1
|
Ramzy A, Abdel-Halim M, Manie T, Elemam NM, Mansour S, Youness RA, Sebak A. In-vitro immune-modulation of triple-negative breast cancer through targeting miR-30a-5p/MALAT1 axis using nano-PDT combinational approach. Transl Oncol 2025; 55:102365. [PMID: 40132387 PMCID: PMC11984585 DOI: 10.1016/j.tranon.2025.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an immunogenic tumor; however, its tumor immune microenvironment (TIME) is densely packed with immune suppressive cytokines and immune checkpoints. The immune-suppressive features of TNBC TIME represent a considerable obstacle to any immunotherapeutic approach. The objective of this study was to develop a multimodal in-vitro strategy to manipulate the TNBC TIME and enhance patients' outcomes by employing carefully tailored hybrid chitosan-lipid Nanoparticles (CLNPs), metformin and chlorin e6 (Ce-6)-mediated PDT, alone or combined. Special focus is directed towards evaluation of the role of the selected treatment agents on the non-coding RNAs (ncRNAs) involved in tuning the immuno-oncogenic profile of TNBC, for instance, the miR-30a-5p/MALAT1 network. METHODS This study enrolled 30 BC patients. CLNPs and ce-6-loaded CLNPs with different physicochemical features were synthesized and optimized using ionotropic gelation. The intracellular concentration and effects on MDA-MB-231 cellular viability were investigated. UHPLC was used to quantify ce-6. MDA-MB-231 cells were transfected with miR-30a-5p oligonucleotides and MALAT1 siRNAs using lipofection to investigate the interaction between MIF, PD-L1, TNF-α, IL-10, and the miR-30a-5p/MALAT1 ceRNA network. qRT-PCR was used to evaluate IL-10, TNF-α, and MIF expression levels, whereas flow cytometry was used for PD-L1. RESULTS Immunophenotyping of BC biopsies revealed significantly elevated levels of immunosuppressive markers, including IL-10, TNF-α, PD-L1, and MIF in BC biopsies compared to its normal counterparts. Upon patient stratification, it was shown that MIF and IL-10 are upregulated in TNBC patients compared to non-TNBC patients. Nonetheless, immune suppressive biomarkers expression investigated in the current study was generally correlated with signs of poor prognosis. CLNPs with mean particle size ranging from 50-150 nm were obtained. CLNPs exhibited different patterns of intracellular uptake, cytotoxicity and modulation of the immunosuppressive markers based on their physicochemical properties and composition. In particular, CLNP4 in-vitro effectively reduced IL-10, TNF-α, MIF, and PD-L1. Loading of Ce-6 into CLNP4 (Ce6-CLNPs) improved the in-vitro cytotoxic effects via PDT. In addition, PDT with Ce6-CLNP4 enhanced the expression of tumor-suppressive miR-30a-5p and decreased oncogenic lncRNA MALAT1 expression in MDA-MB-231 cells, suggesting a potential for modulating the TNBC immuno-oncogenic profile. CONCLUSION This study demonstrated that CLNPs and Ce-6-mediated PDT can modulate several key immunosuppressive factors and the miR-30a-5p/MALAT1 axis in TNBC cells. These findings provide a rationale for further in-vivo investigation of this multimodal therapeutic strategy.
Collapse
Affiliation(s)
- Asmaa Ramzy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Tamer Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt; Faculty of Pharmaceutical Engineering, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Rana A Youness
- Department of Molecular Biology and Biochemistry, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt.
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
2
|
Ababneh E, Velez S, Zhao J. Immune evasion and resistance in breast cancer. Am J Cancer Res 2025; 15:1517-1539. [PMID: 40371160 PMCID: PMC12070088 DOI: 10.62347/pngt6996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 05/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignancy in females with an increasing incidence in the last decade. The previously observed decline in BC mortality rates has also slowed down recently with an increase in the incidence of invasive BC. BC has various molecular subtypes. Among these subtypes, triple-negative breast cancer (TNBC) represents the most aggressive BC, with a poor prognosis. Because lack of the hormonal or human epidermal growth factor receptor 2 (HER2) receptors, TNBC is resistant to hormonal and HER2 targeted therapy effective for other BC subtypes. The good news is that TNBC has recently been considered an immunologically 'hot' tumor. Therefore, immunotherapy, particularly immune checkpoint inhibitor therapy, represents a promising therapeutic approach TNBC. However, a considerable percentage of patients with TNBC do not respond well to immunotherapy, indicating that TNBC seems to adopt several mechanisms to evade immune surveillance. Thus, it is crucial to investigate the mechanisms underlying TNBC immune evasion and resistance to immunotherapy. In this review, we examine and discuss the most recently discovered mechanisms for BC, with a particular focus on TNBC, to evade the immune surveillance via kidnapping the immune checkpoints, suppressing the immune responses in tumor microenvironment and inhibiting the tumor antigen presentation. Evaluation of these mechanisms in BC will hopefully guide future immunotherapeutic research and clinical trials.
Collapse
Affiliation(s)
- Ebaa Ababneh
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| | - Sarah Velez
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| | - Jihe Zhao
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| |
Collapse
|
3
|
Hasan R, Zhao Z, Li Y, Liu Y, Zhang Y, Cheng K. Small extracellular vesicles (sEVs) in pancreatic cancer progression and diagnosis. J Control Release 2025; 380:269-282. [PMID: 39889882 PMCID: PMC11908897 DOI: 10.1016/j.jconrel.2025.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with poor prognostic outcomes, necessitating the exploration of novel biomarkers and therapeutic targets for early detection and effective treatment. Small extracellular vesicles (sEVs) secreted by cells, have gained considerable attention in cancer research due to their role in intercellular communication and their potential as non-invasive biomarkers. This review focuses on the role of sEVs in the progression of pancreatic cancer and their application as biomarkers. We delve into the biogenesis, composition, and functional implications of sEVs in pancreatic tumor biology, emphasizing their involvement in processes such as tumor growth, metastasis, immune modulation, and chemotherapy resistance. In addition, we discuss the challenges in isolating and characterizing sEVs. The review also highlights recent advances in the utilization of sEV-derived biomarkers for the early diagnosis, prognosis, and monitoring of pancreatic cancer. By synthesizing the latest findings, we aim to underscore the significance of sEVs in pancreatic cancer and their potential to revolutionize patient management through improved diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Reaid Hasan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
4
|
Pracha SH, Shrestha S, Ryan N, Upadhaya P, Lamenza FF, Jagadeesha S, Jordanides P, Roth P, Springer A, Oghumu S. Targeting macrophage migration inhibitory factor to inhibit T cell immunosuppression in the tumor microenvironment and improve cancer outcomes in head and neck squamous cell carcinoma. Oral Oncol 2025; 160:107126. [PMID: 39644862 PMCID: PMC11723708 DOI: 10.1016/j.oraloncology.2024.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 7th most common cancer globally with a 40-50 % survival rate. Although macrophage migration inhibitory factor (MIF) is overexpressed in most solid tumors and promotes tumor growth and invasion, the therapeutic potential of MIF inhibition in HNSCC is yet to be explored. In this study, we investigated the efficacy of CPSI-1306, a small-molecule MIF inhibitor, on HNSCC cell growth and cancer associated signaling pathways in vitro, as well as its impact on T cells in the HNSCC tumor microenvironment in vivo. CPSI-1306 did not reduce HNSCC cell proliferation in vitro, and mildly decreased VEGF and EGFR expression. However, CPSI-1306 significantly reduced tumor development in two orthotopic mouse oral cancer (MOC-2 and MOC-1) HNSCC models. Interestingly, CPSI-1306 treatment increased T cell infiltration to the tumor microenvironment and completely abrogated immunosuppressive checkpoint markers TIGIT, TIM3, and CTLA-4, but not PD-1 on tumor infiltrating CD8+ T cells. This was accompanied by increased CD8+ T cell expression of antitumoral cytokines IFN-γ and TNF-α in the draining lymph nodes and Granzyme B in the tumor microenvironment of CPSI-1306 treated tumor bearing mice. Our studies demonstrate that the small molecule MIF inhibitor CPSI-1306 potently inhibits T cell immunosuppression in the tumor microenvironment and reduces tumor growth in HNSCC. These studies open a novel therapeutic option for modulating anti-tumoral T cell immunity to improve HNSCC outcomes by targeting MIF.
Collapse
Affiliation(s)
- S Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Felipe F Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pete Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
5
|
Wang T, Li X, He F, Wang H, Guo S, Wang Y, Qi Y, Tian G, Liu R. New mechanistic insights into soil ecological risk assessment of arsenite (III) and arsenate (V):Cellular and molecular toxicity responses in Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136324. [PMID: 39515138 DOI: 10.1016/j.jhazmat.2024.136324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Inorganic arsenic (iAs) is a persistent bioaccumulation carcinogen that is most abundant in soils in the form of arsenite-As (III) and arsenate-As (V). However, there is currently very little explicit evidence about cytotoxicity of As on soil organisms. Moreover, toxicological data for iAs and proteotoxicity is shortage. The purpose of the present work is to elucidate the cytotoxicity mechanism of As (III) and As (V) to earthworms, a soil ecological sentinel species, and the molecular mechanisms by which As (III)/As (V) directly bind to antioxidative enzyme Cu/Zn-superoxide dismutase (Cu/Zn-SOD). Results indicate that iAs triggered cell membrane injury and genotoxicity. As (V) (56.15 %) induced lower cell viability than As (III) (61.88 %). Higher ROS and lipid peroxidation level in As (V) support greater cytotoxicity. Differences in cellular uptake due to valence induced diverse levels of oxidative stress and cytotoxicity. At the molecular level, As (III) (129.33 %) induced higher Cu/Zn-SOD activity than As (V) (110.75 %). Changes in backbone, secondary structure, amino acid microenvironment and particle size of Cu/Zn-SOD further revealed the mechanisms of differential molecular toxicity of As (III) and As (V). Binding reactions with Cu/Zn-SOD explain differences in molecular toxicity. Collective research showed that iAs-induced oxidative stress and binding reactions determine the difference of SOD activity between As (III) and As (V) at the cellular level. This work offers new insights into the health risk assessment of As.
Collapse
Affiliation(s)
- Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
6
|
Chen Y. Dissecting L-glutamine metabolism in acute myeloid leukemia: single-cell insights and therapeutic implications. J Transl Med 2024; 22:1002. [PMID: 39506790 PMCID: PMC11539756 DOI: 10.1186/s12967-024-05779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a rapidly progressing blood cancer. The prognosis of AML can be challenging, emphasizing the need for ongoing research and innovative approaches to improve outcomes in individuals affected by this formidable hematologic malignancy. METHODS In this study, we used single-cell RNA sequencing (scRNA-seq) from AML patients to investigate the impact of L-glutamine metabolism-related genes on disease progression. RESULTS Our analysis revealed increased glutamine-related activity in CD34 + pre-B cells, suggesting a potential regulatory role in tumorigenesis and AML progression. Furthermore, intercellular communication analysis revealed a significant signaling pathway involving macrophage migration inhibitory factor signaling through CD74 + CD44 within CD34 + pre-B cells, which transmit signals to pre-dendritic cells and monocytes. Ligands for this pathway were predominantly expressed in stromal cells, naïve T cells, and CD34 + pre-B cells. CD74, the pertinent receptor, was predominantly detected in a variety of cellular components, including stromal cells, pre-dendritic cells, plasmacytoid dendritic cells, and hematopoietic progenitors. The study's results provide insights into the possible interplay among these cell types and their collective contribution to the pathogenesis of AML. Moreover, we identified 10 genes associated with AML prognosis, including CCL5, CD52, CFD, FABP5, LGALS1, NUCB2, PSAP, S100A4, SPINK2, and VCAN. Among these, CCL5 and CD52 have been implicated in AML progression and are potential therapeutic targets. CONCLUSIONS This thorough examination of AML biology significantly deepens our grasp of the disease and presents pivotal information that could guide the creation of innovative treatment strategies for AML patients.
Collapse
Affiliation(s)
- Yanli Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
7
|
Seliem MA, Mohamadin AM, El-Sayed MIK, Ismail Y, El-Husseiny AA. The clinical signature of genetic variants and serum levels of macrophage migration inhibitory factor in Egyptian breast cancer patients. Breast Cancer Res Treat 2024; 208:57-66. [PMID: 38916819 PMCID: PMC11452551 DOI: 10.1007/s10549-024-07393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Macrophage migration inhibitory factor (MIF) is an integral cytokine for the modulation of both innate and adaptive immunity and is involved in the pathogenesis of various cancers. However, conflicting findings on the relationship between MIF polymorphisms and breast cancer (BC) have been reported in earlier research. We investigated the clinical value of serum MIF levels and the association between MIF rs1049829 and rs755622 variants with their serum levels and propensity to develop BC. METHODS A total of 133 treatment-naïve Egyptian BC females and 126 apparently healthy controls were matriculated in this case-control study. The serum MIF protein levels were quantified by ELISA, whereas the genotyping was executed utilizing the TaqMan® allelic discrimination assay. RESULTS A significant increase in the serum MIF level in BC cases was observed in comparison to control subjects (P < 0.0001), with a diagnostic potential to discriminate BC with 92.5% sensitivity and 73.7% specificity at a cut-off value > 9.47 ng/mL. Besides, a significant difference in serum MIF level was observed in BC cases with progesterone receptor (PR) negativity compared to those with PR positivity (P = 0.046). Moreover, a significant association was depicted between the rs1049829 variant of MIF gene and the protective effect against BC meanwhile the rs755622 variant demonstrated no significant link with BC risk. CONCLUSIONS This study revealed that serum MIF levels may be regarded as a promising serum tumor marker for BC. Also, the rs1049829 variant of the MIF gene is considered a protective candidate against BC.
Collapse
Affiliation(s)
- Mahmoud A Seliem
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Ahmed M Mohamadin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Mohamed I Kotb El-Sayed
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Helwan, Cairo, 11790, Egypt
| | - Yahia Ismail
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
8
|
Parsons A, Colon ES, Spasic M, Kurt BB, Swarbrick A, Freedman RA, Mittendorf EA, van Galen P, McAllister SS. Cell Populations in Human Breast Cancers are Molecularly and Biologically Distinct with Age. RESEARCH SQUARE 2024:rs.3.rs-5167339. [PMID: 39483921 PMCID: PMC11527348 DOI: 10.21203/rs.3.rs-5167339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging is associated with increased breast cancer risk and outcomes are worse for the oldest and youngest patients, regardless of subtype. It is not known how cells in the breast tumor microenvironment are impacted by age and how they might contribute to age-related disease pathology. Here, we discover age-associated differences in cell states and interactions in human estrogen receptor-positive (ER+) and triple-negative breast cancers (TNBC) using new computational analyses of existing single-cell gene expression data. Age-specific program enrichment (ASPEN) analysis reveals age-related changes, including increased tumor cell epithelial-mesenchymal transition, cancer-associated fibroblast inflammatory responses, and T cell stress responses and apoptosis in TNBC. ER+ breast cancer is dominated by increased cancer cell estrogen receptor 1 (ESR1) and luminal cell activity, reduced immune cell metabolism, and decreased vascular and extracellular matrix (ECM) remodeling with age. Cell interactome analysis reveals candidate signaling pathways that drive many of these cell states. This work lays a foundation for discovery of age-adapted therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Adrienne Parsons
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Sauras Colon
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Oncological Pathology and Bioinformatics Research Group, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tortosa, Tarragona, Spain
| | - Milos Spasic
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Busem Binboga Kurt
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel A. Freedman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Ryan N, Lamenza F, Shrestha S, Upadhaya P, Springer A, Jordanides P, Pracha H, Roth P, Kumar R, Wang Y, Vilgelm AE, Satoskar A, Oghumu S. Host derived macrophage migration inhibitory factor expression attenuates anti-tumoral immune cell accumulation and promotes immunosuppression in the tumor microenvironment of head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167345. [PMID: 38992847 PMCID: PMC11954649 DOI: 10.1016/j.bbadis.2024.167345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant public health concern worldwide. Immunomodulatory targets in the HNSCC tumor microenvironment are crucial to enhance the efficacy of HNSCC immunotherapy. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that has been linked to poor prognosis in many cancers, but the mechanistic role of MIF in HNSCC remains unclear. Using a murine orthotopic oral cancer model in Mif+/+ or Mif-/- mice, we determined the function of host derived MIF in HNSCC tumor development, metastasis as well as localized and systemic tumor immune responses. We observed that Mif-/- mice have decreased tumor growth and tumor burden compared to their wild-type counterparts. Flow cytometric analysis of immune populations within the primary tumor site revealed increased Th1 and cytotoxic T cell recruitment to the HNSCC tumor microenvironment. Within the tumors of Mif-/- mice, MIF deletion also enhanced the effector function of anti-tumoral effector CD8+ T cells as well as Th1 cells and decreased the accumulation of granulocytic myeloid derived suppressor cells (g-MDSCs) in the tumor microenvironment. Furthermore, MDSCs isolated from tumor bearing mice chemotactically respond to MIF in a dose dependent manner. Taken together, our results demonstrate a chemotactic and immunomodulatory role for host derived MIF in promoting HNSCC and suggest that MIF targeted immunomodulation is a promising approach for HNSCC treatment.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Felipe Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Pete Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Rathan Kumar
- Department of Hematology, The Ohio State University Wexner Medial Center, Columbus, OH 43210, USA
| | - Yinchong Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Abhay Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Khezrian A, Shojaeian A, Khaghani Boroujeni A, Amini R. Therapeutic Opportunities in Breast Cancer by Targeting Macrophage Migration Inhibitory Factor as a Pleiotropic Cytokine. Breast Cancer (Auckl) 2024; 18:11782234241276310. [PMID: 39246383 PMCID: PMC11380135 DOI: 10.1177/11782234241276310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
As a heterogeneous disease, breast cancer (BC) has been characterized by the uncontrolled proliferation of mammary epithelial cells. The tumor microenvironment (TME) also contains inflammatory cells, fibroblasts, the extracellular matrix (ECM), and soluble factors that all promote BC progression. In this sense, the macrophage migration inhibitory factor (MIF), a pleiotropic pro-inflammatory cytokine and an upstream regulator of the immune response, enhances breast tumorigenesis through escalating cancer cell proliferation, survival, angiogenesis, invasion, metastasis, and stemness, which then brings tumorigenic effects by activating key oncogenic signaling pathways and inducing immunosuppression. Against this background, this review was to summarize the current understanding of the MIF pathogenic mechanisms in cancer, particularly BC, and address the central role of this immunoregulatory cytokine in signaling pathways and breast tumorigenesis. Furthermore, different inhibitors, such as small molecules as well as antibodies (Abs) or small interfering RNA (siRNA) and their anti-tumor effects in BC studies were examined. Small molecules and other therapy target MIF. Considering MIF as a promising therapeutic target, further clinical evaluation of MIF-targeted agents in patients with BC was warranted.
Collapse
Affiliation(s)
- Ali Khezrian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Chen M, Liu H, Hong B, Xiao Y, Qian Y. MIF as a potential diagnostic and prognostic biomarker for triple-negative breast cancer that correlates with the polarization of M2 macrophages. FASEB J 2024; 38:e23696. [PMID: 38787620 DOI: 10.1096/fj.202400578r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays a crucial role in antitumor immunity. However, the role of MIF in influencing the tumor microenvironment (TME) and prognosis of triple-negative breast cancer (TNBC) remains to be elucidated. Using R, we analyzed single-cell RNA sequencing (scRNA-seq) data of 41 567 cells from 10 TNBC tumor samples and spatial transcriptomic data from two patients. Relationships between MIF expression and immune cell infiltration, clinicopathological stage, and survival prognosis were determined using samples from The Cancer Genome Atlas (TCGA) and validated in a clinical cohort using immunohistochemistry. Analysis of scRNA-seq data revealed that MIF secreted by epithelial cells in TNBC patients could regulate the polarization of macrophages into the M2 phenotype, which plays a key role in modulating the TME. Spatial transcriptomic data also showed that epithelial cells (tumor cells) and MIF were proximally located. Analysis of TCGA samples confirmed that tumor tissues of patients with high MIF expression were enriched with M2 macrophages and showed a higher T stage. High MIF expression was significantly associated with poor patient prognosis. Immunohistochemical staining showed high MIF expression was associated with younger patients and worse clinicopathological staging. MIF secreted by epithelial cells may represent a potential biomarker for the diagnosis and prognosis of TNBC and may promote TNBC invasion by remodeling the tumor immune microenvironment.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Mares-Quiñones MD, Galán-Vásquez E, Pérez-Rueda E, Pérez-Ishiwara DG, Medel-Flores MO, Gómez-García MDC. Identification of modules and key genes associated with breast cancer subtypes through network analysis. Sci Rep 2024; 14:12350. [PMID: 38811600 PMCID: PMC11137066 DOI: 10.1038/s41598-024-61908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer is the most common malignancy in women around the world. Intratumor and intertumoral heterogeneity persist in mammary tumors. Therefore, the identification of biomarkers is essential for the treatment of this malignancy. This study analyzed 28,143 genes expressed in 49 breast cancer cell lines using a Weighted Gene Co-expression Network Analysis to determine specific target proteins for Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes. Sixty-five modules were identified, of which five were characterized as having a high correlation with breast cancer subtypes. Genes overexpressed in the tumor were found to participate in the following mechanisms: regulation of the apoptotic process, transcriptional regulation, angiogenesis, signaling, and cellular survival. In particular, we identified the following genes, considered as hubs: IFIT3, an inhibitor of viral and cellular processes; ETS1, a transcription factor involved in cell death and tumorigenesis; ENSG00000259723 lncRNA, expressed in cancers; AL033519.3, a hypothetical gene; and TMEM86A, important for regulating keratinocyte membrane properties, considered as a key in Basal A, Basal B, Luminal A, Luminal B, and HER2 ampl breast cancer subtypes, respectively. The modules and genes identified in this work can be used to identify possible biomarkers or therapeutic targets in different breast cancer subtypes.
Collapse
Affiliation(s)
- María Daniela Mares-Quiñones
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | - D Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Del Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular, Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Wu Y, Shi XJ, Dai XY, Song TS, Li XL, Xie JJ. Biogated mesoporous silica nanoagents for inhibition of cell migration and combined cancer therapy. Mikrochim Acta 2024; 191:326. [PMID: 38740583 DOI: 10.1007/s00604-024-06401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.
Collapse
Affiliation(s)
- Yu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Jie Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xin-Yi Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tian Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiang-Ling Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Jing Jing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
14
|
Gupta S, Prem R, Sethy C, Shrivastava S, Singh M, Yadav P, Huddar VG, Prajapati PK, Roy A, Sundd M, Patel AK. Exploring Anticancer Properties of Medicinal Plants against Breast Cancer by Downregulating Human Epidermal Growth Factor Receptor 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9717-9734. [PMID: 38624258 DOI: 10.1021/acs.jafc.3c07565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Sunny Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashima Prem
- National Institute of Immunology, New Delhi 110067, India
| | - Chinmayee Sethy
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Saurabh Shrivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manju Singh
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Pramod Yadav
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - V G Huddar
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - P K Prajapati
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Monica Sundd
- National Institute of Immunology, New Delhi 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
15
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
16
|
Charan M, Jones TH, Ahirwar DK, Acharya N, Subramaniam VV, Ganju RK, Song JW. Induced electric fields inhibit breast cancer growth and metastasis by modulating the immune tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589256. [PMID: 38659909 PMCID: PMC11042207 DOI: 10.1101/2024.04.14.589256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite tremendous advances in oncology, metastatic triple-negative breast cancer remains difficult to treat and manage with established therapies. Here, we show in mice with orthotopic triple-negative breast tumors that alternating (100 kHz), and low intensity (<1 mV/cm) induced electric fields (iEFs) significantly reduced primary tumor growth and distant lung metastases. Non-contact iEF treatment can be delivered safely and non-invasively in vivo via a hollow, rectangular solenoid coil. We discovered that iEF treatment enhances anti-tumor immune responses at both the primary breast and secondary lung sites. In addition, iEF reduces immunosuppressive TME by reducing effector CD8+ T cell exhaustion and the infiltration of immunosuppressive immune cells. Furthermore, iEF treatment reduced lung metastasis by increasing CD8+ T cells and reducing immunosuppressive Gr1+ neutrophils in the lung microenvironment. We also observed that iEFs reduced the metastatic potential of cancer cells by inhibiting epithelial-to-mesenchymal transition. By introducing a non-invasive and non-toxic electrotherapeutic for inhibiting metastatic outgrowth and enhancing anti-tumor immune response in vivo, treatment with iEF technology could add to a paradigm-shifting strategy for cancer therapy.
Collapse
|
17
|
Yan L, Wu M, Wang T, Yuan H, Zhang X, Zhang H, Li T, Pandey V, Han X, Lobie PE, Zhu T. Breast Cancer Stem Cells Secrete MIF to Mediate Tumor Metabolic Reprogramming That Drives Immune Evasion. Cancer Res 2024; 84:1270-1285. [PMID: 38335272 DOI: 10.1158/0008-5472.can-23-2390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Reprogramming of energy metabolism exerts pivotal functions in cancer progression and immune surveillance. Identification of the mechanisms mediating metabolic changes in cancer may lead to improved strategies to suppress tumor growth and stimulate antitumor immunity. Here, it was observed that the secretomes of hypoxic breast cancer cells and breast cancer stem cells (BCSC) induced reprogramming of metabolic pathways, particularly glycolysis, in normoxic breast cancer cells. Screening of the BCSC secretome identified MIF as a pivotal factor potentiating glycolysis. Mechanistically, MIF increased c-MYC-mediated transcriptional upregulation of the glycolytic enzyme aldolase C by activating WNT/β-catenin signaling. Targeting MIF attenuated glycolysis and impaired xenograft growth and metastasis. MIF depletion in breast cancer cells also augmented intratumoral cytolytic CD8+ T cells and proinflammatory macrophages while decreasing regulatory T cells and tumor-associated neutrophils in the tumor microenvironment. Consequently, targeting MIF improved the therapeutic efficacy of immune checkpoint blockade in triple-negative breast cancer. Collectively, this study proposes MIF as an attractive therapeutic target to circumvent metabolic reprogramming and immunosuppression in breast cancer. SIGNIFICANCE MIF secreted by breast cancer stem cells induces metabolic reprogramming in bulk tumor cells and engenders an immunosuppressive microenvironment, identifying MIF targeting as a strategy to improve immunotherapy efficacy in breast cancer.
Collapse
Affiliation(s)
- Linlin Yan
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Wu
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Tianyu Wang
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Yuan
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao Zhang
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Huafeng Zhang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Vijay Pandey
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Xinghua Han
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute and Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Tao Zhu
- Division of Life Sciences and Medicine, Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
18
|
Parol‐Kulczyk M, Durślewicz J, Blonkowska L, Wujec R, Gzil A, Piątkowska D, Ligmanowska J, Grzanka D. Macrophage migration inhibitory factor (MIF) predicts survival in patients with clear cell renal cell carcinoma. J Pathol Clin Res 2024; 10:e12365. [PMID: 38436543 PMCID: PMC10910479 DOI: 10.1002/2056-4538.12365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common subtypes of renal cancer, with 30% of patients presenting with systemic disease at diagnosis. This aggressiveness is a consequence of the activation of epithelial-mesenchymal transition (EMT) caused by many different inducers or regulators, signaling cascades, epigenetic regulation, and the tumor environment. Alterations in EMT-related genes and transcription factors are associated with poor prognosis in ccRCC. EMT-related factors suppress E-cadherin expression and are associated with tumor progression, local invasion, and metastasis. The aim of this study was to investigate the expression levels and prognostic significance of macrophage migration inhibitory factor (MIF), β-catenin, and E-cadherin in ccRCC patients. We examined these proteins immunohistochemically in tumor areas and adjacent normal tissues resected from patients with ccRCC. Analysis of the cancer genome atlas (TCGA) cohort was performed to verify our results. Kaplan-Meier analysis showed that median overall survival (OS) was significantly shorter in patients with tumors exhibiting high MIFn and MIFm-c levels compared to those with low MIFn and MIFm-c levels (p = 0.03 and p = 0.007, respectively). In the TCGA cohort, there was a significant correlation between MIF expression and OS (p < 0.0001). In conclusion, this study provides further evidence for the biological and prognostic value of MIF in the context of EMT as a potential early prognostic marker for advanced-stage ccRCC.
Collapse
Affiliation(s)
- Martyna Parol‐Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Laura Blonkowska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Radosław Wujec
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Daria Piątkowska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Joanna Ligmanowska
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| |
Collapse
|
19
|
Zhang Y, Zheng L, Fang J, Ni K, Hu X, Ye L, Lai H, Yang T, Chen Z, He D. Macrophage migration inhibitory factor (MIF) promotes intervertebral disc degeneration through the NF-κB pathway, and the MIF inhibitor CPSI-1306 alleviates intervertebral disc degeneration in a mouse model. FASEB J 2023; 37:e23303. [PMID: 37983963 DOI: 10.1096/fj.202301441r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Lumbar intervertebral disc degeneration(IDD) is a prevalent inflammatory disease caused by many proinflammatory factors, such as TNF and IL-1β. Migration inhibitory factor (MIF) is an upstream inflammatory factor widely expressed in vivo that is associated with a variety of inflammatory diseases or malignant tumors and has potential therapeutic value in many diseases. We explored the role of MIF in intervertebral disc degeneration by regulating the content of exogenous MIF or the expression of MIF in cells. Upon inducing degeneration of nucleus pulposus (NP) cells with IL-1β, we found that the increase in intracellular and exogenous MIF promoted the catabolism induced by proinflammatory factors in NP cells, while silencing of the MIF gene alleviated the degeneration to some extent. In a mouse model, the intervertebral disc degeneration of MIF-KO mice was significantly less than that of wild-type mice. To explore the treatment of intervertebral disc degeneration, we selected the small-molecular MIF inhibitor CPSI-1306. CPSI-1306 had a therapeutic effect on intervertebral disc degeneration in the mouse model. In summary, we believe that MIF plays an important role in intervertebral disc degeneration and is a potential therapeutic target for the treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yejin Zhang
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Lin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Jiawei Fang
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Kainan Ni
- Department of Orthopaedics, The First People's Hospital of Fuyang, Hangzhou, China
| | - Xingyu Hu
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Hehuan Lai
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Tao Yang
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Zhenzhong Chen
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Dengwei He
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| |
Collapse
|
20
|
Cohen Shvefel S, Pai JA, Cao Y, Pal LR, Levy R, Yao W, Cheng K, Zemanek M, Bartok O, Weller C, Yin Y, Du PP, Yakubovich E, Orr I, Ben-Dor S, Oren R, Fellus-Alyagor L, Golani O, Goliand I, Ranmar D, Savchenko I, Ketrarou N, Schäffer AA, Ruppin E, Satpathy AT, Samuels Y. Temporal genomic analysis of melanoma rejection identifies regulators of tumor immune evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569032. [PMID: 38077050 PMCID: PMC10705560 DOI: 10.1101/2023.11.29.569032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Decreased intra-tumor heterogeneity (ITH) correlates with increased patient survival and immunotherapy response. However, even highly homogenous tumors may display variability in their aggressiveness, and how immunologic-factors impinge on their aggressiveness remains understudied. Here we studied the mechanisms responsible for the immune-escape of murine tumors with low ITH. We compared the temporal growth of homogeneous, genetically-similar single-cell clones that are rejected vs. those that are not-rejected after transplantation in-vivo using single-cell RNA sequencing and immunophenotyping. Non-rejected clones showed high infiltration of tumor-associated-macrophages (TAMs), lower T-cell infiltration, and increased T-cell exhaustion compared to rejected clones. Comparative analysis of rejection-associated gene expression programs, combined with in-vivo CRISPR knockout screens of candidate mediators, identified Mif (macrophage migration inhibitory factor) as a regulator of immune rejection. Mif knockout led to smaller tumors and reversed non-rejection-associated immune composition, particularly, leading to the reduction of immunosuppressive macrophage infiltration. Finally, we validated these results in melanoma patient data.
Collapse
Affiliation(s)
- Sapir Cohen Shvefel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joy A Pai
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yingying Cao
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lipika R Pal
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ronen Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Winnie Yao
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kuoyuan Cheng
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- MSD R&D (China) Co., Ltd
| | - Marie Zemanek
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osnat Bartok
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Weller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Elizabeta Yakubovich
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Orr
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Goliand
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Dean Ranmar
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Savchenko
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Ketrarou
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Sundaramurthi H, Tonelotto V, Wynne K, O'Connell F, O’Reilly E, Costa-Garcia M, Kovácsházi C, Kittel A, Marcone S, Blanco A, Pallinger E, Hambalkó S, Piulats Rodriguez JM, Ferdinandy P, O'Sullivan J, Matallanas D, Jensen LD, Giricz Z, Kennedy BN. Ergolide mediates anti-cancer effects on metastatic uveal melanoma cells and modulates their cellular and extracellular vesicle proteomes. OPEN RESEARCH EUROPE 2023; 3:88. [PMID: 37981907 PMCID: PMC10654492 DOI: 10.12688/openreseurope.15973.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Background Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. Methods Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. Results Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. Conclusions Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.
Collapse
Affiliation(s)
- Husvinee Sundaramurthi
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | - Valentina Tonelotto
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Eve O’Reilly
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
| | - Marcel Costa-Garcia
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Agnes Kittel
- Institute of Experimental Medicine, Budapest, Hungary
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
| | - Eva Pallinger
- Department of Genetics and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
| |
Collapse
|
22
|
Sundaramurthi H, Tonelotto V, Wynne K, O'Connell F, O’Reilly E, Costa-Garcia M, Kovácsházi C, Kittel A, Marcone S, Blanco A, Pallinger E, Hambalkó S, Piulats Rodriguez JM, Ferdinandy P, O'Sullivan J, Matallanas D, Jensen LD, Giricz Z, Kennedy BN. Ergolide mediates anti-cancer effects on metastatic uveal melanoma cells and modulates their cellular and extracellular vesicle proteomes. OPEN RESEARCH EUROPE 2023; 3:88. [PMID: 37981907 PMCID: PMC10654492 DOI: 10.12688/openreseurope.15973.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 07/01/2024]
Abstract
BACKGROUND Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. METHODS Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. RESULTS Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. CONCLUSIONS Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.
Collapse
Affiliation(s)
- Husvinee Sundaramurthi
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | - Valentina Tonelotto
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Eve O’Reilly
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
| | - Marcel Costa-Garcia
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Agnes Kittel
- Institute of Experimental Medicine, Budapest, Hungary
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Blanco
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
| | - Eva Pallinger
- Department of Genetics and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland
| |
Collapse
|
23
|
Chi Y, Yang G, Guo C, Zhang S, Hong L, Tang H, Sang X, Wang J, Ma J, Xue Y, Zeng F. Identification of Cellular Compositions in Different Microenvironments and Their Potential Impacts on Hematopoietic Stem Cells HSCs Using Single-Cell RNA Sequencing with Systematical Confirmation. Life (Basel) 2023; 13:2157. [PMID: 38004297 PMCID: PMC10671877 DOI: 10.3390/life13112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are stem cells that can differentiate into various blood cells and have long-term self-renewal capacity. At present, HSC transplantation is an effective therapeutic means for many malignant hematological diseases, such as aplastic hematological diseases and autoimmune diseases. The hematopoietic microenvironment affects the proliferation, differentiation, and homeostasis of HSCs. The regulatory effect of the hematopoietic microenvironment on HSCs is complex and has not been thoroughly studied yet. In this study, we focused on mononuclear cells (MNCs), which provided an important microenvironment for HSCs and established a methodological system for identifying cellular composition by means of multiple technologies and methods. First, single-cell RNA sequencing (scRNA-seq) technology was used to investigate the cellular composition of cells originating from different microenvironments during different stages of hematopoiesis, including mouse fetal liver mononuclear cells (FL-MNCs), bone marrow mononuclear cells (BM-MNCs), and in vitro-cultured fetal liver stromal cells. Second, bioinformatics analysis showed a higher proportion and stronger proliferation of the HSCs in FL-MNCs than those in BM-MNCs. On the other hand, macrophages in in vitro-cultured fetal liver stromal cells were enriched to about 76%. Differential gene expression analysis and Gene Ontology (GO) functional enrichment analysis demonstrated that fetal liver macrophages have strong cell migration and actin skeleton formation capabilities, allowing them to participate in the hematopoietic homeostasis through endocytosis and exocytosis. Last, various validation experiments such as quantitative real-time PCR (qRT-PCR), ELISA, and confocal image assays were performed on randomly selected target genes or proteins secreted by fetal liver macrophages to further demonstrate the potential relationship between HSCs and the cells inhabiting their microenvironment. This system, which integrates multiple methods, could be used to better understand the fate of these specific cells by determining regulation mechanism of both HSCs and macrophages and could also be extended to studies in other cellular models.
Collapse
Affiliation(s)
- Yanan Chi
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Shaoqing Zhang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Lei Hong
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Huixiang Tang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Xiao Sang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Jie Wang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Ji Ma
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yan Xue
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Fanyi Zeng
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
24
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
25
|
Battistoni A, Lantier L, di Tommaso A, Ducournau C, Lajoie L, Samimi M, Coënon L, Rivière C, Epardaud M, Hertereau L, Poupée-Beaugé A, Rieu J, Mévélec MN, Lee GS, Moiré N, Germon S, Dimier-Poisson I. Nasal administration of recombinant Neospora caninum secreting IL-15/IL-15Rα inhibits metastatic melanoma development in lung. J Immunother Cancer 2023; 11:jitc-2023-006683. [PMID: 37192784 DOI: 10.1136/jitc-2023-006683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Metastases are the leading cause of mortality in many cancer types and lungs are one of the most common sites of metastasis alongside the liver, brain, and bones. In melanoma, 85% of late-stage patients harbor lung metastases. A local administration could enhance the targeting of metastases while limiting the systemic cytotoxicity. Therefore, intranasal administration of immunotherapeutic agents seems to be a promising approach to preferentially target lung metastases and decrease their burden on cancer mortality. From observations that certain microorganisms induce an acute infection of the tumor microenvironment leading to a local reactivating immune response, microbial-mediated immunotherapy is a next-generation field of investigation in which immunotherapies are engineered to overcome immune surveillance and escape from microenvironmental cancer defenses. METHODS The goal of our study is to evaluate the potential of the intranasal administration of Neospora caninum in a syngeneic C57BL6 mouse model of B16F10 melanoma lung metastases. It also compares the antitumoral properties of a wild-type N. caninum versus N. caninum secreting human interleukin (IL)-15 fused to the sushi domain of the IL-15 receptor α chain, a potent activator of cellular immune responses. RESULTS The treatment of murine lung metastases by intranasal administration of an N. caninum engineered to secrete human IL-15 impairs lung metastases from further progression with only 0,08% of lung surface harboring metastases versus 4,4% in wild-type N. caninum treated mice and 36% in untreated mice. The control of tumor development is associated with a strong increase in numbers, within the lung, of natural killer cells, CD8+ T cells and macrophages, up to twofold, fivefold and sixfold, respectively. Analysis of expression levels of CD86 and CD206 on macrophages surface revealed a polarization of these macrophages towards an antitumoral M1 phenotype. CONCLUSION Administration of IL-15/IL-15Rα-secreting N. caninum through intranasal administration, a non-invasive route, lend further support to N. caninum-demonstrated clear potential as an effective and safe immunotherapeutic approach for the treatment of metastatic solid cancers, whose existing therapeutic options are scarce. Combination of this armed protozoa with an intranasal route could reinforce the existing therapeutic arsenal against cancer and narrow the spectrum of incurable cancers.
Collapse
Affiliation(s)
- Arthur Battistoni
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Louis Lantier
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
- Kymeris Santé SA, Tours, France
| | - Anne di Tommaso
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Céline Ducournau
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Laurie Lajoie
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Mahtab Samimi
- Department de Dermatologie, CHRU de Tours, Tours, France
| | - Loïs Coënon
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Clément Rivière
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | - Leslie Hertereau
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | - Juliette Rieu
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | | | - Nathalie Moiré
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | - Stephanie Germon
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | |
Collapse
|
26
|
Liu Y, Ge J, Chen Y, Liu T, Chen L, Liu C, Ma D, Chen Y, Cai Y, Xu Y, Shao Z, Yu K. Combined Single-Cell and Spatial Transcriptomics Reveal the Metabolic Evolvement of Breast Cancer during Early Dissemination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205395. [PMID: 36594618 PMCID: PMC9951304 DOI: 10.1002/advs.202205395] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Breast cancer is now the most frequently diagnosed malignancy, and metastasis remains the leading cause of death in breast cancer. However, little is known about the dynamic changes during the evolvement of dissemination. In this study, 65 968 cells from four patients with breast cancer and paired metastatic axillary lymph nodes are profiled using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics. A disseminated cancer cell cluster with high levels of oxidative phosphorylation (OXPHOS), including the upregulation of cytochrome C oxidase subunit 6C and dehydrogenase/reductase 2, is identified. The transition between glycolysis and OXPHOS when dissemination initiates is noticed. Furthermore, this distinct cell cluster is distributed along the tumor's leading edge. The findings here are verified in three different cohorts of breast cancer patients and an external scRNA-seq dataset, which includes eight patients with breast cancer and paired metastatic axillary lymph nodes. This work describes the dynamic metabolic evolvement of early disseminated breast cancer and reveals a switch between glycolysis and OXPHOS in breast cancer cells as the early event during lymph node metastasis.
Collapse
Affiliation(s)
- Yi‐Ming Liu
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Jing‐Yu Ge
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Yu‐Fei Chen
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Tong Liu
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiang150081P. R. China
| | - Lie Chen
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Cui‐Cui Liu
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Ding Ma
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Yi‐Yu Chen
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Yu‐Wen Cai
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ying‐Ying Xu
- Department of Breast SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoning110000P. R. China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
- Key Laboratory of Breast Cancer in ShanghaiShanghai200032P. R. China
| | - Ke‐Da Yu
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Key Laboratory of Breast Cancer in ShanghaiShanghai200032P. R. China
| |
Collapse
|
27
|
Dubey S, Ghosh S, Goswami D, Ghatak D, De R. Immunometabolic attributes and mitochondria-associated signaling of Tumor-Associated Macrophages in tumor microenvironment modulate cancer progression. Biochem Pharmacol 2023; 208:115369. [PMID: 36481347 DOI: 10.1016/j.bcp.2022.115369] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Macrophages are specialized immune cells, which have the capacity to phagocytize and destroy the target cells, including tumor cells. Some macrophages, however on their way to devour the cancer cells undergo a change due to a complex set of signaling pathways. They are induced to change into a polarized state known as M2. The M2 macrophages help in metastasis, tumor suppression, and angiogenesis. The macrophage which gets associated with this TME, are referred to as tumor-associated macrophages (TAMs). TAMS undergo a metabolic reprogramming toward oxidative metabolism for bioenergetic purposes (OXPHOS), fatty acid oxidation (FAO), decreased glycolysis, decreased metabolism via the PPP, and upregulation of arginase 1 (ARG1) which triggers immunosuppressive pro-tumor signaling in the tumor microenvironment (TME) in which mitochondria plays an instrumental role. Reports have suggested that a complex series of interactions and exchange of materials, such as cytokines, metabolic intermediates and sometimes even transfer of mitochondria take place between TAMS and other TME components most importantly cancer cells that reprogram their metabolism to encourage cell growth, division, epithelial to mesenchymal transition, that ultimately play an important role in tumor progression. This review will try to focus on the crosstalk between the TAMs with several other components of TME, what instrumental role mitochondria play in that and also try to explore some of the therapeutic options available in cancer patients.
Collapse
Affiliation(s)
- Srijan Dubey
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debosmita Goswami
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India.
| |
Collapse
|
28
|
Systemically Identifying Triple-Negative Breast Cancer Subtype-Specific Prognosis Signatures, Based on Single-Cell RNA-Seq Data. Cells 2023; 12:cells12030367. [PMID: 36766710 PMCID: PMC9913740 DOI: 10.3390/cells12030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with different molecular subtypes. Although progress has been made, the identification of TNBC subtype-associated biomarkers is still hindered by traditional RNA-seq or array technologies, since bulk data detected by them usually have some non-disease tissue samples, or they are confined to measure the averaged properties of whole tissues. To overcome these constraints and discover TNBC subtype-specific prognosis signatures (TSPSigs), we proposed a single-cell RNA-seq-based bioinformatics approach for identifying TSPSigs. Notably, the TSPSigs we developed mostly were found to be disease-related and involved in cancer development through investigating their enrichment analysis results. In addition, the prognostic power of TSPSigs was successfully confirmed in four independent validation datasets. The multivariate analysis results showed that TSPSigs in two TNBC subtypes-BL1 and LAR, were two independent prognostic factors. Further, analysis results of the TNBC cell lines revealed that the TSPSigs expressions and drug sensitivities had significant associations. Based on the preceding data, we concluded that TSPSigs could be exploited as novel candidate prognostic markers for TNBC patients and applied to individualized treatment in the future.
Collapse
|
29
|
Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers (Basel) 2023; 15:cancers15020395. [PMID: 36672343 PMCID: PMC9856758 DOI: 10.3390/cancers15020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.
Collapse
|
30
|
Abozaid OAR, Rashed LA, El-Sonbaty SM, Abu-Elftouh AI, Ahmed ESA. Mesenchymal Stem Cells and Selenium Nanoparticles Synergize with Low Dose of Gamma Radiation to Suppress Mammary Gland Carcinogenesis via Regulation of Tumor Microenvironment. Biol Trace Elem Res 2023; 201:338-352. [PMID: 35138531 PMCID: PMC9823077 DOI: 10.1007/s12011-022-03146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023]
Abstract
Breast cancer is one of the most prevalent and deadliest cancers among women in the world because of its aggressive behavior and inadequate response to conventional therapies. Mesenchymal stem cells (MSCs) combined with green nanomaterials could be an efficient tool in cell cancer therapy. This study examined the curative effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) with selenium nanoparticles (SeNPs) coated with fermented soymilk and a low dose of gamma radiation (LDR) in DMBA-induced mammary gland carcinoma in female rats. DMBA-induced mammary gland carcinoma as marked by an elevation of mRNA level of cancer promoter genes (Serpin and MIF, LOX-1, and COL1A1) and serum level of VEGF, TNF-α, TGF-β, CA15-3, and caspase-3 with the reduction in mRNA level of suppressor gene (FST and ADRP). These deleterious effects were hampered after treatment with BM-MSCs (1 × 106 cells/rat) once and daily administration of SeNPs (20 mg/kg body weight) and exposure once to (0.25 Gy) LDR. Finally, MSCs, SeNPs, and LDR notably modulated the expression of multiple tumor promoters and suppressor genes playing a role in breast cancer induction and suppression.
Collapse
Affiliation(s)
- Omayma A. R. Abozaid
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Laila A. Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sawsan M. El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Esraa S. A. Ahmed
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787 Egypt
| |
Collapse
|
31
|
Dutta D, Sen A, Satagopan J. Sparse canonical correlation to identify breast cancer related genes regulated by copy number aberrations. PLoS One 2022; 17:e0276886. [PMID: 36584096 PMCID: PMC9803132 DOI: 10.1371/journal.pone.0276886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Copy number aberrations (CNAs) in cancer affect disease outcomes by regulating molecular phenotypes, such as gene expressions, that drive important biological processes. To gain comprehensive insights into molecular biomarkers for cancer, it is critical to identify key groups of CNAs, the associated gene modules, regulatory modules, and their downstream effect on outcomes. METHODS In this paper, we demonstrate an innovative use of sparse canonical correlation analysis (sCCA) to effectively identify the ensemble of CNAs, and gene modules in the context of binary and censored disease endpoints. Our approach detects potentially orthogonal gene expression modules which are highly correlated with sets of CNA and then identifies the genes within these modules that are associated with the outcome. RESULTS Analyzing clinical and genomic data on 1,904 breast cancer patients from the METABRIC study, we found 14 gene modules to be regulated by groups of proximally located CNA sites. We validated this finding using an independent set of 1,077 breast invasive carcinoma samples from The Cancer Genome Atlas (TCGA). Our analysis of 7 clinical endpoints identified several novel and interpretable regulatory associations, highlighting the role of CNAs in key biological pathways and processes for breast cancer. Genes significantly associated with the outcomes were enriched for early estrogen response pathway, DNA repair pathways as well as targets of transcription factors such as E2F4, MYC, and ETS1 that have recognized roles in tumor characteristics and survival. Subsequent meta-analysis across the endpoints further identified several genes through the aggregation of weaker associations. CONCLUSIONS Our findings suggest that sCCA analysis can aggregate weaker associations to identify interpretable and important genes, modules, and clinically consequential pathways.
Collapse
Affiliation(s)
- Diptavo Dutta
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, United States of America
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: ,
| | - Ananda Sen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
- Department of Family Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Jaya Satagopan
- Department of Biostatistics and Epidemiology, Rutgers University, New Brunswick, NJ, United States of America
| |
Collapse
|
32
|
Eupalinolide O Induces Apoptosis in Human Triple-Negative Breast Cancer Cells via Modulating ROS Generation and Akt/p38 MAPK Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:8802453. [PMID: 36185619 PMCID: PMC9519309 DOI: 10.1155/2022/8802453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited therapeutic options. Eupalinolide O (EO) was reported to inhibit tumor growth. This study is aimed at exploring the role of EO on TNBC both in vivo and in vitro. Methods. In in vitro experiments, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assay were conducted to measure the impact of EO on TNBC cell growth at different concentrations and time points. Flow cytometry was conducted to evaluate cell apoptosis. Mitochondrial membrane potential (MMP) loss, caspase-3 activity, and reactive oxygen species (ROS) generation were assessed. The expressions of apoptosis-related mRNAs and Akt/p38 MAPK signaling pathway-related proteins were measured. In in vivo experiments, by injecting TNBC cells into the nude mice to induce xenograft tumor, mice were treated with EO for 20 days. Then, in vivo bioluminescence imaging system was utilized to monitor the growth and distribution of TNBC cells. Tumor volume and weight were also recorded. Hematoxylin-eosin (HE) staining and ELISA assay were applied to observe tumor tissue morphology and ROS levels. Furthermore, western blotting was conducted to observe the expression of apoptosis-related proteins and Akt/p38 MAPK signaling pathway-associated proteins. Results EO inhibited the cell viability and proliferation of TNBC cells but not normal epithelial cells. Furthermore, EO induced apoptosis, decreased MMP, and elevated caspase-3 activity and ROS content in TNBC cells. Meanwhile, the expression of apoptosis-related mRNAs and Akt/p38 MAPK pathway-related proteins was regulated by EO treatment. Besides, in vivo experiments demonstrated EO not only suppressed tumor growth, Ki67 expression, ROS generation, and Akt phosphorylation but also upregulated caspase-3 expression and p-38 phosphorylation. Conclusion EO may induce cell apoptosis in TNBC via regulating ROS generation and Akt/p38 MAPK pathway, indicating EO may be a candidate drug for TNBC.
Collapse
|
33
|
Recent Advances in PROTACs for Drug Targeted Protein Research. Int J Mol Sci 2022; 23:ijms231810328. [PMID: 36142231 PMCID: PMC9499226 DOI: 10.3390/ijms231810328] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) is a heterobifunctional molecule. Typically, PROTAC consists of two terminals which are the ligand of the protein of interest (POI) and the specific ligand of E3 ubiquitin ligase, respectively, via a suitable linker. PROTAC degradation of the target protein is performed through the ubiquitin–proteasome system (UPS). The general process is that PROTAC binds to the target protein and E3 ligase to form a ternary complex and label the target protein with ubiquitination. The ubiquitinated protein is recognized and degraded by the proteasome in the cell. At present, PROTAC, as a new type of drug, has been developed to degrade a variety of cancer target proteins and other disease target proteins, and has shown good curative effects on a variety of diseases. For example, PROTACs targeting AR, BR, BTK, Tau, IRAK4, and other proteins have shown unprecedented clinical efficacy in cancers, neurodegenerative diseases, inflammations, and other fields. Recently, PROTAC has entered a phase of rapid development, opening a new field for biomedical research and development. This paper reviews the various fields of targeted protein degradation by PROTAC in recent years and summarizes and prospects the hot targets and indications of PROTAC.
Collapse
|
34
|
Holter JC, Chang CW, Avendano A, Garg AA, Verma AK, Charan M, Ahirwar DK, Ganju RK, Song JW. Fibroblast-derived CXCL12 increases vascular permeability in a 3-D microfluidic model independent of extracellular matrix contractility. Front Bioeng Biotechnol 2022; 10:888431. [PMID: 36118583 PMCID: PMC9478647 DOI: 10.3389/fbioe.2022.888431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play an active role in remodeling the local tumor stroma to support tumor initiation, growth, invasion, metastasis, and therapeutic resistance. The CAF-secreted chemokine, CXCL12, has been directly implicated in the tumorigenic progression of carcinomas, including breast cancer. Using a 3-D in vitro microfluidic-based microtissue model, we demonstrate that stromal CXCL12 secreted by CAFs has a potent effect on increasing the vascular permeability of local blood microvessel analogues through paracrine signaling. Moreover, genetic deletion of fibroblast-specific CXCL12 significantly reduced vessel permeability compared to CXCL12 secreting CAFs within the recapitulated tumor microenvironment (TME). We suspected that fibroblast-mediated extracellular matrix (ECM) remodeling and contraction indirectly accounted for this change in vessel permeability. To this end, we investigated the autocrine effects of CXCL12 on fibroblast contractility and determined that antagonistic blocking of CXCL12 did not have a substantial effect on ECM contraction. Our findings indicate that fibroblast-secreted CXCL12 has a significant role in promoting a leakier endothelium hospitable to angiogenesis and tumor cell intravasation; however, autocrine CXCL12 is not the primary upstream trigger of CAF contractility.
Collapse
Affiliation(s)
- Jacob C. Holter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Ayush A. Garg
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States
| | - Ajeet K. Verma
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Manish Charan
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Dinesh K. Ahirwar
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, RJ, India
| | - Ramesh K. Ganju
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
35
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
36
|
He F, Yu H, Shi H, Li X, Chu S, Huo C, Liu R. Behavioral, histopathological, genetic, and organism-wide responses to phenanthrene-induced oxidative stress in Eisenia fetida earthworms in natural soil microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40012-40028. [PMID: 35113383 DOI: 10.1007/s11356-022-18990-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) contamination not only changes the quality of soil environment but also threatens to the soil organisms. There is lack of focus on the eco-toxicity potential of this contaminant in real soil in the current investigation. Here, we assessed the toxic effects of PHE on earthworms (Eisenia fetida) in natural soil matrix. PHE exhibited a relatively high toxicity to E. fetida in natural soil, with the LC50 determined to be 56.68 mg kg-1 after a 14-day exposure. Excessive ROS induced by PHE, leading to oxidative damage to biomacromolecules in E. fetida, including lipid peroxidation, protein carbonylation, and DNA damage. The antioxidant defense system (total antioxidant capacity, glutathione S-transferase, peroxidase, catalase, carboxylesterase, and superoxide dismutase) in E. fetida responded quickly to scavenge excess ROS and free radicals. Exposure to PHE resulted in earthworm avoidance responses (2.5 mg kg-1) and habitat function loss (10 mg kg-1). Histological observations indicated that the intestine, body wall, and seminal vesicle in E. fetida were severely damaged after exposure to high-dose PHE. Moreover, earthworm growth (weight change) and reproduction (cocoon production and the number of juvenile) were also inhibited after exposure to this pollutant. Furthermore, the integrated toxicity of PHE toward E. fetida at different doses and exposure times was assessed by the integrated biomarker response (IBR), which confirmed that PHE is more toxic to earthworms in the high-dose and long-term exposure groups. Our results showed that PHE exposure induced oxidative stress, disturbed antioxidant defense system, and caused oxidative damage in E. fetida. These effects can trigger behavior changes and damage histological structure, finally cause growth inhibition, genotoxicity, and reproductive toxicity in earthworms. The strength of this study is the comprehensive toxicity evaluation of PHE to earthworms and highlights the need to investigate the eco-toxicity potential of exogenous environmental pollutants in a real soil environment.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Hanmei Yu
- Yanzhou District Branch of Jining Ecological Environment Bureau, No. 159, Wenhua East Road , Yanzhou District, Jining City, Shandong Province, 272100, People's Republic of China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
37
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Xiao Z, Osipyan A, Song S, Chen D, Schut RA, van Merkerk R, van der Wouden PE, Cool RH, Quax WJ, Melgert BN, Poelarends GJ, Dekker FJ. Thieno[2,3- d]pyrimidine-2,4(1 H,3 H)-dione Derivative Inhibits d-Dopachrome Tautomerase Activity and Suppresses the Proliferation of Non-Small Cell Lung Cancer Cells. J Med Chem 2022; 65:2059-2077. [PMID: 35041425 PMCID: PMC8842245 DOI: 10.1021/acs.jmedchem.1c01598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 02/07/2023]
Abstract
The homologous cytokines macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT or MIF2) play key roles in cancers. Molecules binding to the MIF tautomerase active site interfere with its biological activity. In contrast, the lack of potent MIF2 inhibitors hinders the exploration of MIF2 as a drug target. In this work, screening of a focused compound collection enabled the identification of a MIF2 tautomerase inhibitor R110. Subsequent optimization provided inhibitor 5d with an IC50 of 1.0 μM for MIF2 tautomerase activity and a high selectivity over MIF. 5d suppressed the proliferation of non-small cell lung cancer cells in two-dimensional (2D) and three-dimensional (3D) cell cultures, which can be explained by the induction of cell cycle arrest via deactivation of the mitogen-activated protein kinase (MAPK) pathway. Thus, we discovered and characterized MIF2 inhibitors (5d) with improved antiproliferative activity in cellular models systems, which indicates the potential of targeting MIF2 in cancer treatment.
Collapse
Affiliation(s)
- Zhangping Xiao
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Angelina Osipyan
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Shanshan Song
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Molecular
Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Reinder A. Schut
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ronald van Merkerk
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Petra E. van der Wouden
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Robbert H. Cool
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J. Quax
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Barbro N. Melgert
- Molecular
Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University
Medical Center Groningen, Groningen Research Institute of Asthma and
COPD, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J. Dekker
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy
(GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
39
|
Mishra S, Charan M, Shukla RK, Agarwal P, Misri S, Verma AK, Ahirwar DK, Siddiqui J, Kaul K, Sahu N, Vyas K, Garg AA, Khan A, Miles WO, Song JW, Bhutani N, Ganju RK. cPLA2 blockade attenuates S100A7-mediated breast tumorigenicity by inhibiting the immunosuppressive tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:54. [PMID: 35135586 PMCID: PMC8822829 DOI: 10.1186/s13046-021-02221-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/11/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Molecular mechanisms underlying inflammation-associated breast tumor growth are poorly studied. S100A7, a pro-inflammatory molecule has been shown to enhance breast cancer growth and metastasis. However, the S100A7-mediated molecular mechanisms in enhancing tumor growth and metastasis are unclear. METHODS Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3 (1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effects of S100A7/cPLA2 inhibition on the recruitment of various immune cells. RESULTS In this study, we found that S100A7 and cPLA2 are highly expressed and correlate with decreased overall survival in breast cancer patients. Further mechanistic studies revealed that S100A7/RAGE signaling promotes the expression of cPLA2 to mediate its oncogenic effects. Pharmacological inhibition of cPLA2 suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models including transgenic and humanized patient-derived xenograft (PDX) mouse models. The attenuation of cPLA2 signaling reduced S100A7-mediated recruitment of immune-suppressive myeloid cells in the tumor microenvironment (TME). Interestingly, we discovered that the S100A7/cPLA2 axis enhances the immunosuppressive microenvironment by increasing prostaglandin E2 (PGE2). Furthermore, CO-Detection by indEXing (CODEX) imaging-based analyses revealed that cPLA2 inhibition increased the infiltration of activated and proliferating CD4+ and CD8+ T cells in the TME. In addition, CD163+ tumor associated-macrophages were positively associated with S100A7 and cPLA2 expression in malignant breast cancer patients. CONCLUSIONS Our study provides new mechanistic insights on the cross-talk between S100A7/cPLA2 in enhancing breast tumor growth and metastasis by generating an immunosuppressive TME that inhibits the infiltration of cytotoxic T cells. Furthermore, our studies indicate that S100A7/cPLA2 could be used as novel prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing aggressive breast cancer.
Collapse
Affiliation(s)
- Sanjay Mishra
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Manish Charan
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Rajni Kant Shukla
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Microbial, Infection & Immunity, The Ohio State University, Columbus, OH 43210 USA
| | - Pranay Agarwal
- grid.168010.e0000000419368956Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Swati Misri
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Ajeet K. Verma
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Dinesh K. Ahirwar
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Jalal Siddiqui
- grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210 USA
| | - Kirti Kaul
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Neety Sahu
- grid.168010.e0000000419368956Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Kunj Vyas
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| | - Ayush Arpit Garg
- grid.261331.40000 0001 2285 7943Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Anum Khan
- grid.168010.e0000000419368956School of Medicine, Cell Science Imaging Facility, Stanford University, Stanford, CA 94305 USA
| | - Wayne O. Miles
- grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210 USA
| | - Jonathan W. Song
- grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Nidhi Bhutani
- grid.168010.e0000000419368956Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Ramesh K. Ganju
- grid.261331.40000 0001 2285 7943Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
40
|
Bouras E, Karhunen V, Gill D, Huang J, Haycock PC, Gunter MJ, Johansson M, Brennan P, Key T, Lewis SJ, Martin RM, Murphy N, Platz EA, Travis R, Yarmolinsky J, Zuber V, Martin P, Katsoulis M, Freisling H, Nøst TH, Schulze MB, Dossus L, Hung RJ, Amos CI, Ahola-Olli A, Palaniswamy S, Männikkö M, Auvinen J, Herzig KH, Keinänen-Kiukaanniemi S, Lehtimäki T, Salomaa V, Raitakari O, Salmi M, Jalkanen S, Jarvelin MR, Dehghan A, Tsilidis KK. Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis. BMC Med 2022; 20:3. [PMID: 35012533 PMCID: PMC8750876 DOI: 10.1186/s12916-021-02193-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epidemiological and experimental evidence has linked chronic inflammation to cancer aetiology. It is unclear whether associations for specific inflammatory biomarkers are causal or due to bias. In order to examine whether altered genetically predicted concentration of circulating cytokines are associated with cancer development, we performed a two-sample Mendelian randomisation (MR) analysis. METHODS Up to 31,112 individuals of European descent were included in genome-wide association study (GWAS) meta-analyses of 47 circulating cytokines. Single nucleotide polymorphisms (SNPs) robustly associated with the cytokines, located in or close to their coding gene (cis), were used as instrumental variables. Inverse-variance weighted MR was used as the primary analysis, and the MR assumptions were evaluated in sensitivity and colocalization analyses and a false discovery rate (FDR) correction for multiple comparisons was applied. Corresponding germline GWAS summary data for five cancer outcomes (breast, endometrial, lung, ovarian, and prostate), and their subtypes were selected from the largest cancer-specific GWASs available (cases ranging from 12,906 for endometrial to 133,384 for breast cancer). RESULTS There was evidence of inverse associations of macrophage migration inhibitory factor with breast cancer (OR per SD = 0.88, 95% CI 0.83 to 0.94), interleukin-1 receptor antagonist with endometrial cancer (0.86, 0.80 to 0.93), interleukin-18 with lung cancer (0.87, 0.81 to 0.93), and beta-chemokine-RANTES with ovarian cancer (0.70, 0.57 to 0.85) and positive associations of monokine induced by gamma interferon with endometrial cancer (3.73, 1.86 to 7.47) and cutaneous T-cell attracting chemokine with lung cancer (1.51, 1.22 to 1.87). These associations were similar in sensitivity analyses and supported in colocalization analyses. CONCLUSIONS Our study adds to current knowledge on the role of specific inflammatory biomarker pathways in cancer aetiology. Further validation is needed to assess the potential of these cytokines as pharmacological or lifestyle targets for cancer prevention.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK
- Clinical Pharmacology and Therapeutics Section, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mattias Johansson
- Genomics Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Paul Brennan
- Genomics Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tim Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Michail Katsoulis
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, Arctic University of Norway, Tromsø, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nutehtal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | | | - Ari Ahola-Olli
- The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Saranya Palaniswamy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
41
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
42
|
Kaul K, Benej M, Mishra S, Ahirwar DK, Yadav M, Stanford KI, Jacob NK, Denko NC, Ganju RK. Slit2-Mediated Metabolic Reprogramming in Bone Marrow-Derived Macrophages Enhances Antitumor Immunity. Front Immunol 2021; 12:753477. [PMID: 34777365 PMCID: PMC8581492 DOI: 10.3389/fimmu.2021.753477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Slit2 exerts antitumor effects in various cancers; however, the underlying mechanism, especially its role in regulating the immune, especially in the bone marrow niche, system is still unknown. Elucidating the behavior of macrophages in tumor progression can potentially improve immunotherapy. Using a spontaneous mammary tumor virus promoter-polyoma middle T antigen (PyMT) breast cancer mouse model, we observed that Slit2 increased the abundance of antitumor M1 macrophage in the bone marrow upon differentiation in vitro. Moreover, myeloablated PyMT mice injected with Slit2-treated bone marrow allografts showed a marked reduction in tumor growth, with enhanced recruitment of M1 macrophage in their tumor stroma. Mechanistic studies revealed that Slit2 significantly enhanced glycolysis and reduced fatty acid oxidation in bone marrow-derived macrophages (BMDMs). Slit2 treatment also altered mitochondrial respiration metabolites in macrophages isolated from healthy human blood that were treated with plasma from breast cancer patients. Overall, this study, for the first time, shows that Slit2 increases BMDM polarization toward antitumor phenotype by modulating immune-metabolism. Furthermore, this study provides evidence that soluble Slit2 could be developed as novel therapeutic strategy to enhance antitumor immune response.
Collapse
Affiliation(s)
- Kirti Kaul
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Martin Benej
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Sanjay Mishra
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Marshleen Yadav
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Naduparambil K Jacob
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Nicholas C Denko
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
43
|
Bhardwaj P, Goda JS, Pai V, Chaudhari P, Mohanty B, Pai T, Vishwakarma K, Thorat R, Wadasadawala T, Banerjee R. Ultrasound augments on-demand breast tumor radiosensitization and apoptosis through a tri-responsive combinatorial delivery theranostic platform. NANOSCALE 2021; 13:17077-17092. [PMID: 34622906 DOI: 10.1039/d1nr04211d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced inoperable triple-negative breast cancer (TNBC) comprises aggressive tumors with a modest pathological response to neoadjuvant chemotherapy. The concomitant use of chemoradiotherapy improves the pathological response rates. However, the dose-dependent systemic toxicity of clinical radiosensitizers with poor circulation half-life and limited passive bioavailability limits their clinical utility. We address these challenges by rationally designing a stealth and tumor microenvironment responsive nano-conjugate platform for the ultrasound-mediated on-demand spatio-temporal delivery of plant flavonoid curcumin as a combinatorial regimen with clinically approved paclitaxel for the neoadjuvant chemoradiotherapy of locally advanced triple-negative breast cancer (TNBC). Interestingly, the focused application of ultrasound at the orthotopic TNBC xenograft of NOD-SCID mice facilitated the immediate infiltration of nano-conjugates at the tumor interstitium, and conferred in vivo safety over marketed paclitaxel formulation. In addition, curcumin significantly potentiated the in vivo chemoradiotherapeutic efficacy of paclitaxel upon loading into nano-conjugates. This gets further enhanced by the concurrent pulse of ultrasound, as confirmed by PET-CT imaging, along with a significant improvement in the mice survival. The quadrapeutic apoptotic effect by the combination of paclitaxel, curcumin, radiation, and ultrasound, along with a reduction in the tumor microvessel density and cell proliferation marker, confers the broad chemo-radiotherapeutic potential of this regimen for radio-responsive solid tumors, as well as metastatic niches.
Collapse
Affiliation(s)
- Prateek Bhardwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
| | - Jayant Sastri Goda
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India.
| | - Venkatesh Pai
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India.
| | - Pradip Chaudhari
- Animal house facility, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India
| | - Bhabani Mohanty
- Animal house facility, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India
| | - Trupti Pai
- Department of Pathology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India
| | - Komal Vishwakarma
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India.
| | - Rahul Thorat
- Animal house facility, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India
| | - Tabassum Wadasadawala
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, & Homi Bhabha National Institute, Maharashtra, India.
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
44
|
Ahirwar DK, Charan M, Mishra S, Verma AK, Shilo K, Ramaswamy B, Ganju RK. Slit2 Inhibits Breast Cancer Metastasis by Activating M1-Like Phagocytic and Antifibrotic Macrophages. Cancer Res 2021; 81:5255-5267. [PMID: 34400395 PMCID: PMC8631742 DOI: 10.1158/0008-5472.can-20-3909] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) are heterogeneous in nature and comprise antitumor M1-like (M1-TAM) or pro-tumor M2-like (M2-TAM) TAMs. M2-TAMs are a major component of stroma in breast tumors and enhance metastasis by reducing their phagocytic ability and increasing tumor fibrosis. However, the molecular mechanisms that regulate phenotypic plasticity of TAMs are not well known. Here we report a novel tumor suppressor Slit2 in breast cancer by regulating TAMs in the tumor microenvironment. Slit2 reduced the in vivo growth and metastasis of spontaneous and syngeneic mammary tumor and xenograft breast tumor models. Slit2 increased recruitment of M1-TAMs to the tumor and enhanced the ability of M1-TAMs to phagocytose tumor cells in vitro and in vivo. This Slit2-mediated increase in M1-TAM phagocytosis occurred via suppression of IL6. Slit2 was also shown to diminish fibrosis in breast cancer mouse models by increasing the expression of matrix metalloproteinase 13 in M1-TAMs. Analysis of patient samples showed high Slit2 expression strongly associated with better patient survival and inversely correlated with the abundance of CD163+ TAMs. Overall, these studies define the role of Slit2 in inhibiting metastasis by activating M1-TAMs and depleting tumor fibrosis. Furthermore, these findings suggest that Slit2 can be a promising immunotherapeutic agent to redirect TAMs to serve as tumor killers for aggressive and metastatic breast cancers. In addition, Slit2 expression along with CD163+ TAMs could be used as an improved prognostic biomarker in patients with breast cancer. SIGNIFICANCE: This study provides evidence that the antitumor effect of Slit2 in breast cancer occurs by activating the phagocytic activity of M1-like tumor-associated macrophages against tumor cells and diminishing fibrosis.
Collapse
Affiliation(s)
- Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Manish Charan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ajeet K Verma
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
45
|
He F, Liu Q, Jing M, Wan J, Huo C, Zong W, Tang J, Liu R. Toxic mechanism on phenanthrene-induced cytotoxicity, oxidative stress and activity changes of superoxide dismutase and catalase in earthworm (Eisenia foetida): A combined molecular and cellular study. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126302. [PMID: 34118541 DOI: 10.1016/j.jhazmat.2021.126302] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Phenanthrene (PHE) is an important organic compound, which is widespread in the soil environment and exhibits potential threats to soil organisms. Toxic effects of PHE to earthworms have been extensively studied, but toxic mechanisms on PHE-induced cytotoxicity and oxidative stress at the molecular and cellular levels have not been reported yet. Therefore, we explored the cytotoxicity and oxidative stress caused by PHE in earthworm coelomocytes and the interaction mechanism between PHE and the major antioxidant enzymes SOD/CAT. It was shown that high-dose PHE exposure induced the intracellular reactive oxygen species (ROS) generation, mediated lipid peroxidation, reduced total antioxidant capacity (T-AOC) in coelomocytes, and triggered oxidative stress, thus resulted in a strong cytotoxicity at higher concentrations (0.6-1.0 mg/L). The intracellular SOD/CAT activity in cells after PHE exposure were congruent with that in molecular levels, which the activity of SOD enhanced and CAT inhibited. Spectroscopic studies showed the SOD/CAT protein skeleton and secondary structure, as well as the micro-environment of aromatic amino acids were changed after PHE binding. Molecular docking indicated PHE preferentially docked to the surface of SOD. However, the key residues Tyr 357, His 74, and Asn 147 for activity were in the binding pocket, indicating PHE more likely to dock to the active center of CAT. In addition, H-bonding and hydrophobic force were the primary driving force in the binding interaction between PHE and SOD/CAT. This study indicates that PHE can induce cytotoxicity and oxidative damage to coelomocytes and unearthes the potential effects of PHE on earthworms.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Qiang Liu
- Solid Waste and Hazardous Chemicals Pollution Prevention and Control Center of Shandong Province, 145# Jingshi West Road, Jinan 250117, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
46
|
Xiao Z, Song S, Chen D, van Merkerk R, van der Wouden PE, Cool RH, Quax WJ, Poelarends GJ, Melgert BN, Dekker FJ. Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti-Proliferative Activity in Lung Cancer Cells. Angew Chem Int Ed Engl 2021; 60:17514-17521. [PMID: 34018657 PMCID: PMC8362126 DOI: 10.1002/anie.202101864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in protein-protein interactions that play key roles in inflammation and cancer. Current strategies to develop small molecule modulators of MIF functions are mainly restricted to the MIF tautomerase active site. Here, we use this site to develop proteolysis targeting chimera (PROTAC) in order to eliminate MIF from its protein-protein interaction network. We report the first potent MIF-directed PROTAC, denoted MD13, which induced almost complete MIF degradation at low micromolar concentrations with a DC50 around 100 nM in A549 cells. MD13 suppresses the proliferation of A549 cells, which can be explained by deactivation of the MAPK pathway and subsequent induction of cell cycle arrest at the G2/M phase. MD13 also exhibits antiproliferative effect in a 3D tumor spheroid model. In conclusion, we describe the first MIF-directed PROTAC (MD13) as a research tool, which also demonstrates the potential of PROTACs in cancer therapy.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Shanshan Song
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
- Molecular PharmacologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | | | - Petra E. van der Wouden
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Robbert H. Cool
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Wim J. Quax
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Gerrit J. Poelarends
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Barbro N. Melgert
- Molecular PharmacologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
- University Medical Center GroningenGroningen Research Institute of Asthma and COPDUniversity of GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| |
Collapse
|
47
|
Cotzomi-Ortega I, Nieto-Yañez O, Juárez-Avelar I, Rojas-Sanchez G, Montes-Alvarado JB, Reyes-Leyva J, Aguilar-Alonso P, Rodriguez-Sosa M, Maycotte P. Autophagy inhibition in breast cancer cells induces ROS-mediated MIF expression and M1 macrophage polarization. Cell Signal 2021; 86:110075. [PMID: 34229086 DOI: 10.1016/j.cellsig.2021.110075] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Autophagy can function as a survival mechanism for cancer cells and therefore, its inhibition is currently being explored as a therapy for different cancer types. For breast cancer, triple negative breast cancer (TNBC) is the subtype most sensitive to the inhibition of autophagy; but its inhibition has also been shown to promote ROS-dependent secretion of macrophage migration inhibitory factor (MIF), a pro-tumorigenic cytokine. In this work, we explore the role of MIF in breast cancer, the mechanism by which autophagy inhibition promotes MIF secretion and its effects on neighboring cancer cell signaling and macrophage polarization. We analyzed MIF mRNA expression levels in tumors from breast cancer patients from different subtypes and found that Luminal B, HER2 and Basal subtypes, which are associated to high proliferation, displayed high MIF levels. However, MIF expression had no prognostic relevance in any breast cancer subtype. In addition, we found that autophagy inhibition in 66cl4 TNBC cells increased intracellular Reactive Oxygen Species (ROS) levels, which increased MIF expression and secretion. MIF secreted from 66cl4 TNBC cells induced the activation of MIF-regulated pathways in syngeneic cell lines, increasing Akt phosphorylation in 4T1 cells and ERK phosphorylation in 67NR cells. Regarding MIF/ chemokine receptors, higher levels of CD74 and CXCR2 were found in TNBC tumor cell lines when compared to non-tumorigenic cells and CXCR7 was elevated in the highly metastatic 4T1 cell line. Finally, secreted MIF from autophagy deficient 66cl4 cells induced macrophage polarization towards the M1 subtype. Together, our results indicate an important role for the inhibition of autophagy in the regulation of ROS-mediated MIF gene expression and secretion, with paracrine effects on cancer cell signaling and pro-inflammatory repercussions in macrophage M1 polarization. This data should be considered when considering the inhibition of autophagy as a therapy for different types of cancer.
Collapse
Affiliation(s)
- Israel Cotzomi-Ortega
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Oscar Nieto-Yañez
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Guadalupe Rojas-Sanchez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - José Benito Montes-Alvarado
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico.
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| |
Collapse
|
48
|
Xiao Z, Song S, Chen D, Merkerk R, Wouden PE, Cool RH, Quax WJ, Poelarends GJ, Melgert BN, Dekker FJ. Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti‐Proliferative Activity in Lung Cancer Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Molecular Pharmacology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | | | - Petra E. Wouden
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Robbert H. Cool
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Wim J. Quax
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Gerrit J. Poelarends
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N. Melgert
- Molecular Pharmacology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- University Medical Center Groningen Groningen Research Institute of Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
49
|
Parol-Kulczyk M, Gzil A, Maciejewska J, Bodnar M, Grzanka D. Clinicopathological significance of the EMT-related proteins and their interrelationships in prostate cancer. An immunohistochemical study. PLoS One 2021; 16:e0253112. [PMID: 34157052 PMCID: PMC8219170 DOI: 10.1371/journal.pone.0253112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/29/2021] [Indexed: 11/19/2022] Open
Abstract
The chronic inflammation influences a microenvironment, where as a result of losing control over tissue homeostatic mechanisms, the carcinogenesis process may be induced. Inflammatory response cells can secrete a number of factors that support both initiation and progression of cancer and also they may consequently induct an epithelial-mesenchymal transition (EMT), the process responsible for development of distant metastasis. Macrophage migration inhibitory factor (MIF) acts as a pro-inflammatory cytokine that is considered as a link between chronic inflammation and tumor development. MIF can function as a modulator of important cancer-related genes expression, as well as an activator of signaling pathways that promotes the development of prostate cancer. The study was performed on FFPE tissues resected from patients who underwent radical prostatectomy. To investigate the relationship of studied proteins with involvement in tumor progression and initiation of epithelial-to-mesenchymal transition (EMT) process, we selected clinicopathological parameters related to tumor progression. Immunohistochemical analyses of MIF, SOX-4, β-catenin and E-cadherin were performed on TMA slides. We found a statistically significant correlation of overall β-catenin expression with the both lymph node metastasis (p<0.001) and presence of angioinvasion (p = 0.012). Membrane β-catenin expression was associated with distant metastasis (p = 0.021). In turn, nuclear MIF was correlated with lymph node metastasis (p = 0.003). The positive protein-protein correlations have been shown between the total β-catenin protein expression level with level of nuclear SOX-4 protein expression (r = 0.27; p<0.05) as well as negative correlation of β-catenin expression with level of nuclear MIF protein expression (r = -0.23; p<0.05). Our results seem promising and strongly highlight the potential role of MIF in development of nodal metastases as well as may confirm an involvement of β-catenin in disease spread in case of prostate cancer.
Collapse
Affiliation(s)
- Martyna Parol-Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Joanna Maciejewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
50
|
Wilkie T, Verma AK, Zhao H, Charan M, Ahirwar DK, Kant S, Pancholi V, Mishra S, Ganju RK. Lipopolysaccharide from the commensal microbiota of the breast enhances cancer growth: role of S100A7 and TLR4. Mol Oncol 2021; 16:1508-1522. [PMID: 33969603 PMCID: PMC8978520 DOI: 10.1002/1878-0261.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022] Open
Abstract
The role of commensal bacterial microbiota in the pathogenesis of human malignancies has been a research field of incomparable progress in recent years. Although breast tissue is commonly assumed to be sterile, recent studies suggest that human breast tissue may contain a bacterial microbiota. In this study, we used an immune‐competent orthotopic breast cancer mouse model to explore the existence of a unique and independent bacterial microbiota in breast tumors. We observed some similarities in breast cancer microbiota with skin; however, breast tumor microbiota was mainly enriched with Gram‐negative bacteria, serving as a primary source of lipopolysaccharide (LPS). In addition, dextran sulfate sodium (DSS) treatment in late‐stage tumor lesions increased LPS levels in the breast tissue environment. We also discovered an increased expression of S100A7 and low level of TLR4 in late‐stage tumors with or without DSS as compared to early‐stage tumor lesions. The treatment of breast cancer cells with LPS increased the expression of S100A7 in breast cancer cells in vitro. Furthermore, S100A7 overexpression downregulated TLR4 and upregulated RAGE expression in breast cancer cells. Analysis of human breast cancer samples also highlighted the inverse correlation between S100A7 and TLR4 expression. Overall, these findings suggest that the commensal microbiota of breast tissue may enhance breast tumor burden through a novel LPS/S100A7/TLR4/RAGE signaling axis.
Collapse
Affiliation(s)
- Tasha Wilkie
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Ajeet K Verma
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Helong Zhao
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Manish Charan
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Sashi Kant
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Vijay Pancholi
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University, Wexner Medical Center
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Wexner Medical Center
| |
Collapse
|