. Using a novel, inducible knockout of Lrig1, we show Lrig1 is required for appropriate colon epithelial growth and illustrate the importance of Lrig1-expressing cells in the establishment of colonic crypts.
Collapse
Affiliation(s)
- Rachel E Hopton
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States
- Department of Biology, University of Oregon, Eugene, Oregon, United States
| | - Nicholas J Jahahn
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States
- Department of Biology, University of Oregon, Eugene, Oregon, United States
| | - Anne E Zemper
- Department of Biology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
30
|
Billingsley JL, Yevdokimova V, Ayoub K, Benoit YD. Colorectal Cancer Is Borrowing Blueprints from Intestinal Ontogenesis. Cancers (Basel) 2023; 15:4928. [PMID: 37894295 PMCID: PMC10604965 DOI: 10.3390/cancers15204928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal tumors are heterogenous cellular systems harboring small populations of self-renewing and highly tumorigenic cancer stem cells (CSCs). Understanding the mechanisms fundamental to the emergence of CSCs and colorectal tumor initiation is crucial for developing effective therapeutic strategies. Two recent studies have highlighted the importance of developmental gene expression programs as potential therapeutic targets to suppress pro-oncogenic stem cell populations in the colonic epithelium. Specifically, a subset of aberrant stem cells was identified in preneoplastic intestinal lesions sharing significant transcriptional similarities with fetal gut development. In such aberrant stem cells, Sox9 was shown as a cornerstone for altered cell plasticity, the maintenance of premalignant stemness, and subsequent colorectal tumor initiation. Independently, chemical genomics was used to identify FDA-approved drugs capable of suppressing neoplastic self-renewal based on the ontogenetic root of a target tumor and transcriptional programs embedded in pluripotency. Here, we discuss the joint conclusions from these two approaches, underscoring the importance of developmental networks in CSCs as a novel paradigm for identifying therapeutics targeting colorectal cancer stemness.
Collapse
Affiliation(s)
- Jacob L. Billingsley
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.L.B.); (V.Y.); (K.A.)
| | - Veronika Yevdokimova
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.L.B.); (V.Y.); (K.A.)
| | - Kristina Ayoub
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.L.B.); (V.Y.); (K.A.)
| | - Yannick D. Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.L.B.); (V.Y.); (K.A.)
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
31
|
Aita R, Chen L, Verzi M. Evaluating Performance of IsoformSwitchAnalyzeR and mRNA Isoform Switching in Small Intestine Epithelial Differentiation. GASTRO HEP ADVANCES 2023; 2:1077-1081. [PMID: 38094226 PMCID: PMC10718563 DOI: 10.1016/j.gastha.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/04/2023] [Indexed: 12/17/2023]
Affiliation(s)
- R. Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, New Jersey
| | - L. Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, New Jersey
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - M.P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, New Jersey
| |
Collapse
|
32
|
Liu Y, Reyes E, Castillo-Azofeifa D, Klein OD, Nystul T, Barber DL. Intracellular pH dynamics regulates intestinal stem cell lineage specification. Nat Commun 2023; 14:3745. [PMID: 37353491 PMCID: PMC10290085 DOI: 10.1038/s41467-023-39312-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Intracellular pH dynamics is increasingly recognized to regulate myriad cell behaviors. We report a finding that intracellular pH dynamics also regulates adult stem cell lineage specification. We identify an intracellular pH gradient in mouse small intestinal crypts, lowest in crypt stem cells and increasing along the crypt column. Disrupting this gradient by inhibiting H+ efflux by Na+/H+ exchanger 1 abolishes crypt budding and blocks differentiation of Paneth cells, which are rescued with exogenous WNT. Using single-cell RNA sequencing and lineage tracing we demonstrate that intracellular pH dynamics acts downstream of ATOH1, with increased pH promoting differentiation toward the secretory lineage. Our findings indicate that an increase in pH is required for the lineage specification that contributes to crypt maintenance, establishing a role for intracellular pH dynamics in cell fate decisions within an adult stem cell lineage.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Efren Reyes
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Castillo-Azofeifa
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Todd Nystul
- Departments of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
33
|
Abstract
As the guardian of the genome, p53 is well known for its tumor suppressor function in humans, controlling cell proliferation, senescence, DNA repair and cell death in cancer through transcriptional and non-transcriptional activities. p53 is the most frequently mutated gene in human cancer, but how its mutation or depletion leads to tumorigenesis still remains poorly understood. Recently, there has been increasing evidence that p53 plays a vital role in regulating cellular metabolism as well as in metabolic adaptation to nutrient starvation. In contrast, mutant p53 proteins, especially those harboring missense mutations, have completely different functions compared to wild-type p53. In this review, we briefly summarize what is known about p53 mediating anabolic and catabolic metabolism in cancer, and in particular discuss recent findings describing how metabolites regulate p53 functions. To illustrate the variability and complexity of p53 function in metabolism, we will also review the differential regulation of metabolism by wild-type and mutant p53.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
34
|
Zhao XH, Zhao P, Deng Z, Yang T, Qi YX, An LY, Sun DL, He HY. Integrative analysis reveals marker genes for intestinal mucosa barrier repairing in clinical patients. iScience 2023; 26:106831. [PMID: 37250791 PMCID: PMC10212979 DOI: 10.1016/j.isci.2023.106831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
This study aims to identify biomarkers of intestinal repair and provide potential therapeutic clues for improving functional recovery and prognostic performance after intestinal inflammation or injury. Here, we conducted a large-scale screening of multiple transcriptomic and scRNA-seq datasets of patients with inflammatory bowel disease (IBD), and identified 10 marker genes that potentially contribute to intestinal barrier repairing: AQP8, SULT1A1, HSD17B2, PADI2, SLC26A2, SELENBP1, FAM162A, TNNC2, ACADS, and TST. Analysis of a published scRNA-seq dataset revealed that expression of these healing markers were specific to absorptive cell types in intestinal epithelium. Furthermore, we conducted a clinical study where 11 patients underwent ileum resection demonstrating that upregulation of post-operative AQP8 and SULT1A1 expression were associated with improved recovery of bowel functions after surgery-induced intestinal injury, making them confident biomarkers of intestinal healing as well as potential prognostic markers and therapeutic targets for patients with impaired intestinal barrier functions.
Collapse
Affiliation(s)
- Xiao-Hu Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Peinan Zhao
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Zihao Deng
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Ting Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Yu-Xing Qi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Li-Ya An
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Da-Li Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| | - Hai-Yu He
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University / Second Faculty of Clinical Medicine, Kunming Medical University, Kunming 650101, China
| |
Collapse
|
35
|
Hopton RE, Jahahn NJ, Zemper AE. The Role of Lrig1 in the Development of the Colonic Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539114. [PMID: 37205411 PMCID: PMC10187246 DOI: 10.1101/2023.05.02.539114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Growth and specification of the mouse intestine occurs in utero and concludes after birth. While numerous studies have examined this developmental process in the small intestine, far less is known about the cellular and molecular cues required for colon development. In this study, we examine the morphological events leading to crypt formation, epithelial cell differentiation, areas of proliferation, and the emergence and expression of a stem and progenitor cell marker Lrig1. Through multicolor lineage tracing, we show Lrig1 expressing cells are present at birth and behave as stem cells to establish clonal crypts within three weeks after birth. In addition, we use an inducible knockout mouse to eliminate Lrig1 during colon development and show loss of Lrig1 restrains proliferation within a critical developmental time window, without impacting colonic epithelial cell differentiation. Our study illustrates the morphological changes that occur during crypt development and the importance of Lrig1 in the developing colon.
Collapse
|
36
|
Wang Z, Chen S, Pang Y, Ye L, Zhang Q, Jiang X, Zhang R, Li M, Guo Z, Jiang Y, Li D, Xing X, Chen L, Aschner M, Chen W. Morphological alterations in C57BL/6 mouse intestinal organoids as a tool for predicting chemical-induced toxicity. Arch Toxicol 2023; 97:1133-1146. [PMID: 36806895 PMCID: PMC10045874 DOI: 10.1007/s00204-023-03451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
Intestinal organoid may serve as an alternative model for toxicity testing. However, the linkage between specific morphological alterations in organoids and chemical-induced toxicity has yet to be defined. Here, we generated C57BL/6 mouse intestinal organoids and conducted a morphology-based analysis on chemical-induced toxicity. Alterations in morphology were characterized by large spheroids, hyperplastic organoids, small spheroids, and protrusion-loss organoids, which responded in a concentration-dependent manner to the treatment of four metal(loid)s including cadmium (Cd), lead (Pb), hexavalent chromium (Cr-VI), and inorganic trivalent arsenic (iAs-III). Notably, alterations in organoid morphology characterized by abnormal morphology rate were correlated with specific intestinal toxic effects, including reduction in cell viability and differentiation, induction of apoptosis, dysfunction of mucus production, and damage to epithelial barrier upon repeated administration. The benchmark dose (BMDL10) values of morphological alterations (0.007-0.195 μM) were lower than those of conventional bioassays (0.010-0.907 μM). We also established that the morphologic features of organoids upon Cd, Pb, Cr-VI, or iAs-III treatment were metal specific, and mediated by Wnt, bone morphogenetic protein, apoptosis induction, and Notch signaling pathways, respectively. Collectively, these findings provide novel insights into the relevance of morphological alterations in organoids to specific toxic endpoints and identify specific morphological alterations as potential indicators of enterotoxicity.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yaqin Pang
- Faculty of Toxicology, School of Public Health, Youjiang Medical College for Nationalities, Guangxi, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qi Zhang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xinhang Jiang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Miao Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhanyu Guo
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
37
|
Smirnov A, Melino G, Candi E. Gene expression in organoids: an expanding horizon. Biol Direct 2023; 18:11. [PMID: 36964575 PMCID: PMC10038780 DOI: 10.1186/s13062-023-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|
38
|
Säisä-Borreill S, Davidson G, Kleiber T, Thevenot A, Martin E, Mondot S, Blottière H, Helleux A, Mengus G, Plateroti M, Duluc I, Davidson I, Freund JN. General transcription factor TAF4 antagonizes epigenetic silencing by Polycomb to maintain intestine stem cell functions. Cell Death Differ 2023; 30:839-853. [PMID: 36639541 PMCID: PMC9984434 DOI: 10.1038/s41418-022-01109-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Taf4 (TATA-box binding protein-associated factor 4) is a subunit of the general transcription factor TFIID, a component of the RNA polymerase II pre-initiation complex that interacts with tissue-specific transcription factors to regulate gene expression. Properly regulated gene expression is particularly important in the intestinal epithelium that is constantly renewed from stem cells. Tissue-specific inactivation of Taf4 in murine intestinal epithelium during embryogenesis compromised gut morphogenesis and the emergence of adult-type stem cells. In adults, Taf4 loss impacted the stem cell compartment and associated Paneth cells in the stem cell niche, epithelial turnover and differentiation of mature cells, thus exacerbating the response to inflammatory challenge. Taf4 inactivation ex vivo in enteroids prevented budding formation and maintenance and caused broad chromatin remodeling and a strong reduction in the numbers of stem and progenitor cells with a concomitant increase in an undifferentiated cell population that displayed high activity of the Ezh2 and Suz12 components of Polycomb Repressive Complex 2 (PRC2). Treatment of Taf4-mutant enteroids with a specific Ezh2 inhibitor restored buddings, cell proliferation and the stem/progenitor compartment. Taf4 loss also led to increased PRC2 activity in cells of adult crypts associated with modification of the immune/inflammatory microenvironment that potentiated Apc-driven tumorigenesis. Our results reveal a novel function of Taf4 in antagonizing PRC2-mediated repression of the stem cell gene expression program to assure normal development, homeostasis, and immune-microenvironment of the intestinal epithelium.
Collapse
Affiliation(s)
- Susanna Säisä-Borreill
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Guillaume Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Thomas Kleiber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
- Orphazyme, Ole Maaloes 3, 2200, Copenhagen, Denmark
| | - Andréa Thevenot
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Elisabeth Martin
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Stanislas Mondot
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hervé Blottière
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Alexandra Helleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Gabrielle Mengus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Michelina Plateroti
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Isabelle Duluc
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Jean-Noel Freund
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France.
| |
Collapse
|
39
|
Castillo-Azofeifa D, Wald T, Reyes EA, Gallagher A, Schanin J, Vlachos S, Lamarche-Vane N, Bomidi C, Blutt S, Estes MK, Nystul T, Klein OD. A DLG1-ARHGAP31-CDC42 axis is essential for the intestinal stem cell response to fluctuating niche Wnt signaling. Cell Stem Cell 2023; 30:188-206.e6. [PMID: 36640764 PMCID: PMC9922544 DOI: 10.1016/j.stem.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
A central factor in the maintenance of tissue integrity is the response of stem cells to variations in the levels of niche signals. In the gut, intestinal stem cells (ISCs) depend on Wnt ligands for self-renewal and proliferation. Transient increases in Wnt signaling promote regeneration after injury or in inflammatory bowel diseases, whereas constitutive activation of this pathway leads to colorectal cancer. Here, we report that Discs large 1 (Dlg1), although dispensable for polarity and cellular turnover during intestinal homeostasis, is required for ISC survival in the context of increased Wnt signaling. RNA sequencing (RNA-seq) and genetic mouse models demonstrated that DLG1 regulates the cellular response to increased canonical Wnt ligands. This occurs via the transcriptional regulation of Arhgap31, a GTPase-activating protein that deactivates CDC42, an effector of the non-canonical Wnt pathway. These findings reveal a DLG1-ARHGAP31-CDC42 axis that is essential for the ISC response to increased niche Wnt signaling.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Regenerative Medicine, Genentech, Inc., South San Francisco, CA, USA
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Efren A Reyes
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pharmaceutical Chemistry and TETRAD Program, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Schanin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie Vlachos
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Todd Nystul
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Novelli G, Spitalieri P, Murdocca M, Centanini E, Sangiuolo F. Organoid factory: The recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine. Front Cell Dev Biol 2023; 10:1059579. [PMID: 36699015 PMCID: PMC9869172 DOI: 10.3389/fcell.2022.1059579] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
During the last decades, hiPSC-derived organoids have been extensively studied and used as in vitro models for several applications among which research studies. They can be considered as organ and tissue prototypes, especially for those difficult to obtain. Moreover, several diseases can be accurately modeled and studied. Hence, patient-derived organoids (PDOs) can be used to predict individual drug responses, thus paving the way toward personalized medicine. Lastly, by applying tissue engineering and 3D printing techniques, organoids could be used in the future to replace or regenerate damaged tissue. In this review, we will focus on hiPSC-derived 3D cultures and their ability to model human diseases with an in-depth analysis of gene editing applications, as well as tumor models. Furthermore, we will highlight the state-of-the-art of organoid facilities that around the world offer know-how and services. This is an increasing trend that shed the light on the need of bridging the publicand the private sector. Hence, in the context of drug discovery, Organoid Factories can offer biobanks of validated 3D organoid models that can be used in collaboration with pharmaceutical companies to speed up the drug screening process. Finally, we will discuss the limitations and the future development that will lead hiPSC-derived technology from bench to bedside, toward personalized medicine, such as maturity, organoid interconnections, costs, reproducibility and standardization, and ethics. hiPSC-derived organoid technology is now passing from a proof-of-principle to real applications in the clinic, also thanks to the applicability of techniques, such as CRISPR/Cas9 genome editing system, material engineering for the scaffolds, or microfluidic systems. The benefits will have a crucial role in the advance of both basic biological and translational research, particularly in the pharmacological field and drug development. In fact, in the near future, 3D organoids will guide the clinical decision-making process, having validated patient-specific drug screening platforms. This is particularly important in the context of rare genetic diseases or when testing cancer treatments that could in principle have severe side effects. Therefore, this technology has enabled the advancement of personalized medicine in a way never seen before.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Centanini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
41
|
Imajo M, Hirota A, Tanaka S. Generation of Fetal Intestinal Organoids and Their Maturation into Adult Intestinal Cells. Methods Mol Biol 2023; 2650:133-140. [PMID: 37310629 DOI: 10.1007/978-1-0716-3076-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During embryonic development, the gut tube undergoes massive morphological changes from the simple tube structure composed of the pseudostratified epithelium into the mature intestinal tract composed of the columnar epithelium and characterized by the unique crypt-villus structures. In mice, maturation of fetal gut precursor cells into adult intestinal cells starts around embryonic day (E) 16.5, during which adult intestinal stem cells and their differentiated progenies are generated. In contrast to adult intestinal cells that form budding organoids containing both the crypt-like and villus-like regions, fetal intestinal cells can be cultured as simple spheroid-shaped organoids that show a uniform proliferation pattern. The fetal intestinal spheroids can undergo spontaneous maturation into adult budding organoids that contain intestinal stem cells and differentiated cells, including enterocytes, goblet, enteroendocrine, and Paneth cells, recapitulating intestinal cell maturation in vitro. Here, we provide detailed methods for establishment of fetal intestinal organoids and their differentiation into adult intestinal cells. These methods enable in vitro recapitulation of intestinal development and would be useful to reveal mechanisms that regulate the transition from fetal to adult intestinal cells.
Collapse
Affiliation(s)
- Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Dalleywater W, Wheat F, Sculthorpe D, Hyland G, Ilyas M. In Vitro Culture and Histological Evaluation of 3D Organotypic Cultures. Methods Mol Biol 2023; 2650:155-170. [PMID: 37310631 DOI: 10.1007/978-1-0716-3076-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organotypic cultures allow cells to grow in a system which mimics in vivo tissue organization. Here we describe a method for establishing 3D organotypic cultures (using intestine as an example system), followed by methods for demonstrating cell morphology and tissue architecture using histological techniques and molecular expression analysis using immunohistochemistry, though the system is also amenable to molecular expression analysis, such as by PCR, RNA sequencing, or FISH.
Collapse
Affiliation(s)
- William Dalleywater
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Francesca Wheat
- Department of Cellular Pathology, University Hospitals of Leicester NHS Trust, Nottingham, UK
| | - Declan Sculthorpe
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Georgina Hyland
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammad Ilyas
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
43
|
Berger M, Guiraud L, Dumas A, Sagnat D, Payros G, Rolland C, Vergnolle N, Deraison C, Cenac N, Racaud-Sultan C. Prenatal stress induces changes in PAR2- and M3-dependent regulation of colon primitive cells. Am J Physiol Gastrointest Liver Physiol 2022; 323:G609-G626. [PMID: 36283083 PMCID: PMC9722261 DOI: 10.1152/ajpgi.00061.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prenatal stress is associated with a high risk of developing adult intestinal pathologies, such as irritable bowel syndrome, chronic inflammation, and cancer. Although epithelial stem cells and progenitors have been implicated in intestinal pathophysiology, how prenatal stress could impact their functions is still unknown. We have investigated the proliferative and differentiation capacities of primitive cells using epithelial crypts isolated from colons of adult male and female mice whose mothers have been stressed during late gestation. Our results show that stem cell/progenitor proliferation and differentiation in vitro are negatively impacted by prenatal stress in male progeny. This is promoted by a reinforcement of the negative proliferative/differentiation control by the protease-activated receptor 2 (PAR2) and the muscarinic receptor 3 (M3), two G protein-coupled receptors present in the crypt. Conversely, prenatal stress does not change in vitro proliferation of colon primitive cells in female progeny. Importantly, this maintenance is associated with a functional switch in the M3 negative control of colonoid growth, becoming proliferative after prenatal stress. In addition, the proliferative role of PAR2 specific to females is maintained under prenatal stress, even though PAR2-targeted stress signals Dusp6 and activated GSK3β are increased, reaching the levels of males. An epithelial serine protease could play a critical role in the activation of the survival kinase GSK3β in colonoids from prenatally stressed female progeny. Altogether, our results show that following prenatal stress, colon primitive cells cope with stress through sexually dimorphic mechanisms that could pave the way to dysregulated crypt regeneration and intestinal pathologies.NEW & NOTEWORTHY Primitive cells isolated from mouse colon following prenatal stress and exposed to additional stress conditions such as in vitro culture, present sexually dimorphic mechanisms based on PAR2- and M3-dependent regulation of proliferation and differentiation. Whereas prenatal stress reinforces the physiological negative control exerted by PAR2 and M3 in crypts from males, in females, it induces a switch in M3- and PAR2-dependent regulation leading to a resistant and proliferative phenotype of progenitor.
Collapse
Affiliation(s)
- Mathieu Berger
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Laura Guiraud
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Alexia Dumas
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - David Sagnat
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Gaëlle Payros
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Corinne Rolland
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Nathalie Vergnolle
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France,2Department of Physiology and Pharmacology, Cumming School of
Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Céline Deraison
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Nicolas Cenac
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| | - Claire Racaud-Sultan
- 1Institut de Recherche en Santé Digestive, INSERM U1220, Institut
National de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement, Ecole Nationale Vétérinaire de Toulouse, University of Toulouse, Toulouse, France
| |
Collapse
|
44
|
Nie J, Liao W, Zhang Z, Zhang M, Wen Y, Capanoglu E, Sarker MMR, Zhu R, Zhao C. A 3D co-culture intestinal organoid system for exploring glucose metabolism. Curr Res Food Sci 2022; 6:100402. [DOI: 10.1016/j.crfs.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
|
45
|
Park SE, Kang S, Paek J, Georgescu A, Chang J, Yi AY, Wilkins BJ, Karakasheva TA, Hamilton KE, Huh DD. Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nat Methods 2022; 19:1449-1460. [PMID: 36280722 PMCID: PMC10027401 DOI: 10.1038/s41592-022-01643-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/09/2022] [Indexed: 12/22/2022]
Abstract
Here, we introduce a facile, scalable engineering approach to enable long-term development and maturation of organoids. We have redesigned the configuration of conventional organoid culture to develop a platform that converts single injections of stem cell suspensions to radial arrays of organoids that can be maintained for extended periods without the need for passaging. Using this system, we demonstrate accelerated production of intestinal organoids with significantly enhanced structural and functional maturity, and their continuous development for over 4 weeks. Furthermore, we present a patient-derived organoid model of inflammatory bowel disease (IBD) and its interrogation using single-cell RNA sequencing to demonstrate its ability to reproduce key pathological features of IBD. Finally, we describe the extension of our approach to engineer vascularized, perfusable human enteroids, which can be used to model innate immune responses in IBD. This work provides an immediately deployable platform technology toward engineering more realistic organ-like structures in a dish.
Collapse
Affiliation(s)
- Sunghee Estelle Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shawn Kang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jungwook Paek
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrei Georgescu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Vivodyne, Inc., Philadelphia, PA, USA
| | - Jeehan Chang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Yoon Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tatiana A Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Du J, Fang L, Zhao J, Yu Y, Feng Z, Wang Y, Cheng Y, Li B, Gao F, Liu C. Zymosan-A promotes the regeneration of intestinal stem cells by upregulating ASCL2. Cell Death Dis 2022; 13:884. [PMID: 36266266 PMCID: PMC9585075 DOI: 10.1038/s41419-022-05301-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023]
Abstract
Intestinal stem cells (ISCs) are responsible for intestinal tissue homeostasis and are important for the regeneration of the damaged intestinal epithelia. Through the establishment of ionizing radiation (IR) induced intestinal injury model, we found that a TLR2 agonist, Zymosan-A, promoted the regeneration of ISCs in vivo and in vitro. Zymosan-A improved the survival of abdominal irradiated mice (81.82% of mice in the treated group vs. 30% of mice in the PBS group), inhibited the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts and the number of ISCs after lethal IR in vivo. Through organoid experiments, we found that Zymosan-A promoted the proliferation and differentiation of ISCs after IR. Remarkably, the results of RNA sequencing and Western Blot (WB) showed that Zymosan-A reduced IR-induced intestinal injury via TLR2 signaling pathway and Wnt signaling pathway and Zymosan-A had no radioprotection on TLR2 KO mice, suggesting that Zymosan-A may play a radioprotective role by targeting TLR2. Moreover, our results revealed that Zymosan-A increased ASCL2, a transcription factor of ISCs, playing a core role in the process of Zymosan-A against IR-induced intestinal injury and likely contributing to the survival of intestinal organoids post-radiation. In conclusion, we demonstrated that Zymosan-A promotes the regeneration of ISCs by upregulating ASCL2.
Collapse
Affiliation(s)
- Jicong Du
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Lan Fang
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Jianpeng Zhao
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Yike Yu
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Zhenlan Feng
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Yuedong Wang
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Ying Cheng
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Bailong Li
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Fu Gao
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| | - Cong Liu
- grid.73113.370000 0004 0369 1660Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, 200433 Shanghai, P.R. China
| |
Collapse
|
47
|
Dou Y, Pizarro T, Zhou L. Organoids as a Model System for Studying Notch Signaling in Intestinal Epithelial Homeostasis and Intestinal Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1347-1357. [PMID: 35752229 PMCID: PMC9552028 DOI: 10.1016/j.ajpath.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Organoid culture is an approach that allows three-dimensional growth for stem cells to self-organize and develop multicellular structures. Intestinal organoids have been widely used to study cellular or molecular processes in stem cell and cancer research. These cultures possess the ability to maintain cellular complexity as well as recapitulate many properties of the human intestinal epithelium, thereby providing an ideal in vitro model to investigate cellular and molecular signaling pathways. These include, but are not limited to, the mechanisms required for maintaining balanced populations of epithelial cells. Notch signaling is one of the major pathways of regulating stem cell functions in the gut, driving proliferation and controlling cell fate determination. Notch also plays an important role in regulating tumor progression and metastasis. Understanding how Notch pathway regulates epithelial regeneration and differentiation by using intestinal organoids is critical for studying both homeostasis and pathogenesis of intestinal stem cells that can lead to discoveries of new targets for drug development to treat intestinal diseases. In addition, use of patient-derived organoids can provide effective personalized medicine. This review summarizes the current literature regarding epithelial Notch pathways regulating intestinal homeostasis and regeneration, highlighting the use of organoid cultures and their potential therapeutic applications.
Collapse
Affiliation(s)
- Yingtong Dou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Theresa Pizarro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
48
|
Felsenthal N, Vignjevic DM. Stand by me: Fibroblasts regulation of the intestinal epithelium during development and homeostasis. Curr Opin Cell Biol 2022; 78:102116. [PMID: 35914344 DOI: 10.1016/j.ceb.2022.102116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.
Collapse
Affiliation(s)
- Neta Felsenthal
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
49
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Abstract
The vertebrate intestine experiences a range of intrinsically generated and external forces during both development and adult homeostasis. It is increasingly understood how the coordination of these forces shapes the intestine through organ-scale folding and epithelial organization into crypt-villus compartments. Moreover, accumulating evidence shows that several cell types in the adult intestine can sense and respond to forces to regulate key cellular processes underlying adult intestinal functions and self-renewal. In this way, transduction of forces may direct both intestinal homeostasis as well as adaptation to external stimuli, such as food ingestion or injury. In this review, we will discuss recent insights from complementary model systems into the force-dependent mechanisms that establish and maintain the unique architecture of the intestine, as well as its homeostatic regulation and function throughout adult life.
Collapse
|