1
|
Ghosh N, Chatterjee D, Datta A. Tumor heterogeneity and resistance in glioblastoma: the role of stem cells. Apoptosis 2025:10.1007/s10495-025-02123-y. [PMID: 40375039 DOI: 10.1007/s10495-025-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant brain tumor, characterized by its heterogeneity and the presence of glioblastoma stem cells (GSCs). GSCs are a subpopulation of cells within the tumor that possess self-renewal and differentiation capabilities, contributing to tumor initiation, progression, and recurrence. This review explores the unique biological properties of GSCs, including their molecular markers, signalling pathways, and interactions with the tumor microenvironment. We discuss the mechanisms by which GSCs evade conventional therapies, such as enhanced DNA repair and metabolic plasticity, which complicate treatment outcomes. Furthermore, we highlight recent advancements in identifying novel biomarkers and therapeutic targets that may improve the efficacy of treatments aimed at GSCs. The potential of targeted therapies, including immunotherapy and combination strategies, is also examined to overcome the challenges posed by GSCs. Ultimately, a deeper understanding of GSC biology is essential for developing personalized treatment approaches that can enhance patient outcomes in glioblastoma.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Neuroscience Technology, School of Allied Health Sciences, Yenepoya, Mangalore, Karnataka, India
| | | | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, India.
| |
Collapse
|
2
|
Wu KY, Crucho A, Su M, Chen ST, Hung CH, Kou YL, Liu YJ, Hsu TC, Yeh FY, Lien CF, Chen CC, Cai BH. Synergistic Anticancer Activity of HSP70 Inhibitor and Doxorubicin in Gain-of-Function Mutated p53 Breast Cancer Cells. Biomedicines 2025; 13:1034. [PMID: 40426862 PMCID: PMC12109493 DOI: 10.3390/biomedicines13051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: The mutation rate of p53 in breast cancer is around 20%. Specific p53 mutations exhibit prion-like abnormal misfolding and aggregation and gain oncogenic function, causing resistance to the chemotherapy drug doxorubicin. In this study, we identified key upstream regulatory molecules that inhibit the aggregation of p53 with the aim of increasing the anticancer effect of doxorubicin. Methods: Thioflavin T was employed as a fluorescent probe to detect prion-like protein aggregates within cells, the response to various inhibitors was evaluated using CCK8 assay, and the coefficient of drug interaction was calculated. The cell apoptosis ratio was evaluated using Caspase-3/7 based flow cytometry assay. Results: MDA-MB-231 cells (with p53 R280K mutation) and T47D cells (with p53 L194F mutation) had a strong Thioflavin T staining signal, but MDA-MB-468 cells (with p53 R273H mutation) had a weak Thioflavin T signal. Compared to MDA-MB-468 cells, which had a good response to doxorubicin, both MDA-MB-231 and T47D showed high doxorubicin drug resistance. Co-treatment with various misfolding p53 aggregation inhibitors and doxorubicin found that only the HSP70 inhibitor and doxorubicin had synergistic anticancer activity in both MDA-MB-231 and T47D cells. Furthermore, this co-treatment induced cell apoptosis in MDA-MB-231, which was reversed by a pan-caspase inhibitor. Conclusions: Doxorubicin resistance caused by specific p53 mutants can be resolved by co-treatment with a HSP70 inhibitor in breast cancer cells.
Collapse
Affiliation(s)
- Kuan-Yo Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan;
| | - Ana Crucho
- Lisbon School of Medicine, Lisbon University, 1649-004 Lisboa, Portugal;
| | - Mia Su
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Sih-Tong Chen
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung City 82445, Taiwan;
| | - Chen-Hsiu Hung
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-H.H.); (Y.-L.K.); (Y.-J.L.); (T.-C.H.)
| | - Yu-Ling Kou
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-H.H.); (Y.-L.K.); (Y.-J.L.); (T.-C.H.)
| | - Yu-Jie Liu
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-H.H.); (Y.-L.K.); (Y.-J.L.); (T.-C.H.)
| | - Tzu-Chi Hsu
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-H.H.); (Y.-L.K.); (Y.-J.L.); (T.-C.H.)
| | - Fang-Yu Yeh
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (F.-Y.Y.); (C.-F.L.)
| | - Ching-Feng Lien
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (F.-Y.Y.); (C.-F.L.)
- Department of Otolaryngology-Head and Neck Surgery, E-Da Hospital, Kaohsiung City 82445, Taiwan
| | - Chia-Chi Chen
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (F.-Y.Y.); (C.-F.L.)
- Department of Pathology, E-Da Hospital, Kaohsiung City 82445, Taiwan
- Department of Physical Therapy, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Occupational Therapy, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Bi-He Cai
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (F.-Y.Y.); (C.-F.L.)
| |
Collapse
|
3
|
Chiu C, Stetson S, Thayer KM. MD Multi-Sector Selector: Recursive Extraction and Refinement of Molecular Dynamics Based Sectors Yields Two Sectors in p53 Tumor Suppressor Protein. J Phys Chem B 2025; 129:3747-3760. [PMID: 40173308 PMCID: PMC12010330 DOI: 10.1021/acs.jpcb.4c08495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
Allosteric signaling in proteins allows perturbations at one locale to modulate activity at an orthosteric distant site. This may explain how distal mutations disrupt protein activity and offer pathways for the development of allosteric therapeutics, a novel class of restorative compounds to reactivate native function. Despite the ubiquitous presence of allosteric control in nature and the promises that it holds for treating currently untreatable diseases, quantitative theory of the mechanism of allostery is lacking. Working to fill this critical gap, we have developed a novel method to identify groups of covarying residues which the sector hypothesis suggests are capable of transmitting allosteric signals in proteins. A major problem with sectors computed from covariance measures is the selection relies upon a full covariance matrix rather than on the covariance among the residues posited to be in the sector. We demonstrate a novel method which constructs sectors on the basis of cohesion within the residues in the sector to eliminate the incongruity between the sector idea and the way it is calculated. Furthermore, the refinement can be iteratively applied, enabling the extraction of more than one sector in a well-defined, systematic manner. In this study, we report on the development of MD multi-sector selector and its application to allosteric signaling in the tumor suppressor protein p53. We consider the implications of our findings on our long-term goal of allosterically reactivating mutant p53 as a means of curing cancer, and critically assess the broader applicability of MD multi-sector selector across diverse fields.
Collapse
Affiliation(s)
- Christopher
A. Chiu
- Quantitative
Analysis CenterWesleyan University, Allbritton Center, 222 Church Street, Middletown, Connecticut 06459, United States
| | - Sean Stetson
- Mathematics
and Computer Science, Wesleyan University 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
| | - Kelly M. Thayer
- Quantitative
Analysis CenterWesleyan University, Allbritton Center, 222 Church Street, Middletown, Connecticut 06459, United States
- Mathematics
and Computer Science, Wesleyan University 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
- Molecular
Biophysics Program, Wesleyan University, 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
- College
of Integrative Sciences, Wesleyan University, 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
| |
Collapse
|
4
|
Corridore S, Verreault M, Martin H, Delobel T, Carrère C, Idbaih A, Ballesta A. Circumventing glioblastoma resistance to temozolomide through optimal drug combinations designed by systems pharmacology and machine learning. Br J Pharmacol 2025. [PMID: 40229949 DOI: 10.1111/bph.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma (GBM), the most frequent and aggressive brain tumour in adults, is associated with a dismal prognostic despite intensive treatment involving surgery, radiotherapy and temozolomide (TMZ)-based chemotherapy. The initial or acquired resistance of GBM to TMZ appeals for precision medicine approaches to the design of novel efficient combination pharmacotherapies. Such investigation needs to account for the overexpression of the O6-methylguanine-DNA methyl-transferase (MGMT) repair enzyme which is responsible for TMZ resistance in patients. EXPERIMENTAL APPROACH A comprehensive approach combining quantitative systems pharmacology (QSP) models and machine learning (ML) was undertaken to design TMZ-based drug combinations circumventing the initial resistance to the alkylating agent. KEY RESULTS A QSP model representing TMZ cellular pharmacokinetics-pharmacodynamics and dysregulated pathways in GBM was developed and validated using multi-type time- and dose-resolved datasets, available in control or MGMT-overexpressing cells. In silico drug screening and subsequent experimental validation identified a strategy to re-sensitise TMZ-resistant cells consisting in combining TMZ with inhibitors of the base excision repair and of homologous recombination. Using ML, functional signatures of response to such optimal multi-agent therapy were derived to assist decision-making in patients. CONCLUSION AND IMPLICATIONS We successfully demonstrated the relevance of combined QSP and ML to design efficient drug combinations re-sensitising glioblastoma cells initially resistant to TMZ. The developed framework may further serve to identify personalised therapies and administration schedules by extending it to account for additional patient-specific altered pathways and whole-body features.
Collapse
Affiliation(s)
- Sergio Corridore
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| | - Maïté Verreault
- AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, Paris, France
| | - Hugo Martin
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
- University of Rennes, EHESP, CNRS, Inserm, Arènes - UMR 6051, RSMS - U 1309, Rennes, France
| | - Thibault Delobel
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| | - Cécile Carrère
- Institut Denis Poisson, Université d'Orléans, CNRS, Orléans, France
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, Paris, France
| | - Annabelle Ballesta
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| |
Collapse
|
5
|
Kim M, Lee M, Lee A, Choi BO, Park WC, Kim SH, Lee J, Kang J. Correlating p53 immunostaining patterns with somatic TP53 mutation and functional properties of mutant p53 in triple-negative breast cancer. Histopathology 2025. [PMID: 40162573 DOI: 10.1111/his.15453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/21/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
AIMS Immunohistochemical (IHC) staining of p53 is a potential marker for TP53 mutations in various cancers. However, criteria for predicting TP53 mutations in triple-negative breast cancer (TNBC) using p53 IHC staining are not yet established. We aim to correlate p53 IHC expression patterns with TP53 mutation status in TNBC. METHODS AND RESULTS A total of 113 TNBC cases were analysed for p53 IHC staining pattern and somatic TP53 mutation using whole-exome sequencing. Functional properties of TP53 mutations were determined using the National Cancer Institute (NCI) TP53 database. P53 IHC patterns were categorized as nuclear overexpression (n = 58), null pattern (n = 40), wildtype (n = 15), cytoplasmic (n = 5), and subclonal (n = 5). The cutoff for predictive p53 nuclear overexpression was determined to be 80%, which strongly correlated with TP53 mutations. Notably, p53 overexpression had a positive predictive value (PPV) of 83% for missense or in-frame mutations, while the null pattern showed a PPV of 85% for detecting nonsense, frameshift, or splicing mutations. P53 overexpression was significantly linked to missense mutations within the DNA-binding domain (DBD) exhibiting gain-of-function (GOF) or dominant-negative effect (DNE). Cases exhibiting cytoplasmic expression correlated with nonsense or frameshift mutations in the DBD, nuclear localization signal (NLS), or splice sites. Cases with subclonal p53 staining patterns were associated with TP53 mutations. CONCLUSION Our study proposes newly defined criteria for interpreting p53 immunostaining patterns in TNBC, potentially allowing for the prediction of TP53 mutation types and their functional implications.
Collapse
Affiliation(s)
- Meejeong Kim
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Byung-Ock Choi
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo-Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hun Kim
- Department of Radiology, Seoul Saint Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Standing S, Malkin D, Johnston DL. A Unique Case of a Pediatric Patient with Six Childhood Cancers in Association with a Germline TP53 Gene Pathogenic Variant. Pediatr Blood Cancer 2025; 72:e31487. [PMID: 39702904 DOI: 10.1002/pbc.31487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Affiliation(s)
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatircs, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Donna L Johnston
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Narasimhamurthy M, Le A, Boruah N, Moses R, Kelly G, Bleiweiss I, Maxwell KN, Nayak A. Clinicopathologic Features of Breast Tumors in Germline TP53 Variant-Associated Li-Fraumeni Syndrome. Am J Surg Pathol 2025; 49:195-205. [PMID: 39629784 DOI: 10.1097/pas.0000000000002338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
We present one of the largest cohorts of TP53 -pathogenic germline variants (PGVs) associated with patients with Li-Fraumeni syndrome (n = 82) with breast tumors (19 to 76 y; median age: 35). Most had missense variants (77%), followed by large gene rearrangements (LGRs; 12%), truncating (6%), and splice-site (5%) variants. Twenty-one unique germline missense variants were found, with hotspots at codons 175, 181, 245, 248, 273, 334, and 337. Of 100 total breast tumors, 63% were invasive (mostly ductal), 30% pure ductal carcinoma in situ, 4% fibroepithelial lesions, and 3% with unknown histology. Unlike BRCA -associated tumors, approximately half of the breast cancers exhibited HER2 -positivity, of which ~50% showed estrogen receptor coexpression. Pathology slides were available for review for 61 tumors (44 patients), and no significant correlation between the type of TP53 PGVs and histologic features was noted. High p53 immunohistochemistry expression (>50%) was seen in 67% of tumors tested (mostly missense variant). Null pattern (<1% cells) was seen in 2 (LGR and splicing variants carriers). Surprisingly, 2 tumors from patients with an LGR and 1 tumor from a patient with a truncating variant showed p53 overexpression (>50%). The subset of patients with the Brazilian p.R337H variant presented at a higher age than those with non-p.R337H variant (46 vs 35 y) though statistically insignificant ( P = 0.071) due to an imbalance in the sample size, and were uniquely negative for HER2 -overexpressing tumors. To conclude, breast cancer in carriers of TP53 PGVs has some unique clinicopathological features that suggest differential mechanisms of tumor formation. p53 immunohistochemistry cannot be used as a surrogate marker to identify germline TP53 -mutated breast cancers.
Collapse
Affiliation(s)
| | - Anh Le
- Department of Medicine, Division of Hematology/Oncology
| | | | - Renyta Moses
- Department of Medicine, Division of Hematology/Oncology
| | - Gregory Kelly
- Department of Medicine, Division of Hematology/Oncology
| | | | - Kara N Maxwell
- Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania Health System
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Health System, Philadelphia, PA
| |
Collapse
|
8
|
Joerger AC, Stiewe T, Soussi T. TP53: the unluckiest of genes? Cell Death Differ 2025; 32:219-224. [PMID: 39443700 PMCID: PMC11803090 DOI: 10.1038/s41418-024-01391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The transcription factor p53 plays a key role in the cellular defense against cancer development. It is inactivated in virtually every tumor, and in every second tumor this inactivation is due to a mutation in the TP53 gene. In this perspective, we show that this diverse mutational spectrum is unique among all other cancer-associated proteins and discuss what drives the selection of TP53 mutations in cancer. We highlight that several factors conspire to make the p53 protein particularly vulnerable to inactivation by the mutations that constantly plague our genome. It appears that the TP53 gene has emerged as a victim of its own evolutionary past that shaped its structure and function towards a pluripotent tumor suppressor, but came with an increased structural fragility of its DNA-binding domain. TP53 loss of function - with associated dominant-negative effects - is the main mechanism that will impair TP53 tumor suppressive function, regardless of whether a neomorphic phenotype is associated with some of these variants.
Collapse
Affiliation(s)
- Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| | - Thierry Soussi
- Equipe « Hematopoietic and Leukemic Development », Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Paris, France.
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
9
|
Fortuno C, Llinares-Burguet I, Canson DM, de la Hoya M, Bueno-Martínez E, Sanoguera-Miralles L, Caldes S, James PA, Velasco-Sampedro EA, Spurdle AB. Exploring the role of splicing in TP53 variant pathogenicity through predictions and minigene assays. Hum Genomics 2025; 19:2. [PMID: 39780207 PMCID: PMC11715486 DOI: 10.1186/s40246-024-00714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan. METHODS We conducted splicing analyses using a minigene construct containing TP53 exons 2 to 9 transfected into human breast cancer SKBR3 cells, and compared results against different splice prediction methods, including correlation with the SpliceAI-10k calculator. We additionally applied the splicing results for TP53 variant classification using an approach consistent with the ClinGen Sequence Variant Interpretation Splicing Subgroup recommendations. RESULTS Aberrant transcript profile consistent with loss of function, and for which a PVS1 (RNA) code would be assigned, was observed for 42 (71%) of prioritised variants, of which aberrant transcript expression was over 50% for 26 variants, and over 80% for 15 variants. Data supported the use of SpliceAI ≥ 0.2 cutoff for predicted splicing impact of TP53 variants. Prediction of aberration types using SpliceAI-10k calculator generally aligned with the corresponding assay results, though maximum SpliceAI score did not accurately predict level of aberrant expression. Application of the observed splicing results was used to reclassify 27/59 (46%) test variants as (likely) pathogenic or (likely) benign. CONCLUSIONS In conclusion, this study enhances the integration of splicing predictions and provides splicing assay data for exonic variants to support TP53 germline classification.
Collapse
Affiliation(s)
- Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Daffodil M Canson
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Sonsoles Caldes
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
10
|
Müntnich LJ, Dutzmann CM, Großhennig A, Härter V, Keymling M, Mastronuzzi A, Montellier E, Nees J, Palmaers NE, Penkert J, Pfister SM, Ripperger T, Schott S, Silchmüller F, Hainaut P, Kratz CP. Cancer risk in carriers of TP53 germline variants grouped into different functional categories. JNCI Cancer Spectr 2025; 9:pkaf008. [PMID: 39873732 PMCID: PMC11879075 DOI: 10.1093/jncics/pkaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Li-Fraumeni syndrome is a cancer predisposition syndrome caused by pathogenic TP53 germline variants; it is associated with a high lifelong cancer risk. We analyzed the German Li-Fraumeni syndrome registry, which contains data on 304 individuals. Cancer phenotypes were correlated with variants grouped according to their ability to transactivate target genes in a yeast assay using a traditional (nonfunctional, partially functional) and a novel (clusters A, B, and C) classification of variants into different groups. Partially functional and cluster B or C variants were enriched in patients who did not meet clinical testing criteria. Time to first malignancy was longer in carriers of partially functional variants (hazard ratio = 0.38, 95% CI = 0.22 to 0.66). Variants grouped within cluster B (hazard ratio = 0.45, 95% CI = 0.28 to 0.71) or C (hazard ratio = 0.34, 95% CI = 0.19 to 0.62) were associated with later cancer onset than NULL variants. These findings can be used to risk-stratify patients and inform care.
Collapse
Affiliation(s)
- Lucas John Müntnich
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Christina M Dutzmann
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Anika Großhennig
- Institute of Biostatistics, Hannover Medical School, 30625 Hannover, Germany
| | - Valentina Härter
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Myriam Keymling
- Division of Radiology, German Cancer Research Center, 30625 Heidelberg, Germany
| | - Angela Mastronuzzi
- Department of Paediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Emilie Montellier
- Université Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, 38700 Grenoble, France
| | - Juliane Nees
- Department of Obstetrics and Gynecology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Natalie E Palmaers
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Judith Penkert
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan M Pfister
- Hopp Children’s Cancer Center Heidelberg and Division of Pediatric Neurooncology, German Cancer Research Center, and German Cancer Consortium, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital and National Center for Tumor Diseases, 69120 Heidelberg, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Sarah Schott
- Department of Obstetrics and Gynecology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Farina Silchmüller
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Pierre Hainaut
- Université Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, 38700 Grenoble, France
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
11
|
Funk JS, Klimovich M, Drangenstein D, Pielhoop O, Hunold P, Borowek A, Noeparast M, Pavlakis E, Neumann M, Balourdas DI, Kochhan K, Merle N, Bullwinkel I, Wanzel M, Elmshäuser S, Teply-Szymanski J, Nist A, Procida T, Bartkuhn M, Humpert K, Mernberger M, Savai R, Soussi T, Joerger AC, Stiewe T. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat Genet 2025; 57:140-153. [PMID: 39774325 PMCID: PMC11735402 DOI: 10.1038/s41588-024-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells. This high-resolution approach, covering 94.5% of all cancer-associated TP53 missense mutations, precisely mapped the impact of individual mutations on tumor cell fitness, surpassing previous deep mutational scan studies in distinguishing benign from pathogenic variants. Our results revealed even subtle loss-of-function phenotypes and identified promising mutants for pharmacological reactivation. Moreover, we uncovered the roles of splicing alterations and nonsense-mediated messenger RNA decay in mutation-driven TP53 dysfunction. These findings underscore the power of saturation genome editing in advancing clinical TP53 variant interpretation for genetic counseling and personalized cancer therapy.
Collapse
Affiliation(s)
- Julianne S Funk
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maria Klimovich
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Ole Pielhoop
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Pascal Hunold
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Anna Borowek
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maxim Noeparast
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Michelle Neumann
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Katharina Kochhan
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Imke Bullwinkel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University, Marburg University Hospital, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Tara Procida
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University, Giessen, Germany
| | - Katharina Humpert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thierry Soussi
- Centre de Recherche Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Paris, France
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.
- Genomics Core Facility, Philipps-University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
12
|
Pavlova S, Malcikova J, Radova L, Bonfiglio S, Cowland JB, Brieghel C, Andersen MK, Karypidou M, Biderman B, Doubek M, Lazarian G, Rapado I, Vynck M, Porret NA, Andres M, Rosenberg D, Sahar D, Martínez‐Laperche C, Buño I, Hindley A, Donaldson D, Sánchez JB, García‐Marco JA, Serrano‐Alcalá A, Ferrer‐Lores B, Fernández‐Rodriguez C, Bellosillo B, Stilgenbauer S, Tausch E, Nikdin H, Quinn F, Atkinson E, van de Corput L, Yildiz C, Bilbao‐Sieyro C, Florido Y, Thiede C, Schuster C, Stoj A, Czekalska S, Chatzidimitriou A, Laidou S, Bidet A, Dussiau C, Nollet F, Piras G, Monne M, Smirnova S, Nikitin E, Sloma I, Claudel A, Largeaud L, Ysebaert L, Valk PJM, Christian A, Walewska R, Oscier D, Sebastião M, da Silva MG, Galieni P, Angelini M, Rossi D, Spina V, Matos S, Martins V, Stokłosa T, Pepek M, Baliakas P, Andreu R, Luna I, Kahre T, Murumets Ü, Pikousova T, Kurucova T, Laird S, Ward D, Alcoceba M, Balanzategui A, Scarfo L, Gandini F, Zapparoli E, Blanco A, Abrisqueta P, Rodríguez‐Vicente AE, Benito R, Bravetti C, Davi F, Gameiro P, Martinez‐Lopez J, Tazón‐Vega B, Baran‐Marszak F, Davis Z, Catherwood M, Sudarikov A, Rosenquist R, Niemann CU, Stamatopoulos K, Ghia P, Pospisilova S. Detection of clinically relevant variants in the TP53 gene below 10% allelic frequency: A multicenter study by ERIC, the European Research Initiative on CLL. Hemasphere 2025; 9:e70065. [PMID: 39840379 PMCID: PMC11746920 DOI: 10.1002/hem3.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025] Open
Abstract
In chronic lymphocytic leukemia, the reliability of next-generation sequencing (NGS) to detect TP53 variants ≤10% allelic frequency (low-VAF) is debated. We tested the ability to detect 23 such variants in 41 different laboratories using their NGS method of choice. The sensitivity was 85.6%, 94.5%, and 94.8% at 1%, 2%, and 3% VAF cut-off, respectively. While only one false positive (FP) result was reported at >2% VAF, it was more challenging to distinguish true variants <2% VAF from background noise (37 FPs reported by 9 laboratories). The impact of low-VAF variants on time-to-second-treatment (TTST) and overall survival (OS) was investigated in a series of 1092 patients. Among patients not treated with targeted agents, patients with low-VAF TP53 variants had shorter TTST and OS versus wt-TP53 patients, and the relative risk of second-line treatment or death increased continuously with increasing VAF. Targeted therapy in ≥2 line diminished the difference in OS between patients with low-VAF TP53 variants and wt-TP53 patients, while patients with high-VAF TP53 variants had inferior OS compared to wild type-TP53 cases. Altogether, NGS-based approaches are technically capable of detecting low-VAF variants. No strict threshold can be suggested from a technical standpoint, laboratories reporting TP53 mutations should participate in a standardized validation set-up. Finally, whereas low-VAF variants affected outcomes in patients receiving chemoimmunotherapy, their impact on those treated with novel therapies remains undetermined. Our results pave the way for the harmonized and accurate TP53 assessment, which is indispensable for elucidating the role of TP53 mutations in targeted treatment.
Collapse
Affiliation(s)
- Sarka Pavlova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical FacultyMasaryk UniversityBrnoCzech Republic
- Centre for Molecular Medicine, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Jitka Malcikova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical FacultyMasaryk UniversityBrnoCzech Republic
- Centre for Molecular Medicine, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Lenka Radova
- Centre for Molecular Medicine, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Silvia Bonfiglio
- B‐Cell Neoplasia Unit and Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanItaly
- Center for Omics SciencesIRCCS Ospedale San RaffaeleMilanItaly
| | - Jack B. Cowland
- Department of Clinical Genetics, Centre of Diagnostic InvestigationsCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Christian Brieghel
- Department of HematologyCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Mette K. Andersen
- Department of Clinical Genetics, Centre of Diagnostic InvestigationsCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Maria Karypidou
- Institute of Applied BiosciencesCentre for Research and Technology HellasThessalonikiGreece
| | - Bella Biderman
- National Medical Research Center for HematologyMoscowRussia
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical FacultyMasaryk UniversityBrnoCzech Republic
- Centre for Molecular Medicine, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Gregory Lazarian
- Hematology laboratoryHUPSSD, Hôpital Avicenne, APHPBobignyFrance
- INSERM U978Université Sorbonne Paris NordBobignyFrance
| | - Inmaculada Rapado
- Department of HematologyHospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Complutense University, CNIO, CIBERONCMadridSpain
| | - Matthijs Vynck
- Department of Laboratory MedicineAZ Sint‐Jan HospitalBrugesBelgium
| | - Naomi A. Porret
- Department of Hematology and Central Hematology Laboratory, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Martin Andres
- Department of Hematology and Central Hematology Laboratory, InselspitalBern University Hospital, University of BernBernSwitzerland
| | | | - Dvora Sahar
- Hematology LaboratoryRambam Medical CenterHaifaIsrael
| | - Carolina Martínez‐Laperche
- Department of HematologyGregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
| | - Ismael Buño
- Department of HematologyGregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Genomics UnitGregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM)MadridSpain
- Department of Cell Biology, Medical SchoolComplutense University of MadridMadridSpain
| | | | | | - Julio B. Sánchez
- Molecular Cytogenetics Unit, Hematology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
| | - José A. García‐Marco
- Molecular Cytogenetics Unit, Hematology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
| | | | | | | | - Beatriz Bellosillo
- Pathology DepartmentHospital del Mar, IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | | | - Eugen Tausch
- Department of Internal Medicine IIIUlm UniversityUlmGermany
| | - Hero Nikdin
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Department of Clinical Genetics and GenomicsKarolinska University HospitalStockholmSweden
| | - Fiona Quinn
- Cancer Molecular Diagnostics DepartmentCentre for Laboratory Medicine and Molecular Pathology, St. James HospitalDublinIreland
| | - Emer Atkinson
- Cancer Molecular Diagnostics DepartmentCentre for Laboratory Medicine and Molecular Pathology, St. James HospitalDublinIreland
| | - Lisette van de Corput
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cafer Yildiz
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cristina Bilbao‐Sieyro
- Servicio de HematologíaHospital Universitario de Gran Canaria Dr. Negrín, Departamento de Morfología de La Universidad de Las Palmas de Gran CanariaGran CanariaSpain
| | - Yanira Florido
- Servicio de HematologíaHospital Universitario de Gran Canaria Dr. Negrín, Departamento de Morfología de La Universidad de Las Palmas de Gran CanariaGran CanariaSpain
| | | | | | - Anastazja Stoj
- Department of Hematological Diagnostics and GeneticsUniversity Hospital in KrakowKrakowPoland
| | - Sylwia Czekalska
- Department of Hematological Diagnostics and GeneticsUniversity Hospital in KrakowKrakowPoland
| | | | - Stamatia Laidou
- Institute of Applied BiosciencesCentre for Research and Technology HellasThessalonikiGreece
| | - Audrey Bidet
- Laboratoire d'Hématologie BiologiqueCHU BordeauxBordeauxFrance
| | - Charles Dussiau
- Laboratoire d'Hématologie BiologiqueCHU BordeauxBordeauxFrance
| | - Friedel Nollet
- Department of Laboratory MedicineAZ Sint‐Jan HospitalBrugesBelgium
| | - Giovanna Piras
- Laboratorio specialistico UOC ematologiaOspedale San FrancescoASL NuoroItaly
| | - Maria Monne
- Laboratorio specialistico UOC ematologiaOspedale San FrancescoASL NuoroItaly
| | | | - Eugene Nikitin
- Outpatient department of Hematology, Oncology and Chemotherapy, Botkin Hospital, and Department of Hematology and TransfusiologyRussian Medical Academy of Continuous Professional EducationMoscowRussia
| | - Ivan Sloma
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
- Departement d'Hematologie et Immunologie BiologiqueAP‐HP, Hopital Henri MondorCreteilFrance
| | - Alexis Claudel
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
- Departement d'Hematologie et Immunologie BiologiqueAP‐HP, Hopital Henri MondorCreteilFrance
| | | | - Loïc Ysebaert
- Institut Universitaire de Cancérologie de ToulouseToulouseFrance
| | - Peter J. M. Valk
- Department of Hematology, Erasmus MC Cancer InstituteUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Amy Christian
- Molecular PathologyUniversity Hospitals DorsetBournemouthUK
| | | | - David Oscier
- Molecular PathologyUniversity Hospitals DorsetBournemouthUK
| | - Marta Sebastião
- Laboratório Hemato‐OncologiaInstituto Português de Oncologia de LisboaLisbonPortugal
| | | | - Piero Galieni
- UOC HematologyMazzoni Hospital‐Ascoli PicenoAscoli PicenoItaly
| | - Mario Angelini
- UOC HematologyMazzoni Hospital‐Ascoli PicenoAscoli PicenoItaly
| | - Davide Rossi
- Institute of Oncology Research and OncologyInstitute of Southern SwitzerlandBellinzonaSwitzerland
| | - Valeria Spina
- Laboratorio di Diagnostica Molecolare, Servizio di Genetica Medica EOLABEnte Ospedaliero CantonaleBellinzonaSwitzerland
| | - Sónia Matos
- Genomed‐Diagnósticos de Medicina MoleculariMM ‐ Instituto de Medicina Molecular, Faculdade de MedicinaLisboaPortugal
| | - Vânia Martins
- Genomed‐Diagnósticos de Medicina MoleculariMM ‐ Instituto de Medicina Molecular, Faculdade de MedicinaLisboaPortugal
| | - Tomasz Stokłosa
- Department of Tumor Biology and GeneticsMedical University of WarsawWarsawPoland
| | - Monika Pepek
- Department of Tumor Biology and GeneticsMedical University of WarsawWarsawPoland
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Rafa Andreu
- Hematology DepartmentHospital Universitari i Politècnic la FeValenciaSpain
| | - Irene Luna
- Hematology DepartmentHospital Universitari i Politècnic la FeValenciaSpain
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized ClinicTartu University HospitalTartuEstonia
- Genetics and Personalized Medicine Clinic, Institute of Clinical MedicineTartu UniversityTartuEstonia
| | - Ülle Murumets
- Department of Laboratory Genetics, Genetics and Personalized ClinicTartu University HospitalTartuEstonia
| | - Tereza Pikousova
- Centre for Molecular Medicine, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Terezia Kurucova
- Centre for Molecular Medicine, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Sophie Laird
- Wessex Genomics Laboratory ServiceSalisbury NHS Foundation TrustSalisburyUK
| | - Daniel Ward
- Wessex Genomics Laboratory ServiceSalisbury NHS Foundation TrustSalisburyUK
| | - Miguel Alcoceba
- Department of HematologyUniversity Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Center of Salamanca‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Ana Balanzategui
- Department of HematologyUniversity Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Center of Salamanca‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Lydia Scarfo
- B‐Cell Neoplasia Unit and Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanItaly
- Medical SchoolUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Francesca Gandini
- B‐Cell Neoplasia Unit and Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanItaly
- Medical SchoolUniversità Vita‐Salute San RaffaeleMilanItaly
| | | | - Adoración Blanco
- Department of HematologyHospital Universitari Vall d'Hebron (HUVH)BarcelonaSpain
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Pau Abrisqueta
- Department of HematologyHospital Universitari Vall d'Hebron (HUVH)BarcelonaSpain
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Ana E. Rodríguez‐Vicente
- Oncohematology Research Group, Institute of Biomedical Research of Salamanca (IBSAL)Cancer Research Centre (IBMCC, USAL‐CSIC) and University of SalamancaSalamancaSpain
- Department of Human Anatomy and Histology, Faculty of MedicineUniversity of SalamancaSalamancaSpain
| | - Rocío Benito
- Oncohematology Research Group, Institute of Biomedical Research of Salamanca (IBSAL)Cancer Research Centre (IBMCC, USAL‐CSIC) and University of SalamancaSalamancaSpain
| | - Clotilde Bravetti
- Department of Biological HematologySorbonne Université, AP‐HP, Pitié‐Salpêtrière HospitalParisFrance
| | - Frédéric Davi
- Department of Biological HematologySorbonne Université, AP‐HP, Pitié‐Salpêtrière HospitalParisFrance
| | - Paula Gameiro
- Laboratório Hemato‐OncologiaInstituto Português de Oncologia de LisboaLisbonPortugal
| | - Joaquin Martinez‐Lopez
- Department of HematologyHospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Complutense University, CNIO, CIBERONCMadridSpain
| | - Bárbara Tazón‐Vega
- Department of HematologyHospital Universitari Vall d'Hebron (HUVH)BarcelonaSpain
- Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Fanny Baran‐Marszak
- Hematology laboratoryHUPSSD, Hôpital Avicenne, APHPBobignyFrance
- INSERM U978Université Sorbonne Paris NordBobignyFrance
| | - Zadie Davis
- Molecular PathologyUniversity Hospitals DorsetBournemouthUK
| | | | | | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Department of Clinical Genetics and GenomicsKarolinska University HospitalStockholmSweden
| | - Carsten U. Niemann
- Department of HematologyCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Kostas Stamatopoulos
- Institute of Applied BiosciencesCentre for Research and Technology HellasThessalonikiGreece
| | - Paolo Ghia
- B‐Cell Neoplasia Unit and Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanItaly
- Medical SchoolUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical FacultyMasaryk UniversityBrnoCzech Republic
- Centre for Molecular Medicine, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
13
|
Montellier E, Lemonnier N, Penkert J, Freycon C, Blanchet S, Amadou A, Chuffart F, Fischer NW, Achatz MI, Levine AJ, Goudie C, Malkin D, Bougeard G, Kratz CP, Hainaut P. Clustering of TP53 variants into functional classes correlates with cancer risk and identifies different phenotypes of Li-Fraumeni syndrome. iScience 2024; 27:111296. [PMID: 39634561 PMCID: PMC11615613 DOI: 10.1016/j.isci.2024.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is a heterogeneous predisposition to an individually variable spectrum of cancers caused by pathogenic TP53 germline variants. We used a clustering method to assign TP53 missense variants to classes based on their functional activities in experimental assays assessing biological p53 functions. Correlations with LFS phenotypes were analyzed using the public germline TP53 mutation database and validated in three LFS clinical cohorts. Class A carriers recapitulated all phenotypic traits of fully penetrant LFS, whereas class B carriers showed a slightly less penetrant form dominated by specific cancers, consistent with the notion that these classes identify variants with distinct functional properties. Class C displayed a lower lifetime cancer risk associated with attenuated LFS features, consistent with the notion that these variants have hypomorphic features. Class D carriers showed low lifetime cancer risks inconsistent with LFS definitions. This classification of TP53 variants provides insights into structural/functional features causing pathogenicity.
Collapse
Affiliation(s)
- Emilie Montellier
- University Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000 Grenoble, France
| | - Nathanaël Lemonnier
- University Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000 Grenoble, France
| | - Judith Penkert
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claire Freycon
- University Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000 Grenoble, France
- Department of Pediatric Hematology-Oncology, Grenoble Alpes University Hospital, Grenoble, France
- Department of Pediatrics, Division of Hematology-Oncology, Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Sandrine Blanchet
- University Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000 Grenoble, France
| | - Amina Amadou
- University Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000 Grenoble, France
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | - Florent Chuffart
- University Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000 Grenoble, France
| | - Nicholas W. Fischer
- Genetics and Genome Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Arnold J. Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Catherine Goudie
- Department of Pediatrics, Division of Hematology-Oncology, Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Gaëlle Bougeard
- University Rouen Normandie, Inserm U1245, Normandie University, CHU Rouen, Department of Genetics, F-76000 Rouen, France
| | - Christian P. Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Pierre Hainaut
- University Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000 Grenoble, France
| |
Collapse
|
14
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Phenotypical mapping of TP53 unique missense mutations spectrum in human cancers. J Biomol Struct Dyn 2024:1-14. [PMID: 39639563 DOI: 10.1080/07391102.2024.2435060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 12/07/2024]
Abstract
The p53 tumor suppressor is one of the most mutated genes responsible for tumorigenesis in most human cancers. Out of 29,891 genomic mutations reported in the TP53 Database (https://tp53.isb-cgc.org/), 1,297 are identified as unique missense somatic mutations excluding frameshift, intronic, deletion, nonsense, silent, splice, and other unknown mutations. We have comprehensively analyzed all these 1,297 unique missense mutations and created a phenotypical map based on the distribution of mutations in each domain, the functional state of the protein, and their occurrence in different types of tissues and organs. Our mutation map shows that almost 118 unique missense mutations are reported in the transactivation and proline-rich domains, 1,065 in the central DNA-binding domains, and 113 in the oligomerization and regulatory domains. Based on the phenotype, these mutations are subdivided into 46 super trans, 491 functional, 315 partially functional, and 415 non-functional mutations. The prevalence of these mutations was checked in 71 different types of tissues and found that the mutant R248Q is reported in 51 types of tissues followed by R175H and R273H in 46 types. We correlated the potential impact of mutation in target gene transcription and regulation with nucleosomal DNA and RNA-Pol II complexes. We have discussed the impact of mutation at post-translational modification sites in the structure and function of p53 highlighting the potential therapeutic drug targets with tremendous clinical applications.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Pervushin NV, Nilov DK, Pushkarev SV, Shipunova VO, Badlaeva AS, Yapryntseva MA, Kopytova DV, Zhivotovsky B, Kopeina GS. BH3-mimetics or DNA-damaging agents in combination with RG7388 overcome p53 mutation-induced resistance to MDM2 inhibition. Apoptosis 2024; 29:2197-2213. [PMID: 39222276 PMCID: PMC11550243 DOI: 10.1007/s10495-024-02014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The development of drug resistance reduces the efficacy of cancer therapy. Tumor cells can acquire resistance to MDM2 inhibitors, which are currently under clinical evaluation. We generated RG7388-resistant neuroblastoma cells, which became more proliferative and metabolically active and were less sensitive to DNA-damaging agents in vitro and in vivo, compared with wild-type cells. The resistance was associated with a mutation of the p53 protein (His193Arg). This mutation abated its transcriptional activity via destabilization of the tetrameric p53-DNA complex and was observed in many cancer types. Finally, we found that Cisplatin and various BH3-mimetics could enhance RG7388-mediated apoptosis in RG7388-resistant neuroblastoma cells, thereby partially overcoming resistance to MDM2 inhibition.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D K Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - V O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - A S Badlaeva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Russian Ministry of Health, Moscow, 117513, Russia
| | - M A Yapryntseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D V Kopytova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
16
|
Saucier E, Bougeard G, Gomez-Mascard A, Schramm C, Abbas R, Berlanga P, Briandet C, Castex MP, Corradini N, Coze C, Guerrini-Rousseau L, Guinebretière JM, Khneisser P, Lervat C, Mansuy L, Marec-Berard P, Marie-Cardine A, Mascard E, Saumet L, Tabone MD, Winter S, Frebourg T, Gaspar N, Brugieres L. Li-Fraumeni-associated osteosarcomas: The French experience. Pediatr Blood Cancer 2024; 71:e31362. [PMID: 39387369 DOI: 10.1002/pbc.31362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Describe clinical characteristics and outcome of Li-Fraumeni syndrome (LFS)-associated osteosarcomas. METHODS TP53 germline pathogenic/likely pathogenic variant carriers diagnosed with osteosarcoma in France between 1980 and 2019 were identified via the French Li-Fraumeni database at Rouen University Hospital. Sixty-five osteosarcomas in 52 patients with available clinical and histological data were included. The main clinical characteristics were compared with data from National Cancer Institute's SEER (Surveillance, Epidemiology, and End Results) for patients of the same age group. RESULTS Median age at first osteosarcoma diagnosis was 13.7 years (range: 5.9-36.7). Compared to unselected osteosarcomas, LFS-associated osteosarcomas occurred more frequently in patients less than 10 years of age (23% vs. 9%), and when compared with osteosarcomas in patients less than 25 years were characterized by an excess of axial (16% vs. 10%) and jaw sites (15% vs. 3%) and histology with predominant chondroblastic component and periosteal subtypes (17% vs. 1%). Metastases incidence (25%) was as expected in osteosarcomas. After the first osteosarcoma treatment, the rate of good histologic response (62%) and the 5-year progression-free survival (55%, 95% confidence interval [CI]: 42.6-71.1) were as expected in unselected series of osteosarcomas, whereas the 5-year event-free survival was 36.5% [95% CI: 25.3-52.7] due to the high incidence of second malignancies reaching a 10-year cumulative risk of 43.4% [95% CI: 28.5-57.5]. CONCLUSION In osteosarcoma, young age at diagnosis, axial and jaw sites, histology with periosteal or chondroblastic subtype, and synchronous multifocal tumors should prompt suspicion of a germline TP53 mutation. Standard treatments are effective, but multiple malignancies impair prognosis. Early recognition of these patients is crucial for tailored therapy and follow-up.
Collapse
Affiliation(s)
- Emilie Saucier
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| | - Gaëlle Bougeard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Anne Gomez-Mascard
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France
| | - Catherine Schramm
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Rachid Abbas
- Department of Biostatistics and Epidemiology, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Inserm, Clinical Trial Unit 1418 (CIC1418) Clinical Epidemiology, Paris, France
| | - Pablo Berlanga
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| | - Claire Briandet
- Department of Pediatric Haematology-Oncology, Dijon University Hospital, Dijon, France
| | - Marie-Pierre Castex
- Pediatric Immuno-Oncohaematology Unit, Children's Hospital, Toulouse, France
| | - Nadège Corradini
- Department of Paediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Carole Coze
- Department of Pediatric Oncology, Hopital la Timone, APHM, Marseille Aix University, Marseille, France
| | - Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
- Inserm U981, Paris Saclay University, Villejuif, France
| | | | - Pierre Khneisser
- Department of Pathology, Gustave Roussy, Villejuif, France
- Inserm U1015, Paris Saclay University, Villejuif, France
| | - Cyril Lervat
- Department of Pediatric and AYA Oncology, Centre Oscar Lambret, Lille, France
| | - Ludovic Mansuy
- Department of Pediatric Onco-Hematology, Nancy Brabois University Hospital, Vandœuvre-lès-Nancy, France
| | - Perrine Marec-Berard
- Department of Paediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Aude Marie-Cardine
- Pediatric Immuno-Hematology-Oncology Unit, University Hospital of Rouen, Rouen, France
| | - Eric Mascard
- Department of Orthopedic Surgery, APHP, Necker University Hospital, Paris, France
| | - Laure Saumet
- Department of Pediatric Onco-Hematology, Montpellier University Hospital, Montpellier, France
| | - Marie-Dominique Tabone
- Pediatric Hematology and Oncology Department, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| | - Sarah Winter
- SIREDO Oncology Center Care, (Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| | - Thierry Frebourg
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Nathalie Gaspar
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
- Inserm U1015, Paris Saclay University, Villejuif, France
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| |
Collapse
|
17
|
Brockman KJ, Thompson MB, Mirabello L, Savage SA, Malayeri A, Hatton JN, Khincha PP. Characterization of sarcoma topography in Li-Fraumeni syndrome. Front Oncol 2024; 14:1415636. [PMID: 39575416 PMCID: PMC11578819 DOI: 10.3389/fonc.2024.1415636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome primarily caused by germline TP53 pathogenic/likely pathogenic (P/LP) variants. Soft tissue and bone sarcomas are among the most frequently occurring of the many LFS-associated cancer types. Cancer screening recommendations for LFS are centered around annual whole-body MRI (wbMRI), the interpretation of which can be challenging. This study aims to characterize sarcoma topography in LFS. Methods Study subjects included individuals from clinically and genetically ascertained cohorts of germline TP53 variant-carriers, namely the National Cancer Institute's LFS longitudinal cohort study (NCI-LFS), the NCI Genetic Epidemiology of Osteosarcoma (NCI-GEO) study, and the germline TP53 Database. Results Data was aggregated for a total of 160 sarcomas that had detailed topography available. Abdominal sarcomas and extremity osteosarcomas were among the most frequent locations of sarcomas. Chi-squared analyses showed no statistical differences in sarcoma topography based on age (pediatric vs adult) or sex (male vs female). A case series of sarcomas from the NCI-LFS study highlights the diagnostic challenges due to topography-related imaging. Discussion While LFS-related sarcomas frequently occur in expected locations such as the extremities, they also occur in less typical sites, leading to difficulties in discerning between differential diagnoses on wbMRI and imaging. Prospective collection of detailed cancer topography in individuals with LFS will further aid in recommendations for radiologic interpretation and personalized screening in individuals with LFS.
Collapse
Affiliation(s)
- Karin J. Brockman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Pediatric Hematology/Oncology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Mone’t B. Thompson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Jessica N. Hatton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Payal P. Khincha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Singh M, Bhatia P, Sharma P, Trehan A, Jain R. Assessment of cancer predisposition syndromes in children with leukemia and solid tumors: germline-genomic profiling and clinical features in a series of cases. Pediatr Hematol Oncol 2024; 41:620-632. [PMID: 39394854 DOI: 10.1080/08880018.2024.2411321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
Cancer predisposition syndromes (CPS) are a group of genetic disorders that increase the risk of various cancers. Identifying CPS has a significant impact on the treatment plan, screening and follow-up strategy, and genetic counseling of the family. However, in children, it goes underdiagnosed in most clinical setups, especially in low- and middle-income (LMIC) countries. In the present study, we screened 60 pediatric oncology patients for a possible CPS based on pre-defined selection criteria. Six patients met the criteria, three of whom had hematological malignancy, while the remaining three had sarcoma. Whole exome sequencing was performed in the selected patients to confirm the diagnosis. Germline mutation in CPS-related genes was discovered in five of six cases, including novel mutations discovered in two. An adverse outcome was observed in all five patients with underlying cancer predisposition syndrome, with three having relapsed and two having progressive disease. Our study reflects a prevalence of 10% underlying CPS in a limited cohort of patient based on the phenotype-genotype approach in our cohort. Using pre-defined clinical selection criteria, screening can be directed to a high-risk patient cohort with high-pick up rate for CPS. The selection criteria could be utilized in any LMIC-based clinical setup for pediatric cancer patients who may benefit from modification of treatment as well as genetic counseling.
Collapse
Affiliation(s)
- Minu Singh
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Sharma
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Jain
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Huang G, Zhang J, Xu Y, Wu F, Fu Y, Zhang X, Yin H, You Y, Zhao P, Liu W, Shen J, Yin J. SNPs Give LACTB Oncogene-Like Functions and Prompt Tumor Progression via Dual-Regulating p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405907. [PMID: 39324579 DOI: 10.1002/advs.202405907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Indexed: 09/27/2024]
Abstract
LACTB is identified as a tumor suppressor in several tumors. However, preliminary study reveals that LACTB is overexpressed in osteosarcoma and indicates poor prognosis. Two missense mutations (rs34317102 and rs2729835) exist simultaneously in 92.31% of osteosarcoma patients and cause M5L and R469K double mutations in LACTB, suggesting the biologic function of LACTB protein may be altered in osteosarcoma. Moreover, LACTBM5L+R469K overexpression can promote malignant progression in different tumors, which suggests that the M5L and R469K mutations confer oncogene-like functions to LACTB. Mechanistically, LACTBM5L+R469K not only reduces the wild type p53 via enhancing PSMB7 catalytic activity, but also protects p53R156P protein from lysosomal degradation, which suggesting LACTBM5L+R469K is a dual-regulator for wt-p53 and mutant p53, and derive oncogene-like functions. More importantly, clavulanate potassium, a bacterial β-lactamase inhibitor, can inhibit osteosarcoma proliferation and sensitize osteosarcoma to cisplatin by binding and blocking LACTBM5L+R469K. These findings revealed that the M5L and R469K double mutations can diminish the tumor suppressive ability of wild type LACTB and provide oncogene-like functions to LACTB. Inhibiting LACTBM5L+R469K can suppress the progression of osteosarcoma harbouring wild-type or mutant p53. Clavulanate potassium is a promising drug by targeting LACTBM5L+R469K-p53 pathway for the treatment of osteosarcoma patients.
Collapse
Affiliation(s)
- Guanyu Huang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiajun Zhang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fei Wu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiwei Fu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuelin Zhang
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hanxiao Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Hosseini MS. Current insights and future directions of Li-Fraumeni syndrome. Discov Oncol 2024; 15:561. [PMID: 39404911 PMCID: PMC11480288 DOI: 10.1007/s12672-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Li-Fraumeni syndrome is a rare yet serious hereditary cancer predisposition syndrome, marked by a significant early-life increased risk of developing cancer. Primarily caused by germline mutations in the TP53 tumor suppressor gene, Li-Fraumeni syndrome is associated with a wide range of malignancies. Clinical management of Li-Fraumeni syndrome could be challenging, especially the lifelong surveillance and follow-up of patients which requires a multidisciplinary approach. Emerging insights into the molecular and clinical basis of Li-Fraumeni syndrome, coupled with advances in genomic technologies and targeted therapies, offer promise in optimizing risk assessment, early detection, and treatment strategies tailored to the unique clinical and molecular profiles of affected individuals. This review discusses Li-Fraumeni syndrome in more depth, reviewing molecular, genomic, epidemiological, clinical, and therapeutic aspects of this disease.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Nagashima T, Yamaguchi K, Urakami K, Shimoda Y, Ohnami S, Ohshima K, Tanabe T, Naruoka A, Kamada F, Serizawa M, Hatakeyama K, Ohnami S, Maruyama K, Mochizuki T, Mizuguchi M, Shiomi A, Ohde Y, Bando E, Sugiura T, Mukaigawa T, Nishimura S, Hirashima Y, Mitsuya K, Yoshikawa S, Kiyohara Y, Tsubosa Y, Katagiri H, Niwakawa M, Takahashi K, Kashiwagi H, Yasunaga Y, Ishida Y, Sugino T, Kenmotsu H, Terashima M, Takahashi M, Uesaka K, Akiyama Y. Evaluation of whole genome sequencing utility in identifying driver alterations in cancer genome. Sci Rep 2024; 14:23898. [PMID: 39396060 PMCID: PMC11470963 DOI: 10.1038/s41598-024-74272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
In cancer genome analysis, identifying pathogenic alterations and assessing their effects on oncogenic processes is important. Although whole exome sequencing (WES) can effectively detect such changes, driver alterations could not be identified in 27.8% of the cases, according to a previous study. The objectives of the present study were to evaluate the utility of whole genome sequencing (WGS) and clarify its differences with WES in terms of driver alteration detection. For this purpose, WGS analysis was conducted on 177 driverless WES samples, selected from 5,480 fresh frozen samples derived from 5,140 Japanese patients with cancer. These samples were selected as primary tumor, both WES and transcriptome profiling were performed, estimated tumor content of ≥ 30%, and no driver alterations were identified by WES. WGS identified driver and likely driver alterations in 68.4 and 22.6% of the samples, respectively. The most frequent alteration type was oncogene amplification, followed by tumor suppressor gene deletion and small variants located outside the coding region. In the remaining 9.0% of samples, no such signals were identified; therefore, further investigations are required. The current study clearly demonstrated the role and utility of WGS in identifying genomic alterations that contribute to tumorigenesis.
Collapse
Affiliation(s)
- Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tomoe Tanabe
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Fukumi Kamada
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Maki Mizuguchi
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Mukaigawa
- Division of Head and Neck Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Seiichiro Nishimura
- Division of Breast Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuyuki Hirashima
- Division of Gynecology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Shusuke Yoshikawa
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshio Kiyohara
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirohisa Katagiri
- Division of Orthopedic Oncology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masashi Niwakawa
- Division of Urology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Kaoru Takahashi
- Division of Breast Oncology Center, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hiroya Kashiwagi
- Division of Ophthalmology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshichika Yasunaga
- Division of Plastic and Reconstructive Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yuji Ishida
- Division of Pediatrics, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirotsugu Kenmotsu
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | | | | | | | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
22
|
Le TT, Ha TS, To LM, Dang QM, Bui HTP, Tran TD, Vu PT, Giang HB, Tran DT, Nguyen XH. Osteosarcoma patient with Li-Fraumeni syndrome: the first case report in Vietnam. Front Oncol 2024; 14:1458232. [PMID: 39439949 PMCID: PMC11493536 DOI: 10.3389/fonc.2024.1458232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary disorder characterized by an increased risk of developing multiple early-onset cancers, primarily due to germline TP53 mutations. Women and men with this mutation face lifetime cancer risks of 90% and 70%, respectively. This report describes the first documented case of LFS with clinical information in Vietnam involving a 9-year-old child diagnosed with osteosarcoma who had multiple first- and second-degree relatives with cancer. Whole-genome sequencing (WGS) revealed a heterozygous, pathogenic, autosomal dominant TP53 variant NM_000546.6:c.733G>A (p.Gly245Ser) and a translocation in the 3'UTR of the ATMIN gene with unknown pathogenicity in both the patient and her mother. Sanger sequencing confirmed the presence of the TP53 c.733G>A mutation, which was subsequently detected in extended family members. Of the 17 family members invited for testing, only 8, none of whom currently have cancer, agreed to participate: all tested negative for the mutation. This case highlights the importance of genetic testing for the early detection and management of cancers in LFS patients. It also underscores significant barriers to genetic screening in Vietnam, including limited access and the psychosocial consequences of testing, which emphasize the need for improved genetic counseling and surveillance strategies that are tailored to local contexts.
Collapse
Affiliation(s)
- Thanh Thien Le
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Tung Sy Ha
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Mai To
- Department of Biology, Hanoi University Science, Hanoi, Vietnam
| | - Quang Minh Dang
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoa Thi Phuong Bui
- Department of Medical Genetics, Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Duc Tran
- Sarcoma Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong Thi Vu
- Pathology Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoan Bao Giang
- Pathology Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam
| | | | - Xuan-Hung Nguyen
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- Department of Medical Genetics, Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
23
|
Bakhtiar H, Sharifi MN, Helzer KT, Shi Y, Bootsma ML, Shang TA, Chrostek MR, Berg TJ, Carson Callahan S, Carreno V, Blitzer GC, West MT, O'Regan RM, Wisinski KB, Sjöström M, Zhao SG. A phenocopy signature of TP53 loss predicts response to chemotherapy. NPJ Precis Oncol 2024; 8:220. [PMID: 39358429 PMCID: PMC11447220 DOI: 10.1038/s41698-024-00722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
In preclinical studies, p53 loss of function impacts chemotherapy response, but this has not been consistently validated clinically. We trained a TP53-loss phenocopy gene expression signature from pan-cancer clinical samples in the TCGA. In vitro, the TP53-loss phenocopy signature predicted chemotherapy response across cancer types. In a clinical dataset of 3003 breast cancer samples treated with neoadjuvant chemotherapy, the TP53-loss phenocopy samples were 56% more likely to have a pathologic complete response (pCR), with a significant association between TP53-loss phenocopy and pCR in both ER positive and ER negative tumors. In an independent clinical validation in the I-SPY2 trial (N = 987), we confirmed the association with neoadjuvant chemotherapy pCR and found higher rates of chemoimmunotherapy response in TP53-loss phenocopy tumors compared to non-TP53-loss phenocopy tumors (64% vs. 28%). The TP53-loss phenocopy signature predicts chemotherapy response across cancer types in vitro, and in a proof-of-concept clinical validation is associated with neoadjuvant chemotherapy response across multiple clinical breast cancer cohorts.
Collapse
Affiliation(s)
- Hamza Bakhtiar
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Marina N Sharifi
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Matthew L Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Tianfu A Shang
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - S Carson Callahan
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Viridiana Carreno
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
| | - Grace C Blitzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Malinda T West
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
| | - Ruth M O'Regan
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Kari B Wisinski
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
24
|
Szoka L, Stocki M, Isidorov V. Dammarane-Type 3,4- seco-Triterpenoid from Silver Birch ( Betula pendula Roth) Buds Induces Melanoma Cell Death by Promotion of Apoptosis and Autophagy. Molecules 2024; 29:4091. [PMID: 39274939 PMCID: PMC11397366 DOI: 10.3390/molecules29174091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Despite unquestionable advances in therapy, melanoma is still characterized by a high mortality rate. For years, high expectations have been raised by compounds of natural origin as a component of pharmacotherapy, particularly by triterpenes found in the bark of birch trees. In this study, 3,4-seco-dammara-4(29),20(21),24(25)-trien-3-oic acid (SDT) was isolated from buds of silver birch and its mechanisms of cell death induction, including apoptosis and autophagy, were determined. Cytotoxicity of SDT was evaluated by the cell viability test and clonogenic assay, whereas induction of apoptosis and autophagy was determined by annexin V staining and Western blot. The results revealed dose- and time-dependent reductions in viability of melanoma cells. Treatment of cells for 48 h led to an increase in the percentage of annexin V-positive cells, activation of caspase-8, caspase-9, and caspase-3, and cleavage of PARP, confirming apoptosis. Simultaneously, it was found that SDT increased the level of autophagy marker LC3-II and initiator of autophagy beclin-1. Pretreatment of cells with caspase-3 inhibitor or autophagy inhibitor significantly reduced the cytotoxicity of SDT and revealed that both apoptosis and autophagy contribute to a decrease in cell viability. These findings suggest that 3,4-seco-dammaranes may become a promising group of natural compounds for searching for anti-melanoma agents.
Collapse
Affiliation(s)
- Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| | - Marcin Stocki
- Institute of Forest Sciences, Białystok University of Technology, 15-351 Białystok, Poland
| | - Valery Isidorov
- Institute of Forest Sciences, Białystok University of Technology, 15-351 Białystok, Poland
| |
Collapse
|
25
|
Liu C, Dou X, Zhao Y, Zhang L, Zhang L, Dai Q, Liu J, Wu T, Xiao Y, He C. IGF2BP3 promotes mRNA degradation through internal m 7G modification. Nat Commun 2024; 15:7421. [PMID: 39198433 PMCID: PMC11358264 DOI: 10.1038/s41467-024-51634-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Recent studies have suggested that mRNA internal m7G and its writer protein METTL1 are closely related to cell metabolism and cancer regulation. Here, we identify that IGF2BP family proteins IGF2BP1-3 can preferentially bind internal mRNA m7G. Such interactions, especially IGF2BP3 with m7G, could promote the degradation of m7G target transcripts in cancer cells. IGF2BP3 is more responsive to changes of m7G modification, while IGF2BP1 prefers m6A to stabilize the bound transcripts. We also demonstrate that p53 transcript, TP53, is m7G-modified at its 3'UTR in cancer cells. In glioblastoma, the methylation level and the half lifetime of the modified transcript could be modulated by tuning IGF2BP3, or by site-specific targeting of m7G through a dCas13b-guided system, resulting in modulation of cancer progression and chemosensitivity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yutao Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Linda Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Lisheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yu Xiao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
26
|
Fallatah MMJ, Demir Ö, Law F, Lauinger L, Baronio R, Hall L, Bournique E, Srivastava A, Metzen LT, Norman Z, Buisson R, Amaro RE, Kaiser P. Pyrimidine Triones as Potential Activators of p53 Mutants. Biomolecules 2024; 14:967. [PMID: 39199355 PMCID: PMC11352488 DOI: 10.3390/biom14080967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
p53 is a crucial tumor suppressor in vertebrates that is frequently mutated in human cancers. Most mutations are missense mutations that render p53 inactive in suppressing tumor initiation and progression. Developing small-molecule drugs to convert mutant p53 into an active, wild-type-like conformation is a significant focus for personalized cancer therapy. Prior research indicates that reactivating p53 suppresses cancer cell proliferation and tumor growth in animal models. Early clinical evidence with a compound selectively targeting p53 mutants with substitutions of tyrosine 220 suggests potential therapeutic benefits of reactivating p53 in patients. This study identifies and examines the UCI-1001 compound series as a potential corrector for several p53 mutations. The findings indicate that UCI-1001 treatment in p53 mutant cancer cell lines inhibits growth and reinstates wild-type p53 activities, including DNA binding, target gene activation, and induction of cell death. Cellular thermal shift assays, conformation-specific immunofluorescence staining, and differential scanning fluorometry suggest that UCI-1001 interacts with and alters the conformation of mutant p53 in cancer cells. These initial results identify pyrimidine trione derivatives of the UCI-1001 series as candidates for p53 corrector drug development.
Collapse
Affiliation(s)
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Fiona Law
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Roberta Baronio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Linda Hall
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Elodie Bournique
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Ambuj Srivastava
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Landon Tyler Metzen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Zane Norman
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rémi Buisson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Slootbeek PH, Luna-Velez MV, Privé BM, van der Doelen MJ, Kloots IS, Pamidimarri Naga S, Onstenk HE, Nagarajah J, Westdorp H, van Oort IM, Kroeze LI, Schalken JA, Bloemendal HJ, Mehra N. Impact of TP53 loss-of-function alterations on the response to PSMA radioligand therapy in metastatic castration-resistant prostate cancer patients. Theranostics 2024; 14:4555-4569. [PMID: 39239510 PMCID: PMC11373632 DOI: 10.7150/thno.96322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: PSMA-targeting radioligand therapy (PSMA-RLT) has shown promise in metastatic castration-resistant prostate cancer (mCRPC), particularly in PSMA-avid tumours. However, predicting response remains challenging. Preclinical data suggests aberrant p53-signalling as a predictor of poor response. Methods: The patient population of this pre-planned retrospective cohort study consists of 96 patients with mCRPC who underwent treatment with PSMA-RLT and were molecularly profiled by whole-genome sequencing and or targeted next-generation sequencing. Response to PSMA-RLT was assessed per molecular subtype, including TP53-mutational status. Results: Patients with TP53 loss-of-function alterations had a shorter median progression-free survival (3.7 versus 6.2 months, P<0.001), a lower median PSA change (-55% vs. -75%, P=0.012) and shorter overall survival from initiation of PMSA-RLT (7.6 vs. 13.9 months, P=0.003) compared to TP53-wildtype patients. Pathogenic alterations in AR, MYC, BRCA1, or BRCA2 as well as in genes linked to the PI3K or MAPK pathways or genes involved in homologous recombination repair, were not associated with response. Only lactate dehydrogenase was, alongside TP53-status, significantly associated with response. Transcriptome analysis of 21 patients, identified six p53 signalling genes whose low expression was associated to a shorter progression-free survival (P<0.05). Conclusion: TP53 loss-of-function may serve as a prognostic factor for PSMA-RLT outcomes in patients with mCRPC.
Collapse
Affiliation(s)
- Peter H.J. Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Bastiaan M. Privé
- Department of Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Iris S.H. Kloots
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Hilde E. Onstenk
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - James Nagarajah
- Department of Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
- Roentgeninstitut Duesseldorf, Duesseldorf, Germany
| | - Harm Westdorp
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Inge M. van Oort
- Department of Urology, Radboud university medical center, Nijmegen, The Netherlands
| | - Leonie I. Kroeze
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Jack. A. Schalken
- Department of Urology, Radboud university medical center, Nijmegen, The Netherlands
| | - Haiko J. Bloemendal
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Lan T, Zeng F, Yi Z, Xu X, Zhu M. ICNoduleNet: Enhancing Pulmonary Nodule Detection Performance on Sharp Kernel CT Imaging. IEEE J Biomed Health Inform 2024; 28:4751-4760. [PMID: 38758615 DOI: 10.1109/jbhi.2024.3402186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Thoracic computed tomography (CT) currently plays the primary role in pulmonary nodule detection, where the reconstruction kernel significantly impacts performance in computer-aided pulmonary nodule detectors. The issue of kernel selection affecting performance has been overlooked in pulmonary nodule detection. This paper first introduces a novel pulmonary nodule detection dataset named Reconstruction Kernel Imaging for Pulmonary Nodule Detection (RKPN) for quantifying algorithm differences between the two imaging types. The dataset contains pairs of images taken from the same patient on the same date, featuring both smooth (B31f) and sharp kernel (B60f) reconstructions. All other imaging parameters and pulmonary nodule labels remain entirely consistent across these pairs. Extensive quantification reveals mainstream detectors perform better on smooth kernel imaging than on sharp kernel imaging. To address suboptimal detection on the sharp kernel imaging, we further propose an image conversion-based pulmonary nodule detector called ICNoduleNet. A lightweight 3D slice-channel converter (LSCC) module is introduced to convert sharp kernel images into smooth kernel images, which can sufficiently learn inter-slice and inter-channel feature information while avoiding introducing excessive parameters. We conduct thorough experiments that validate the effectiveness of ICNoduleNet, it takes sharp kernel images as input and can achieve comparable or even superior detection performance to the baseline that uses the smooth kernel images. The evaluation shows promising results and proves the effectiveness of ICNoduleNet.
Collapse
|
29
|
Kim HS, Grimes SM, Chen T, Sathe A, Lau BT, Hwang GH, Bae S, Ji HP. Direct measurement of engineered cancer mutations and their transcriptional phenotypes in single cells. Nat Biotechnol 2024; 42:1254-1262. [PMID: 37697151 PMCID: PMC11324510 DOI: 10.1038/s41587-023-01949-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Genome sequencing studies have identified numerous cancer mutations across a wide spectrum of tumor types, but determining the phenotypic consequence of these mutations remains a challenge. Here, we developed a high-throughput, multiplexed single-cell technology called TISCC-seq to engineer predesignated mutations in cells using CRISPR base editors, directly delineate their genotype among individual cells and determine each mutation's transcriptional phenotype. Long-read sequencing of the target gene's transcript identifies the engineered mutations, and the transcriptome profile from the same set of cells is simultaneously analyzed by short-read sequencing. Through integration, we determine the mutations' genotype and expression phenotype at single-cell resolution. Using cell lines, we engineer and evaluate the impact of >100 TP53 mutations on gene expression. Based on the single-cell gene expression, we classify the mutations as having a functionally significant phenotype.
Collapse
Affiliation(s)
- Heon Seok Kim
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tianqi Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy T Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gue-Ho Hwang
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangsu Bae
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
30
|
Wakasa T, Nonaka K, Harada A, Ohkawa Y, Kikutake C, Suyama M, Kobunai T, Tsunekuni K, Matsuoka K, Kataoka Y, Ochiiwa H, Miyadera K, Sagara T, Oki E, Ohdo S, Maehara Y, Iimori M, Kitao H. The anti-tumor effect of trifluridine via induction of aberrant mitosis is unaffected by mutations modulating p53 activity. Cell Death Discov 2024; 10:307. [PMID: 38956056 PMCID: PMC11219725 DOI: 10.1038/s41420-024-02083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
The fluorinated thymidine analog trifluridine (FTD) is a chemotherapeutic drug commonly used to treat cancer; however, the mechanism by which FTD induces cytotoxicity is not fully understood. In addition, the effect of gain-of-function (GOF) missense mutations of the TP53 gene (encoding p53), which promote cancer progression and chemotherapeutic drug resistance, on the chemotherapeutic efficacy of FTD is unclear. Here, we revealed the mechanisms by which FTD-induced aberrant mitosis and contributed to cytotoxicity in both p53-null and p53-GOF missense mutant cells. In p53-null mutant cells, FTD-induced DNA double-stranded breaks, single-stranded DNA accumulation, and the associated DNA damage responses during the G2 phase. Nevertheless, FTD-induced DNA damage and the related responses were not sufficient to trigger strict G2/M checkpoint arrest. Thus, these features were carried over into mitosis, resulting in chromosome breaks and bridges, and subsequent cytokinesis failure. Improper mitotic exit eventually led to cell apoptosis, caused by the accumulation of extensive DNA damage and the presence of micronuclei encapsulated in the disrupted nuclear envelope. Upon FTD treatment, the behavior of the p53-GOF-missense mutant, isogenic cell lines, generated by CRISPR/Cas9 genome editing, was similar to that of p53-null mutant cells. Thus, our data suggest that FTD treatment overrode the effect on gene expression induced by p53-GOF mutants and exerted its anti-tumor activity in a manner that was independent of the p53 function.
Collapse
Affiliation(s)
- Takeshi Wakasa
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Taiho Pharmaceutical Co. Ltd., Tokyo, Japan
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Nonaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Makoto Iimori
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
31
|
Malcikova J, Pavlova S, Baliakas P, Chatzikonstantinou T, Tausch E, Catherwood M, Rossi D, Soussi T, Tichy B, Kater AP, Niemann CU, Davi F, Gaidano G, Stilgenbauer S, Rosenquist R, Stamatopoulos K, Ghia P, Pospisilova S. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-2024 update. Leukemia 2024; 38:1455-1468. [PMID: 38755420 PMCID: PMC11217004 DOI: 10.1038/s41375-024-02267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
In chronic lymphocytic leukemia (CLL), analysis of TP53 aberrations (deletion and/or mutation) is a crucial part of treatment decision-making algorithms. Technological and treatment advances have resulted in the need for an update of the last recommendations for TP53 analysis in CLL, published by ERIC, the European Research Initiative on CLL, in 2018. Based on the current knowledge of the relevance of low-burden TP53-mutated clones, a specific variant allele frequency (VAF) cut-off for reporting TP53 mutations is no longer recommended, but instead, the need for thorough method validation by the reporting laboratory is emphasized. The result of TP53 analyses should always be interpreted within the context of available laboratory and clinical information, treatment indication, and therapeutic options. Methodological aspects of introducing next-generation sequencing (NGS) in routine practice are discussed with a focus on reliable detection of low-burden clones. Furthermore, potential interpretation challenges are presented, and a simplified algorithm for the classification of TP53 variants in CLL is provided, representing a consensus based on previously published guidelines. Finally, the reporting requirements are highlighted, including a template for clinical reports of TP53 aberrations. These recommendations are intended to assist diagnosticians in the correct assessment of TP53 mutation status, but also physicians in the appropriate understanding of the lab reports, thus decreasing the risk of misinterpretation and incorrect management of patients in routine practice whilst also leading to improved stratification of patients with CLL in clinical trials.
Collapse
Affiliation(s)
- Jitka Malcikova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Mark Catherwood
- Haematology Department, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Hematopoietic and Leukemic Development, UMRS_938, Sorbonne University, Paris, France
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Frederic Davi
- Sorbonne Université, Paris, France
- Department of Hematology, Hôpital Pitié-Salpêtière, AP-HP, Paris, France
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milan, Italy.
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
32
|
Montemorano L, Shultz ZB, Farooque A, Hyun M, Chappell RJ, Hartenbach EM, Lang JD. TP53 mutations and the association with platinum resistance in high grade serous ovarian carcinoma. Gynecol Oncol 2024; 186:26-34. [PMID: 38555766 PMCID: PMC11216889 DOI: 10.1016/j.ygyno.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Alterations in the tumor suppressor TP53 gene are the most common mutations in high grade serous ovarian carcinoma. The impact of TP53 mutations on clinical outcomes and platinum resistance is controversial. We sought to evaluate the genomic profile of high grade serous ovarian carcinoma and explore the association of TP53 mutations with platinum resistance. METHODS Next generation sequencing data was obtained from our institutional database for patients with high grade serous ovarian carcinoma undergoing primary treatment. Sequencing data, demographic, and clinical information was reviewed. The primary outcome analyzed was time to recurrence or refractory diagnosis. Associations between the primary outcome and different classification schemes for TP53 mutations (structural, functional, hot spot, pathogenicity scores, immunohistochemical staining patterns) were performed. RESULTS 209 patients met inclusion criteria. TP53 mutations were the most common mutation. There were no differences in platinum response with TP53 hotspot mutations or high pathogenicity scores. Presence of TP53 gain-of-function mutations or measure of TP53 gain-of function activity were not associated with platinum resistance. Immunohistochemical staining patterns correlated with expected TP53 protein function and were not associated with platinum resistance. CONCLUSIONS TP53 hotspot mutations or high pathogenicity scores were not associated with platinum resistance or refractory disease. Contrary to prior studies, TP53 gain-of-function mutations were not associated with platinum resistance. Estimation of TP53 gain-of-function effect using missense mutation phenotype scores was not associated with platinum resistance. The polymorphic nature of TP53 mutations may be too complex to demonstrate effect using simple models, or response to platinum therapy may be independent of initiating TP53 mutation.
Collapse
Affiliation(s)
- Lauren Montemorano
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA.
| | - Zoey B Shultz
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN, USA
| | - Alma Farooque
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Meredith Hyun
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Richard J Chappell
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ellen M Hartenbach
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Jessica D Lang
- Center for Human Genomics & Precision Medicine, Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
33
|
Higbee PS, Dayhoff GW, Anbanandam A, Varma S, Daughdrill G. Structural Adaptation of Secondary p53 Binding Sites on MDM2 and MDMX. J Mol Biol 2024; 436:168626. [PMID: 38810774 DOI: 10.1016/j.jmb.2024.168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The thermodynamics of secondary p53 binding sites on MDM2 and MDMX were evaluated using p53 peptides containing residues 16-29, 17-35, and 1-73. All the peptides had large, negative heat capacity (ΔCp), consistent with the burial of p53 residues F19, W23, and L26 in the primary binding sites of MDM2 and MDMX. MDMX has a higher affinity and more negative ΔCp than MDM2 for p5317-35, which is due to MDMX stabilization and not additional interactions with the secondary binding site. ΔCp measurements show binding to the secondary site is inhibited by the disordered tails of MDM2 for WT p53 but not a more helical mutant where proline 27 is changed to alanine. This result is supported by all-atom molecular dynamics simulations showing that p53 residues 30-35 turn away from the disordered tails of MDM2 in P27A17-35 and make direct contact with this region in p5317-35. Molecular dynamics simulations also suggest that an intramolecular methionine-aromatic motif found in both MDM2 and MDMX structurally adapts to support multiple p53 binding modes with the secondary site. ΔCp measurements also show that tighter binding of the P27A mutant to MDM2 and MDMX is due to increased helicity, which reduces the energetic penalty associated with coupled folding and binding. Our results will facilitate the design of selective p53 inhibitors for MDM2 and MDMX.
Collapse
Affiliation(s)
- Pirada Serena Higbee
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Guy W Dayhoff
- The Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Asokan Anbanandam
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Sameer Varma
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA; The Department of Physics, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Gary Daughdrill
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
34
|
Laus AC, Gomes INF, da Silva ALV, da Silva LS, Milan MB, AparecidaTeixeira S, Martin ACBM, do Nascimento Braga Pereira L, de Carvalho CEB, Crovador CS, de Paula FE, Nascimento FC, de Freitas HT, de Lima Vazquez V, Reis RM, da Silva-Oliveira RJ. Establishment and molecular characterization of HCB-541, a novel and aggressive human cutaneous squamous cell carcinoma cell line. Hum Cell 2024; 37:1170-1183. [PMID: 38565739 PMCID: PMC11194207 DOI: 10.1007/s13577-024-01054-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of skin cancer that can result in significant morbidity, although it is usually well-managed and rarely metastasizes. However, the lack of commercially available cSCC cell lines hinders our understanding of this disease. This study aims to establish and characterize a new metastatic cSCC cell line derived from a Brazilian patient. A tumor biopsy was taken from a metastatic cSCC patient, immortalized, and named HCB-541 after several passages. The cytokeratin expression profile, karyotypic alterations, mutational analysis, mRNA and protein differential expression, tumorigenic capacity in xenograft models, and drug sensitivity were analyzed. The HCB-541 cell line showed a doubling time between 20 and 30 h and high tumorigenic capacity in the xenograft mouse model. The HCB-541 cell line showed hypodiploid and hypotetraploidy populations. We found pathogenic mutations in TP53 p.(Arg248Leu), HRAS (Gln61His) and TERT promoter (C228T) and high-level microsatellite instability (MSI-H) in both tumor and cell line. We observed 37 cancer-related genes differentially expressed when compared with HACAT control cells. The HCB-541 cells exhibited high phosphorylated levels of EGFR, AXL, Tie, FGFR, and ROR2, and high sensitivity to cisplatin, carboplatin, and EGFR inhibitors. Our study successfully established HCB-541, a new cSCC cell line that could be useful as a valuable biological model for understanding the biology and therapy of metastatic skin cancer.
Collapse
Affiliation(s)
- Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Izabela Natalia Faria Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Aline Larissa Virginio da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Luciane Sussuchi da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Mirella Baroni Milan
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Silvia AparecidaTeixeira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Ana Carolina Baptista Moreno Martin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Letícia do Nascimento Braga Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | | | - Camila Souza Crovador
- Department of Surgery of Melanoma and Sarcoma, Barretos Cancer Hospital, São Paulo, Brazil
| | - Flávia Escremin de Paula
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Flávia Caroline Nascimento
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Helder Teixeira de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Vinicius de Lima Vazquez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
- Department of Surgery of Melanoma and Sarcoma, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil
| | - Renato José da Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil.
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil.
| |
Collapse
|
35
|
Tsaousidou E, Chrzanowski J, Drané P, Lee GY, Bahour N, Wang ZB, Deng S, Cao Z, Huang K, He Y, Kaminski M, Michalek D, Güney E, Parmar K, Fendler W, Chowdhury D, Hotamışlıgil GS. Endogenous p53 inhibitor TIRR dissociates systemic metabolic health from oncogenic activity. Cell Rep 2024; 43:114337. [PMID: 38861384 PMCID: PMC11325268 DOI: 10.1016/j.celrep.2024.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
It is unclear whether metabolic health corresponds to reduced oncogenesis or vice versa. We study Tudor-interacting repair regulator (TIRR), an inhibitor of p53 binding protein 1 (53BP1)-mediated p53 activation, and the physiological consequences of enhancing tumor suppressor activity. Deleting TIRR selectively activates p53, significantly protecting against cancer but leading to a systemic metabolic imbalance in mice. TIRR-deficient mice are overweight and insulin resistant, even under normal chow diet. Similarly, reduced TIRR expression in human adipose tissue correlates with higher BMI and insulin resistance. Despite the metabolic challenges, TIRR loss improves p53 heterozygous (p53HET) mouse survival and correlates with enhanced progression-free survival in patients with various p53HET carcinomas. Finally, TIRR's oncoprotective and metabolic effects are dependent on p53 and lost upon p53 deletion in TIRR-deficient mice, with glucose homeostasis and orexigenesis being primarily regulated by TIRR expression in the adipose tissue and the CNS, respectively, as evidenced by tissue-specific models. In summary, TIRR deletion provides a paradigm of metabolic deregulation accompanied by reduced oncogenesis.
Collapse
Affiliation(s)
- Eva Tsaousidou
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jędrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Grace Y Lee
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nadine Bahour
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zeqiu Branden Wang
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shijun Deng
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhe Cao
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kaimeng Huang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yizhou He
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mateusz Kaminski
- Department of General Surgery, Medical University of Lodz, 90-153 Lodz, Poland
| | - Dominika Michalek
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ekin Güney
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wojciech Fendler
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Gökhan S Hotamışlıgil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
He J, Kou SH, Li J, Ding X, Wang SM. Pathogenic variants in human DNA damage repair genes mostly arose after the latest human out-of-Africa migration. Front Genet 2024; 15:1408952. [PMID: 38948361 PMCID: PMC11211533 DOI: 10.3389/fgene.2024.1408952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The DNA damage repair (DDR) system in human genome is pivotal in maintaining genomic integrity. Pathogenic variation (PV) in DDR genes impairs their function, leading to genome instability and increased susceptibility to diseases, especially cancer. Understanding the evolution origin and arising time of DDR PV is crucial for comprehending disease susceptibility in modern humans. Methods We used big data approach to identify the PVs in DDR genes in modern humans. We mined multiple genomic databases derived from 251,214 modern humans of African and non-Africans. We compared the DDR PVs between African and non-African. We also mined the DDR PVs in the genomic data derived from 5,031 ancient humans. We used the DDR PVs from ancient humans as the intermediate to further the DDR PVs between African and non-African. Results and discussion We identified 1,060 single-base DDR PVs across 77 DDR genes in modern humans of African and non-African. Direct comparison of the DDR PVs between African and non-African showed that 82.1% of the non-African PVs were not present in African. We further identified 397 single-base DDR PVs in 56 DDR genes in the 5,031 ancient humans dated between 45,045 and 100 years before present (BP) lived in Eurasian continent therefore the descendants of the latest out-of-Africa human migrants occurred 50,000-60,000 years ago. By referring to the ancient DDR PVs, we observed that 276 of the 397 (70.3%) ancient DDR PVs were exclusive in non-African, 106 (26.7%) were shared between non-African and African, and only 15 (3.8%) were exclusive in African. We further validated the distribution pattern by testing the PVs in BRCA and TP53, two of the important genes in genome stability maintenance, in African, non-African, and Ancient humans. Our study revealed that DDR PVs in modern humans mostly emerged after the latest out-of-Africa migration. The data provides a foundation to understand the evolutionary basis of disease susceptibility, in particular cancer, in modern humans.
Collapse
Affiliation(s)
| | | | | | | | - San Ming Wang
- Department of Public Health and Medical Administration, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, University of Macau, Taipa, China
| |
Collapse
|
37
|
Balourdas DI, Markl AM, Krämer A, Settanni G, Joerger AC. Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators. Cell Death Dis 2024; 15:408. [PMID: 38862470 PMCID: PMC11166945 DOI: 10.1038/s41419-024-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8-17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.
Collapse
Affiliation(s)
- Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Anja M Markl
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Giovanni Settanni
- Faculty of Physics and Astronomy, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- Physics Department, University of Mainz, Staudingerweg 7, 55099, Mainz, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Pot D, Worman Z, Baumann A, Pathak S, Beck R, Beck E, Thayer K, Davidsen TM, Kim E, Davis-Dusenbery B, Otridge J, Pihl T, The CRDC Program, Barnholtz-Sloan JS, Kerlavage AR. NCI Cancer Research Data Commons: Cloud-Based Analytic Resources. Cancer Res 2024; 84:1396-1403. [PMID: 38488504 PMCID: PMC11063685 DOI: 10.1158/0008-5472.can-23-2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
The NCI's Cloud Resources (CR) are the analytical components of the Cancer Research Data Commons (CRDC) ecosystem. This review describes how the three CRs (Broad Institute FireCloud, Institute for Systems Biology Cancer Gateway in the Cloud, and Seven Bridges Cancer Genomics Cloud) provide access and availability to large, cloud-hosted, multimodal cancer datasets, as well as offer tools and workspaces for performing data analysis where the data resides, without download or storage. In addition, users can upload their own data and tools into their workspaces, allowing researchers to create custom analysis workflows and integrate CRDC-hosted data with their own. See related articles by Brady et al., p. 1384, Wang et al., p. 1388, and Kim et al., p. 1404.
Collapse
Affiliation(s)
- David Pot
- General Dynamics Information Technology, Falls Church, Virginia
| | - Zelia Worman
- Velsera (Seven Bridges), Charlestown, Massachusetts
| | | | - Shirish Pathak
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rowan Beck
- Velsera (Seven Bridges), Charlestown, Massachusetts
| | - Erin Beck
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
| | | | - Tanja M. Davidsen
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
| | - Erika Kim
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
| | | | - John Otridge
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Todd Pihl
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Jill S. Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
- Trans Divisional Research Program, Division of Cancer Epidemiology and Genetics, NCI, Rockville, Maryland
| | - Anthony R. Kerlavage
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
| |
Collapse
|
39
|
Mathiot L, Nigen B, Goronflot T, Hiret S, Doucet L, Pons-Tostivint E, Bennouna J, Denis MG, Herbreteau G, Raimbourg J. Prognostic Impact of TP53 Mutations in Metastatic Nonsquamous Non-small-cell Lung Cancer. Clin Lung Cancer 2024; 25:244-253.e2. [PMID: 38218680 DOI: 10.1016/j.cllc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND The prognostic impact of TP53 mutations in advanced or metastatic nonsquamous non-small-cell lung cancer (nsNSCLC) patients treated with chemotherapy and/or immune checkpoint inhibitors (ICI) remains unclear. MATERIALS AND METHODS We retrospectively collected data from patients with nsNSCLC treated in the first line from January 2018 to May 2021. The patient was separated into 2 groups according to their TP53 mutation status (wt vs. mut). Survival was estimated through the Kaplan-Meier method and compared by log-rank test. RESULTS Of 220 patients included, 126 were in the mutTP53 group, and 94 were in the wtTP53wt group. Median OS (mOS) was not significantly different between the mutTP53 and wtTP53 groups [17.5 months (95% confidence interval (CI), 11.3-21.5) vs. 9.5 months (95% CI, 7.4-14.2), (P = .051)]. In subgroup analyses, the mutTP53 group treated with ICI had a significantly improved mOS compared to the wtTP53 group [(24.7 months (95% CI, 20.8-not reach) vs. 12.0 months (95% CI, 4.7-not reach), (P = .017)] and mPFS [(9.6 months (95% CI, 5.8-not reach) vs. 3.2 months (95% CI, 1.3-13.8) (P = .048)]. There was no difference in terms of mOS and mPFS between the mutTP53 and the wtTP53 group treated by chemotherapy alone or combined with ICI. CONCLUSION TP53 mutation had no survival impact in the overall population, but is associated with better outcomes with ICI alone. These results suggest that patients with TP53 mutations could be treated with ICI alone, and wild-type patients could benefit from the addition of chemotherapy.
Collapse
Affiliation(s)
- Laurent Mathiot
- CHU Nantes, Medical Oncology, Nantes Université, Nantes, France
| | - Benoit Nigen
- CHU Nantes, Medical Oncology, Nantes Université, Nantes, France
| | - Thomas Goronflot
- Nantes Université, CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des données, Nantes, France
| | - Sandrine Hiret
- Department of Medical Oncology, Comprehensive Cancer Center, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Ludovic Doucet
- Department of Medical Oncology, Comprehensive Cancer Center, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | | | - Jaafar Bennouna
- Department of Medical Oncology, Hôpital Foch, Suresnes, France
| | - Marc G Denis
- Nantes Université, CHU Nantes, Department of Biochemistry, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes, France
| | - Guillaume Herbreteau
- Nantes Université, CHU Nantes, Department of Biochemistry, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes, France
| | - Judith Raimbourg
- Department of Medical Oncology, Comprehensive Cancer Center, Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Inserm UMR 1307, Nantes, France.
| |
Collapse
|
40
|
Scimeca M, Bischof J, Bonfiglio R, Nale E, Iacovelli V, Carilli M, Vittori M, Agostini M, Rovella V, Servadei F, Giacobbi E, Candi E, Shi Y, Melino G, Mauriello A, Bove P. Molecular profiling of a bladder cancer with very high tumour mutational burden. Cell Death Discov 2024; 10:202. [PMID: 38688924 PMCID: PMC11061316 DOI: 10.1038/s41420-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints. The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elisabetta Nale
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valerio Iacovelli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Marco Carilli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Matteo Vittori
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Pierluigi Bove
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy.
| |
Collapse
|
41
|
He Y, Zhou X, Chang C, Chen G, Liu W, Li G, Fan X, Sun M, Miao C, Huang Q, Ma Y, Yuan F, Chang X. Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing. Mol Cell 2024; 84:1257-1270.e6. [PMID: 38377993 DOI: 10.1016/j.molcel.2024.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.
Collapse
Affiliation(s)
- Yan He
- Fudan University, 220 Handan Road, Shanghai 200433, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Xibin Zhou
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China
| | - Chong Chang
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Ge Chen
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Weikuan Liu
- Fudan University, 220 Handan Road, Shanghai 200433, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Geng Li
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Xiaoqi Fan
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Mingsun Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Chensi Miao
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Qianyue Huang
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Yunqing Ma
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Fajie Yuan
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China.
| | - Xing Chang
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
42
|
Zawacka JE. p53 biology and reactivation for improved therapy in MDS and AML. Biomark Res 2024; 12:34. [PMID: 38481290 PMCID: PMC10936007 DOI: 10.1186/s40364-024-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/01/2024] [Indexed: 11/02/2024] Open
Abstract
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) originate from preleukemic hematopoietic conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenia of undetermined significance (CCUS) and have variable outcomes despite the successful implementation of targeted therapies. The prognosis differs depending on the molecular subgroup. In patients with TP53 mutations, the most inferior outcomes across independent studies were observed. Myeloid malignancies with TP53 mutations have complex cytogenetics and extensive structural variants. These factors contribute to worse responses to induction therapy, demethylating agents, or venetoclax-based treatments. Survival of patients with biallelic TP53 gene mutations is often less than one year but this depends on the type of treatment applied. It is still controversial whether the allelic state of mutant TP53 impacts the outcomes in patients with AML and high-risk MDS. Further studies are needed to justify estimating TP53 LOH status for better risk assessment. Yet, TP53-mutated MDS, MDS/AML and AML are now classified separately in the International Consensus Classification (ICC). In the clinical setting, the wild-type p53 protein is reactivated pharmacologically by targeting p53/MDM2/MDM4 interactions and mutant p53 reactivation is achieved by refolding the DNA binding domain to wild-type-like conformation or via targeted degradation of the mutated protein. This review discusses our current understanding of p53 biology in MDS and AML and the promises and failures of wild-type and mutant p53 reactivation in the clinical trial setting.
Collapse
Affiliation(s)
- Joanna E Zawacka
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
- Department of Biochemistry, Laboratory of Biophysics and p53 Protein Biology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
43
|
Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, Narendra VK, Atwa O, Levine SS, Liu DR, Sánchez Rivera FJ. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat Biotechnol 2024:10.1038/s41587-024-02172-9. [PMID: 38472508 DOI: 10.1038/s41587-024-02172-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Tumor genomes often harbor a complex spectrum of single nucleotide alterations and chromosomal rearrangements that can perturb protein function. Prime editing has been applied to install and evaluate genetic variants, but previous approaches have been limited by the variable efficiency of prime editing guide RNAs. Here we present a high-throughput prime editing sensor strategy that couples prime editing guide RNAs with synthetic versions of their cognate target sites to quantitatively assess the functional impact of endogenous genetic variants. We screen over 1,000 endogenous cancer-associated variants of TP53-the most frequently mutated gene in cancer-to identify alleles that impact p53 function in mechanistically diverse ways. We find that certain endogenous TP53 variants, particularly those in the p53 oligomerization domain, display opposite phenotypes in exogenous overexpression systems. Our results emphasize the physiological importance of gene dosage in shaping native protein stoichiometry and protein-protein interactions, and establish a framework for studying genetic variants in their endogenous sequence context at scale.
Collapse
Affiliation(s)
- Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N Wuest
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kexin Dong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Grace A Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Varun K Narendra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ondine Atwa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Francisco J Sánchez Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer 2024; 24:192-215. [PMID: 38287107 DOI: 10.1038/s41568-023-00658-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.
Collapse
Affiliation(s)
- Sylvain Peuget
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Selivanova
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
45
|
Hatton JN, de Andrade KC, Frone MN, Savage SA, Khincha PP. Spectrum and Excess Risk of Gastrointestinal Tumors in Li-Fraumeni Syndrome. Clin Gastroenterol Hepatol 2024; 22:662-665.e1. [PMID: 37714395 PMCID: PMC10922060 DOI: 10.1016/j.cgh.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/17/2023]
Abstract
Li-Fraumeni syndrome (LFS), linked to heterozygous germline pathogenic/likely pathogenic variants in TP53, confers exceptionally high cancer risk, including core cancers (sarcoma, breast, adrenocortical, and brain cancer) among many other cancer types.1 Colorectal cancer (CRC) is most common after the core and hematologic cancers, accounting for ∼2.8% of diagnoses. Stomach and esophageal cancers constitute another 1.3% (TP53 Database; R20, July 2019: https://tp53.isb-cgc.org).2.
Collapse
Affiliation(s)
- Jessica N Hatton
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
| | - Kelvin C de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Megan N Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
46
|
Haney SL, Feng D, Kollala SS, Chhonker YS, Varney ML, Williams JT, Ford JB, Murry DJ, Holstein SA. Investigation of the activity of a novel tropolone in osteosarcoma. Drug Dev Res 2024; 85:e22129. [PMID: 37961833 PMCID: PMC10922124 DOI: 10.1002/ddr.22129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor characterized by frequent metastasis, rapid disease progression, and a high rate of mortality. Treatment options for OS have remained largely unchanged for decades, consisting primarily of cytotoxic chemotherapy and surgery, thus necessitating the urgent need for novel therapies. Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that possess antiproliferative effects in a wide array of cancer cell types. MO-OH-Nap is an α-substituted tropolone that has activity as an iron chelator. Here, we demonstrate that MO-OH-Nap activates all three arms of the unfolded protein response (UPR) pathway and induces apoptosis in a panel of human OS cell lines. Co-incubation with ferric chloride or ammonium ferrous sulfate completely prevents the induction of apoptotic and UPR markers in MO-OH-Nap-treated OS cells. MO-OH-Nap upregulates transferrin receptor 1 (TFR1) protein levels, as well as TFR1, divalent metal transporter 1 (DMT1), iron-regulatory proteins (IRP1, IRP2), ferroportin (FPN), and zinc transporter 14 (ZIP14) transcript levels, demonstrating the impact of MO-OH-Nap on iron-homeostasis pathways in OS cells. Furthermore, MO-OH-Nap treatment restricts the migration and invasion of OS cells in vitro. Lastly, metabolomic profiling of MO-OH-Nap-treated OS cells revealed distinct changes in purine and pyrimidine metabolism. Collectively, we demonstrate that MO-OH-Nap-induced cytotoxic effects in OS cells are dependent on the tropolone's ability to alter cellular iron availability and that this agent exploits key metabolic pathways. These studies support further evaluation of MO-OH-Nap as a novel treatment for OS.
Collapse
Affiliation(s)
- Staci L. Haney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Sai Sundeep Kollala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE
| | - Michelle L. Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jacob T. Williams
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - James B. Ford
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE
| | - Sarah A. Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
47
|
László T, Kotmayer L, Fésüs V, Hegyi L, Gróf S, Nagy Á, Kajtár B, Balogh A, Weisinger J, Masszi T, Nagy Z, Farkas P, Demeter J, Istenes I, Szász R, Gergely L, Sulák A, Borbényi Z, Lévai D, Schneider T, Pettendi P, Bodai E, Szerafin L, Rejtő L, Bátai Á, Dömötör MÁ, Sánta H, Plander M, Szendrei T, Hamed A, Lázár Z, Pauker Z, Radványi G, Kiss A, Körösmezey G, Jakucs J, Dombi PJ, Simon Z, Klucsik Z, Gurzó M, Tiboly M, Vidra T, Ilonczai P, Bors A, Andrikovics H, Egyed M, Székely T, Masszi A, Alpár D, Matolcsy A, Bödör C. Low-burden TP53 mutations represent frequent genetic events in CLL with an increased risk for treatment initiation. J Pathol Clin Res 2024; 10:e351. [PMID: 37987115 PMCID: PMC10766018 DOI: 10.1002/cjp2.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
TP53 aberrations predict chemoresistance and represent a contraindication for the use of standard chemoimmunotherapy in chronic lymphocytic leukaemia (CLL). Recent next-generation sequencing (NGS)-based studies have identified frequent low-burden TP53 mutations with variant allele frequencies below 10%, but the clinical impact of these low-burden TP53 mutations is still a matter of debate. In this study, we aimed to scrutinise the subclonal architecture and clinical impact of TP53 mutations using a sensitive, NGS-based mutation analysis in a 'real-world' cohort of 901 patients with CLL. In total, 225 TP53 mutations were identified in 17.5% (158/901) of the patients; 48% of these alterations represented high-burden mutations, while 52% were low-burden TP53 mutations. Low-burden mutations as sole alterations were identified in 39% (62/158) of all mutated cases with 82% (51/62) of these being represented by a single low-burden TP53 mutation. Patients harbouring low-burden TP53 mutations had significantly lower time to first treatment compared to patients with wild-type TP53. Our study has expanded the knowledge on the frequency, clonal architecture, and clinical impact of low-burden TP53 mutations. By demonstrating that patients with sole low-burden TP53 variants represent more than one-third of patients with TP53 mutations and have an increased risk for treatment initiation, our findings strengthen the need to redefine the threshold of TP53 variant reporting to below 10% in the routine diagnostic setting.
Collapse
Affiliation(s)
- Tamás László
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Lili Kotmayer
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Viktória Fésüs
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
- Kaposi Mór University Teaching Hospital of County SomogyKaposvárHungary
| | - Lajos Hegyi
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Stefánia Gróf
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Ákos Nagy
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Béla Kajtár
- Department of PathologyUniversity of Pécs Medical SchoolPécsHungary
| | - Alexandra Balogh
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Júlia Weisinger
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Tamás Masszi
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Zsolt Nagy
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Péter Farkas
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
| | - Judit Demeter
- Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Ildikó Istenes
- Department of Internal Medicine and OncologySemmelweis UniversityBudapestHungary
| | - Róbert Szász
- Division of Hematology, Department of Internal MedicineUniversity of DebrecenDebrecenHungary
| | - Lajos Gergely
- Division of Hematology, Department of Internal MedicineUniversity of DebrecenDebrecenHungary
| | - Adrienn Sulák
- 2nd Department of Internal Medicine and Cardiology CenterUniversity of SzegedSzegedHungary
| | - Zita Borbényi
- 2nd Department of Internal Medicine and Cardiology CenterUniversity of SzegedSzegedHungary
| | - Dóra Lévai
- Hematology and Lymphoma UnitNational Institute of OncologyBudapestHungary
| | - Tamás Schneider
- Hematology and Lymphoma UnitNational Institute of OncologyBudapestHungary
| | - Piroska Pettendi
- Hetényi Géza Hospital and Clinic of County Jász‐Nagykun‐SzolnokSzolnokHungary
| | - Emese Bodai
- Hetényi Géza Hospital and Clinic of County Jász‐Nagykun‐SzolnokSzolnokHungary
| | - László Szerafin
- Hospitals of County Szabolcs‐Szatmár‐Bereg and University Teaching HospitalNyíregyházaHungary
| | - László Rejtő
- Hospitals of County Szabolcs‐Szatmár‐Bereg and University Teaching HospitalNyíregyházaHungary
| | - Árpád Bátai
- Fejér County Szent György University Teaching HospitalSzékesfehérvárHungary
| | - Mária Á Dömötör
- Fejér County Szent György University Teaching HospitalSzékesfehérvárHungary
| | - Hermina Sánta
- Fejér County Szent György University Teaching HospitalSzékesfehérvárHungary
| | - Márk Plander
- Markusovszky University Teaching HospitalSzombathelyHungary
| | - Tamás Szendrei
- Markusovszky University Teaching HospitalSzombathelyHungary
| | - Aryan Hamed
- Petz Aladár University Teaching HospitalGyőrHungary
| | - Zsolt Lázár
- Petz Aladár University Teaching HospitalGyőrHungary
| | - Zsolt Pauker
- Borsod‐Abaúj‐Zemplén County Hospital and University Teaching HospitalMiskolcHungary
| | - Gáspár Radványi
- Borsod‐Abaúj‐Zemplén County Hospital and University Teaching HospitalMiskolcHungary
| | - Adrienn Kiss
- Military Hospital – State Health CentreBudapestHungary
| | | | | | | | | | - Zsolt Klucsik
- Bács‐Kiskun County Teaching HospitalKecskemétHungary
| | - Mihály Gurzó
- Bács‐Kiskun County Teaching HospitalKecskemétHungary
| | | | - Tímea Vidra
- Soproni Erzsébet Teaching Hospital and Rehabilitation InstituteSopronHungary
| | | | - András Bors
- Central Hospital of Southern Pest – National Institute of Hematology and InfectologyBudapestHungary
| | - Hajnalka Andrikovics
- Central Hospital of Southern Pest – National Institute of Hematology and InfectologyBudapestHungary
| | - Miklós Egyed
- Kaposi Mór University Teaching Hospital of County SomogyKaposvárHungary
| | - Tamás Székely
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - András Masszi
- Department of Internal Medicine and HematologySemmelweis UniversityBudapestHungary
- Hematology and Lymphoma UnitNational Institute of OncologyBudapestHungary
| | - Donát Alpár
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - András Matolcsy
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
- Department of Laboratory MedicineKarolinska InstituteSolnaSweden
| | - Csaba Bödör
- HCEMM‐SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| |
Collapse
|
48
|
Siyam AA, Ababneh SK, Al-Odat I, Ababneh S, Alkhatib AJ. The Role of TP53, KRAS, CDH1, Demographic and Clinical Variables in Gastric Cancer. Mater Sociomed 2024; 36:280-287. [PMID: 39963439 PMCID: PMC11830230 DOI: 10.5455/msm.2024.36.280-287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025] Open
Abstract
Background Worldwide, gastric cancer remains the fifth most prevalent type of cancer and is the third leading cause of cancer-related deaths. Gastric cancer is responsible for around 7% of global cancer occurrence and approximately 9% of annual cancer-related mortalities. Objective The aim of the study was to analyze gastric cancer dataset posted on Kaggle (https://www.kaggle.com/datasets/datasetengineer/gastric-cancer-gc-dataset). Methods This dataset comprises 212354 participants, of whom 10% had gastric cancer. This dataset was analyzed to extract the information regarding gastric cancer. The analysis of data was performed SPSS version 25. Descriptive analysis was used to describe data including frequency and percentages to describe categorical variables such as age, and the mean and standard deviation to describe non-categorical variables such as age. The relationships between variables and gastric cancer were calculated based on Chi-Square and One Way ANOVA tests, significance was considered if p value ≤0,05. Results The mean age was 53.2580±18.98 years. Seventy percent of participants were males. About 30% of participants had a family history of gastric cancer. About 40% of participants were smokers. About 50% of participants were alcoholic. About 75% of participants had Helicobacter pylori. 80% of participants were at high salt intake. About 50% of participants had chronic gastritis. Abnormal endoscopic image reports were reported in approximately 30% of participants. Biopsy results were negative in 90% of participants. The reports of CT scans were negative in approximately 80%. Genetic mutations were detected in Tp53 (50.1%), KRAS (20%), and CDH1 (29,9%). No significant relationships were found between gastric cancer and study variables. Conclusion Most of the people had risk factors such as Helicobacter pylori infection, salt intake, and mutations in TP53, KRAS, and CDH1. However, statistical analyses did not find significant correlations between those and gastric cancer.
Collapse
Affiliation(s)
- Ali Abu Siyam
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, Jordan
| | - Suha Khayri Ababneh
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Zarqa, Jordan
| | - Ibrahim Al-Odat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, Jordan
| | - Sokiyna Ababneh
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Zarqa, Jordan
| | - Ahed J Alkhatib
- Department of Legal Medicine, Toxicology and Forensic Medicine, Jordan University of Science and Technology, Jordan
| |
Collapse
|
49
|
Hoang T, Sutera P, Nguyen T, Chang J, Jagtap S, Song Y, Shetty AC, Chowdhury DD, Chan A, Carrieri FA, Hathout L, Ennis R, Jabbour SK, Parikh R, Molitoris J, Song DY, DeWeese T, Marchionni L, Ren L, Sawant A, Simone N, Lafargue A, Van Der Eecken K, Bunz F, Ost P, Tran PT, Deek MP. TP53 structure-function relationships in metastatic castrate-sensitive prostate cancer and the impact of APR-246 treatment. Prostate 2024; 84:87-99. [PMID: 37812042 DOI: 10.1002/pros.24629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Triet Nguyen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Jinhee Chang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Shreya Jagtap
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Yang Song
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dipanwita D Chowdhury
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Aaron Chan
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Francesca A Carrieri
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lara Hathout
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald Ennis
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Rahul Parikh
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Jason Molitoris
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Lei Ren
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Amit Sawant
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Nicole Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Kim Van Der Eecken
- Department of Pathology, Ghent University Hospital, Cancer Research Institute (CRIG), Ghent, Belgium
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology, Division of Translational Radiation Sciences, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
50
|
Dunsche L, Ivanisenko N, Riemann S, Schindler S, Beissert S, Angeli C, Kreis S, Tavassoli M, Lavrik I, Kulms D. A cytosolic mutp53(E285K) variant confers chemoresistance of malignant melanoma. Cell Death Dis 2023; 14:831. [PMID: 38097548 PMCID: PMC10721616 DOI: 10.1038/s41419-023-06360-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Malignant melanoma (MM) is known to be intrinsically chemoresistant, even though only ~20% of MM carry mutations of the tumor suppressor p53. Despite improvement of systemic therapy the mortality rate of patients suffering from metastatic MM is still ~70%, highlighting the need for alternative treatment options or for the re-establishment of conventional therapeutic approaches, including chemotherapy. Screening the p53 mutation status in a cohort of 19 patient-derived melanoma samples, we identified one rarely described missense mutation of p53 leading to E285K amino acid exchange (mutp53(E285K)). Employing structural and computational analysis we revealed a major role of E285 residue in maintaining stable conformation of wild-type p53 (wtp53). E285K mutation was predicted to cause interruption of a salt-bridge network affecting the conformation of the C-terminal helix of the DNA-binding domain (DBD) thereby preventing DNA interaction. In this context, a cluster of frequently mutated amino acid residues in cancer was identified to putatively lead to similar structural effects as E285K substitution (E285 cluster). Functional analysis, including knockdown of endogenous p53 and reconstitution with diverse p53 missense mutants confirmed mutp53(E285K) to have lost transcriptional activity, to be localized in the cytosol of cancer cells, by both means conferring chemoresistance. Re-sensitization to cisplatin-induced cell death was achieved using clinically approved compounds aiming to restore p53 wild-type function (PRIMA1-Met), or inhibition of AKT-driven MAPK survival pathways (afuresertib), in both cases being partially due to ferroptosis induction. Consequently, active ferroptosis induction using the GPX4 inhibitor RSL3 proved superior in tumorselectively fighting MM cells. Due to high prevalence of the E285-cluster mutations in MM as well as in a variety of other tumor types, we conclude this cluster to serve an important function in tumor development and therapy and suggest new implications for ferroptosis induction in therapeutic applications fighting MM in particular and cancer in general.
Collapse
Affiliation(s)
- Luise Dunsche
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Nikita Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Shamala Riemann
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Sebastian Schindler
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Stefan Beissert
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
| | - Cristian Angeli
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Stephanie Kreis
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Molecular Oncology, Guy's Hospital, Kings College London, London, SE1 1UL, UK
| | - Inna Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany.
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany.
| |
Collapse
|