1
|
Han S, Jing X, Peng H, Lin W. A TICT mechanism-based viscosity fluorescent probe for monitoring viscosity in inflammatory cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:4138-4149. [PMID: 40370251 DOI: 10.1039/d5ay00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Viscosity, as a fundamental biophysical parameter of cellular microenvironments, critically regulates physiological processes, including molecular transport and signal transduction. Lysosomes, functioning as pivotal organelles, orchestrate essential biological activities such as macromolecular degradation and autophagic flux. Aberrant viscosity fluctuations disrupt the substrate delivery within lysosomal enzymatic activation zones, precipitating accumulation of undegraded metabolites and subsequent release of inflammatory mediators, ultimately contributing to chronic inflammatory diseases. Consequently, developing high-performance probes capable of real-time lysosomal viscosity monitoring is imperative for the prevention, diagnosis and therapeutic intervention of inflammatory diseases. We developed a lysosome-targeted fluorescent probe, LTP-H, based on the TICT mechanism. The probe demonstrated a linear correlation between fluorescence intensity at 650 nm and medium viscosity (R2 = 0.995), exhibiting a 93-fold viscosity response ratio with robust stability against solvent polarity variations, pH fluctuations, and biological interferents. Density functional theory calculations corroborated the TICT response mechanism. Based on the strong hydrophobic property of the triphenylamine group, the LTP-H probe achieved pH-independent lysosomal targeting through a hydrophobicity-mediated membrane localization mechanism (p = 0.90). Successful application in monitoring viscosity dynamics within inflammatory cellular models and pharmacologically manipulated zebrafish demonstrated its utility as a molecular tool for investigating microenvironmental viscosity in inflammatory diseases.
Collapse
Affiliation(s)
- Song Han
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Xinying Jing
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Hui Peng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
2
|
Qin H, Luo S, Zuo W, Cao Z, Assaraf YG, Kwok HF. Targeted eradication of glioblastoma via venom decapeptide-conjugated dendrimers: Inducing nuclear translocation and autophagic cell death. J Control Release 2025; 383:113780. [PMID: 40315960 DOI: 10.1016/j.jconrel.2025.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/11/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) neoplasm. Herein, we developed a nanoparticle (NP) drug delivery system by conjugating a scorpion venom-derived decapeptide Ctir9495 (C9) to a polyamidoamine (PAMAM) dendrimer, where 4-(bromomethyl) phenylboronic acid (PBA) modified PAMAM is used as a drug carrier due to its small size and favorable tumor penetration. This decapeptide-conjugated dendrimer, G5C9, targeted human GBM cells and displayed enhanced cell internalization. The G5C9 complex targeted GBM cells presumably by binding to the overexpressed surface sialic acid, resulting in rapid endocytosis and endolysosome formation. This induced cell cycle arrest, blocked tumor cell proliferation, colony formation and migration, resulting in autophagosome lysosome-based apoptotic GBM cell death. G5C9 suppressed GBM cell proliferation via enhanced nuclear translocation of the transcription factor EB (TFEB), a master regulator of the autophagosome lysosome pathway, by disrupting mTORC1 activity and downregulating the PI3K/AKT/mTOR signaling axis. This G5C9 complex exhibited potent activity against GBM xenografts in vivo. Hence, our delivery strategy not only enhances the uptake of this venom decapeptide-conjugated dendrimers into GBM, but also offers a novel modality to target and eradicate GBM.
Collapse
Affiliation(s)
- Haixin Qin
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Siyuan Luo
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Weimin Zuo
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Zhijian Cao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei Province, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| |
Collapse
|
3
|
Cobo I, Murillo-Saich J, Alishala M, Calderon S, Coras R, Hemming B, Inkum F, Rosas F, Takei R, Spann N, Prohaska TA, Alabarse PVG, Jeong SJ, Nickl CK, Cheng A, Li B, Vogel A, Weichhart T, Fuster JJ, Le T, Bradstreet TR, Webber AM, Edelson BT, Razani B, Ebert BL, Taneja R, Terkeltaub R, Bryan RL, Guma M, Glass CK. Particle uptake by macrophages triggers bifurcated transcriptional pathways that differentially regulate inflammation and lysosomal gene expression. Immunity 2025; 58:826-842.e8. [PMID: 40118070 DOI: 10.1016/j.immuni.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 09/19/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
Exposure to particles is a driver of several inflammatory diseases. Here, we investigated macrophage responses to monosodium urate crystals, calcium pyrophosphate crystals, aluminum salts, and silica nanoparticles. While each particle induced a distinct gene expression pattern, we identified a common inflammatory signature and acute activation of lysosomal acidification genes. Using monosodium urate crystals as a model, we demonstrated that this lysosomal gene program is regulated by a 5'-prime-AMP-activated protein kinase (AMPK)-dependent transcriptional network, including TFEB, TFE3, and the epigenetic regulators DNA methyl transferase 3a (DNMT3A) and DOT1L. This lysosomal acidification program operates in parallel with, but largely independently of, a JNK-AP-1-dependent network driving crystal-induced chemokine and cytokine expression. These findings reveal a bifurcation in pathways governing inflammatory and lysosomal responses, offering insights for treating particle-associated diseases.
Collapse
Affiliation(s)
- Isidoro Cobo
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; CAMBAC (Comprehensive Arthritis, Musculoskeletal, Bone and Autoimmunity Center), University of Alabama at Birmingham, Birmingham, CA, USA.
| | - Jessica Murillo-Saich
- Division of Rheumatology, Allergy, and Immunology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, San Diego, CA, USA
| | - Mohnish Alishala
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Stephen Calderon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Roxana Coras
- Division of Rheumatology, Allergy, and Immunology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, San Diego, CA, USA
| | - Benjamin Hemming
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Faith Inkum
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fiorella Rosas
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riku Takei
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Thomas A Prohaska
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Paulo V G Alabarse
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian K Nickl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Anyan Cheng
- Division of Rheumatology, Allergy, and Immunology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, San Diego, CA, USA
| | - Benjamin Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Andrea Vogel
- Center for Pathobiochemistry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry & Genetics, Medical University of Vienna, Vienna, Austria
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Thomas Le
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashlee M Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Division of Cardiology, Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Robert Terkeltaub
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Ru Liu Bryan
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Monica Guma
- Division of Rheumatology, Allergy, and Immunology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, San Diego, CA, USA; Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, Bellaterra, Barcelona 08193, Spain
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
4
|
Acharya A, Demetriades C. mTORC1 activity licenses its own release from the lysosomal surface. Mol Cell 2024; 84:4385-4400.e7. [PMID: 39486418 DOI: 10.1016/j.molcel.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
Nutrient signaling converges on mTORC1, which, in turn, orchestrates a physiological cellular response. A key determinant of mTORC1 activity is its shuttling between the lysosomal surface and the cytoplasm, with nutrients promoting its recruitment to lysosomes by the Rag GTPases. Active mTORC1 regulates various cellular functions by phosphorylating distinct substrates at different subcellular locations. Importantly, how mTORC1 that is activated on lysosomes is released to meet its non-lysosomal targets and whether mTORC1 activity itself impacts its localization remain unclear. Here, we show that, in human cells, mTORC1 inhibition prevents its release from lysosomes, even under starvation conditions, which is accompanied by elevated and sustained phosphorylation of its lysosomal substrate TFEB. Mechanistically, "inactive" mTORC1 causes persistent Rag activation, underlining its release as another process actively mediated via the Rags. In sum, we describe a mechanism by which mTORC1 controls its own localization, likely to prevent futile cycling on and off lysosomes.
Collapse
Affiliation(s)
- Aishwarya Acharya
- Max Planck Institute for Biology of Ageing (MPI-AGE), 50931 Cologne, Germany; Cologne Graduate School of Ageing Research (CGA), 50931 Cologne, Germany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), 50931 Cologne, Germany; Cologne Graduate School of Ageing Research (CGA), 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
5
|
Tengberg JF, Russo F, Benned-Jensen T, Nielsen J. LRRK2 and RAB8A regulate cell death after lysosomal damage in macrophages through cholesterol-related pathways. Neurobiol Dis 2024; 202:106728. [PMID: 39521098 DOI: 10.1016/j.nbd.2024.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Activating mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are among the most common genetic causes of Parkinson's disease (PD). The mechanistic path from LRRK2 mutations to PD is not established, but several lines of data suggest that LRRK2 modulation of lysosomal function is involved. It has previously been shown that LRRK2 is recruited to lysosomes upon lysosomal damage leading to increased phosphorylation of its RAB GTPase substrates in macrophage-derived RAW 264.7 cells. Here, we find that LRRK2 kinase inhibition reduces cell death induced by the lysosomotropic compound LLOMe in RAW 264.7 cells showing that lysosomal damage and LRRK2 functionally interacts in both directions: lysosomal damage can lead to activation of LRRK2 signaling and LRRK2 inhibition can attenuate LLOMe-induced cell death. The effect is lysosome specific, as only lysosomal stressors and not a variety of other cell death inducers could be modulated by LRRK2 kinase inhibition. We show with timing and Lysotracker experiments that LRRK2 inhibition does not affect the immediate lysosomal permeabilization induced by LLOMe, but rather modulates the subsequent cellular response to lysosomal damage. siRNA-mediated knockdown of LRRK2 and its main substrates, the RAB GTPases, showed that LRRK2 and RAB8A knockdown could attenuate LLOMe-induced cell death, but not other RAB GTPases tested. An RNA sequencing study was done to identify downstream pathways modulated by LLOMe and LRRK2 inhibition. The most striking finding was that almost all cholesterol biosynthesis genes were strongly downregulated by LLOMe and upregulated with LRRK2 inhibition in combination with LLOMe treatment. To explore the functional relevance of the transcriptional changes, we pretreated cells with the NPC1 inhibitor U18666A that can lead to accumulation of lysosomal cholesterol. U18666A-treated cells were less sensitive to LLOMe-induced cell death, but the attenuation of cell death by LRRK2 inhibition was strongly reduced suggesting that LRRK2 inhibition and lysosomal cholesterol reduces cell death by overlapping mechanisms. Thus, our data demonstrates a LRRK2- and RAB8A-mediated attenuation of RAW 264.7 cell death induced by lysosomal damage that is modulated by lysosomal cholesterol.
Collapse
Affiliation(s)
- Josefine Fussing Tengberg
- Neuroscience, Molecular and Single Cell Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Francesco Russo
- Bioinformatics, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Tau Benned-Jensen
- Neuroscience, Molecular and Single Cell Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Jacob Nielsen
- Neuroscience, Molecular and Single Cell Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark.
| |
Collapse
|
6
|
Parente M, Tonini C, Caputo S, Fiocchetti M, Pallottini V. Mechanisms of Sigma-2/TMEM97 Involvement in Cholesterol Metabolism. J Cell Biochem 2024; 125:e30645. [PMID: 39300897 DOI: 10.1002/jcb.30645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
Extensive research has focused on cellular cholesterol and its regulation, primarily due to its crucial physiological roles and its association with numerous diseases resulting from dysregulated homeostasis. Consequently, investigating cholesterol metabolism and the network of regulating proteins remains an ongoing challenge for biomedical research seeking new molecular targets to manage aberrant cholesterol levels in pathologic conditions. There is evidence that Sigma-2/TMEM97 receptor regulates cholesterol metabolism. However, the mechanisms remain incompletely understood to date. Therefore, this study aimed to employ a pharmacological approach based on selective Sigma-2/TMEM97 agonists, rimcazole and siramesine, to uncover the contribution of this receptor to cholesterol homeostasis. Our results indicate that Sigma-2/TMEM97 activation modulates cholesterol uptake by altering key proteins involved in, leading to free cholesterol and neutral lipids accumulation. This sheds light on potential mechanisms implied, contributing a new piece to the intricate puzzle of cholesterol metabolism homeostasis.
Collapse
Grants
- This work has been supported by Together Strong NPC Foundation and Niemann-Pick Selbsthilfegruppe e.V. toVP, moreover by Excellence Departments, MUR-Italy, Grant/Award Numbers: ARTICOLO 1, COMMI 314-337 LEGGE 232/2016, ARTICOLO 1, awarded to Dept. of Science, University Roma Tre, Rome, Italy for 2023-2027, and Rome Technopole.
Collapse
Affiliation(s)
| | | | - Sara Caputo
- Department of Science, University Roma Tre, Rome, Italy
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
7
|
Zhou M, Zhang S, Bai X, Cai Y, Zhang Z, Zhang P, Xue C, Zheng H, Sun Q, Han D, Lou L, Wang Y, Liu W. Acteoside delays the fibrosis process of diabetic nephropathy by anti-oxidation and regulating the autophagy-lysosome pathway. Eur J Pharmacol 2024; 978:176715. [PMID: 38852699 DOI: 10.1016/j.ejphar.2024.176715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Renal fibrosis is the final pathological change of kidney disease, it has also been recognized to be critical for the final progression of diabetic nephropathy (DN) to kidney failure. Acteoside (ACT) is a phenylethanoid glycoside widely distributed in dicotyledonous plants. It has many pharmacological activities, such as anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, liver and kidney protection, and antibacterial activity. This study aims to investigate the protective effects of ACT on renal interstitial fibrosis in rats with DN induced by intraperitoneal injection of streptozocin (STZ) combined with unilateral nephrectomy and its mechanism. In vivo and in vitro, the effects of ACT on reactive oxygen species (ROS) level, oxidative tubular injury, as well as damage of autophagic flux and lysosome in the DN model were detected. Results indicate that administration of ACT delayed the progression of renal interstitial fibrosis in DN by anti-oxidation and regulating the autophagy-lysosome pathway, which may potentially be attributed to the regulatory influence of ACT on transcription factor EB (TFEB).
Collapse
Affiliation(s)
- Mengqi Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shujiao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehui Bai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuzi Cai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingna Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Quanmei Sun
- National Centre for Nanoscience and Technology, Beijing, China
| | - Dong Han
- National Centre for Nanoscience and Technology, Beijing, China
| | - Lixia Lou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
Gao AYL, Montagna DR, Hirst WD, Temkin PA. RIT2 regulates autophagy lysosomal pathway induction and protects against α-synuclein pathology in a cellular model of Parkinson's disease. Neurobiol Dis 2024; 199:106568. [PMID: 38885848 DOI: 10.1016/j.nbd.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Substantial work has been devoted to better understand the contribution of the myriad of genes that may underly the development of Parkinson's disease (PD) and their role in disease etiology. The small GTPase Ras-like without CAAX2 (RIT2) is one such genetic risk factor, with one single nucleotide polymorphism in the RIT2 locus, rs12456492, having been associated with PD risk in multiple populations. While RIT2 has previously been shown to influence signaling pathways, dopamine transporter trafficking, and LRRK2 activity, its cellular function remains unclear. In the current study, we have situated RIT2 to be upstream of various diverse processes associated with PD. In cellular models, we have shown that RIT2 is necessary for activity-dependent changes in the expression of genes related to the autophagy-lysosomal pathway (ALP) by regulating the nuclear translocation of MiT/TFE3-family transcription factors. RIT2 is also associated with lysosomes and can regulate autophagic flux and clearance by regulating lysosomal hydrolase expression and activity. Interestingly, upregulation of RIT2 can augment ALP flux and protect against α-synuclein aggregation in cortical neurons. Taken together, the present study suggests that RIT2 can regulates gene expression upstream of ALP function and that enhancing RIT2 activity may provide therapeutic benefit in PD.
Collapse
Affiliation(s)
- Andy Y L Gao
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA; Biogen Postdoctoral Scientist Program, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Daniel R Montagna
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Warren D Hirst
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Paul A Temkin
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Jiang J, Ren R, Fang W, Miao J, Wen Z, Wang X, Xu J, Jin H. Lysosomal biogenesis and function in osteoclasts: a comprehensive review. Front Cell Dev Biol 2024; 12:1431566. [PMID: 39170917 PMCID: PMC11335558 DOI: 10.3389/fcell.2024.1431566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Lysosomes serve as catabolic centers and signaling hubs in cells, regulating a multitude of cellular processes such as intracellular environment homeostasis, macromolecule degradation, intracellular vesicle trafficking and autophagy. Alterations in lysosomal level and function are crucial for cellular adaptation to external stimuli, with lysosome dysfunction being implicated in the pathogenesis of numerous diseases. Osteoclasts (OCs), as multinucleated cells responsible for bone resorption and maintaining bone homeostasis, have a complex relationship with lysosomes that is not fully understood. Dysregulated function of OCs can disrupt bone homeostasis leading to the development of various bone disorders. The regulation of OC differentiation and bone resorption for the treatment of bone disease have received considerable attention in recent years, yet the role and regulation of lysosomes in OCs, as well as the potential therapeutic implications of intervening in lysosomal biologic behavior for the treatment of bone diseases, remain relatively understudied. This review aims to elucidate the mechanisms involved in lysosomal biogenesis and to discuss the functions of lysosomes in OCs, specifically in relation to differentiation, bone resorption, and autophagy. Finally, we explore the potential therapeutic implication of targeting lysosomes in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Junchen Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Rufeng Ren
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyuan Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijun Wen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy 2024; 20:1700-1711. [PMID: 38497492 PMCID: PMC11262229 DOI: 10.1080/15548627.2024.2330261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-β: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
11
|
Chen Q, Zhou Y, Yu M, Zhu S, Sun J, Du W, Chen Z, Tao J, Feng X, Zhang Q, Zhao Y. Transcription factor EB-mediated autophagy affects cell migration and inhibits apoptosis to promote endometriosis. Apoptosis 2024; 29:757-767. [PMID: 38358580 DOI: 10.1007/s10495-024-01939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Autophagy has emerged as an important process of cell metabolism. With continuous in-depth research on autophagy, TFEB has been a key transcription factor regulating autophagy levels in recent years. Studies have established that TFEB regulates autophagy and apoptosis in various diseases. However, the relationship between TFEB and the pathogenesis of endometriosis remains unclear. This study aimed to investigate the effect of TFEB on the mechanism of endometriosis progression. The results showed that TFEB and autophagy-related protein LC3 are highly expressed in ectopic endometrium of patients with endometriosis, overexpression of TFEB in cultured human endometrial stromal cells (HESCs) by lentivirus not only promoted autophagy but also inhibited apoptosis. In addition, the migration and invasion ability of HESCs were enhanced by TFEB overexpression. Furthermore, inhibiting autophagy with specific inhibitors can attenuate migration and invasion of HESCs induced by TFEB. The rat models of endometriosis show that TFEB knockdown can suppress lesion growth in vivo. Our results suggest that autophagy may be involved in the progression mechanism of endometriosis, and the mechanism of autophagy disorder in endometriosis is probably related to TFEB. TFEB may be a key molecule in promoting endometriosis.
Collapse
Affiliation(s)
- Qiuyu Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yi Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Mengqi Yu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Sennan Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jindan Sun
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenzhuo Du
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ziqi Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiayu Tao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiao Feng
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
| | - Qiong Zhang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China.
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
12
|
Shariq M, Khan MF, Raj R, Ahsan N, Kumar P. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy. J Mol Med (Berl) 2024; 102:287-311. [PMID: 38183492 DOI: 10.1007/s00109-023-02411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.
Collapse
Affiliation(s)
- Mohd Shariq
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohammad Firoz Khan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Reshmi Raj
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Nuzhat Ahsan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Pramod Kumar
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
13
|
Takla M, Keshri S, Rubinsztein DC. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO Rep 2023; 24:e57574. [PMID: 37728021 PMCID: PMC10626434 DOI: 10.15252/embr.202357574] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factor EB (TFEB) is a basic helix-loop-helix leucine zipper transcription factor that acts as a master regulator of lysosomal biogenesis, lysosomal exocytosis, and macro-autophagy. TFEB contributes to a wide range of physiological functions, including mitochondrial biogenesis and innate and adaptive immunity. As such, TFEB is an essential component of cellular adaptation to stressors, ranging from nutrient deprivation to pathogenic invasion. The activity of TFEB depends on its subcellular localisation, turnover, and DNA-binding capacity, all of which are regulated at the post-translational level. Pathological states are characterised by a specific set of stressors, which elicit post-translational modifications that promote gain or loss of TFEB function in the affected tissue. In turn, the resulting increase or decrease in survival of the tissue in which TFEB is more or less active, respectively, may either benefit or harm the organism as a whole. In this way, the post-translational modifications of TFEB account for its otherwise paradoxical protective and deleterious effects on organismal fitness in diseases ranging from neurodegeneration to cancer. In this review, we describe how the intracellular environment characteristic of different diseases alters the post-translational modification profile of TFEB, enabling cellular adaptation to a particular pathological state.
Collapse
Affiliation(s)
- Michael Takla
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - Swati Keshri
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| |
Collapse
|
14
|
Lee S, Heo S, Park J, Heo J, Kim S, You Y. Glutathione displacement assay based on a fluorescent Au(I) complex. J Mater Chem B 2023; 11:7344-7352. [PMID: 37435627 DOI: 10.1039/d3tb00953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Glutathione (GSH) is an essential molecule that plays a pivotal role in maintaining intracellular redox homeostasis, as well as other physiological processes. However, the chemical mechanisms underlying the GSH-induced processes remain insufficiently understood due to the lack of appropriate detection tools. Fluorescence GSH imaging can serve as a useful principle for the rapid, convenient, and non-destructive detection of GSH in living organisms. In this study, we developed a fluorescent GSH probe based on a linear, homoleptic Au(I) complex with two 1,3-diphenylbenzimidazolium carbene ligands. The Au(I) complex produced a fluorescence turn-on response to GSH. Fluorescence GSH signaling was characterized with a short response time of a few seconds. The rapid response was attributed to the displacement of the carbene ligand with GSH, which involved a labile inner-sphere coordination interaction. Finally, we demonstrated the biological utility of our GSH probe by unambiguously discriminating between different GSH levels in normal and senescent preadipocytes.
Collapse
Affiliation(s)
- Shinae Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seunga Heo
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jihwan Park
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
15
|
Nomura TK, Endo S, Kuwano T, Fukasawa K, Takashima S, Todo T, Furuta K, Yamamoto T, Hinoi E, Koyama H, Honda R. ARL-17477 is a dual inhibitor of NOS1 and the autophagic-lysosomal system that prevents tumor growth in vitro and in vivo. Sci Rep 2023; 13:10757. [PMID: 37402770 DOI: 10.1038/s41598-023-37797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
ARL-17477 is a selective neuronal nitric oxide synthase (NOS1) inhibitor that has been used in many preclinical studies since its initial discovery in the 1990s. In the present study, we demonstrate that ARL-17477 exhibits a NOS1-independent pharmacological activity that involves inhibition of the autophagy-lysosomal system and prevents cancer growth in vitro and in vivo. Initially, we screened a chemical compound library for potential anticancer agents, and identified ARL-17477 with micromolar anticancer activity against a wide spectrum of cancers, preferentially affecting cancer stem-like cells and KRAS-mutant cancer cells. Interestingly, ARL-17477 also affected NOS1-knockout cells, suggesting the existence of a NOS1-independent anticancer mechanism. Analysis of cell signals and death markers revealed that LC3B-II, p62, and GABARAP-II protein levels were significantly increased by ARL-17477. Furthermore, ARL-17477 had a chemical structure similar to that of chloroquine, suggesting the inhibition of autophagic flux at the level of lysosomal fusion as an underlying anticancer mechanism. Consistently, ARL-17477 induced lysosomal membrane permeabilization, impaired protein aggregate clearance, and activated transcription factor EB and lysosomal biogenesis. Furthermore, in vivo ARL-17477 inhibited the tumor growth of KRAS-mutant cancer. Thus, ARL-17477 is a dual inhibitor of NOS1 and the autophagy-lysosomal system that could potentially be used as a cancer therapeutic.
Collapse
Affiliation(s)
- Teiko Komori Nomura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Takuma Kuwano
- Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Fukasawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Shigeo Takashima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoji Furuta
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Takuhei Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
- Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroko Koyama
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan.
| |
Collapse
|
16
|
Reijnders MRF, Seibt A, Brugger M, Lamers IJC, Ott T, Klaas O, Horváth J, Rose AMS, Craghill IM, Brunet T, Graf E, Mayerhanser K, Hellebrekers D, Pauck D, Neuen-Jacob E, Rodenburg RJT, Wieczorek D, Klee D, Mayatepek E, Driessen G, Bindermann R, Averdunk L, Lohmeier K, Sinnema M, Stegmann APA, Roepman R, Poulter JA, Distelmaier F. De novo missense variants in RRAGC lead to a fatal mTORopathy of early childhood. Genet Med 2023; 25:100838. [PMID: 37057673 DOI: 10.1016/j.gim.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.
Collapse
Affiliation(s)
- Margot R F Reijnders
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Torsten Ott
- University Children's Hospital, University Hospital Muenster, Münster, Germany
| | - Oliver Klaas
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Judit Horváth
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Ailsa M S Rose
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Isabel M Craghill
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Debby Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David Pauck
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eva Neuen-Jacob
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Richard J T Rodenburg
- Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dirk Klee
- Department of Diagnostic and Interventional Radiology, University Hospital, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gertjan Driessen
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert Bindermann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Klaus Lohmeier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
17
|
Smith M, Zhang L, Jin Y, Yang M, Bade A, Gillis KD, Jana S, Bypaneni RN, Glass TE, Lin H. A Turn-On Fluorescent Amino Acid Sensor Reveals Chloroquine's Effect on Cellular Amino Acids via Inhibiting Cathepsin L. ACS CENTRAL SCIENCE 2023; 9:980-991. [PMID: 37252359 PMCID: PMC10214525 DOI: 10.1021/acscentsci.2c01325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Indexed: 05/31/2023]
Abstract
Maintaining homeostasis of metabolites such as amino acids is critical for cell survival. Dysfunction of nutrient balance can result in human diseases such as diabetes. Much remains to be discovered about how cells transport, store, and utilize amino acids due to limited research tools. Here we developed a novel, pan-amino acid fluorescent turn-on sensor, NS560. It detects 18 of the 20 proteogenic amino acids and can be visualized in mammalian cells. Using NS560, we identified amino acids pools in lysosomes, late endosomes, and surrounding the rough endoplasmic reticulum. Interestingly, we observed amino acid accumulation in large cellular foci after treatment with chloroquine, but not with other autophagy inhibitors. Using a biotinylated photo-cross-linking chloroquine analog and chemical proteomics, we identified Cathepsin L (CTSL) as the chloroquine target leading to the amino acid accumulation phenotype. This study establishes NS560 as a useful tool to study amino acid regulation, identifies new mechanisms of action of chloroquine, and demonstrates the importance of CTSL regulation of lysosomes.
Collapse
Affiliation(s)
- Michael
R. Smith
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Le Zhang
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yizhen Jin
- Graduate
Program of Biochemistry, Molecular and Cell Biology, Department of
Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Min Yang
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Anusha Bade
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin D. Gillis
- Dalton
Cardiovascular Research Center, Department of Bioengineering and Department
of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211, United States
| | - Sadhan Jana
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Ramesh Naidu Bypaneni
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Timothy E. Glass
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Nandi SK, Chatterjee N, Roychowdhury T, Pradhan A, Moiz S, Manna K, Sarkar DK, Dhar P, Dutta A, Mukhopadhyay S, Bhattacharya R. Kaempferol with Verapamil impeded panoramic chemoevasion pathways in breast cancer through ROS overproduction and disruption of lysosomal biogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154689. [PMID: 36921428 DOI: 10.1016/j.phymed.2023.154689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/07/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) at low level promotes cell survival through lysosome induced autophagy induction. Glucose stress induced acidosis, hypoxia, ROS, upregulates markers related to cancer stemness and multidrug resistance. Also, lysosomal upregulation is proposed to be one of the important indicators of cell survival under ROS induced stress. Studies supported that, stimulation of Lysosome-TFEB-Ca2+ cascade has important role in induction of chemoresistance and survival of cancerous cells. PURPOSE To observe the effect of synergistic drug combination, Kaempferol and Verapamil on markers regulating chemoevasion, tumor stemness & acidosis as well as lysosome upregulation pathways, under low as well as high glucose conditions. HYPOTHESIS Based on our earlier observation as well as previous reports, we hypothesized, our drug combination Kaempferol with Verapamil could attenuate markers related to chemoevasion, tumor stemness & acidosis as well as lysosome-TFEB-Ca2+ pathway, all of which have indispensable association and role in chemoresistance. METHODS RNA and protein expression of candidate genes, along with ROS production and Ca2+ concentrations were measured in ex vivo models in altered glucose conditions upon treatment with KV. Also, computational approaches were utilized to hypothesize the mechanism of action of the drug combination. PCR, IHC, western blotting and molecular docking approaches were used in this study. RESULTS The overproduction of ROS by our candidate drugs KV, downregulated the chemoresistance and tumor acidosis markers along with ATP1B1 and resulted in lysosomal disruption with reduction of Ca2+ release, diminishing TFEB expression under low glucose condition. An anomalous outcome was observed in high glucose conditions. We also observed KV promoted the overproduction of ROS levels thereby inducing autophagy-mediated cell death through the upregulation of LC3-II and p62 in low glucose conditions. The ex vivo studies also corroborate with in silico study that exhibited the parallel outcome. CONCLUSION Our ex-vivo and in-silico studies revealed that our candidate drug combination KV, could effectively target several pathways regulating chemoresistance, that were not hitherto studied in the same experimental setup and thus may be endorsed for therapeutic purposes.
Collapse
Affiliation(s)
- Sourav Kumar Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata-700094, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata-700032, India
| | - Ayan Pradhan
- Department of General Surgery, Institute of Post graduate Medical Education &Research and SSKM Hospital, 244B AJC Bose Road Kolkata-700020, India
| | - Sumaiya Moiz
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata-700094, India
| | - Krishnendu Manna
- Department of Food and Nutrition, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Diptendra Kumar Sarkar
- Department of General Surgery, Institute of Post graduate Medical Education &Research and SSKM Hospital, 244B AJC Bose Road Kolkata-700020, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition division, University of Calcutta, 20B Judges Court Road. Kolkata 700027, West Bengal, India
| | - Amitava Dutta
- Department of Pathology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata-700094
| | - Soma Mukhopadhyay
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata-700094, India
| | - Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata-700094, India.
| |
Collapse
|
19
|
Yu X, Tian AL, Wang P, Li J, Wu J, Li B, Liu Z, Liu S, Gao Z, Sun S, Sun S, Tu Y, Wu Q. Macrolide antibiotics activate the integrated stress response and promote tumor proliferation. Cell Stress 2023; 7:20-33. [PMID: 37021084 PMCID: PMC10069438 DOI: 10.15698/cst2023.04.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Macrolide antibiotics are widely used antibacterial agents that are associated with autophagy inhibition. This study aimed to investigate the association between macrolide antibiotics and malignant tumors, as well as the effect on autophagy, reactive oxygen species (ROS) accumulation and integrated stress response (ISR). The meta-analysis indicated a modestly higher risk of cancer in macrolide antibiotic ever-users compared to non-users. Further experiments showed that macrolides block autophagic flux by inhibiting lysosomal acidification. Additionally, azithromycin, a representative macrolide antibiotic, induced the accumulation of ROS, and stimulated the ISR and the activation of transcription factor EB (TFEB) and TFE3 in a ROS-dependent manner. Finally, animal experiments confirmed that azithromycin promoted tumor progression in vivo, which could be receded by N-acetylcysteine, an inhibitor of ROS and ISR. Overall, this study reveals the potential role of macrolide antibiotics in malignant progression and highlights the need for further investigation into their effects.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- # These authors have contributed equally to this work and share first authorship
| | - Ai-Ling Tian
- Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- # These authors have contributed equally to this work and share first authorship
| | - Ping Wang
- Medical College, Anhui University of Science and Technology, Huainan, AnHui, P. R. China
- # These authors have contributed equally to this work and share first authorship
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Siqing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- * Corresponding Author: Dr. Shengrong Sun, Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan 430060, Hubei Province, P. R. China; E-mail:
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- * Corresponding Author: Dr. Yi Tu, Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan 430060, Hubei Province, P. R. China; E-mail:
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- * Corresponding Author: Dr. Qi Wu, Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China; E-mail:
| |
Collapse
|
20
|
Mahapatra S, Jonniya NA, Koirala S, Ursal KD, Kar P. The FGF/FGFR signalling mediated anti-cancer drug resistance and therapeutic intervention. J Biomol Struct Dyn 2023; 41:13509-13533. [PMID: 36995019 DOI: 10.1080/07391102.2023.2191721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 03/31/2023]
Abstract
Fibroblast Growth Factor (FGF) ligands and their receptors are crucial factors driving chemoresistance in several malignancies, challenging the efficacy of currently available anti-cancer drugs. The Fibroblast growth factor/receptor (FGF/FGFR) signalling malfunctions in tumor cells, resulting in a range of molecular pathways that may impact its drug effectiveness. Deregulation of cell signalling is critical since it can enhance tumor growth and metastasis. Overexpression and mutation of FGF/FGFR induce regulatory changes in the signalling pathways. Chromosomal translocation facilitating FGFR fusion production aggravates drug resistance. Apoptosis is inhibited by FGFR-activated signalling pathways, reducing multiple anti-cancer medications' destructive impacts. Angiogenesis and epithelial-mesenchymal transition (EMT) are facilitated by FGFRs-dependent signalling, which correlates with drug resistance and enhances metastasis. Further, lysosome-mediated drug sequestration is another prominent method of resistance. Inhibition of FGF/FGFR by following a plethora of therapeutic approaches such as covalent and multitarget inhibitors, ligand traps, monoclonal antibodies, recombinant FGFs, combination therapy, and targeting lysosomes and micro RNAs would be helpful. As a result, FGF/FGFR suppression treatment options are evolving nowadays. To increase positive impacts, the processes underpinning the FGF/FGFR axis' role in developing drug resistance need to be clarified, emphasizing the need for more studies to develop novel therapeutic options to address this significant problem. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
21
|
Carbó JM, Cornet-Masana JM, Cuesta-Casanovas L, Delgado-Martínez J, Banús-Mulet A, Clément-Demange L, Serra C, Catena J, Llebaria A, Esteve J, Risueño RM. A Novel Family of Lysosomotropic Tetracyclic Compounds for Treating Leukemia. Cancers (Basel) 2023; 15:1912. [PMID: 36980800 PMCID: PMC10047683 DOI: 10.3390/cancers15061912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological cancer characterized by poor prognosis and frequent relapses. Aside from specific mutation-related changes, in AML, the overall function of lysosomes and mitochondria is drastically altered to fulfill the elevated biomass and bioenergetic demands. On the basis of previous results, in silico drug discovery screening was used to identify a new family of lysosome-/mitochondria-targeting compounds. These novel tetracyclic hits, with a cationic amphiphilic structure, specifically eradicate leukemic cells by inducing both mitochondrial damage and apoptosis, and simultaneous lysosomal membrane leakiness. Lysosomal leakiness does not only elicit canonical lysosome-dependent cell death, but also activates the terminal differentiation of AML cells through the Ca2+-TFEB-MYC signaling axis. In addition to being an effective monotherapy, its combination with the chemotherapeutic arsenic trioxide (ATO) used in other types of leukemia is highly synergistic in AML cells, widening the therapeutic window of the treatment. Moreover, the compounds are effective in a wide panel of cancer cell lines and possess adequate pharmacological properties rendering them promising drug candidates for the treatment of AML and other neoplasias.
Collapse
Affiliation(s)
- José M. Carbó
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Leukos Biotech, 08021 Barcelona, Spain
| | | | - Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Faculty of Biosciences, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Jennifer Delgado-Martínez
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Juanlo Catena
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Jordi Esteve
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
| |
Collapse
|
22
|
Walter S, Jung T, Herpich C, Norman K, Pivovarova-Ramich O, Ott C. Determination of the autophagic flux in murine and human peripheral blood mononuclear cells. Front Cell Dev Biol 2023; 11:1122998. [PMID: 36994103 PMCID: PMC10040559 DOI: 10.3389/fcell.2023.1122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The autophagy lysosomal system (ALS) is crucial for cellular homeostasis, contributing to maintain whole body health and alterations are associated with diseases like cancer or cardiovascular diseases. For determining the autophagic flux, inhibition of lysosomal degradation is mandatory, highly complicating autophagy measurement in vivo. To overcome this, herein blood cells were used as they are easy and routinely to isolate. Within this study we provide detailed protocols for determination of the autophagic flux in peripheral blood mononuclear cells (PBMCs) isolated from human and, to our knowledge the first time, also from murine whole blood, extensively discussing advantages and disadvantages of both methods. Isolation of PBMCs was performed using density gradient centrifugation. To minimize changes on the autophagic flux through experimental conditions, cells were directly treated with concanamycin A (ConA) for 2 h at 37°C in their serum or for murine cells in serum filled up with NaCl. ConA treatment decreased lysosomal cathepsins activity and increased Sequestosome 1 (SQSTM1) protein and LC3A/B-II:LC3A/B-I ratio in murine PBMCs, while transcription factor EB was not altered yet. Aging further enhanced ConA-associated increase in SQSTM1 protein in murine PBMCs but not in cardiomyocytes, indicating tissue-specific differences in autophagic flux. In human PBMCs, ConA treatment also decreased lysosomal activity and increased LC3A/B-II protein levels, demonstrating successful autophagic flux detection in human subjects. In summary, both protocols are suitable to determine the autophagic flux in murine and human samples and may facilitate a better mechanistic understanding of altered autophagy in aging and disease models and to further develop novel treatment strategies.
Collapse
Affiliation(s)
- Sophia Walter
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Kristina Norman
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Olga Pivovarova-Ramich
- Department of Molecular Nutritional Medicine, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Christiane Ott,
| |
Collapse
|
23
|
Carling PJ, Ryan BJ, McGuinness W, Kataria S, Humble SW, Milde S, Duce JA, Kapadia N, Zuercher WJ, Davis JB, Di Daniel E, Wade-Martins R. Multiparameter phenotypic screening for endogenous TFEB and TFE3 translocation identifies novel chemical series modulating lysosome function. Autophagy 2023; 19:692-705. [PMID: 35786165 PMCID: PMC9851200 DOI: 10.1080/15548627.2022.2095834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Brent J Ryan
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - William McGuinness
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Shikha Kataria
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Stewart W Humble
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD USA
| | - Stefan Milde
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - James A Duce
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - Nirav Kapadia
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - John B Davis
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Elena Di Daniel
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Pangilinan C, Xu X, Herlyn M, Liang C. Autophagy Paradox: Strategizing Treatment Modality in Melanoma. Curr Treat Options Oncol 2023; 24:130-145. [PMID: 36670319 PMCID: PMC9883356 DOI: 10.1007/s11864-023-01053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT The primordial autophagy process, originally identified as a starvation response in baker's yeast, has since been shown to have a wide spectrum of functions other than survival. In many cases, it is accepted that autophagy operates as a key tumor suppressor mechanism that protects cells from adverse environmental cues by enforcing homeostasis and maintaining the functional and structural integrity of organelles. Paradoxically, heightened states of autophagy are also seen in some cancers, leading to the prevailing view that the pro-survival aspect of autophagy might be hijacked by some tumors to promote their fitness and pathogenesis. Notably, recent studies have revealed a broad range of cell-autonomous autophagy in reshaping tumor microenvironment and maintaining lineage integrity and immune homeostasis, calling for a renewed understanding of autophagy beyond its classical roles in cell survival. Here, we evaluate the increasing body of literature that argues the "double-edged" consequences of autophagy manipulation in cancer therapy, with a particular focus on highly plastic and mutagenic melanoma. We also discuss the caveats that must be considered when evaluating whether autophagy blockade is the effector mechanism of some anti-cancer therapy particularly associated with lysosomotropic agents. If autophagy proteins are to be properly exploited as targets for anticancer drugs, their diverse and complex roles should also be considered.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
26
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|
27
|
Villanueva JA, Crooks AL, Nagy TA, Quintana JLJ, Dalebroux ZD, Detweiler CS. Salmonella enterica Infections Are Disrupted by Two Small Molecules That Accumulate within Phagosomes and Differentially Damage Bacterial Inner Membranes. mBio 2022; 13:e0179022. [PMID: 36135367 PMCID: PMC9601186 DOI: 10.1128/mbio.01790-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria have a robust cell envelope that excludes or expels many antimicrobial agents. However, during infection, host soluble innate immune factors permeabilize the bacterial outer membrane. We identified two small molecules that exploit outer membrane damage to access the bacterial cell. In standard microbiological media, neither compound inhibited bacterial growth nor permeabilized bacterial outer membranes. In contrast, at micromolar concentrations, JAV1 and JAV2 enabled the killing of an intracellular human pathogen, Salmonella enterica serovar Typhimurium. S. Typhimurium is a Gram-negative bacterium that resides within phagosomes of cells from the monocyte lineage. Under broth conditions that destabilized the lipopolysaccharide layer, JAV2 permeabilized the bacterial inner membrane and was rapidly bactericidal. In contrast, JAV1 activity was more subtle: JAV1 increased membrane fluidity, altered reduction potential, and required more time than JAV2 to disrupt the inner membrane barrier and kill bacteria. Both compounds interacted with glycerophospholipids from Escherichia coli total lipid extract-based liposomes. JAV1 preferentially interacted with cardiolipin and partially relied on cardiolipin production for activity, whereas JAV2 generally interacted with lipids and had modest affinity for phosphatidylglycerol. In mammalian cells, neither compound significantly altered mitochondrial membrane potential at concentrations that killed S. Typhimurium. Instead, JAV1 and JAV2 became trapped within acidic compartments, including macrophage phagosomes. Both compounds improved survival of S. Typhimurium-infected Galleria mellonella larvae. Together, these data demonstrate that JAV1 and JAV2 disrupt bacterial inner membranes by distinct mechanisms and highlight how small, lipophilic, amine-substituted molecules can exploit host soluble innate immunity to facilitate the killing of intravesicular pathogens. IMPORTANCE Innovative strategies for developing new antimicrobials are needed. Combining our knowledge of host-pathogen interactions and relevant drug characteristics has the potential to reveal new approaches to treating infection. We identified two compounds with antibacterial activity specific to infection and with limited host cell toxicity. These compounds appeared to exploit host innate immunity to access the bacterium and differentially damage the bacterial inner membrane. Further, both compounds accumulated within Salmonella-containing and other acidic vesicles, a process known as lysosomal trapping, which protects the host and harms the pathogen. The compounds also increased host survival in an insect infection model. This work highlights the ability of host innate immunity to enable small molecules to act as antibiotics and demonstrates the feasibility of antimicrobial targeting of the inner membrane. Additionally, this study features the potential use of lysosomal trapping to enhance the activities of compounds against intravesicular pathogens.
Collapse
Affiliation(s)
- Joseph A. Villanueva
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy L. Crooks
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Toni A. Nagy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
28
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
29
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
Moon OJ, Yoon CJ, Lee BR, Lee J. An Optimally Fabricated Platform Guides Cancer-Specific Activation of Chemotherapeutic Drugs and Toxicity-free Cancer Treatment. Adv Healthc Mater 2022; 11:e2200765. [PMID: 35670274 DOI: 10.1002/adhm.202200765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Cancer chemotherapeutic drugs such as doxorubicin, mitomycin C, and gemcitabine, which are mostly small synthetic molecules, are still clinically useful for cancer treatment. However, despite considerable therapeutic efficacy, severe toxicity-associated problems, which are mainly caused by the non-specific mode of action such as chromosomal DNA damage and interference in the DNA replication even in normal cells, remain unresolved and a major challenge for safer and thus more widespread adoption of chemotherapy. Here we developed an innovative platform through beneficially integrating core peptide units into highly-ordered, stable, and flexibly guest-adaptable structure of apoferritin, which simultaneously fulfills high-capacity loading of chemotherapeutic drugs compared with the case of FDA-approved antibody-drug conjugates, efficient drug targeting to cancer cells, and cancer cell-specific drug release and activation. This approach dramatically reduced drug toxicity to normal cells, significantly enhanced efficacy in in vivo cancer treatment without toxicity to normal organs of mice, and thus is expected to open up a novel clinical route to break through the limits of current cancer chemotherapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ok Jeong Moon
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Anam-Ro 145, Seoul, 136-713, Republic of Korea
| | - Chul Joo Yoon
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Anam-Ro 145, Seoul, 136-713, Republic of Korea
| | - Bo-Ram Lee
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Anam-Ro 145, Seoul, 136-713, Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Anam-Ro 145, Seoul, 136-713, Republic of Korea
| |
Collapse
|
31
|
Trehalose Suppresses Lysosomal Anomalies in Supporting Cells of Oocytes and Maintains Female Fertility. Nutrients 2022; 14:nu14102156. [PMID: 35631296 PMCID: PMC9148094 DOI: 10.3390/nu14102156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Supporting cells of oocytes, i.e., cumulus cells, control oocyte quality, which determines fertilization success. Therefore, the transformation of mature and immature cumulus cells (MCCs and ICCs, respectively) into dysmature cumulus cells (DCCs) with dead characteristics deteriorates oocyte quality. However, the molecular basis for this transformation remains unclear. Here, we explored the link between autophagic decline and cumulus transformation using cumulus cells from patients with infertility, female mice, and human granulosa cell-derived KGN cell lines. When human cumulus cells were labeled with LysoTracker probes, fluorescence corresponding to lysosomes was enhanced in DCCs compared to that in MCCs and ICCs. Similarly, treatment with the autophagy inhibitor chloroquine elevated LysoTracker fluorescence in both mouse cumulus cells and KGN cells, subsequently suppressing ovulation in female mice. Electron microscopy analysis revealed the proliferation of abnormal lysosomes in chloroquine-treated KGN cells. Conversely, the addition of an autophagy inducer, trehalose, suppressed chloroquine-driven problematic lysosomal anomalies and ameliorated ovulation problems. Our results suggest that autophagy maintains the healthy state of the supporting cells of human oocytes by suppressing the formation of lysosomes. Thus, our results provide insights into the therapeutic effects of trehalose on female fertility.
Collapse
|
32
|
Xiao X, Chung PED, Xu M, Hu A, Ju Y, Yang X, Song J, Song J, Wang C, Zacksenhaus E, Liu S, He Z, Ben-David Y. A racemosin B derivative, C25, suppresses breast cancer growth via lysosomal membrane permeabilization and inhibition of autophagic flux. Biochem Pharmacol 2022; 201:115060. [PMID: 35513042 DOI: 10.1016/j.bcp.2022.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Breast cancer is the most common malignancy among women worldwide. As conventional therapies are only partially successful in eradicating breast cancer, the development of novel strategies is a top priority. We previously showed that C25, a new racemosin B derivative, exerts its anti-cancer activity through inhibition of autophagy, but the underlying mechanism remained unknown. Here we show that C25 inhibits the growth of diverse breast cancer cell subtypes and effectively suppresses tumor progression in a xenotransplantation model of triple negative breast cancer. C25 acts as a lysosomotropic agent to induce lysosomal membrane permeabilization and inhibit autophagic flux, resulting in cathepsin release and cell death. In accordance, RNA sequencing and gene set enrichment analysis revealed that C25 induces pathways consistent with autophagy inhibition, cell cycle arrest and senescence. Interestingly, knockdown of TFEB or SQSTM1 reduced cell death induced by C25 treatment. Finally, we show that C25 synergizes with the chemo-therapeutics etoposide and paclitaxel to further limit breast cancer cell growth. Thus, C25 alone or in combination with other anti-neoplastic agents offers a novel therapeutic strategy for aggressive forms of breast cancer and possibly other malignancies.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China; Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China
| | - Philip E D Chung
- Toronto General Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Laboratory Medicine& Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mei Xu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Yangju Ju
- Toronto General Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Laboratory Medicine& Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xinmei Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Jialei Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Jinrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Eldad Zacksenhaus
- Toronto General Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Laboratory Medicine& Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Sheng Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China.
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Transformation, Chinese Academy of Medical Sciences, Guiyang 550004, PR China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, PR China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China.
| |
Collapse
|
33
|
Xavier CPR, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J, Vasconcelos MH. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat 2022; 62:100833. [PMID: 35429792 DOI: 10.1016/j.drup.2022.100833] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
Abstract
Drug resistance remains a major hurdle to successful cancer treatment, being accountable for approximately 90% of cancer-related deaths. In the past years, increasing attention has been given to the role of extracellular vesicles (EVs) in the horizontal transfer of drug resistance in cancer. Indeed, many studies have described the dissemination of therapy resistance traits mediated by EVs, which may be transferred from drug resistant tumor cells to their drug sensitive counterparts. Importantly, different key players of drug resistance have been identified in the cargo of those EVs, such as drug efflux pumps, oncoproteins, antiapoptotic proteins, or microRNAs, among others. Interestingly, the EVs-mediated crosstalk between cells from the tumor microenvironment (TME) and tumor cells has emerged as another important mechanism that leads to cancer cells drug resistance. Recently, the cargo of the TME-derived EVs responsible for the transfer of drug resistance traits has also become a focus of attention. In addition, the possible mechanisms involved in drug sequestration by EVs, likely to contribute to cancer drug resistance, are also described and discussed herein. Despite the latest scientific advances in the field of EVs, this is still a challenging area of research, particularly in the clinical setting. Therefore, further investigation is needed to assess the relevance of EVs to the failure of cancer patients to drug treatment, to identify biomarkers of drug resistance in the EV's cargo, and to develop effective therapeutic strategies to surmount drug resistance. This up-to-date review summarizes relevant literature on the role of EVs in the transfer of drug resistance competences to cancer cells, and the relevance of tumor cells and of TME cells in this process. Finally, this knowledge is integrated with a discussion of possible future clinical applications of EVs as biomarkers of drug resistance.
Collapse
Affiliation(s)
- Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal.
| | | | - Rita Rebelo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy.
| | | | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal.
| |
Collapse
|
34
|
Sharma VK, Stark M, Fridman N, Assaraf YG, Gross Z. Doubly Stimulated Corrole for Organelle-Selective Antitumor Cytotoxicity. J Med Chem 2022; 65:6100-6115. [PMID: 35434997 DOI: 10.1021/acs.jmedchem.1c02085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Balancing between safety and efficacy of cancer chemotherapeutics is achievable by relying on internal and/or external stimuli for selective and on-demand antitumor cytotoxicity. We now introduce the difluorophosphorus(V) corrole PC-Im, a theranostic agent with a pH-sensitive N-methylimidazole moiety. Structure/activity relationships, via comparison with the permanently charged PC-ImM+ and the lipophilic PC, uncovered the exceptional features of PC-Im: nanoparticular and monomeric at neutral and low pH, respectively, 10-fold increased light-induced singlet oxygen production at acidic pH, internalization into malignant cells within minutes, and selective accumulation within lysosomes. Submillimolar PC-Im concentrations are tolerable in the dark, while illumination induces nanomolar cytotoxic effects due to a multiplicity of cellular deleterious events: endoplasmic reticulum fragmentation, lysosome fusion and exocytosis, calcium leakage, mitochondrial fission, and swelling. PC-Im emerges as an antitumor agent, whose potency is triggered by endogenous and exogenous stimuli, assuring its cytotoxicity will occur selectively upon lysosomal accumulation and solely upon light activation.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
35
|
Roos NJ, Mancuso RV, Sanvee GM, Bouitbir J, Krähenbühl S. Imatinib disturbs lysosomal function and morphology and impairs the activity of mTORC1 in human hepatocyte cell lines. Food Chem Toxicol 2022; 162:112869. [PMID: 35182693 DOI: 10.1016/j.fct.2022.112869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
The tyrosine kinase inhibitors (TKIs) imatinib and lapatinib are associated with severe hepatotoxicity, whose mechanisms are currently under investigation. As amphiphilic drugs, imatinib and lapatinib enrich in lysosomes. In the present study, we investigated their effects on lysosomal morphology and function in HepG2 and HuH-7 cells and explored possible links between lysosomal dysfunction and hepatotoxicity. Both TKIs increased the lysosomal volume time and concentration-dependently in HepG2 and HuH-7 cells. In HepG2 cells, lapatinib and imatinib raised the lysosomal pH and destabilized the lysosomal membrane, thereby impairing lysosomal proteolytic activity such as cathepsin B processing. Imatinib activated the transcription factor EB (TFEB), a regulator of lysosomal biogenesis and function, as demonstrated by nuclear TFEB accumulation and increased expression of TFEB-target genes. Because of lysosomal dysfunction, imatinib impaired mTORC1 activation, a protein complex activated on the lysosomal surface, which explained TFEB activation. HepG2 cells treated with imatinib showed increased levels of MAP1LC3A/B-II and of ATG13 (S318) phosphorylation, indicating induction of autophagy due to TFEB activation. Finally, imatinib induced apoptosis in HepG2 cells in a time and concentration-dependent manner, explained by lysosomal and mitochondrial toxicity. Our findings provide a new lysosome-centered mechanism for imatinib-induced hepatotoxicity that could be extended to other lysosomotropic drugs.
Collapse
Affiliation(s)
- Noëmi Johanna Roos
- Division of Clinical Pharmacology & Toxicology, University Hospital of Basel, Switzerland; Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Riccardo Vincenzo Mancuso
- Division of Clinical Pharmacology & Toxicology, University Hospital of Basel, Switzerland; Division of Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Gerda Mawududzi Sanvee
- Division of Clinical Pharmacology & Toxicology, University Hospital of Basel, Switzerland; Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Jamal Bouitbir
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital of Basel, Switzerland.
| |
Collapse
|
36
|
Jain V, Bose S, Arya AK, Arif T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:1618. [PMID: 35406389 PMCID: PMC8996909 DOI: 10.3390/cancers14071618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that regulate essential biological processes such as cellular homeostasis, development, and aging. They are primarily connected to the degradation/recycling of cellular macromolecules and participate in cellular trafficking, nutritional signaling, energy metabolism, and immune regulation. Therefore, lysosomes connect cellular metabolism and signaling pathways. Lysosome's involvement in the critical biological processes has rekindled clinical interest towards this organelle for treating various diseases, including cancer. Recent research advancements have demonstrated that lysosomes also regulate the maintenance and hemostasis of hematopoietic stem cells (HSCs), which play a critical role in the progression of acute myeloid leukemia (AML) and other types of cancer. Lysosomes regulate both HSCs' metabolic networks and identity transition. AML is a lethal type of blood cancer with a poor prognosis that is particularly associated with aging. Although the genetic landscape of AML has been extensively described, only a few targeted therapies have been produced, warranting the need for further research. This review summarizes the functions and importance of targeting lysosomes in AML, while highlighting the significance of lysosomes in HSCs maintenance.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center, Department of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA;
| | - Swaroop Bose
- Department of Dermatology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA;
| | - Awadhesh K. Arya
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
37
|
Ferrari V, Cristofani R, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Piccolella M, Galbiati M, Rusmini P, Poletti A. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int J Mol Sci 2022; 23:1939. [PMID: 35216053 PMCID: PMC8878954 DOI: 10.3390/ijms23041939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Barbara Tedesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS—Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| |
Collapse
|
38
|
Hasegawa J, Tokuda E, Yao Y, Sasaki T, Inoki K, Weisman LS. PP2A-dependent TFEB activation is blocked by PIKfyve-induced mTORC1 activity. Mol Biol Cell 2022; 33:ar26. [PMID: 35020443 PMCID: PMC9250387 DOI: 10.1091/mbc.e21-06-0309] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcriptional factor EB (TFEB) is a master regulator of genes required for autophagy and lysosomal function. The nuclear localization of TFEB is blocked by the mechanistic target of rapamycin complex 1 (mTORC1)-dependent phosphorylation of TFEB at multiple sites including Ser-211. Here we show that inhibition of PIKfyve, which produces phosphatidylinositol 3,5-bisphosphate on endosomes and lysosomes, causes a loss of Ser-211 phosphorylation and concomitant nuclear localization of TFEB. We found that while mTORC1 activity toward S6K1, as well as other major mTORC1 substrates, is not impaired, PIKfyve inhibition specifically impedes the interaction of TFEB with mTORC1. This suggests that mTORC1 activity on TFEB is selectively inhibited due to loss of mTORC1 access to TFEB. In addition, we found that TFEB activation during inhibition of PIKfyve relies on the ability of protein phosphatase 2A (PP2A) but not calcineurin/PPP3 to dephosphorylate TFEB Ser-211. Thus when PIKfyve is inhibited, PP2A is dominant over mTORC1 for control of TFEB phosphorylation at Ser-S211. Together these findings suggest that mTORC1 and PP2A have opposing roles on TFEB via phosphorylation and dephosphorylation of Ser-211, respectively, and further that PIKfyve inhibits TFEB activity by facilitating mTORC1-dependent phosphorylation of TFEB.
Collapse
Affiliation(s)
- Junya Hasegawa
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Emi Tokuda
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yao Yao
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 East Catherine Street, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical enter Drive, Ann Arbor, MI 48109, USA
| | - Lois S Weisman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resist Updat 2022; 60:100811. [DOI: 10.1016/j.drup.2022.100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
|
40
|
Yeom H, Hwang SH, Kim HG, Lee M. Increase in the sensitivity to PLX4720 through inhibition of transcription factor EB-dependent autophagy in BRAF inhibitor-resistant cells. Toxicol Res 2022; 38:35-44. [PMID: 35070939 PMCID: PMC8748576 DOI: 10.1007/s43188-021-00109-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023] Open
Abstract
Long-term treatment with oncogenic BRAF inhibitors confers resistance to BRAF inhibitor monotherapy. In this study, a combination treatment strategy with autophagy inhibitors was proposed to increase the sensitivity of BRAF mutant containing A375P melanoma cells that have developed resistance to BRAF inhibitors. We found that the A375P/Multi-drug resistance (A375P/Mdr) cells, which are resistant to both BRAF inhibitors and MEK inhibitors, exhibited a higher basal autophagic flux compared to their parental A375P cells, as determined by tandem mRFP-GFP-tagged LC3 imaging assay and LC3 conversion. In addition, transcription factor EB (TFEB), which acts as a transcription factor regulating the transcription of autophagy-related genes, was much more localized in the nucleus in A375P/Mdr cells than in A375P cells, indicating that the increase in basal autophagic flux was TFEB-dependent. In particular, the overexpression of an activated form of TFEB (TFEBAA) caused a modest increase in PLX4720 resistance in A375P/Mdr cells. Interestingly, treatment with early stage autophagy inhibitors reversed BRAF inhibitor-induced resistance, whereas late autophagy inhibition did not. In contrast, inhibition of ER stress by 4-phenylbutyric acid suppressed basal autophagic flux. Moreover, ER stress inhibition significantly remarkably inhibited the nuclear localization of TFEB, resulting in an increase in the sensitivity of A375P/Mdr cells to PLX4720. Taken together, these results suggest that autophagy may be an important mechanism of acquired resistance to BRAF inhibitors. Thus, targeting autophagy may be suitable for the treatment of tumors resistant to BRAF inhibitor.
Collapse
Affiliation(s)
- Hojin Yeom
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012 Republic of Korea
| | - Sung-Hee Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012 Republic of Korea
| | - Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012 Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012 Republic of Korea
| |
Collapse
|
41
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|
42
|
Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 2021; 59:100787. [PMID: 34840068 DOI: 10.1016/j.drup.2021.100787] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth Perez-Ruiz
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB) and Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
43
|
Wang JY, Jiang MW, Li MY, Zhang ZH, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Jin HL, Ma J, Zuo HX, Jin X. Formononetin represses cervical tumorigenesis by interfering with the activation of PD-L1 through MYC and STAT3 downregulation. J Nutr Biochem 2021; 100:108899. [PMID: 34748924 DOI: 10.1016/j.jnutbio.2021.108899] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023]
Abstract
Astragalus membranaceus is a traditional Chinese medicine that regulates blood sugar levels, suppresses inflammation, protects the liver, and enhances immunity. In addition, A. membranaceus is also widely used in diet therapy and is a well-known health tonic. Formononetin is a natural product isolated from A. membranaceus that has multiple biological functions, including anti-cancer activity. However, the mechanism by which formononetin inhibits tumor growth is not fully understood. In this present study, we demonstrated that formononetin suppresses PD-L1 protein synthesis via reduction of MYC and STAT3 protein expression. Furthermore, formononetin markedly reduced the expression of MYC protein via the RAS/ERK signaling pathway and inhibited STAT3 activation through JAK1/STAT3 pathway. Co-immunoprecipitation experiments illustrated that formononetin suppresses protein expression of PD-L1 by interfering with the interaction between MYC and STAT3. Meanwhile, formononetin promoted PD-L1 protein degradation via TFEB and TFE3-mediated lysosome biogenesis. T cell killing assay revealed that formononetin could enhance the activity of cytotoxic T lymphocytes (CTLs) and restore ability to kill tumor cells in a co-culture system of T cells and tumor cells. In addition, formononetin inhibited cell proliferation, tube formation, cell migration, and promoted tumor cell apoptosis by suppressing PD-L1. Finally, the inhibitory effect of formononetin on tumor growth was confirmed in a murine xenograft model. The present study revealed the anti-tumor potential of formononetin, and the findings should support further research and development of anti-cancer drugs for cervical cancer.
Collapse
Affiliation(s)
- Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Wen Jiang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
44
|
Soldati C, Lopez‐Fabuel I, Wanderlingh LG, Garcia‐Macia M, Monfregola J, Esposito A, Napolitano G, Guevara‐Ferrer M, Scotto Rosato A, Krogsaeter EK, Paquet D, Grimm CM, Montefusco S, Braulke T, Storch S, Mole SE, De Matteis MA, Ballabio A, Sampaio JL, McKay T, Johannes L, Bolaños JP, Medina DL. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med 2021; 13:e13742. [PMID: 34411438 PMCID: PMC8495452 DOI: 10.15252/emmm.202013742] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.
Collapse
Affiliation(s)
- Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Irene Lopez‐Fabuel
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Luca G Wanderlingh
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Marina Garcia‐Macia
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | | | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | - Anna Scotto Rosato
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Einar K Krogsaeter
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD)University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Christian M Grimm
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Thomas Braulke
- Department Osteology & BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stephan Storch
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sara E Mole
- Medical Research Council Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Maria A De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Napoli Federico IINaplesItaly
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
- Baylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTXUSA
| | - Julio L Sampaio
- Cellular and Chemical Biology DepartmentInstitut Curie, U1143 INSERM, UMR3666 CNRSPSL Research UniversityParisFrance
| | - Tristan McKay
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterUK
| | - Ludger Johannes
- Cellular and Chemical Biology DepartmentInstitut Curie, U1143 INSERM, UMR3666 CNRSPSL Research UniversityParisFrance
| | - Juan P Bolaños
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
| |
Collapse
|
45
|
Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections. Sci Rep 2021; 11:19634. [PMID: 34608194 PMCID: PMC8490354 DOI: 10.1038/s41598-021-98980-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The persistent increase of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) infections negatively impacts Tuberculosis treatment outcomes. Host-directed therapies (HDT) pose an complementing strategy, particularly since Mtb is highly successful in evading host-defense by manipulating host-signaling pathways. Here, we screened a library containing autophagy-modulating compounds for their ability to inhibit intracellular Mtb-bacteria. Several active compounds were identified, including two drugs of the diphenylbutylpiperidine-class, Fluspirilene and Pimozide, commonly used as antipsychotics. Both molecules inhibited intracellular Mtb in pro- as well as anti-inflammatory primary human macrophages in a host-directed manner and synergized with conventional anti-bacterials. Importantly, these inhibitory effects extended to MDR-Mtb strains and the unrelated intracellular pathogen, Salmonella enterica serovar Typhimurium (Stm). Mechanistically Fluspirilene and Pimozide were shown to regulate autophagy and alter the lysosomal response, partly correlating with increased bacterial localization to autophago(lyso)somes. Pimozide's and Fluspirilene's efficacy was inhibited by antioxidants, suggesting involvement of the oxidative-stress response in Mtb growth control. Furthermore, Fluspirilene and especially Pimozide counteracted Mtb-induced STAT5 phosphorylation, thereby reducing Mtb phagosome-localized CISH that promotes phagosomal acidification. In conclusion, two approved antipsychotic drugs, Pimozide and Fluspirilene, constitute highly promising and rapidly translatable candidates for HDT against Mtb and Stm and act by modulating the autophagic/lysosomal response by multiple mechanisms.
Collapse
|
46
|
Avsec D, Jakoš Djordjevič AT, Kandušer M, Podgornik H, Škerget M, Mlinarič-Raščan I. Targeting Autophagy Triggers Apoptosis and Complements the Action of Venetoclax in Chronic Lymphocytic Leukemia Cells. Cancers (Basel) 2021; 13:cancers13184557. [PMID: 34572784 PMCID: PMC8466897 DOI: 10.3390/cancers13184557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Venetoclax is an antagonist of the antiapoptotic protein Bcl-2, and is currently approved for treatment of chronic lymphocytic leukemia (CLL). Recently, clinical use has shown that patients develop resistance to venetoclax. Therefore, the demand for novel targets for treatment of CLL remains high. One such target is autophagy, an evolutionarily old system for degradation of long-lived proteins and organelles that recovers the energy for normal cellular functions. Here, the antileukemic potential of different autophagy inhibitors was evaluated in patient-derived CLL cells. Among these, inhibitors of the AMPK/ULK1 pathway and late-stage autophagy were the most potent, with selective cytotoxic activities seen. They also show activity against CLL cells with unfavorable genetic characteristics. These inhibitors complement the cytotoxic action of venetoclax. In conclusion, targeting autophagy shows potential as a novel approach for treatment of patients with CLL. Abstract Continuous treatment of patients with chronic lymphocytic leukemia (CLL) with venetoclax, an antagonist of the anti-apoptotic protein Bcl-2, can result in resistance, which highlights the need for novel targets to trigger cell death in CLL. Venetoclax also induces autophagy by perturbing the Bcl-2/Beclin-1 complex, so autophagy might represent a target in CLL. Diverse autophagy inhibitors were assessed for cytotoxic activities against patient-derived CLL cells. The AMPK inhibitor dorsomorphin, the ULK1/2 inhibitor MRT68921, and the autophagosome–lysosome fusion inhibitor chloroquine demonstrated concentration-dependent and time-dependent cytotoxicity against CLL cells, even in those from hard-to-treat patients who carried del(11q) and del(17p). Dorsomorphin and MRT68921 but not chloroquine triggered caspase-dependent cell death. According to the metabolic activities of CLL cells and PBMCs following treatments with 10 µM dorsomorphin (13% vs. 84%), 10 µM MRT68921 (7% vs. 78%), and 25 µM chloroquine (41% vs. 107%), these autophagy inhibitors are selective toward CLL cells. In these CLL cells, venetoclax induced autophagy, and addition of dorsomorphin, MRT68921, or chloroquine showed potent synergistic cytotoxicities. Additionally, MRT68921 alone induced G2 arrest, but when combined with venetoclax, it triggered caspase-dependent cytotoxicity. These data provide the rationale to target autophagy and for autophagy inhibitors as potential treatments for patients with CLL.
Collapse
Affiliation(s)
- Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Alma Tana Jakoš Djordjevič
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Maša Kandušer
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
| | - Helena Podgornik
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
- University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia;
| | - Matevž Škerget
- University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia;
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (D.A.); (A.T.J.D.); (M.K.); (H.P.)
- Correspondence:
| |
Collapse
|
47
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
48
|
Yeom H, Hwang SH, Han BI, Lee M. Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition. Biomol Ther (Seoul) 2021; 29:434-444. [PMID: 33551379 PMCID: PMC8255135 DOI: 10.4062/biomolther.2020.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/07/2023] Open
Abstract
BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.
Collapse
Affiliation(s)
- Hojin Yeom
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sung-Hee Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Byeal-I Han
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.,Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
49
|
Ou M, Xu X, Chen Y, Li L, Zhang L, Liao Y, Sun W, Quach C, Feng J, Tang L. MDM2 induces EMT via the B‑Raf signaling pathway through 14‑3‑3. Oncol Rep 2021; 46:120. [PMID: 33955525 PMCID: PMC8129971 DOI: 10.3892/or.2021.8071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
MDM2 proto‑oncogene, E3 ubiquitin protein ligase (MDM2) is a well‑known oncogene and has been reported to be closely associated with epithelial‑to‑mesenchymal transition (EMT). The present study first demonstrated that the expression levels of MDM2 were markedly increased in TGF‑β‑induced EMT using quantitative PCR and western blotting. In addition, MDM2 was demonstrated to be associated with pathological grade in clinical glioma samples by immunohistochemical staining. Furthermore, overexpression of MDM2 promoted EMT in glioma, lung cancer and breast cancer cell lines using a scratch wound migration assay. Subsequently, the present study explored the mechanism by which MDM2 promoted EMT and revealed that MDM2 induced EMT by upregulating EMT‑related transcription factors via activation of the B‑Raf signaling pathway through tyrosine 3‑monooxygenase activation protein ε using RNA sequencing and western blotting. This mechanism depended on the p53 gene. Furthermore, in vivo experiments and the colony formation experiment demonstrated that MDM2 could promote tumor progression and induce EMT via the B‑Raf signaling pathway. Since EMT contributes to increased drug resistance in tumor cells, the present study also explored the relationship between MDM2 and drug sensitivity using an MTT assay, and identified that MDM2 promoted cell insensitivity to silibinin treatment in an EMT‑dependent manner. This finding is crucial for the development of cancer therapies and can also provide novel research avenues for future biological and clinical studies.
Collapse
Affiliation(s)
- Mengting Ou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Li Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Lu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yi Liao
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400044, P.R. China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
50
|
Schneidewind T, Brause A, Schölermann B, Sievers S, Pahl A, Sankar MG, Winzker M, Janning P, Kumar K, Ziegler S, Waldmann H. Combined morphological and proteome profiling reveals target-independent impairment of cholesterol homeostasis. Cell Chem Biol 2021; 28:1780-1794.e5. [PMID: 34214450 DOI: 10.1016/j.chembiol.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Unbiased profiling approaches are powerful tools for small-molecule target or mode-of-action deconvolution as they generate a holistic view of the bioactivity space. This is particularly important for non-protein targets that are difficult to identify with commonly applied target identification methods. Thereby, unbiased profiling can enable identification of novel bioactivity even for annotated compounds. We report the identification of a large bioactivity cluster comprised of numerous well-characterized drugs with different primary targets using a combination of the morphological Cell Painting Assay and proteome profiling. Cluster members alter cholesterol homeostasis and localization due to their physicochemical properties that lead to protonation and accumulation in lysosomes, an increase in lysosomal pH, and a disturbed cholesterol homeostasis. The identified cluster enables identification of modulators of cholesterol homeostasis and links regulation of genes or proteins involved in cholesterol synthesis or trafficking to physicochemical properties rather than to nominal targets.
Collapse
Affiliation(s)
- Tabea Schneidewind
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandra Brause
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Beate Schölermann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Axel Pahl
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Muthukumar G Sankar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Michael Winzker
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Petra Janning
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Kamal Kumar
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Slava Ziegler
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund 44227, Germany.
| |
Collapse
|