1
|
Gong Z, Zhou D, Wu D, Han Y, Yu H, Shen H, Feng W, Hou L, Chen Y, Xu T. Challenges and material innovations in drug delivery to central nervous system tumors. Biomaterials 2025; 319:123180. [PMID: 39985979 DOI: 10.1016/j.biomaterials.2025.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Central nervous system (CNS) tumors, encompassing a diverse array of neoplasms in the brain and spinal cord, pose significant therapeutic challenges due to their intricate anatomy and the protective presence of the blood-brain barrier (BBB). The primary treatment obstacle is the effective delivery of therapeutics to the tumor site, which is hindered by multiple physiological, biological, and technical barriers, including the BBB. This comprehensive review highlights recent advancements in material science and nanotechnology aimed at surmounting these delivery challenges, with a focus on the development and application of nanomaterials. Nanomaterials emerge as potent tools in designing innovative drug delivery systems that demonstrate the potential to overcome the limitations posed by CNS tumors. The review delves into various strategies, including the use of lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, all of which are engineered to enhance drug stability, BBB penetration, and targeted tumor delivery. Additionally, this review highlights the burgeoning role of theranostic nanoparticles, integrating therapeutic and diagnostic functionalities to optimize treatment efficacy. The exploration extends to biocompatible materials like biodegradable polymers, liposomes, and advanced material-integrated delivery systems such as implantable drug-eluting devices and microfabricated devices. Despite promising preclinical results, the translation of these material-based strategies into clinical practice necessitates further research and optimization.
Collapse
Affiliation(s)
- Zhenyu Gong
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dairan Zhou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Hao Yu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Haotian Shen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lijun Hou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| |
Collapse
|
2
|
Deng S, Xie H, Xie B. Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases. Stem Cell Res Ther 2025; 16:167. [PMID: 40189500 PMCID: PMC11974143 DOI: 10.1186/s13287-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Neurodegenerative diseases including Alzheimer's and Parkinson's disease are age-related disorders which severely impact quality of life and impose significant societal burdens. Cellular senescence is a critical factor in these disorders, contributing to their onset and progression by promoting permanent cell cycle arrest and reducing cellular function, affecting various types of cells in brain. Recent advancements in regenerative medicine have highlighted "R3" strategies-rejuvenation, regeneration, and replacement-as promising therapeutic approaches for neurodegeneration. This review aims to critically analyze the role of cellular senescence in neurodegenerative diseases and organizes therapeutic approaches within the R3 regenerative medicine paradigm. Specifically, we examine stem cell therapy, direct lineage reprogramming, and partial reprogramming in the context of R3, emphasizing how these interventions mitigate cellular senescence and counteracting aging-related neurodegeneration. Ultimately, this review seeks to provide insights into the complex interplay between cellular senescence and neurodegeneration while highlighting the promise of cell-based regenerative strategies to address these debilitating conditions.
Collapse
Affiliation(s)
- Sixiu Deng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China
- Department of Gastroenterology, The Shapingba Hospital, Chongqing University( People's Hospital of Shapingba District), Chongqing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Xiong W, She W, Liu Y, Zhou H, Wang X, Li F, Li R, Wang J, Qin D, Jing S, Duan X, Jiang C, Xu C, He Y, Wang Z, Ye Q. Clinical-grade human dental pulp stem cells improve adult hippocampal neural regeneration and cognitive deficits in Alzheimer's disease. Theranostics 2025; 15:894-914. [PMID: 39776809 PMCID: PMC11700856 DOI: 10.7150/thno.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. Methods: We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD. Specifically, we investigated the effect of neural crest-specific derived hDPSCs on endogenous neural regeneration and long-term efficacy following a single transplantation in the triple-transgenic mouse model (3xTg-AD). Results: Our research demonstrated that a single administration of clinical-grade hDPSCs yielded dramatic short-term therapeutic benefits (5 weeks) and sustained partial efficacy (6 months) with respect to improving cognitive impairment and delaying typical pathological progression in 3xTg-AD mice. Intriguingly, exogenous hDPSCs were robustly self-differentiated into newborn functional neurons in the hippocampus of 3xTg-AD mice. The foremost evidence is provided that hDPSCs promote endogenic neural regeneration by enhancing the activation of the Wnt/β-catenin pathway, which may contribute to stabilizing the hippocampal neural network to reverse memory deficits. Conclusion: These findings highlight the multifunctional potential of hDPSCs in AD treatment, which enhances cognition through alleviating neuropathology and providing neural regenerative driving force. Understanding these multiplicity effects is critical to advancing the clinical translation of stem cell-based therapies for AD.
Collapse
Affiliation(s)
- Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenting She
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Fang Li
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruohan Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dongdong Qin
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xingxiang Duan
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cailei Jiang
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chun Xu
- Sydney School of Dentistry, The University of Sydney, Sydney, NSW, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Zhihao Wang
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Sydney School of Dentistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Lee GB, Park SM, Jung UJ, Kim SR. The Potential of Mesenchymal Stem Cells in Treating Spinocerebellar Ataxia: Advances and Future Directions. Biomedicines 2024; 12:2507. [PMID: 39595073 PMCID: PMC11591855 DOI: 10.3390/biomedicines12112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous disorder characterized by impaired balance and coordination caused by cerebellar dysfunction. The absence of treatments approved by the U.S. Food and Drug Administration for SCA has driven the investigation of alternative therapeutic strategies, including stem cell therapy. Mesenchymal stem cells (MSCs), known for their multipotent capabilities, have demonstrated significant potential in treating SCA. This review examines how MSCs may promote neuronal growth, enhance synaptic connectivity, and modulate brain inflammation. Recent findings from preclinical and clinical studies are also reviewed, emphasizing the promise of MSC therapy in addressing the unmet needs of SCA patients. Furthermore, ongoing clinical trials and future directions are proposed to address the limitations of the current approaches.
Collapse
Affiliation(s)
- Gi Beom Lee
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Se Min Park
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
5
|
Bhatt A, Bhardwaj H, Srivastava P. Mesenchymal stem cell therapy for Alzheimer's disease: A novel therapeutic approach for neurodegenerative diseases. Neuroscience 2024; 555:52-68. [PMID: 39032806 DOI: 10.1016/j.neuroscience.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is one of the most progressive and prevalent types of neurodegenerative diseases in the aging population (aged >65 years) and is considered a major factor for dementia, affecting 55 million people worldwide. In the current scenario, drug-based therapies have been employed for the treatment of Alzheimer's disease but are only able to provide symptomatic relief to patients rather than a permanent solution from Alzheimer's. Recent advancements in stem cell research unlock new horizons for developing effective and highly potential therapeutic approaches due to their self-renewal, self-replicating, regenerative, and high differentiation capabilities. Stem cells come in multiple lineages such as embryonic, neural, and induced pluripotent, among others. Among different kinds of stem cells, mesenchymal stem cells are the most investigated for Alzheimer's treatment due to their multipotent nature, low immunogenicity, ability to penetrate the blood-brain barrier, and low risk of tumorigenesis, immune & inflammatory modulation, etc. They have been seen to substantially promote neurogenesis, synaptogenesis by secreting neurotrophic growth factors, as well as in ameliorating the Aβ and tau-mediated toxicity. This review covers the pathophysiology of AD, new medications, and therapies. Further, it will focus on the advancements and benefits of Mesenchymal Stem Cell therapies, their administration methods, clinical trials concerning AD progression, along with their future prospective.
Collapse
Affiliation(s)
- Aditya Bhatt
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Harshita Bhardwaj
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
6
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
7
|
Miao K, Xia X, Zou Y, Shi B. Small Scale, Big Impact: Nanotechnology-Enhanced Drug Delivery for Brain Diseases. Mol Pharm 2024; 21:3777-3799. [PMID: 39038108 DOI: 10.1021/acs.molpharmaceut.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Central nervous system (CNS) diseases, ranging from brain cancers to neurodegenerative disorders like dementia and acute conditions such as strokes, have been heavily burdening healthcare and have a direct impact on patient quality of life. A significant hurdle in developing effective treatments is the presence of the blood-brain barrier (BBB), a highly selective barrier that prevents most drugs from reaching the brain. The tight junctions and adherens junctions between the endothelial cells and various receptors expressed on the cells make the BBB form a nonfenestrated and highly selective structure that is crucial for brain homeostasis but complicates drug delivery. Nanotechnology offers a novel pathway to circumvent this barrier, with nanoparticles engineered to ferry drugs across the BBB, protect drugs from degradation, and deliver medications to the designated area. After years of development, nanoparticle optimization, including sizes, shapes, surface modifications, and targeting ligands, can enable nanomaterials tailored to specific brain drug delivery settings. Moreover, smart nano drug delivery systems can respond to endogenous and exogenous stimuli that control subsequent drug release. Here, we address the importance of the BBB in brain disease treatment, summarize different delivery routes for brain drug delivery, discuss the cutting-edge nanotechnology-based strategies for brain drug delivery, and further offer valuable insights into how these innovations in nanoparticle technology could revolutionize the treatment of CNS diseases, presenting a promising avenue for noninvasive, targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kaiting Miao
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xue Xia
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yan Zou
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
8
|
Frost OG, Ramkilawan P, Rebbaa A, Stolzing A. A systematic review of lifespan studies in rodents using stem cell transplantations. Ageing Res Rev 2024; 97:102295. [PMID: 38588866 DOI: 10.1016/j.arr.2024.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. Regardless of its origin, cellular aging is consequently reflected at the level of organ and associated systems dysfunction. Aging of stem cell populations within the body and their decreased ability to self-renew, differentiate, and regenerate damaged tissues, is a key contributor to organismal decline. Based on this, supplementing young stem cells may delay tissue aging, improve frailty and extend health and lifespan. This review investigates studies in rodents using stem cell transplantation from either mice or human donors. The aim is to consolidate available information on the efficacy of stem cell therapies in rodent models and provide insights to guide further research efforts. Out of the 21 studies included in this review, the methodology varied significantly including the lifespan measurement. To enable comparison the median lifespan was calculated using WebPlotDigitizer 4.6 if not provided by the literature. A total of 18 out of 21 studies evidenced significant lifespan extension post stem cell transplant, with 7 studies demonstrating benefits in reduced frailty and other aging complications.
Collapse
Affiliation(s)
- Oliver G Frost
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; SENS Research Foundation, Mountain View, CA 94041, USA
| | | | | | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| |
Collapse
|
9
|
Xiong W, Liu Y, Zhou H, Li J, Jing S, Jiang C, Li M, He Y, Ye Q. Human dental pulp stem cells mitigate the neuropathology and cognitive decline via AKT-GSK3β-Nrf2 pathways in Alzheimer's disease. Int J Oral Sci 2024; 16:40. [PMID: 38740746 PMCID: PMC11091120 DOI: 10.1038/s41368-024-00300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Oxidative stress is increasingly recognized as a major contributor to the pathophysiology of Alzheimer's disease (AD), particularly in the early stages of the disease. The multiplicity advantages of stem cell transplantation make it fascinating therapeutic strategy for many neurodegenerative diseases. We herein demonstrated that human dental pulp stem cells (hDPSCs) mediated oxidative stress improvement and neuroreparative effects in in vitro AD models, playing critical roles in regulating the polarization of hyperreactive microglia cells and the recovery of damaged neurons. Importantly, these therapeutic effects were reflected in 10-month-old 3xTg-AD mice after a single transplantation of hDPSCs, with the treated mice showing significant improvement in cognitive function and neuropathological features. Mechanistically, antioxidant and neuroprotective effects, as well as cognitive enhancements elicited by hDPSCs, were at least partially mediated by Nrf2 nuclear accumulation and downstream antioxidant enzymes expression through the activation of the AKT-GSK3β-Nrf2 signaling pathway. In conclusion, our findings corroborated the neuroprotective capacity of hDPSCs to reshape the neuropathological microenvironment in both in vitro and in vivo AD models, which may be a tremendous potential therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ye Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junyi Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cailei Jiang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Mei Li
- Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Department of Stomatology, Linhai Second People's Hospital, Linhai, Zhejiang, China.
| |
Collapse
|
10
|
Yao C, Zhang H, Wang C. Recent advances in therapeutic engineered extracellular vesicles. NANOSCALE 2024; 16:7825-7840. [PMID: 38533676 DOI: 10.1039/d3nr05470e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Extracellular vesicles (EVs) are natural particles secreted by living cells, which hold significant potential for various therapeutic applications. Native EVs have specific components and structures, allowing them to cross biological barriers, and circulate in vivo for a long time. Native EVs have also been bioengineered to enhance their therapeutic efficacy and targeting affinity. Recently, the therapeutic potential of surface-engineered EVs has been explored in the treatment of tumors, autoimmune diseases, infections and other diseases by ongoing research and clinical trials. In this review, we will introduce the modified methods of engineered EVs, summarize the application of engineered EVs in preclinical and clinical trials, and discuss the opportunities and challenges for the clinical translation of surface-engineered EVs.
Collapse
Affiliation(s)
- Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
11
|
Raj R, Agrawal P, Bhutani U, Bhowmick T, Chandru A. Spinning with exosomes: electrospun nanofibers for efficient targeting of stem cell-derived exosomes in tissue regeneration. Biomed Mater 2024; 19:032004. [PMID: 38593835 DOI: 10.1088/1748-605x/ad3cab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Electrospinning technique converts polymeric solutions into nanoscale fibers using an electric field and can be used for various biomedical and clinical applications. Extracellular vesicles (EVs) are cell-derived small lipid vesicles enriched with biological cargo (proteins and nucleic acids) potential therapeutic applications. In this review, we discuss extending the scope of electrospinning by incorporating stem cell-derived EVs, particularly exosomes, into nanofibers for their effective delivery to target tissues. The parameters used during the electrospinning of biopolymers limit the stability and functional properties of cellular products. However, with careful consideration of process requirements, these can significantly improve stability, leading to longevity, effectiveness, and sustained and localized release. Electrospun nanofibers are known to encapsulate or surface-adsorb biological payloads such as therapeutic EVs, proteins, enzymes, and nucleic acids. Small EVs, specifically exosomes, have recently attracted the attention of researchers working on regeneration and tissue engineering because of their broad distribution and enormous potential as therapeutic agents. This review focuses on current developments in nanofibers for delivering therapeutic cargo molecules, with a special emphasis on exosomes. It also suggests prospective approaches that can be adapted to safely combine these two nanoscale systems and exponentially enhance their benefits in tissue engineering, medical device coating, and drug delivery applications.
Collapse
Affiliation(s)
- Ritu Raj
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Parinita Agrawal
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Utkarsh Bhutani
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Tuhin Bhowmick
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| | - Arun Chandru
- Pandorum Technologies Pvt. Ltd., Bangalore 560100, Karnataka, India
| |
Collapse
|
12
|
Valim Parca A, Godoy Pieri NC, Fantinato Neto P, Fernandes Bressan F, Ambrósio CE, Santos Martins DD. Comparative Analysis of Fluorescent Labeling Techniques for Tracking Canine Amniotic Stem Cells. Tissue Eng Part C Methods 2024; 30:183-192. [PMID: 38411508 DOI: 10.1089/ten.tec.2023.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The utmost aim of regenerative medicine is to promote the regeneration of injured tissues using stem cells. Amniotic mesenchymal stem cells (AmMSCs) have been used in several studies mainly because of their easy isolation from amniotic tissue postpartum and immunomodulatory and angiogenic properties and the low level of rejection. These cells share characteristics of both embryonic/fetal and adult stem cells and are particularly advantageous because they do not trigger tumorigenic activity when injected into immunocompromised animals. The large-scale use of AmMSCs for cellular therapies would greatly benefit from fluorescence labeling studies to validate their tracking in future therapies. This study evaluated the fluorophore positivity, fluorescence intensity, and longevity of canine AmMSCs. For this purpose, canine AmMSCs from the GDTI/USP biobank were submitted to three labeling conditions, two commercial fluorophores [CellTrace CFSE Cell Proliferation kit - CTrace, and CellTracker Green CMFDA - CTracker (CellTracker Green CMFDA, CT, #C2925, Molecular Probes®; Life Technologies)] and green fluorescent protein (GFP) expression after lentiviral transduction, to select the most suitable tracer in terms of adequate persistence and easy handling and analysis that could be used in studies of domestic animals. Fluorescence was detected in all groups; however, the patterns were different. Specifically, CTrace and CTracker fluorescence was detected 6 h after labeling, while GFP was visualized no earlier than 48 h after transduction. Flow cytometry analysis revealed more than 70% of positive cells on day 7 in the CTrace and CTracker groups, while fluorescence decreased significantly to 10% or less on day 20. Variations between repetitions were observed in the GFP group under the present conditions. Our results showed earlier fluorescence detection and more uniform results across repetitions for the commercial fluorophores. In contrast, fluorescence persisted for more extended periods in the GFP group. These results indicate a promising direction for assessing the roles of canine AmMSCs in regenerative medicine without genomic integration.
Collapse
Affiliation(s)
- Andressa Valim Parca
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
13
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
14
|
Noor Azlan NAB, Vitus V, Nor Rashid N, Nordin F, Tye GJ, Wan Kamarul Zaman WS. Human mesenchymal stem cell secretomes: Factors affecting profiling and challenges in clinical application. Cell Tissue Res 2024; 395:227-250. [PMID: 38244032 DOI: 10.1007/s00441-023-03857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
The promising field of regenerative medicine is thrilling as it can repair and restore organs for various debilitating diseases. Mesenchymal stem cells are one of the main components in regenerative medicine that work through the release of secretomes. By adopting the use of the secretome in cell-free-based therapy, we may be able to address the challenges faced in cell-based therapy. As one of the components of cell-free-based therapy, secretome has the advantage of a better safety and efficacy profile than mesenchymal stem cells. However, secretome has its challenges that need to be addressed, such as its bioprocessing methods that may impact the secretome content and its mechanisms of action in clinical settings. Effective and standardization of bioprocessing protocols are important to ensure the supply and sustainability of secretomes for clinical applications. This may eventually impact its commercialization and marketability. In this review, the bioprocessing methods and their impacts on the secretome profile and treatment are discussed. This improves understanding of its fundamental aspects leading to potential clinical applications.
Collapse
Affiliation(s)
| | - Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Feng X, Qi F, Wang H, Li W, Gan Y, Qi C, Lin Z, Chen L, Wang P, Hu Z, Miao Y. Sorting Technology for Mesenchymal Stem Cells from a Single Tissue Source. Stem Cell Rev Rep 2024; 20:524-537. [PMID: 38112926 DOI: 10.1007/s12015-023-10635-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 12/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.
Collapse
Affiliation(s)
- Xinyi Feng
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenzhen Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Caiyu Qi
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Shao S, Ye X, Su W, Wang Y. Curcumin alleviates Alzheimer's disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway. J Chem Neuroanat 2023; 134:102363. [PMID: 37989445 DOI: 10.1016/j.jchemneu.2023.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common degenerative brain disorder with limited therapeutic options. Curcumin (Cur) exhibits neuroprotective function in many diseases. We aimed to explore the role and mechanism of Cur in AD. MATERIALS AND METHODS Firstly, we established AD mice by injecting amyloid-β1-42 (Aβ1-42) solution into the hippocampus. Then, the AD mice received 150 mg/kg/d Cur for 10 consecutive days. The Morris water maze test was conducted to evaluate the cognitive function of the mice by hidden platform training and probe trials. To assess the spatial memory of the mice, spontaneous alternation behavior, the number of crossing the novel arm and the time spent in the novel arm during the Y-maze test was recorded. Hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNAL) assay were performed to assess the pathological damage and apoptosis of brain tissues. The number of damaged neurons was inspected by Nissl staining. Immunohistochemical staining was then performed to detect Aβ1-42 deposition. The levels of tumor necrosis factor-α (TNF-a), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in serum and hippocampus, the contents of super oxide dismutase (SOD) and malondialdehyde (MDA) in brain tissues were assessed by enzyme-linked immunosorbent assay (ELISA). Additionally, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), RelA (p65) protein expressions and Adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation were tested using Western blot. RESULTS Cur not only improved cognitive function and spatial memory, but also alleviated the pathological damage and apoptosis of brain tissues for AD mice. Meanwhile, upon Cur treatment, the number of damaged neurons in AD mice was decreased, the level of Aβ1-42 in AD mice was significantly decreased. Furthermore, the AD mice treated with Cur exhibited lower TNF-a, IL-6, IL-1β and MDA levels and a higher SOD content. Besides, Cur also downregulated p65 expression and upregulated AMPK phosphorylation. CONCLUSION Cur may improve AD via suppressing the inflammatory response, oxidative stress and activating the AMPK pathway, suggesting that Cur may be a potential drug for AD.
Collapse
Affiliation(s)
- Sen Shao
- Department of Neurology, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Ye
- Department of Neurology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenwen Su
- Department of Internal Medicine, CiXi Seventh People's Hospital, Ningbo, China
| | - Yanbo Wang
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China.
| |
Collapse
|
17
|
da Silva AV, Serrenho I, Araújo B, Carvalho AM, Baltazar G. Secretome as a Tool to Treat Neurological Conditions: Are We Ready? Int J Mol Sci 2023; 24:16544. [PMID: 38003733 PMCID: PMC10671352 DOI: 10.3390/ijms242216544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Due to their characteristics, mesenchymal stem cells (MSCs) are considered a potential therapy for brain tissue injury or degeneration. Nevertheless, despite the promising results observed, there has been a growing interest in the use of cell-free therapies in regenerative medicine, such as the use of stem cell secretome. This review provides an in-depth compilation of data regarding the secretome composition, protocols used for its preparation, as well as existing information on the impact of secretome administration on various brain conditions, pointing out gaps and highlighting relevant findings. Moreover, due to the ability of MSCs to respond differently depending on their microenvironment, preconditioning of MSCs has been used to modulate their composition and, consequently, their therapeutic potential. The different strategies used to modulate the MSC secretome were also reviewed. Although secretome administration was effective in improving functional impairments, regeneration, neuroprotection, and reducing inflammation in brain tissue, a high variability in secretome preparation and administration was identified, compromising the transposition of preclinical data to clinical studies. Indeed, there are no reports of the use of secretome in clinical trials. Despite the existing limitations and lack of clinical data, secretome administration is a potential tool for the treatment of various diseases that impact the CNS.
Collapse
Affiliation(s)
- Andreia Valente da Silva
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Inês Serrenho
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Beatriz Araújo
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | | | - Graça Baltazar
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
18
|
Mo H, Kim J, Kim JY, Kim JW, Han H, Choi SH, Rim YA, Ju JH. Intranasal administration of induced pluripotent stem cell-derived cortical neural stem cell-secretome as a treatment option for Alzheimer's disease. Transl Neurodegener 2023; 12:50. [PMID: 37946307 PMCID: PMC10634159 DOI: 10.1186/s40035-023-00384-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, resulting in gradual destruction of cognitive abilities. Research on the development of various AD treatments is underway; however, no definitive treatment has been developed yet. Herein, we present induced pluripotent stem cell (iPSC)-derived cortical neural stem cell secretome (CNSC-SE) as a new treatment candidate for AD and explore its efficacy. METHODS We first assessed the effects of CNSC-SE treatment on neural maturation and electromagnetic signal during cortical nerve cell differentiation. Then to confirm the efficacy in vivo, CNSC-SE was administered to the 5×FAD mouse model through the nasal cavity (5 μg/g, once a week, 4 weeks). The cell-mediated effects on nerve recovery, amyloid beta (Aβ) plaque aggregation, microglial and astrocyte detection in the brain, and neuroinflammatory responses were investigated. Metabolomics analysis of iPSC-derived CNSC-SE revealed that it contained components that could exert neuro-protective effects or amplify cognitive restorative effects. RESULTS Human iPSC-derived CNSC-SE increased neuronal proliferation and dendritic structure formation in vitro. Furthermore, CNSC-SE-treated iPSC-derived cortical neurons acquired electrical network activity and action potential bursts. The 5×FAD mice treated with CNSC-SE showed memory restoration and reduced Aβ plaque accumulation. CONCLUSIONS Our findings suggest that the iPSC-derived CNSC-SE may serve as a potential, non-invasive therapeutic option for AD in reducing amyloid infiltration and restoring memory.
Collapse
Affiliation(s)
- Hyunkyung Mo
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Juryun Kim
- YiPSCELL, Inc, Omnibus Park, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jennifer Yejean Kim
- Department of Biology, Georgetown University, 3700 O St NW, Washington, DC, 20057, USA
| | - Jang Woon Kim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Heeju Han
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Si Hwa Choi
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- YiPSCELL, Inc, Omnibus Park, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
19
|
Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 2023; 29:16-35. [PMID: 37456581 PMCID: PMC10338239 DOI: 10.1016/j.bioactmat.2023.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases represent a growing burden on healthcare systems worldwide. Mesenchymal stem cells (MSCs) have shown promise as a potential therapy due to their neuroregenerative, neuroprotective, and immunomodulatory properties, which are, however, linked to the bioactive substances they release, collectively known as secretome. This paper provides an overview of the most recent research on the safety and efficacy of MSC-derived secretome and extracellular vesicles (EVs) in clinical (if available) and preclinical models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington's disease, acute ischemic stroke, and spinal cord injury. The article explores the biologically active substances within MSC-secretome/EVs, the mechanisms responsible for the observed therapeutic effects, and the strategies that may be used to optimize MSC-secretome/EVs production based on specific therapeutic needs. The review concludes with a critical discussion of current clinical trials and a perspective on potential future directions in translating MSC-secretome and EVs into the clinic, specifically regarding how to address the challenges associated with their pharmaceutical manufacturing, including scalability, batch-to-batch consistency, adherence to Good Manufacturing Practices (GMP) guidelines, formulation, and storage, along with quality controls, access to the market and relative costs, value for money and impact on total expenditure.
Collapse
Affiliation(s)
- Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Claudio Jommi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Daniele Armocida
- A.U.O, Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Roma, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- PharmaExceed S.r.l, 27100, Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
20
|
Alizadeh R, Asghari A, Taghizadeh-Hesary F, Moradi S, Farhadi M, Mehdizadeh M, Simorgh S, Nourazarian A, Shademan B, Susanabadi A, Kamrava K. Intranasal delivery of stem cells labeled by nanoparticles in neurodegenerative disorders: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1915. [PMID: 37414546 DOI: 10.1002/wnan.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/05/2023] [Accepted: 06/11/2023] [Indexed: 07/08/2023]
Abstract
Neurodegenerative disorders occur through progressive loss of function or structure of neurons, with loss of sensation and cognition values. The lack of successful therapeutic approaches to solve neurologic disorders causes physical disability and paralysis and has a significant socioeconomic impact on patients. In recent years, nanocarriers and stem cells have attracted tremendous attention as a reliable approach to treating neurodegenerative disorders. In this regard, nanoparticle-based labeling combined with imaging technologies has enabled researchers to survey transplanted stem cells and fully understand their fate by monitoring their survival, migration, and differentiation. For the practical implementation of stem cell therapies in the clinical setting, it is necessary to accurately label and follow stem cells after administration. Several approaches to labeling and tracking stem cells using nanotechnology have been proposed as potential treatment strategies for neurological diseases. Considering the limitations of intravenous or direct stem cell administration, intranasal delivery of nanoparticle-labeled stem cells in neurological disorders is a new method of delivering stem cells to the central nervous system (CNS). This review describes the challenges and limitations of stem cell-based nanotechnology methods for labeling/tracking, intranasal delivery of cells, and cell fate regulation as theragnostic labeling. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salah Moradi
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Susanabadi
- Department of Anesthesia and Pain Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Kamran Kamrava
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Miller RC, Lee J, Kim YJ, Han HS, Kong H. In-drop thermal cycling of microcrystal assembly for senescence control (MASC) with minimal variation in efficacy. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302232. [PMID: 37901180 PMCID: PMC10611434 DOI: 10.1002/adfm.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Indexed: 10/31/2023]
Abstract
The secretome from mesenchymal stem cells (MSCs) has recently gained attention for new therapeutics. However, clinical application requires in vitro cell manufacturing to attain enough cells. Unfortunately, this process often drives MSCs into a senescent state that drastically changes cellular secretion activities. Antioxidants are used to reverse and prevent the propagation of senescence; however, their activity is short-lived. Polymer-stabilized crystallization of antioxidants has been shown to improve bioactivity, but the broad crystal size distribution (CSD) significantly increases the efficacy variation. Efforts were made to crystalize drugs in microdroplets to narrow the CSD, but the fraction of drops containing at least one crystal can be as low as 20%. To this end, this study demonstrates that in-drop thermal cycling of hyaluronic acid-modified antioxidant crystals, named microcrystal assembly for senescence control (MASC), can drive the fraction of microdrops containing crystals to >86% while achieving significantly narrower CSDs (13±3μm) than in bulk (35±11μm). Therefore, this approach considerably improves the practicality of CSD-control in drops. In addition to exhibiting uniform release, MASC made with antioxidizing N-acetylcysteine extended the release time by 40%. MASC further improves the restoration of reactive oxygen species homeostasis in MSCs, thus minimizing cellular senescence and preserving desired secretion activities. We propose that MASC is broadly useful to controlling senescence of a wide array of therapeutic cells during biomanufacturing.
Collapse
Affiliation(s)
- Ryan C. Miller
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonghwi Lee
- Department of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology-Europe, Saarbrucken 66123, Germany
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran.
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Dousti Kataj P, Vousooghi N, Hadjighassem M, Farahmandfar M, Ebrahimi-Barough S. Evaluation of the effect of mesenchymal stem cells injection in the nucleus accumbens on the morphine reinstatement behavior in a conditioned place preference model in Wistar rat: Expression changes of NMDA receptor subunits and NT-3. Behav Brain Res 2023; 444:114360. [PMID: 36854364 DOI: 10.1016/j.bbr.2023.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Mesenchymal stem cells (MSCs) have been recently shown to improve functional recovery in animal models of CNS disorders and are currently being examined in clinical studies for sclerosis, stroke, and CNS lesions. The activation of endogenous CNS protection and repair mechanisms is unclear. MSC-based approaches are considered a new potential target for neurodegenerative disorders. This study was designed to discover the effect of MSCs injection in the nucleus accumbens (NAc) on the reinstatement of behavior in morphine-induced conditioned place preference (CPP) in male rats. The CPP was induced via intra-peritoneal (i.p.) morphine injection (5 mg/kg) for three consecutive days. After being tested for CPP induction, animals received MSCs or culture medium (DMEM F-12) in their NAc using stereotaxic surgery. Following extinction, a priming dose of morphine (2 mg/kg) was administered to induce reinstatement. Expression of GluN1, GluN2A, and GluN2B subunits of the NMDA receptor and the NT-3 gene in the NAc was assessed on the last day of extinction and following CPP reinstatement. The results showed that local injection of MSCs attenuated reinstatement after receiving a priming dose of morphine, and also shortened the period of CPP extinction. The mRNA expression of the NT-3 gene in the group receiving MSCs was increased compared to control animals, as was observed for GluN1 and GluN2B, but not GluN2A. It is concluded that intra-NAc injection of MSCs may facilitate morphine extinction and alleviate reinstatement behavior which may be via expression changes in NMDA receptor subunits and NT-3 gene.
Collapse
Affiliation(s)
- Parviz Dousti Kataj
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, the Islamic Republic of Iran
| |
Collapse
|
24
|
Cellular and Molecular Mechanisms Underly the Combined Treatment of Fasudil and Bone Marrow Derived-Neuronal Stem Cells in a Parkinson's Disease Mouse Model. Mol Neurobiol 2023; 60:1826-1835. [PMID: 36580198 DOI: 10.1007/s12035-022-03173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Bone marrow-derived neural stem cells (BM-NSCs) have shed light on novel therapeutic approaches for PD with the potential to halt or even reverse disease progression. Various strategies have been developed to promote therapeutic efficacy via optimizing implanted cells and the microenvironment of transplantation in the central nervous system (CNS). This current study further proved that the combination of fasudil, a Rho-kinase inhibitor, and BM-NSCs exhibited a synergetic effect on restoring neuron loss in the MPTP-PD mice model. It simultaneously unveiled cellular mechanisms underlying synergistic neuron-protection effects of fasudil and BM-NSCs, which included promoting the proliferation, and migration of endogenous NSCs, and contributing to microglia shift into the M2 phenotype. Corresponding molecular mechanisms were observed, including the inhibition of inflammatory responses, the elevation of neurotrophic factors, and the induction of WNT/β-catenin and PI3K/Akt/mTOR signaling pathways. Our study provides evidence for the co-intervention of BM-NSCs and fasudil as a promising therapeutic method with enhanced efficacy in treating neurodegenerative diseases.
Collapse
|
25
|
Xu Z, Zhang G, Zhang X, Lei Y, Sun Y, He Y, Yang F, Nan W, Xing X, Li Y, Lin J. Menstrual blood-derived endometrial stem cells inhibit neuroinflammation by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 pathway. Int J Biochem Cell Biol 2023; 157:106386. [PMID: 36754162 DOI: 10.1016/j.biocel.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Neuroinflammation is a common response in various neurological disorders. Mesenchymal stem cell-based treatment has become a promising therapy for neuroinflammation-associated diseases. However, the effects of mesenchymal stem cells are controversial, and the underlying mechanism is incompletely understood. In the present study, menstrual blood-derived endometrial stem cells were intravenously transplanted into a mouse model of neuroinflammation established by peripheral injection of lipopolysaccharide. Microglial cells challenged with lipopolysaccharide were cultured with conditioned medium from endometrial stem cells. The levels of cytokines were detected by enzyme-linked immunosorbent assay. Cell proliferation and death were detected by Cell Counting Kit 8 and flow cytometry, respectively. The expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (Casp1) were evaluated by western blotting. The results showed that intravenous transplantation of endometrial stem cells downregulated proinflammatory factors and upregulated anti-inflammatory factors in the brain of mice with neuroinflammation. Conditioned medium suppressed the inflammatory reaction and hyperactivation of microglial cells and protected microglial cells from cell death induced by lipopolysaccharide in vitro. The expression of TLR4, MyD88, NLRP3 and Casp1 in the brain of mice with neuroinflammation and in lipopolysaccharide-stimulated microglial cells was downregulated by endometrial stem cells and conditioned medium, respectively. These data suggested that menstrual blood-derived endometrial stem cells may suppress neuroinflammatory reactions partially by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 signalling pathway. Our findings may be very useful for the development of an alternative stem cell-based therapy for neuroinflammation-associated disorders.
Collapse
Affiliation(s)
- Zhihao Xu
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China.
| | - Guoqing Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Xiaoyue Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Yu Lei
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Yuliang Sun
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang 453003, Henan, PR China
| | - Fen Yang
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Wenbin Nan
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Xuekun Xing
- College of Public Health, Guilin Medical University, Guilin 541199, Guangxi, PR China
| | - Yonghai Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Juntang Lin
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
26
|
Yang Y, Peng Y, Li Y, Shi T, Luan Y, Yin C. Role of stem cell derivatives in inflammatory diseases. Front Immunol 2023; 14:1153901. [PMID: 37006266 PMCID: PMC10062329 DOI: 10.3389/fimmu.2023.1153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells of mesodermal origin with the ability of self-renewal and multidirectional differentiation, which have all the common characteristics of stem cells and the ability to differentiate into adipocytes, osteoblasts, neuron-like cells and other cells. Stem cell derivatives are extracellular vesicles(EVs) released from mesenchymal stem cells that are involved in the process of body’s immune response, antigen presentation, cell differentiation, and anti-inflammatory. EVs are further divided into ectosomes and exosomes are widely used in degenerative diseases, cancer, and inflammatory diseases due to their parental cell characteristics. However, most diseases are closely related to inflammation, and exosomes can mitigate the damage caused by inflammation in terms of suppressing the inflammatory response, anti-apoptosis and promoting tissue repair. Stem cell-derived exosomes have become an emerging modality for cell-free therapy because of their high safety and ease of preservation and transportation through intercellular communication. In this review, we highlight the characteristics and functions of MSCs-derived exosomes and discuss the regulatory mechanisms of MSCs-derived exosomes in inflammatory diseases and their potential applications in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yuxi Yang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yiqiu Peng
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tingjuan Shi
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| |
Collapse
|
27
|
Moro F, Lisi I, Tolomeo D, Vegliante G, Pascente R, Mazzone E, Hussain R, Micotti E, Dallmeier J, Pischiutta F, Bianchi E, Chiesa R, Wang KK, Zanier ER. Acute Blood Levels of Neurofilament Light Indicate One-Year White Matter Pathology and Functional Impairment in Repetitive Mild Traumatic Brain Injured Mice. J Neurotrauma 2023. [PMID: 36576018 DOI: 10.1089/neu.2022.0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mild traumatic brain injury (mTBI) mostly causes transient symptoms, but repeated (r)mTBI can lead to neurodegenerative processes. Diagnostic tools to evaluate the presence of ongoing occult neuropathology are lacking. In a mouse model of rmTBI, we investigated MRI and plasma biomarkers of brain damage before chronic functional impairment arose. Anesthetized adult male and female C57BL/6J mice were subjected to rmTBI or a sham procedure. Sensorimotor deficits were evaluated up to 12 months post-injury in SNAP and Neuroscore tests. Cognitive function was assessed in the novel object recognition test at six and 12 months. Diffusion tensor imaging (DTI) and structural magnetic resonance imaging (MRI) were performed at six and 12 months to examine white matter and structural damage. Plasma levels of neurofilament light (NfL) were assessed longitudinally up to 12 months. Brain histopathology was performed at 12 months. Independent groups of mice were used to examine the effects of 2-, 7- and 14-days inter-injury intervals on acute plasma NfL levels and on hyperactivity. Twelve months after an acute transient impairment, sensorimotor functions declined again in rmTBI mice (p < 0.001 vs sham), but not earlier. Similarly, rmTBI mice showed memory impairment at 12 (p < 0.01 vs sham) but not at 6 months. White matter damage examined by DTI was evident in rmTBI mice at both six and 12 months (p < 0.001 vs sham). This was associated with callosal atrophy (p < 0.001 vs sham) evaluated by structural MRI. Plasma NfL at one week was elevated in rmTBI (p < 0.001 vs sham), and its level correlated with callosal atrophy at 12 months (Pearson r = 0.72, p < 0.01). Histopathology showed thinning of the corpus callosum and marked astrogliosis in rmTBI mice. The NfL levels were higher in mice subjected to short (2 days) compared with longer (7 and 14 days) inter-injury intervals (p < 0.05), and this correlated with hyperactivity in mice (Pearson r = 0.50; p < 0.05). These findings show that rmTBI causes white matter pathology detectable by MRI before chronic functional impairment. Early quantification of plasma NfL correlates with the degree of white matter atrophy one year after rmTBI and can serve to monitor the brain's susceptibility to a second mTBI, supporting its potential clinical application to guide the return to practice in sport-related TBI.
Collapse
Affiliation(s)
- Federico Moro
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Lisi
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gloria Vegliante
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Mazzone
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Riaz Hussain
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Julian Dallmeier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Bianchi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, USA.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
28
|
Hou X, Jiang H, Liu T, Yan J, Zhang F, Zhang X, Zhao J, Mu X, Jiang J. Depletion of gut microbiota resistance in 5×FAD mice enhances the therapeutic effect of mesenchymal stem cell-derived exosomes. Biomed Pharmacother 2023; 161:114455. [PMID: 36905811 DOI: 10.1016/j.biopha.2023.114455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-exo) can be used for treating Alzheimer's disease (AD) by promoting amyloid-β (Aβ) degradation, modulating immune responses, protecting neurology, promoting axonal growth, and improving cognitive impairment. Increasing evidence suggests that the alteration of gut microbiota is closely related to the occurrence and development of Alzheimer's disease. In this study, we hypothesized that dysbiosis of gut microbiota might limit the therapy of MSCs-exo, and the application of antibiotics would improve the therapy. METHODS In this original research study, we used MSCs-exo to treat 5 ×FAD mice and fed them antibiotic cocktails for 1 week to detect cognitive ability and neuropathy. The mice's feces were collected to investigate alterations in the microbiota and metabolites. RESULTS The results revealed that the AD gut microbiota eliminated the therapeutic effect of MSCs-exo, whereas antibiotic modulation of disordered gut microbiota and associated metabolites enhanced the therapeutic effect of MSCs-exo. CONCLUSIONS These results encourage the research of novel therapeutics to enhance MSCs-exo treatment for AD, which could benefit a broader range of patients with AD.
Collapse
Affiliation(s)
- Xuejia Hou
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Hongyu Jiang
- Life Spring AKY Pharmaceuticals, Changchun 130033, Jilin, China
| | - Te Liu
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China; Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Jun Yan
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Fuqiang Zhang
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Xiaowen Zhang
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Jingtong Zhao
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Xupeng Mu
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China.
| | - Jinlan Jiang
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China.
| |
Collapse
|
29
|
Umar AK. Stem Cell's Secretome Delivery Systems. Adv Pharm Bull 2023; 13:244-258. [PMID: 37342369 PMCID: PMC10278206 DOI: 10.34172/apb.2023.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/05/2021] [Accepted: 12/31/2021] [Indexed: 09/01/2023] Open
Abstract
Stem cells' secretome contains biomolecules that are ready to give therapeutic activities. However, the biomolecules should not be administered directly because of their in vivo instability. They can be degraded by enzymes or seep into other tissues. There have been some advancements in localized and stabilized secretome delivery systems, which have increased their effectiveness. Fibrous, in situ, or viscoelastic hydrogel, sponge-scaffold, bead powder/ suspension, and bio-mimetic coating can maintain secretome retention in the target tissue and prolong the therapy by sustained release. Porosity, young's modulus, surface charge, interfacial interaction, particle size, adhesiveness, water absorption ability, in situ gel/film, and viscoelasticity of the preparation significantly affect the quality, quantity, and efficacy of the secretome. Therefore, the dosage forms, base materials, and characteristics of each system need to be examined to develop a more optimal secretome delivery system. This article discusses the clinical obstacles and potential solutions for secretome delivery, characterization of delivery systems, and devices used or potentially used in secretome delivery for therapeutic applications. This article concludes that secretome delivery for various organ therapies necessitates the use of different delivery systems and bases. Coating, muco-, and cell-adhesive systems are required for systemic delivery and to prevent metabolism. The lyophilized form is required for inhalational delivery, and the lipophilic system can deliver secretomes across the blood-brain barrier. Nano-sized encapsulation and surface-modified systems can deliver secretome to the liver and kidney. These dosage forms can be administered using devices such as a sprayer, eye drop, inhaler, syringe, and implant to improve their efficacy through dosing, direct delivery to target tissues, preserving stability and sterility, and reducing the immune response.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
30
|
The Effects of Intranasal Implantation of Mesenchymal Stem Cells on Nitric Monoxide Levels in the Hippocampus, Control of Cognitive Functions, and Motor Activity in a Model of Cerebral Ischemia in Rats. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
31
|
Yin T, Liu Y, Ji W, Zhuang J, Chen X, Gong B, Chu J, Liang W, Gao J, Yin Y. Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer's disease. Theranostics 2023; 13:1264-1285. [PMID: 36923533 PMCID: PMC10008732 DOI: 10.7150/thno.81860] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
With the increase of population aging, the number of Alzheimer's disease (AD) patients is also increasing. According to current estimates, approximately 11% of people over 65 suffer from AD, and that percentage rises to 42% among people over 85. However, no effective treatment capable of decelerating or stopping AD progression is available. Furthermore, AD-targeted drugs composed of synthetic molecules pose concerns regarding biodegradation, clearance, immune response, and neurotoxicity. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are essential intercellular communication mediators holding great promise as AD therapeutics owing to their biocompatibility, versatility, effortless storage, superior safety, and the ability to transport messenger and noncoding RNAs, proteins, lipids, DNAs, and other bioactive compounds derived from cells. The functionalisation and engineering strategies of MSC-EVs are highlighted (e.g. preconditioning, drug loading, surface modification, and artificial EV fabrication), which could improve AD treatment by multiple therapeutic effects, including clearing abnormal protein accumulation and achieving neuroprotection and immunomodulatory effects. Herein, this review summarises state-of-the-art strategies to engineer MSC-EVs, discusses progress in their use as AD therapeutics, presents the perspectives and challenges associated with the related clinical applications, and concludes that engineered MSC-EVs show immense potential in AD therapy.
Collapse
Affiliation(s)
- Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital; Clinical pharmacy innovation institute, Shanghai Jiao Tong University of Medicine, Shanghai 200000, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Xiaohan Chen
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200003, China
| |
Collapse
|
32
|
Turano E, Scambi I, Virla F, Bonetti B, Mariotti R. Extracellular Vesicles from Mesenchymal Stem Cells: Towards Novel Therapeutic Strategies for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032917. [PMID: 36769247 PMCID: PMC9917806 DOI: 10.3390/ijms24032917] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases are fatal disorders of the central nervous system (CNS) which currently lack effective treatments. The application of mesenchymal stem cells (MSCs) represents a new promising approach for treating these incurable disorders. Growing evidence suggest that the therapeutic effects of MSCs are due to the secretion of neurotrophic molecules through extracellular vesicles. The extracellular vesicles produced by MSCs (MSC-EVs) have valuable innate properties deriving from parental cells and could be exploited as cell-free treatments for many neurological diseases. In particular, thanks to their small size, they are able to overcome biological barriers and reach lesion sites inside the CNS. They have a considerable pharmacokinetic and safety profile, avoiding the critical issues related to the fate of cells following transplantation. This review discusses the therapeutic potential of MSC-EVs in the treatment of neurodegenerative diseases, focusing on the strategies to further enhance their beneficial effects such as tracking methods, bioengineering applications, with particular attention to intranasal delivery as a feasible strategy to deliver MSC-EVs directly to the CNS in an effective and minimally invasive way. Current progresses and limiting issues to the extent of the use of MSC-EVs treatment for human neurodegenerative diseases will be also revised.
Collapse
Affiliation(s)
- Ermanna Turano
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Virla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Bruno Bonetti
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37124 Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7164
| |
Collapse
|
33
|
Duan Y, Lyu L, Zhan S. Stem Cell Therapy for Alzheimer's Disease: A Scoping Review for 2017-2022. Biomedicines 2023; 11:120. [PMID: 36672626 PMCID: PMC9855936 DOI: 10.3390/biomedicines11010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) has been a major causal factor for mortality among elders around the world. The treatments for AD, however, are still in the stage of development. Stem cell therapy, compared to drug therapies and many other therapeutic options, has many advantages and is very promising in the future. There are four major types of stem cells used in AD therapy: neural stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. All of them have applications in the treatments, either at the (1) cellular level, in an (2) animal model, or at the (3) clinical level. In general, many more types of stem cells were studied on the cellular level and animal model, than the clinical level. We suggest for future studies to increase research on various types of stem cells and include cross-disciplinary research with other diseases. In the future, there could also be improvements in the timeliness of research and individualization for stem cell therapies for AD.
Collapse
Affiliation(s)
- Yunxiao Duan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Linshuoshuo Lyu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
34
|
Advanced molecular therapies for neurological diseases: focus on stroke, alzheimer's disease, and parkinson's disease. Neurol Sci 2023; 44:19-36. [PMID: 36066674 DOI: 10.1007/s10072-022-06356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
Neurological diseases (NDs) are one of the leading causes of disability and the second leading cause of death globally. Among these stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) are the most common NDs. A rise in the absolute number of individuals affected with these diseases indicates that the current treatment strategies in management and prevention of these debilitating diseases are not effective sufficiently. Therefore, novel treatment strategies are being explored to cure these diseases by addressing the causative mechanisms at the molecular level. Advanced therapies like gene therapy (gene editing and gene silencing) and stem cell therapies aim to cure diseases by gene editing, gene silencing and tissue regeneration, respectively. Gene editing results in the deletion of the aberrant gene or insertion of the corrected gene which can be executed using the CRISPR/Cas gene editing tool a promising treatment strategy being explored for many other prevalent diseases. Gene silencing using siRNA silences the gene by inhibiting protein translation, thereby silencing its expression. Stem cell therapy aims to regenerate damaged cells or tissues because of their ability to divide into any type of cell in the human body. Among these approaches, gene editing and gene silencing have currently been applied in vitro and to animal models, while stem cell therapy has reached the clinical trial stage for the treatment of NDs. The current status of these strategies suggests a promising outcome in their clinical translation.
Collapse
|
35
|
Mohebichamkhorami F, Niknam Z, Khoramjouy M, Heidarli E, Ghasemi R, Hosseinzadeh S, Mohseni SS, Hajikarim-Hamedani A, Heidari A, Ghane Y, Mahmoudifard M, Zali H, Faizi M. Brain Homogenate of a Rat Model of Alzheimer's Disease Modifies the Secretome of 3D Cultured Periodontal Ligament Stem Cells: A Potential Neuroregenerative Therapy. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133668. [PMID: 36896321 PMCID: PMC9990517 DOI: 10.5812/ijpr-133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease leading to neuronal cell death and manifested by cognitive disorders and behavioral impairment. Mesenchymal stem cells (MSCs) are one of the most promising candidates to stimulate neuroregeneration and prevent disease progression. Optimization of MSC culturing protocols is a key strategy to increase the therapeutic potential of the secretome. Objectives Here, we investigated the effect of brain homogenate of a rat model of AD (BH-AD) on the enhancement of protein secretion in the secretome of periodontal ligament stem cells (PDLSCs) when cultured in a 3D environment. Moreover, the effect of this modified secretome was examined on neural cells to study the impact of the conditioned medium (CM) on stimulation of regeneration or immunomodulation in AD. Methods PDLSCs were isolated and characterized. Then, the spheroids of PDLSCs were generated in a modified 3D culture plate. PDLSCs-derived CM was prepared in the presence of BH-AD (PDLSCs-HCM) and the absence of it (PDLSCs-CM). The viability of C6 glioma cells was assessed after exposure to different concentrations of both CMs. Then, a proteomic analysis was performed on the CMs. Results Differentiation into adipocytes and high expression of MSCs markers verified the precise isolation of PDLSCs. The PDLSC spheroids were formed after 7 days of 3D culturing, and their viability was confirmed. The effect of CMs on C6 glioma cell viability showed that both CMs at low concentrations (> 20 mg/mL) had no cytotoxic effect on C6 neural cells. The results showed that PDLSCs-HCM contains higher concentrations of proteins compared to PDLSCs-CM, including Src-homology 2 domain (SH2)-containing PTPs (SHP-1) and muscle glycogen phosphorylase (PYGM) proteins. SHP-1 has a role in nerve regeneration, and PYGM is involved in glycogen metabolism. Conclusions The modified secretome derived from 3D cultured spheroids of PDLSCs treated by BH-AD as a reservoir of regenerating neural factors can serve as a potential source for AD treatment.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Heidarli
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sarvenaz Mohseni
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Manica DT, Asensi KD, Mazzarelli G, Tura B, Barata G, Goldenberg RCS. Gender bias and menstrual blood in stem cell research: A review of pubmed articles (2008–2020). Front Genet 2022; 13:957164. [DOI: 10.3389/fgene.2022.957164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Despite proven scientific quality of menstrual blood mesenchymal cells, research and science output using those cells is still incipient, which suggests there is a resistance to the study of this type of cell by scientists, and a lack of attention to its potential for cell therapy, regenerative medicine and bioengineering. This study analyzes the literature about the menstrual blood mesenchymal stromal/stem cells (mbMSC) on the PubMed database between 2008–2020 and the social attention it received on Twitter. A comparative analysis showed that mbMSC accounts for a very small portion of mesenchymal cell research (0.25%). Most first authors are women (53.2%), whereas most last authors are men (63.74%), reinforcing an already known, and still significant, gender gap between last and corresponding authors. Menstrual blood tends to be less used in experiments and its scientific value tends to be underestimated, which brings gender bias to a technical and molecular level. Although women are more positive in the mbMSC debate on Twitter, communication efforts toward visibility and public interest in menstrual cells has room to grow.
Collapse
|
37
|
Fraile M, Eiro N, Costa LA, Martín A, Vizoso FJ. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. BIOLOGY 2022; 11:1678. [PMID: 36421393 PMCID: PMC9687158 DOI: 10.3390/biology11111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023]
Abstract
Aging and frailty are complex processes implicating multifactorial mechanisms, such as replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disorder. All of these mechanisms drive dramatic changes in the tissue environment, such as senescence-associated secretory phenotype factors and inflamm-aging. Thus, there is a demand for new therapeutic strategies against the devastating effects of the aging and associated diseases. Mesenchymal stem cells (MSC) participate in a "galaxy" of tissue signals (proliferative, anti-inflammatory, and antioxidative stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to tissue homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC have been proposed: remove, rejuvenate, or replace the senescent MSC. These strategies include the use of senolytic drugs, antioxidant agents and genetic engineering, or transplantation of younger MSC. Nevertheless, these strategies may have the drawback of the adverse effects of prolonged use of the different drugs used or, where appropriate, those of cell therapy. In this review, we propose the new strategy of "Exogenous Restitution of Intercellular Signalling of Stem Cells" (ERISSC). This concept is based on the potential use of secretome from MSC, which are composed of molecules such as growth factors, cytokines, and extracellular vesicles and have the same biological effects as their parent cells. To face this cell-free regenerative therapy challenge, we have to clarify key strategy aspects, such as establishing tools that allow us a more precise diagnosis of aging frailty in order to identify the therapeutic requirements adapted to each case, identify the ideal type of MSC in the context of the functional heterogeneity of these cellular populations, to optimize the mass production and standardization of the primary materials (cells) and their secretome-derived products, to establish the appropriate methods to validate the anti-aging effects and to determine the most appropriate route of administration for each case.
Collapse
Affiliation(s)
- Maria Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Arancha Martín
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Emergency, Hospital Universitario de Cabueñes, Los Prados, 395, 33394 Gijon, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| |
Collapse
|
38
|
Regmi S, Liu DD, Shen M, Kevadiya BD, Ganguly A, Primavera R, Chetty S, Yarani R, Thakor AS. Mesenchymal stromal cells for the treatment of Alzheimer’s disease: Strategies and limitations. Front Mol Neurosci 2022; 15:1011225. [PMID: 36277497 PMCID: PMC9584646 DOI: 10.3389/fnmol.2022.1011225] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a major cause of age-related dementia and is characterized by progressive brain damage that gradually destroys memory and the ability to learn, which ultimately leads to the decline of a patient’s ability to perform daily activities. Although some of the pharmacological treatments of AD are available for symptomatic relief, they are not able to limit the progression of AD and have several side effects. Mesenchymal stem/stromal cells (MSCs) could be a potential therapeutic option for treating AD due to their immunomodulatory, anti-inflammatory, regenerative, antioxidant, anti-apoptotic, and neuroprotective effects. MSCs not only secret neuroprotective and anti-inflammatory factors to promote the survival of neurons, but they also transfer functional mitochondria and miRNAs to boost their bioenergetic profile as well as improve microglial clearance of accumulated protein aggregates. This review focuses on different clinical and preclinical studies using MSC as a therapy for treating AD, their outcomes, limitations and the strategies to potentiate their clinical translation.
Collapse
|
39
|
Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investig 2022; 9:4. [PMID: 36238449 PMCID: PMC9552054 DOI: 10.21037/sci-2022-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023]
Abstract
Background and Objective Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Collapse
Affiliation(s)
- Brianna
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Xiong W, Liu Y, Zhou H, Jing S, He Y, Ye Q. Alzheimer’s disease: Pathophysiology and dental pulp stem cells therapeutic prospects. Front Cell Dev Biol 2022; 10:999024. [PMID: 36187488 PMCID: PMC9520621 DOI: 10.3389/fcell.2022.999024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a destructive neurodegenerative disease with the progressive dysfunction, structural disorders and decreased numbers of neurons in the brain, which leads to long-term memory impairment and cognitive decline. There is a growing consensus that the development of AD has several molecular mechanisms similar to those of other neurodegenerative diseases, including excessive accumulation of misfolded proteins and neurotoxic substances produced by hyperactivated microglia. Nonetheless, there is currently a lack of effective drug candidates to delay or prevent the progression of the disease. Based on the excellent regenerative and reparative capabilities of stem cells, the application of them to repair or replace injured neurons carries enormous promise. Dental pulp stem cells (DPSCs), originated from ectomesenchyme of the cranial neural crest, hold a remarkable potential for neuronal differentiation, and additionally express a variety of neurotrophic factors that contribute to a protective effect on injured neuronal cells. Notably, DPSCs can also express immunoregulatory factors to control neuroinflammation and potentiate the regeneration and recovery of injured neurons. These extraordinary features along with accessibility make DPSCs an attractive source of postnatal stem cells for the regeneration of neurons or protection of existing neural circuitry in the neurodegenerative diseases. The present reviews the latest research advance in the pathophysiology of AD and elaborate the neurodifferentiation and neuroprotective properties of DPSCs as well as their application prospects in AD.
Collapse
Affiliation(s)
- Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
41
|
Rajput A, Pingale P, Dhapte-Pawar V. Nasal delivery of neurotherapeutics via nanocarriers: Facets, aspects, and prospects. Front Pharmacol 2022; 13:979682. [PMID: 36176429 PMCID: PMC9513345 DOI: 10.3389/fphar.2022.979682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the neurological ailments which continue to represent a major public health challenge, owing to increased life expectancy and aging population. Progressive memory loss and decrease in cognitive behavior, owing to irreversible destruction of neurons along with expensive therapeutic interventions, call for an effective, alternate, yet affordable treatment for Alzheimer’s disease. Safe and effective delivery of neurotherapeutics in Alzheimer’s like central nervous system (CNS) disorders still remains elusive despite the major advances in both neuroscience and drug delivery research. The blood–brain barrier (BBB) with its tight endothelial cell layer surrounded by astrocyte foot processes poses as a major barrier for the entry of drugs into the brain. Nasal drug delivery has emerged as a reliable method to bypass this blood–brain barrier and deliver a wide range of neurotherapeutic agents to the brain effectively. This nasal route comprises the olfactory or trigeminal nerves originating from the brain and terminating into the nasal cavity at the respiratory epithelium or olfactory neuroepithelium. They represent the most direct method of noninvasive entry into the brain, opening the most suitable therapeutic avenue for treatment of neurological diseases. Also, drugs loaded into nanocarriers can have better interaction with the mucosa that assists in the direct brain delivery of active molecules bypassing the BBB and achieving rapid cerebrospinal fluid levels. Lipid particulate systems, emulsion-based systems, vesicular drug delivery systems, and other nanocarriers have evolved as promising drug delivery approaches for the effective brain delivery of anti-Alzheimer’s drugs with improved permeability and bioavailability via the nasal route. Charge, size, nature of neurotherapeutics, and formulation excipients influence the effective and targeted drug delivery using nanocarriers via the nasal route. This article elaborates on the recent advances in nanocarrier-based nasal drug delivery systems for the direct and effective brain delivery of the neurotherapeutic molecules. Additionally, we have attempted to highlight various experimental strategies, underlying mechanisms in the pathogenesis and therapy of central nervous system diseases, computational approaches, and clinical investigations pursued so far to attain and enhance the direct delivery of therapeutic agents to the brain via the nose-to-brain route, using nanocarriers.
Collapse
Affiliation(s)
- Amarjitsing Rajput
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES’s Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik, India
| | - Vividha Dhapte-Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
- *Correspondence: Vividha Dhapte-Pawar, ,
| |
Collapse
|
42
|
Errede M, Annese T, Petrosino V, Longo G, Girolamo F, de Trizio I, d'Amati A, Uccelli A, Kerlero de Rosbo N, Virgintino D. Microglia-derived CCL2 has a prime role in neocortex neuroinflammation. Fluids Barriers CNS 2022; 19:68. [PMID: 36042496 PMCID: PMC9429625 DOI: 10.1186/s12987-022-00365-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood–brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage. Methods The study was carried out by immunohistochemistry (IHC) and dual RNAscope IHC/in situ hybridization methods, using astrocyte, NG2-glia, macrophage/microglia, and microglia elective markers combined with CCL2. Results The results showed that in EAE-affected mice, hypertrophic microglia are the primary source of CCL2, surround the cortex neurons and the damaged BBB microvessels. In EAE-affected mice treated with MSCs, microgliosis appeared diminished very soon (6 h) after treatment, an observation that was long-lasting (tested after 10 days). This was associated with a reduced CCL2 expression and with apparently preserved/restored BBB features. In conclusion, the hallmark of EAE in the mouse neocortex is a condition of microgliosis characterized by high levels of CCL2 expression. Conclusions This finding supports relevant pathogenetic and clinical aspects of the human disease, while the demonstrated early control of neuroinflammation and BBB permeability exerted by treatment with MSCs may have important therapeutic implications. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00365-5.
Collapse
Affiliation(s)
- Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.,Department of Medicine and Surgery, LUM University, Casamassima Bari, Italy
| | - Valentina Petrosino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicole Kerlero de Rosbo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,TomaLab, Institute of Nanotechnology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.
| |
Collapse
|
43
|
Forloni G, La Vitola P, Balducci C. Oligomeropathies, inflammation and prion protein binding. Front Neurosci 2022; 16:822420. [PMID: 36081661 PMCID: PMC9445368 DOI: 10.3389/fnins.2022.822420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The central role of oligomers, small soluble aggregates of misfolded proteins, in the pathogenesis of neurodegenerative disorders is recognized in numerous experimental conditions and is compatible with clinical evidence. To underline this concept, some years ago we coined the term oligomeropathies to define the common mechanism of action of protein misfolding diseases like Alzheimer, Parkinson or prion diseases. Using simple experimental conditions, with direct application of synthetic β amyloid or α-synuclein oligomers intraventricularly at micromolar concentrations, we could detect differences and similarities in the biological consequences. The two oligomer species affected cognitive behavior, neuronal dysfunction and cerebral inflammatory reactions with distinct mechanisms. In these experimental conditions the proposed mediatory role of cellular prion protein in oligomer activities was not confirmed. Together with oligomers, inflammation at different levels can be important early in neurodegenerative disorders; both β amyloid and α-synuclein oligomers induce inflammation and its control strongly affects neuronal dysfunction. This review summarizes our studies with β-amyloid or α-synuclein oligomers, also considering the potential curative role of doxycycline, a well-known antibiotic with anti-amyloidogenic and anti-inflammatory activities. These actions are analyzed in terms of the therapeutic prospects.
Collapse
|
44
|
Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, Guo L, Zhang X, Zhou X, Xu X, Yan X, Wang Y, Zhang J, Xu A, Tse HF, Lian Q. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis 2022; 13:580. [PMID: 35787632 PMCID: PMC9252569 DOI: 10.1038/s41419-022-05034-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.
Collapse
Affiliation(s)
- Meng Kou
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Jinjuan Yang
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Zhixin Chiang
- Department of Allied Health Sciences Faculty of Science, Tunku Abdul Rahman University, Ipoh, Malaysia
| | - Shaoxiang Chen
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Jie Liu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Liyan Guo
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxian Zhang
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaoya Zhou
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaomei Yan
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinqiu Zhang
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China.
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China.
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong SAR, China.
- Department of Surgery, Shenzhen Hong Kong University Hospital, Shenzhen, 518053, China.
| |
Collapse
|
45
|
Liu C. The Role of Mesenchymal Stem Cells in Regulating Astrocytes-Related Synapse Dysfunction in Early Alzheimer’s Disease. Front Neurosci 2022; 16:927256. [PMID: 35801178 PMCID: PMC9253587 DOI: 10.3389/fnins.2022.927256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disease, is characterized by the presence of extracellular amyloid-β (Aβ) aggregates and intracellular neurofibrillary tangles formed by hyperphosphorylated tau as pathological features and the cognitive decline as main clinical features. An important cellular correlation of cognitive decline in AD is synapse loss. Soluble Aβ oligomer has been proposed to be a crucial early event leading to synapse dysfunction in AD. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function have been suggested in the pathogenesis of AD. Astrocytes may contribute to synapse dysfunction at an early stage of AD by participating in Aβ metabolism, brain inflammatory response, and synaptic regulation. While mesenchymal stem cells can inhibit astrogliosis, and promote non-reactive astrocytes. They can also induce direct regeneration of neurons and synapses. This review describes the role of mesenchymal stem cells and underlying mechanisms in regulating astrocytes-related Aβ metabolism, neuroinflammation, and synapse dysfunction in early AD, exploring the open questions in this field.
Collapse
|
46
|
Olmedo-Moreno L, Aguilera Y, Baliña-Sánchez C, Martín-Montalvo A, Capilla-González V. Heterogeneity of In Vitro Expanded Mesenchymal Stromal Cells and Strategies to Improve Their Therapeutic Actions. Pharmaceutics 2022; 14:1112. [PMID: 35631698 PMCID: PMC9146397 DOI: 10.3390/pharmaceutics14051112] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Beneficial properties of mesenchymal stromal cells (MSCs) have prompted their use in preclinical and clinical research. Accumulating evidence has been provided for the therapeutic effects of MSCs in several pathologies, including neurodegenerative diseases, myocardial infarction, skin problems, liver disorders and cancer, among others. Although MSCs are found in multiple tissues, the number of MSCs is low, making in vitro expansion a required step before MSC application. However, culture-expanded MSCs exhibit notable differences in terms of cell morphology, physiology and function, which decisively contribute to MSC heterogeneity. The changes induced in MSCs during in vitro expansion may account for the variability in the results obtained in different MSC-based therapy studies, including those using MSCs as living drug delivery systems. This review dissects the different changes that occur in culture-expanded MSCs and how these modifications alter their therapeutic properties after transplantation. Furthermore, we discuss the current strategies developed to improve the beneficial effects of MSCs for successful clinical implementation, as well as potential therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, 41092 Seville, Spain; (L.O.-M.); (Y.A.); (C.B.-S.); (A.M.-M.)
| |
Collapse
|
47
|
Lei T, Liu Y, Deng S, Xiao Z, Yang Y, Zhang X, Bi W, Du H. Hydrogel supplemented with human platelet lysate enhances multi-lineage differentiation of mesenchymal stem cells. J Nanobiotechnology 2022; 20:176. [PMID: 35366889 PMCID: PMC8976277 DOI: 10.1186/s12951-022-01387-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) can be used as a potential clinical material. But the use of xenogeneic ingredients will increase the risk of zoonotic disease transmission. Human platelet lysate (HPL) is a potential surrogate and used in human cell expansion with reliability in clinical applications. In this study, we synthesized chitosan/gelatin/gellan gum hydrogel supplemented with HPL and investigated the effect of 3D culture for SHED. TMT-tagged proteomics was used to decipher the secretome protein profiles of SHEDs and a total of 3209 proteins were identified, of which 23 were up-regulated and 192 were down-regulated. The results showed that hydrogel supplemented with HPL promoted SHED proliferation. After induction, the hydrogel coating contributed to osteogenic differentiation, adipogenic differentiation and differentiation into neural-like cells of SHED. SHED encapsulated in a hydrogel promotes migration and angiogenesis of HUVEC. In conclusion, our research found that hydrogel supplemented with HPL can be used as a method for SHED in standardized production and can contribute to the clinical application of SHED in cell therapy.
Collapse
|
48
|
Li Y, Wu H, Jiang X, Dong Y, Zheng J, Gao J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: combining with intranasal delivery. Acta Pharm Sin B 2022; 12:3215-3232. [PMID: 35967290 PMCID: PMC9366301 DOI: 10.1016/j.apsb.2022.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical translation of stem cells and their extracellular vesicles (EVs)-based therapy for central nervous system (CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with the invasiveness of current administration routes prevent stem cells or EVs from fully exerting their clinical therapeutic potential. Intranasal (IN) delivery is a possible strategy to solve problems as IN route could circumvent the brain‒blood barrier non-invasively and fit repeated dosage regimens. Herein, we gave an overview of studies and clinical trials involved with IN route and discussed the possibility of employing IN delivery to solve problems in stem cells or EVs-based therapy. We reviewed relevant researches that combining stem cells or EVs-based therapy with IN administration and analyzed benefits brought by IN route. Finally, we proposed possible suggestions to facilitate the development of IN delivery of stem cells or EVs.
Collapse
Affiliation(s)
- Yaosheng Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunfei Dong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juanjuan Zheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 88208436.
| |
Collapse
|
49
|
Li F, Zhang J, Yi K, Wang H, Wei H, Chan HF, Tao Y, Li M. Delivery of Stem Cell Secretome for Therapeutic Applications. ACS APPLIED BIO MATERIALS 2022; 5:2009-2030. [PMID: 35285638 DOI: 10.1021/acsabm.1c01312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intensive studies on stem cell therapy reveal that benefits of stem cells attribute to the paracrine effects. Hence, direct delivery of stem cell secretome to the injured site shows the comparative therapeutic efficacy of living cells while avoiding the potential limitations. However, conventional systemic administration of stem cell secretome often leads to rapid clearance in vivo. Therefore, a variety of different biomaterials are developed for sustained and controllable delivery of stem cell secretome to improve therapeutic efficiency. In this review, we first introduce current approaches for the preparation and characterization of stem cell secretome as well as strategies to improve their therapeutic efficacy and production. The up-to-date delivery platforms are also summarized, including nanoparticles, injectable hydrogels, microneedles, and scaffold patches. Meanwhile, we discuss the underlying therapeutic mechanism of stem cell secretome for the treatment of various diseases. In the end, future opportunities and challenges are proposed.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
50
|
Intracerebroventricular Administration of Human Umbilical Cord Blood—Derived Mesenchymal Stem Cells Induces Transient Inflammation in a Transgenic Mouse Model and Patients with Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10030563. [PMID: 35327365 PMCID: PMC8945031 DOI: 10.3390/biomedicines10030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Previously we conducted a Phase I/IIa clinical trial in nine patients with mild to moderate Alzheimer’s disease (AD). Unexpectedly, all patients who were given injections of human-umbilical cord-blood-derived mesenchymal stem cells (hUCB-MSCs) developed fever which subsided after 24 h. Several possible causes of transient fever include bacterial infection, inflammatory reaction from the cell culture media composition, or the cells themselves. To delineate these causes, first we compared the levels of several cytokines in the cerebrospinal fluid (CSF) of AD patients who received saline (placebo) or hUCB-MSC injections, respectively. Compared to the placebo group, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and c-reactive protein (CRP) levels were increased in the hUCB-MSC group. Negative bacterial culture results of the CSF samples and the fact that the same hUCB-MSC administration procedure was used for both the placebo and hUCB-MSC groups ruled out the bacterial infection hypothesis. However, it was not yet clear as to whether the transplanted cells or the composition of the cell culture media generated the transient fever. Therefore, we carried out intracerebroventricular (ICV) injections of hUCB-MSCs in a 5xFAD mouse model of AD. Interestingly, we discovered that pro-inflammatory cytokine levels were higher in the hUCB-MSC group. Taken together, our data suggest that the cause of transient inflammatory response observed from both the clinical trial and mouse study was due to the transplanted hUCB-MSCs.
Collapse
|