1
|
Xiao R, Pan J, Yang M, Liu H, Zhang A, Guo X, Zhou S. Regulating astrocyte phenotype by Lcn2 inhibition toward ischemic stroke therapy. Biomaterials 2025; 317:123102. [PMID: 39836995 DOI: 10.1016/j.biomaterials.2025.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Astrocytes can be reacted to "reactive astrocytes" after ischemia-reperfusion injury, in which A1 phenotype causes neuronal and oligodendrocyte death, whereas the A2 phenotype exerts neuroprotective effects, thus regulating reactive astrocyte to A2 type is a potential target for stroke therapy. Lcn2 level is highly associated with the phenotypic polarization of astrocytes. We found that silencing the Lcn2 gene by adeno-associated virus (AAV)-Lcn2 shRNA adenovirus resulted in a dramatic decrease in A1-type astrocytes and increase in A2 astrocytes in MCAO mice. Hence, a nanoplatform was developed for stroke therapy by inhibiting Lcn2. This system was fabricated by N-acetyl Pro-Gly-Pro peptide-decorated rod-shaped poly (lactic-co-glycolic acid) nanoparticles loading with rolipram (AP@R). The nanodrug can be efficiently taken up by neutrophils simultaneously through morphology-mediated passive targeting and Cxcr2 receptor-mediated active targeting, subsequently crossing the blood-brain barrier (BBB) by hitchhiking neutrophils. When accumulating at the brain parenchyma, the released rolipram can inhibit the Lcn2 level, thereby reversing the astrocyte phenotype to alleviate neuroinflammation and promote BBB repair. This work provides a new strategy for treating ischemic stroke.
Collapse
Affiliation(s)
- Renmin Xiao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jingmei Pan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Mengyi Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Hua Liu
- Department of neurology, the third people's hospital of Chengdu & the affiliated hospital of Southwest Jiaotong university, Chengdu 610031, PR China
| | - Aohan Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xing Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
2
|
Cutolo M, Vojinovic T, Paolino S, Campitiello R, Smith V. Cerebrovascular Involvement in Systemic Sclerosis. ACR Open Rheumatol 2025; 7:e70032. [PMID: 40223737 PMCID: PMC11995032 DOI: 10.1002/acr2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune rheumatic disease characterized by vascular damage, immune system dysregulation and fibrosis. The hallmark features include microvascular alterations and progressive tissue fibrosis, affecting skin, internal organs as well central and peripheral nervous system, adding to the disease's complexity and influencing overall outcomes. Of note, SSc has also been linked to macrovascular and cardiovascular involvement, including cerebrovascular damage as observed in stroke. Indeed, advanced neuroimaging is highly recommended for assessing cerebrovascular status in overt SSc to evaluate the complex interactions between cerebrovascular dysfunction and brain tissue damage and/or inflammation. Cerebral vasospasm detected by angiography, as well as an increase in subclinical cerebrovascular atherosclerosis observed by ultrasonography (carotid intimal medial thickness), are predictive for elevated stroke risk. Furthermore, a significant brain hypoperfusion detected by magnetic resonance imaging, along with white matter focal and/or diffuse signal abnormalities in SSc, have been found associated with concomitant peripheral microvascular damage detectable by "Active" and "Late" nail fold video capillaroscopy scleroderma patterns. Finally, the presence of calcifications in small arteries and arterioles found postmortem in the brain of SSc patients reinforces the hypothesis that SSc is associated with brain vascular remodeling. Furthermore, the current state of art shows an increased risk of cerebrovascular events in the SSc, confirmed by neuroimaging. Given the lack of updated comprehensive reviews on cerebrovascular involvement in SSc, we gathered the most relevant evidence on central nervous system damage, highlighting the underlying mechanisms, clinical implications, and potential advantages that neuroimaging may provide for its early detection.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal MedicineUniversity of GenovaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Tamara Vojinovic
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal MedicineUniversity of GenovaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal MedicineUniversity of GenovaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal MedicineUniversity of GenovaGenoaItaly
- Department of Experimental Medicine (DIMES)University of GenovaGenoaItaly
| | - Vanessa Smith
- Department of Internal MedicineGhent UniversityGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
- Unit for Molecular Immunology and InflammationVIB Inflammation Research CenterGhentBelgium
| |
Collapse
|
3
|
Wang Y, Wu W, Xu Y, Wu C, Han Q, Lu T, Zhang H, Jiao L, Zhang Y, Liu B, Yu XY, Li Y. Ncl liquid-liquid phase separation and SUMOylation mediate the stabilization of HIF-1α expression and promote pyroptosis in ischemic hindlimb. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167706. [PMID: 39933290 DOI: 10.1016/j.bbadis.2025.167706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/02/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a flexible intracellular compartment that modulates various pathological processes. Hypoxia-inducible factor-1α (HIF-1α) has been shown to play an essential role in inflammation after ischemic injury. However, the mechanisms underlying HIF-1α-induced inflammation in ischemic diseases have not been defined. This study found that HIF-1α mediated the progression of ischemia-induced muscle injury. After ischemic injury, SUMO1 is upregulated and rapidly activates NLRP3 inflammasome through the upregulation of HIF-1α, leading to enhanced inflammation and pyroptosis. Co-IP revealed an interaction between SUMO1 and HIF-1α and SUMOylation of HIF-1α at K477. Moreover, we demonstrated the important role of dynamic phase separation of Nucleolin (Ncl) in regulating HIF-1α mRNA stability through fluorescence recovery after photobleach (FRAP) analysis. The stability of HIF-1α is regulated by Ncl liquid-liquid phase separation and SUMOylation in ischemia-induced hindlimb injury. HIF-1α can promote the expression of NLRP3 and other inflammation-related molecules, leading to pyroptosis, suggesting that Ncl/LLPS/HIF-1α or SUMO1/HIF-1α pathway may be a new target for the treatment of inflammation in ischemic diseases. Although previous studies have found that HIF-1α is able to promote the expression of target genes after hypoxia, and these genes are used to maintain the stability of the intracellular environment to adapt to hypoxia. We found that HIF-1α is involved in the activation process of NLRP3 inflammasomes after hind limb ischemia, which enriches our understanding of the biological role of HIF-1α.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Weiliang Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yan Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Chengjie Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qingfang Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Tonggan Lu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Huiling Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Lijuan Jiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yu Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bin Liu
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
4
|
Zhang H, Du X, Gao T, Wang X, Zhang H, Yu M, Huang J. Microglia TRPC1 SUMOylation drives neuroinflammation after stroke by modulating NLRP3 activity via increasing TRPC1 interaction with ARRB2. Neurobiol Dis 2025; 206:106833. [PMID: 39921112 DOI: 10.1016/j.nbd.2025.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Microglial canonical transient receptor potential channel 1 (TRPC1) has been proposed to influence neuroinflammation after cerebral ischemia and reperfusion injury (CIRI), however, the underlying mechanism remains poorly understood. This study demonstrates that TRPC1 is modified by small ubiquitin-related modifier (SUMO)ylation. Our findings suggest a notable increase in microglial TRPC1 SUMOylation within both the middle cerebral artery occlusion reperfusion (MCAO/R) model and the in vitro oxygen-glucose deprivation/regeneration model. Mice with a loss of TRPC1 SUMOylation in microglia exhibited improved stroke outcomes including reduced behavior deficits, infarct volume, blood brain barrier damage as well as neuronal apoptosis. Mechanistically, SUMOylation of microglial TRPC1 exacerbated neutrophil infiltration into the peri-infarct area. Additionally, SUMOylated TRPC1 activates the Nod-like receptor protein (NLRP) 3 signaling pathway in microglia and stimulates multiple CC-chemokine ligands and C-X-C motif ligand chemokines after MCAO/R. SUMOylated TRPC1 facilitates the interaction between TRPC1 and β-arrestin2 (ARRB2), a negative regulator of NLRP3 inflammasome, which disrupts the NLPR3/ARRB2 complex and stimulates the activation of the NLPR3 signaling pathway. Furthermore, ARRB2 directly binds to the residues 46 to 61 of TRPC1 N terminus, which is enhanced by TRPC1 SUMOylation. Collectively, our findings demonstrate a previously unidentified mechanism by which SUMOylated TRPC1 in microglia regulates leukocyte infiltration after stroke, suggesting that the inhibition of microglial TRPC1 SUMOylation may provide therapeutic benefits for CIRI.
Collapse
Affiliation(s)
- Huinan Zhang
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xinzhe Du
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Tian Gao
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xing Wang
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Huifeng Zhang
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Manyang Yu
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jing Huang
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
5
|
Liu S, Zhang Y, Liang X, Yin L, He C. α-Cyperone Alleviates LPS-Induced Pyroptosis in Rat Aortic Endothelial Cells via the PI3K/AKT Signaling Pathway. Pharmaceuticals (Basel) 2025; 18:303. [PMID: 40143082 PMCID: PMC11945463 DOI: 10.3390/ph18030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Objective: To investigate the effect and underlying mechanism of α-cyperone in inhibiting pyroptosis in rat aortic endothelial cells (RAECs). Methods: Molecular docking technology was used to predict the potential binding affinity of α-cyperone to pyroptosis-related proteins. A pyroptosis model was established in RAECs using rat serum containing 10% LPS, with α-cyperone administered as a preventive treatment for 9 h. Cell viability and membrane integrity were assessed using propidium iodide (PI) staining and the CCK-8 assay. The release of IL-1β and IL-18 was quantified by ELISA. Western blot and RT-qPCR were performed to evaluate the expression levels of NLRP3, ASC, caspase-1 p20, and N-GSDMD. Additionally, RNA sequencing analysis was conducted to identify differentially expressed genes related to pyroptosis in LPS-induced RAECs following α-cyperone treatment, and key differential genes were validated by Western blot. Results: Molecular docking analysis reveals that α-cyperone exhibits a strong binding affinity to pyroptosis-related targets. α-Cyperone significantly improves LPS-induced cell viability (p < 0.001), reduces IL-1β and IL-18 release (p < 0.001), and downregulates the mRNA and protein expression of NLRP3, ASC, caspase-1, and GSDMD (p < 0.001). RNA sequencing indicates that α-cyperone primarily modulates pyroptosis-related gene expression in RAECs through the PI3K/AKT signaling pathway. Western blot validation further confirmed that α-cyperone effectively inhibited the protein expression of phosphorylated and total PI3K and AKT in RAECs (p < 0.001). Conclusions: α-Cyperone significantly alleviates morphological damage in the RAEC pyroptosis model, suppresses the release of proinflammatory cytokines IL-1β and IL-18, and potentially inhibits NLRP3/caspase-1/GSDMD activation through the PI3K/AKT signaling pathway, thereby attenuating LPS-induced pyroptosis in RAECs.
Collapse
Affiliation(s)
- Shuanghui Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (Y.Z.)
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
| | - Yankun Zhang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (Y.Z.)
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (L.Y.)
- Department of Clinical Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Xiao W, Shi H, Tian Y, Chen F, Xie Y, Han X, Zhang X, Cao Y, Liu W, Zhu Y, Liu Y, Jiang Y. Chaihuang Qingfu Pills Protect Against Acute Pancreatitis-Associated Acute Lung Injury Through MMP9-NLRP3-Pyroptosis Pathway. J Inflamm Res 2025; 18:2317-2338. [PMID: 39991664 PMCID: PMC11846512 DOI: 10.2147/jir.s501531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Background Severe acute pancreatitis associated with acute lung injury (SAP-ALI) is a critical condition with a high mortality rate. Investigating the pathogenesis of SAP-ALI and developing effective treatments are urgently needed. Chaihuang Qingfu Pills (CHQF), a traditional Chinese medicine modified from Qingyi Decoction, has been approved for treating acute pancreatitis (AP). However, its role in SAP-ALI and the underlying mechanisms remain unclear. Methods 92 AP patients were enrolled to observe the protective effect of CHQF on AP-ALI. L-arginine was used to establish the SAP-ALI animal model. UHPLC-MS/MS was used to identify the components of CHQF absorbed into the serum. Transcriptomics analysis, network pharmacology, and proteomics approaches were used to explore the underlying molecular mechanism. In vivo and in vitro experiments were conducted to validate the relevant findings. Results Clinical data indicated CHQF reduced the incidence of ALI from 58.33% to 36.36% in AP patients. Animal experiments demonstrated that CHQF decreased mortality, attenuated organ damage, inhibited systemic inflammation and reduced pathological injury in SAP mice. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) identified 146 SAP-related differentially expressed genes (DEGs) from the GSE194331 dataset. UHPLC-MS/MS analysis acquired 26 components absorbed into the blood and 271 associated therapeutic targets. Integrated analysis obtained 52 core targets of CHQF in treating SAP. Proteomic analysis identified 216 proteins associated with CHQF treatment in SAP-ALI. Joint analysis found that MMP9 and NLRP3 were the only common targets. Both in vivo and in vitro experiments confirmed that CHQF reduced the levels of MMP9 and NLRP3 and inhibited pyroptosis in alveolar macrophages (AMs) under SAP conditions. Moreover, the MMP9 inhibitor reduced NLRP3 expression and suppressed AMs pyroptosis. Conclusion CHQF exerted a protective role in SAP-ALI by inhibiting macrophage pyroptosis through the MMP9-NLRP3 pathway, providing a novel therapeutic strategy for SAP-ALI.
Collapse
Affiliation(s)
- Wen Xiao
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
- Department of Physiology, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Huiying Shi
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Yuan Tian
- Clinical School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Fang Chen
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
- Department of Physiology, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Yuanzhu Xie
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Xiaotong Han
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Xingwen Zhang
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Yan Cao
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Wen Liu
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Yimin Zhu
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Yanjuan Liu
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| | - Yu Jiang
- Institute of Emergency Medicine, Department of Emergency, the First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
7
|
Acioglu C, Elkabes S. Innate immune sensors and regulators at the blood brain barrier: focus on toll-like receptors and inflammasomes as mediators of neuro-immune crosstalk and inflammation. J Neuroinflammation 2025; 22:39. [PMID: 39955600 PMCID: PMC11829548 DOI: 10.1186/s12974-025-03360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
Cerebral endothelial cells (CEC) that form the brain capillaries are the principal constituents of the blood brain barrier (BBB), the main active interface between the blood and the brain which plays a protective role by restricting the infiltration of pathogens, harmful substances and immune cells into the brain while allowing the entry of essential nutrients. Aberrant CEC function often leads to increased permeability of the BBB altering the bidirectional communication between the brain and the bloodstream and facilitating the extravasation of immune cells into the brain. In addition to their role as essential gatekeepers of the BBB, CEC exhibit immune cell properties as they can receive and transmit signals between the blood and the brain partly via release of inflammatory effectors in pathological conditions. Cerebral endothelial cells express innate immune receptors, including toll like receptors (TLRs) and inflammasomes which are the first sensors of exogenous or endogenous dangers and initiators of immune and inflammatory responses which drive neural dysfunction and degeneration. Accumulating evidence indicates that activation of TLRs and inflammasomes in CEC compromises BBB integrity, promotes aberrant neuroimmune interactions and modulates both systemic and neuroinflammation, common pathological features of neurodegenerative and psychiatric diseases and central nervous system (CNS) infections and injuries. The goal of the present review is to provide an overview of the pivotal roles played by TLRs and inflammasomes in CEC function and discuss the molecular and cellular mechanisms by which they contribute to BBB disruption and neuroinflammation especially in the context of traumatic and ischemic brain injuries and brain infections. We will especially focus on the most recent advances and literature reports in the field to highlight the knowledge gaps. We will discuss future research directions that can advance our understanding of the central contribution of innate immune receptors to CEC and BBB dysfunction and the potential of innate immune receptors at the BBB as promising therapeutic targets in a wide variety of pathological conditions of the brain.
Collapse
Affiliation(s)
- Cigdem Acioglu
- New Jersey Medical School, The Genomics Center, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue MSB F-667, Newark, NJ, 07103, USA.
| |
Collapse
|
8
|
Lv J, Jiao Y, Zhao X, Kong X, Chen Y, Li L, Chen X, Tao X, Dong D. Examining the Impact of Microglia on Ischemic Stroke With an Emphasis on the Metabolism of Immune Cells. CNS Neurosci Ther 2025; 31:e70229. [PMID: 39945118 PMCID: PMC11822359 DOI: 10.1111/cns.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 01/11/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Ischemic stroke, a major cause of disability and the second leading cause of death, poses a significant public health challenge. Post-stroke inflammation can harm the blood-brain barrier and worsen neurological deficits, which are key factors in neuronal damage in patients with ischemic stroke. Microglia are crucial in the central nervous system, involved in inflammation, neuronal damage, and repair after cerebral ischemia. While cellular immune metabolism has been widely studied, its role in ischamic stroke remains unclear. AIM This review aims to examine how inflammation affects the phenotypic characteristics of immune cells after ischemic stroke and to explore the effects of the immune metabolic microenvironment on the phenotypic profiles and functions of microglia in ischemic stroke. METHOD The review refers to the available literature in PubMed, searching for critical terms related to Ischemic stroke, neuroinflammation, microglia, and immunometabolism. RESULT In this review, we found that during stroke progression, microglia can dynamically switch between pro-inflammatory and anti-inflammatory phenotypes. Microglial glycometabolism includes oxidative phosphorylation and glycolysis, and lipid metabolism involves lipid synthesis and breakdown. Modulating the production of inflammatory mediator precursors can induce an anti-inflammatory phenotype in microglia. CONCLUSION Thus, studying microglial metabolic pathways and their products may offer new insights for ischemic stroke treatment.
Collapse
Affiliation(s)
- Jing Lv
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yang Jiao
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianChina
| | - Xinya Zhao
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xin Kong
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianChina
| | - Yanwei Chen
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lu Li
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuyang Chen
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xufeng Tao
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Deshi Dong
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
9
|
Pan Y, Nie L, Chen W, Guan D, Li Y, Yang C, Duan L, Wan T, Zhuang L, Lai J, Li W, Zhang Y, Wang Q. Buyang Huanwu Decoction prevents hemorrhagic transformation after delayed t-PA infusion via inhibiting NLRP3 inflammasome/pyroptosis associated with microglial PGC-1α. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119275. [PMID: 39710159 DOI: 10.1016/j.jep.2024.119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Delayed tissue-type plasminogen activator (t-PA) thrombolysis, which has a restrictive therapeutic time window within 4.5 h following ischemic stroke (IS), increases the risk of hemorrhagic transformation (HT) and subsequent neurotoxicity. Studies have shown that the NLRP3 inflammasome activation reversely regulated by the PGC-1α leads to microglial polarization and pyroptosis to cause damage to nerve cells and the blood-brain barrier. The effect of Buyang Huanwu Decoction (BHD), a traditional Chinese medicine prescription widely used in the recovery of IS, on HT injury after delayed t-PA treatment had been found with clinical studies, while the underlying mechanisms are reminded to be further clarified. AIM OF THE STUDY This study sought to investigate the therapeutic effect and the underlying mechanisms of BHD in ischemic rat brains with delayed t-PA treatment. MATERIALS AND METHODS The components of BHD extracts were identified by High Performance Liquid Chromatography (HPLC) and the effective components in the rat brains from BHD were analyzed by liquid chromatography-mass spectrometry (LC-MS). In vivo experiment was carried out by 5 h of middle cerebral artery occlusion (MCAO) following by t-PA infusion for 0.5 h plus reperfusion 19 h, while the in vitro BV2 cells were stimulated by lipopolysaccharide (LPS)-adenosine triphosphate (ATP) to activate microglia pyroptosis, of which the MCC950 (NLRP3 inhibitor) and NSA (GSDMD inhibitor) were adopted as reverse validation. PGC-1α siRNA was utilized to study the mechanisms of BHD against microglial polarization and pyroptosis in BV2 cells. RESULTS HPLC analysis demonstrated the fingerprint of BHD with six reference standards (Hydroxysafflor yellow A, Calycosin-7-glucoside, Paeoniflorin, Formononetin, Ferulic acid and Amygdalin), the last two of which can be found in rat brains by LC-MS analysis. In the following experiments, we found the major discoveries as follow: (1) BHD improved the neurological outcomes, the structural integrity of the blood-brain barrier and the neuronal structure in HT rats with MCAO following by delayed t-PA infusion; (2) the presence of t-PA promoted the suppression of PGC-1α and the activation of microglial NLRP3 inflammasome and pyroptosis in the HT rats; (3) BHD promoted the transformation of microglia from M1 to M2 type for inhibiting inflammatory response; (4) BHD restrained NLRP3 inflammasome/pyroptosis activation in microglia, prevented the translocations of NF-κB into the nucleus, as well as enhanced microglia-specific PGC-1α in ischemic rats following t-PA delayed thrombolysis; (5) BHD suppressed NLRP3 inflammasome assembly and increased PGC-1α expression in the LPS-ATP-induced BV2 cells; (6) PGC-1α silencing withdrew the protective role of BHD against NLRP3 inflammasome/pyroptosis. CONCLUSION Mechanistically, BHD existed the protective effect against HT injury after delayed t-PA treatment through up-regulating microglial PGC-1α to inhibit NLRP3 inflammasome and pyroptosis, and serves as a potential adjuvant therapy for HT injury.
Collapse
Affiliation(s)
- Yaru Pan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Nie
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Weitao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Danni Guan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yongyi Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Cong Yang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lining Duan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Ting Wan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Lixing Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jianbo Lai
- Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, Guangdong, 518100, China
| | - Weirong Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yifan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
10
|
Wang J, Tang H, Tian J, Xie Y, Wu Y. Extracellular vesicles of ADSCs inhibit ischemic stroke-induced pyroptosis through Gbp3 regulation: A role for the NLRP3/GSDMD signaling pathway. Int Immunopharmacol 2025; 146:113881. [PMID: 39721455 DOI: 10.1016/j.intimp.2024.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Mounting data indicates that extracellular vesicles (EVs) have the potential to improve the injury after a stroke. Pyroptosis is a recently identified kind of programmed cell death that initiates an inflammatory reaction. We aimed to ascertain the therapeutic implications and possible molecular processes of EVs obtained from adipose-derived stem cells (ADSCs) in inhibiting pyroptosis in ischemic stroke. METHODS The investigation employed transient middle cerebral artery occlusion (tMCAO) rat model and a BV2 of oxygen-glucose deprivation/reoxygenation (OGD/R) to ascertain ADSCs-EVs implications on inflammation and pyroptosis as assessed by neurological deficit scores, TTC staining, IHC, HE, CCK8, WB, ELISA, and immunofluorescence. RNA-Seq was performed on BV2 cells in the control, OGD/R, and OGD/R + ADSCs-EVs groups. Using sequencing data analysis, in the OGD/R group, we screened the upregulated genes regulated by EVs, overlapped with 74 pyroptosis-related genes, and identified Guanylate-binding protein 2 (Gbp2) and Guanylate-binding protein 3 (Gbp3) as key genes. Following the validation of the sequencing results in vivo and in vitro, Gbp3 was selected for further study. To test its regulatory effects on inflammation and pyroptosis, Gbp3 was knocked down and overexpressed in vitro. RESULTS The administration of ADSCs-EVs resulted in a significant reduction in neurological involvement scores and reduced infarct volume in rats with tMCAO. They were also protective against BV-2 cells after OGD/R. In vivo and in vitro, ADSCs-EVs inhibited inflammatory response and pyroptosis after stroke. The outcomes of the RNA-Seq data analysis manifested that the protective implications of EVs after stroke are mediated by the modulation of inflammation-related mechanisms. Moreover, treatment with EVs led to a significant reduction in Gbp3 expression in post-ischemic brain tissue and cells. When Gbp3 was knocked down, the expression of inflammatory molecules and proteins linked to pyroptosis had a significant decline. When Gbp3 was overexpressed, the opposite results were obtained. CONCLUSIONS ADSCs-EVs modulate the NLRP3/GSDMD signaling pathway via Gbp3 to attenuate the inflammatory response and reduce pyroptosis that occurs after stroke.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jianan Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yibo Xie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yun Wu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
11
|
Yoon SH, Kim CY, Lee E, Lee C, Lee KS, Lee J, Park H, Choi B, Hwang I, Kim J, Kim TG, Son J, Hyun YM, Hong S, Yu JW. Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice. Nat Commun 2025; 16:699. [PMID: 39814731 PMCID: PMC11735931 DOI: 10.1038/s41467-025-56097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain. Using a mouse model with cell-specific hyperactivation of NLRP3, we identify microglial NLRP3 activation as essential for peripheral inflammation-induced BBB disruption. Conversely, NLRP3 and microglial gasdermin D (GSDMD) deficiency markedly attenuates lipopolysaccharide-induced BBB breakdown. Notably, IL-1β is not required for NLRP3-GSDMD-mediated BBB disruption. Instead, microglial NLRP3-GSDMD axis upregulates CXCL chemokines and matrix metalloproteinases around BBB via producing GDF-15, promoting the recruitment of CXCR2-containing neutrophils. Inhibition of neutrophil infiltration and matrix metalloproteinase activity significantly reduces NLRP3-mediated BBB impairment. Collectively, these findings reveal the important role of NLRP3-driven chemokine production in BBB disintegration, suggesting potential therapeutic targets to mitigate neuroinflammation.
Collapse
Affiliation(s)
- Sung-Hyun Yoon
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae Youn Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eunju Lee
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, USA
| | - Changjun Lee
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Seo Lee
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Lee
- Department of Anatomy, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hana Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bokeum Choi
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junhan Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Yao M, Wang X, Lin H, Shu H, Xu Z, Tang L, Guo W, Xu P. LncRNA Tug1 Regulates Post-Stroke Microglial Pyroptosis via PINK1/Parkin-Mediated Mitophagy. Inflammation 2024:10.1007/s10753-024-02219-8. [PMID: 39739230 DOI: 10.1007/s10753-024-02219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear. This study explores the biological role of Tug1 and its potential mechanisms in regulating pyroptosis in microglia. We utilized an in vivo photothrombosis (PT) mice model and an in vitro oxygen-glucose deprivation and reperfusion (OGD/R) BV2 cell model to explore the mechanisms underlying ischemic stroke. Initially, we assessed the expression levels of Tug1 in the OGD/R model in vitro and the PT model in vivo. Subsequently, we investigated the impact of Tug1 on microglial pyroptosis by knocking down Tug1, silencing the PTEN-induced putative kinase 1 (Pink1) expression, and employing the mitophagy inhibitor mdivi-1. Tug1 exacerbated microglial pyroptosis by inhibiting mitophagy in both in vivo and in vitro models. The increase in mitophagy observed following Tug1 knockdown was reversed by either silencing Pink1 expression or using the mitophagy inhibitor mdivi-1. This reversal resulted in exacerbated pyroptosis and worsened neurological damage. Further mechanistic studies revealed that Tug1 knockdown significantly reduced microglial pyroptosis and alleviated neuronal damage by enhancing PINK1/Parkin-mediated mitophagy. For the first time, this study reveals that Tug1 promotes hypoxia-induced microglial pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy, potentially providing a promising therapeutic target for ischemic inflammatory injury.
Collapse
Affiliation(s)
- Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaobei Wang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Hao Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Shu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zongtang Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Liu H, Shen Y, Huang Z, Jiang T, Huang P, Yang M, Zhang X, Xu W, Ni G. Electroacupuncture extends the time window of thrombolytic therapy in rats by reducing disruptions of blood-brain barrier and inhibiting GSDMD-mediated pyroptosis. Brain Res 2024; 1845:149296. [PMID: 39490956 DOI: 10.1016/j.brainres.2024.149296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Thrombolytic therapy is the primary treatment for acute ischemic stroke. Extending the therapeutic time window can effectively reduce the harmful side effects associated with thrombolytic therapy. Although electroacupuncture (EA) has been shown to extend this time window, the specific mechanisms remain unclear. METHODS We developed an embolic stroke model in rats and administered EA during thrombolytic therapy with recombinant tissue plasminogen activator (rt-PA) either 4.5 or 6 h after stroke onset. Neurological deficits were evaluated at 2 and 24 h post-stroke. Brain tissue was collected for analysis using 2,3,5-triphenyl tetrazolium chloride (TTC) staining, water content measurement, blood-brain barrier (BBB) permeability assessment, electron microscopy, and TUNEL assay. Immunofluorescence staining, western blotting, and enzyme-linked immunosorbent assays were employed to quantify the expression of proteins related to BBB integrity and pyroptosis. RESULTS Neuronal damage and BBB disruption along with increased expression of pyroptosis-related proteins were observed following thrombolytic therapy at the 6-hour mark. EA treatment improved neurological outcomes, reduced infarct volume, and alleviated BBB disruption. EA also inhibited the expression of matrix metalloproteinase 9 (MMP9) and enhanced the expression of tissue inhibitor of metalloproteinases 1 (TIMP1), helping to maintain BBB integrity. Furthermore, EA reduced the expression of pyroptosis-related proteins, including gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18). EA also reduced the co-expression of GSDMD and MMP9 in brain tissues. CONCLUSIONS EA may be a promising therapeutic approach for extending the thrombolytic therapy window by protecting the BBB and inhibiting GSDMD-mediated pyroptosis.
Collapse
Affiliation(s)
- Huanhuan Liu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiting Shen
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Huang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Jiang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peiyan Huang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengning Yang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinchang Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wentao Xu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Guangxia Ni
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
15
|
Wu J, Shyy M, Shyy JYJ, Xiao H. Role of inflammasomes in endothelial dysfunction. Br J Pharmacol 2024; 181:4958-4972. [PMID: 38952037 DOI: 10.1111/bph.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 05/04/2024] [Indexed: 07/03/2024] Open
Abstract
The vascular endothelium dynamically responds to environmental cues and plays a pivotal role in maintaining vascular homeostasis by regulating vasomotor tone, blood cell trafficking, permeability and immune responses. However, endothelial dysfunction results in various pathological conditions. Inflammasomes are large intracellular multimeric complexes activated by pathogens or cellular damage. Inflammasomes in vascular endothelial cells (ECs) initiate innate immune responses, which have emerged as significant mediators in endothelial dysfunction, contributing to the pathophysiology of an array of diseases. This review summarizes the mechanisms and ramifications of inflammasomes in ECs and related vascular diseases such as atherosclerosis, abdominal aortic aneurysm, stroke, and lung and kidney diseases. We also discuss potential drugs targeting EC inflammasomes and their applications in treating vascular diseases.
Collapse
Affiliation(s)
- Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
| | - Melody Shyy
- Biological Sciences, University of California, Santa Barbara, Santa Barbara, California, USA
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Beijing, China
| |
Collapse
|
16
|
Potere N, Bonaventura A, Abbate A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2371-2395. [PMID: 39387118 PMCID: PMC11602387 DOI: 10.1161/atvbaha.124.319980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cardiovascular disease (CVD) remains a major health burden despite significant therapeutic advances accomplished over the last decades. It is widely and increasingly recognized that systemic inflammation not only represents a major cardiovascular risk and prognostic factor but also plays key pathogenic roles in CVD development and progression. Despite compelling preclinical evidence suggesting large potential of anti-inflammatory pharmacological interventions across numerous CVDs, clinical translation remains incomplete, mainly due to (1) yet undefined molecular signaling; (2) challenges of safety and efficacy profile of anti-inflammatory drugs; and (3) difficulties in identifying optimal patient candidates and responders to anti-inflammatory therapeutics, as well as optimal therapeutic windows. Randomized controlled trials demonstrated the safety/efficacy of canakinumab and colchicine in secondary cardiovascular prevention, providing confirmation for the involvement of a specific inflammatory pathway (NLRP3 [NACHT, LRR, and PYD domain-containing protein 3] inflammasome/IL [interleukin]-1β) in atherosclerotic CVD. Colchicine was recently approved by the US Food and Drug Administration for this indication. Diverse anti-inflammatory drugs targeting distinct inflammatory pathways are widely used for the management of other CVDs including myocarditis and pericarditis. Ongoing research efforts are directed to implementing anti-inflammatory therapeutic strategies across a growing number of CVDs, through repurposing of available anti-inflammatory drugs and development of novel anti-inflammatory compounds, which are herein concisely discussed. This review also summarizes the main characteristics and findings of completed and upcoming randomized controlled trials directly targeting inflammation in CVDs, and discusses major challenges and future perspectives in the exciting and constantly expanding landscape of cardioimmunology.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Aldo Bonaventura
- Medical Center, S.C. Medicina Generale 1, Ospedale di Circolo and Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi Varese, Italy
| | - Antonio Abbate
- Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
17
|
Zeng ZJ, Lin X, Yang L, Li Y, Gao W. Activation of Inflammasomes and Relevant Modulators for the Treatment of Microglia-mediated Neuroinflammation in Ischemic Stroke. Mol Neurobiol 2024; 61:10792-10804. [PMID: 38789893 DOI: 10.1007/s12035-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
As the brain's resident immune patrol, microglia mediate endogenous immune responses to central nervous system injury in ischemic stroke, thereby eliciting either neuroprotective or neurotoxic effects. The association of microglia-mediated neuroinflammation with the progression of ischemic stroke is evident through diverse signaling pathways, notably involving inflammasomes. Within microglia, inflammasomes play a pivotal role in promoting the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), facilitating pyroptosis, and triggering immune infiltration, ultimately leading to neuronal cell dysfunction. Addressing the persistent and widespread inflammation holds promise as a breakthrough in enhancing the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
18
|
Zhu HJ, Sun YY, Du Y, Zhou SY, Qu Y, Pang SY, Zhu S, Yang Y, Guo ZN. Albumin-seeking near-infrared-II probe evaluating blood-brain barrier disruption in stroke. J Nanobiotechnology 2024; 22:742. [PMID: 39609666 PMCID: PMC11606037 DOI: 10.1186/s12951-024-02973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/03/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption after stroke is closely associated with brain tissue edema and neuronal injury, which requires accurate assessment. However, there is a lack of appropriate BBB imaging modality in vivo. As albumin in the blood could cross the damaged BBB into brain tissue after stroke, it serves as a biomarker for BBB disruption. Therefore, we aimed to develop an albumin-seeking near-infrared (NIR) probe to assess BBB disruption in stroke. RESULTS We proposed a chemoselective strategy for seeking albumin with NIR dyes and identified an optimal probe to evaluate BBB disruption in stroke. The probe combined a NIR fluorescent dye with inherent albumin-targeting moieties and exhibited high affinity and selectivity for binding to albumin. Using a mouse stroke model, the probe displayed a high-resolution visualization of the location and extent of BBB disruption in vivo and correlated well with BBB leakage measured by Evans blue ex vivo. A dual-channel NIR-II imaging was successfully used to simultaneously assess BBB disruption and cerebral perfusion after stroke. Furthermore, we applied this method to dynamically evaluate the BBB disruption process and reperfusion of thrombolytic therapy in a stroke model in real time, which showed excellent application value. CONCLUSIONS We developed an albumin-seeking NIR probe that accurately evaluated BBB disruption in a safe, non-invasive and real-time manner in various stroke models, and has a great potential guiding stroke treatment in a real-time manner.
Collapse
Affiliation(s)
- Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Shu-Yan Pang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China.
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China.
| |
Collapse
|
19
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
20
|
Guo Y, Liu J, Du X, Qi M, She T, Xue K, Wu X, Xu L, Peng B, Zhang Y, Liu Y, Jiang Z, Li X, Yuan Y. ROS exhaustion reverses the effects of hyperbaric oxygen on hemorrhagic transformation through reactivating microglia in post-stroke hyperglycemic mice. Sci Rep 2024; 14:21410. [PMID: 39271781 PMCID: PMC11399301 DOI: 10.1038/s41598-024-72454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Acute ischemic stroke (AIS) is a major global health concern due to its high mortality and disability rates. Hemorrhagic transformation, a common complication of AIS, leads to poor prognosis yet lacks effective treatments. Preclinical studies indicate that hyperbaric oxygen (HBO) treatment within 12 h of AIS onset alleviates ischemia/reperfusion injuries, including hemorrhagic transformation. However, clinical trials have yielded conflicting results, suggesting some underlying mechanisms remain unclear. In this study, we confirmed that HBO treatments beginning within 1 h post reperfusion significantly alleviated the haemorrhage and neurological deficits in hyperglycemic transient middle cerebral arterial occlusion (tMCAO) mice, partly due to the inhibition of the NLRP3 inflammasome-mediated pro-inflammatory response in microglia. Notably, reactive oxygen species (ROS) mediate the anti-inflammatory and protective effect of early HBO treatment, as edaravone and N-Acetyl-L-Cysteine (NAC), two commonly used antioxidants, reversed the suppressive effect of HBO treatment on NLRP3 inflammasome-mediated inflammation in microglia. Furthermore, NAC countered the protective effect of early HBO treatment in tMCAO mice with hyperglycemia. These findings support that early HBO treatment is a promising intervention for AIS, however, caution is warranted when combining antioxidants with HBO treatment. Further assessments are needed to clarify the role of antioxidants in HBO therapy for AIS.
Collapse
Affiliation(s)
- Yanan Guo
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Jiayi Liu
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Jiang'an Health Institute of Rugao Municipal Health Commission, Nantong, 226534, China
| | - Xingyue Du
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Mian Qi
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Tongping She
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Ke Xue
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xinhe Wu
- The Second People's Hospital of Nantong, Nantong, 226002, China
| | - Lihua Xu
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Bin Peng
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Yunfeng Zhang
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Yufeng Liu
- The Second People's Hospital of Nantong, Nantong, 226002, China
| | - Zhenglin Jiang
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xia Li
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| | - Yuan Yuan
- Institute of Special Environmental Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| |
Collapse
|
21
|
Lu W, Wen J. Crosstalk Among Glial Cells in the Blood-Brain Barrier Injury After Ischemic Stroke. Mol Neurobiol 2024; 61:6161-6174. [PMID: 38279077 DOI: 10.1007/s12035-024-03939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Blood-brain barrier (BBB) is comprised of brain microvascular endothelial cells (ECs), astrocytes, perivascular microglia, pericytes, neuronal processes, and the basal lamina. As a complex and dynamic interface between the blood and the central nervous system (CNS), BBB is responsible for transporting nutrients essential for the normal metabolism of brain cells and hinders many toxic compounds entering into the CNS. The loss of BBB integrity following stroke induces tissue damage, inflammation, edema, and neural dysfunction. Thus, BBB disruption is an important pathophysiological process of acute ischemic stroke. Understanding the mechanism underlying BBB disruption can uncover more promising biological targets for developing treatments for ischemic stroke. Ischemic stroke-induced activation of microglia and astrocytes leads to increased production of inflammatory mediators, containing chemokines, cytokines, matrix metalloproteinases (MMPs), etc., which are important factors in the pathological process of BBB breakdown. In this review, we discussed the current knowledges about the vital and dual roles of astrocytes and microglia on the BBB breakdown during ischemic stroke. Specifically, we provided an updated overview of phenotypic transformation of microglia and astrocytes, as well as uncovered the crosstalk among astrocyte, microglia, and oligodendrocyte in the BBB disruption following ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
22
|
Wang C, Gu L, Zhang Y, Gao Y, Jian Z, Xiong X. Bibliometric insights into the inflammation and mitochondrial stress in ischemic stroke. Exp Neurol 2024; 378:114845. [PMID: 38838802 DOI: 10.1016/j.expneurol.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Feng G, Wu Z, Yang L, Wang K, Wang H. β-hydroxybutyrate and ischemic stroke: roles and mechanisms. Mol Brain 2024; 17:48. [PMID: 39075604 PMCID: PMC11287974 DOI: 10.1186/s13041-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
Stroke is a significant global burden, causing extensive morbidity and mortality. In metabolic states where glucose is limited, ketone bodies, predominantly β-hydroxybutyrate (BHB), act as alternative fuel sources. Elevated levels of BHB have been found in the ischemic hemispheres of animal models of stroke, supporting its role in the pathophysiology of cerebral ischemia. Clinically, higher serum and urinary BHB concentrations have been associated with adverse outcomes in ischemic stroke, highlighting its potential utility as a prognostic biomarker. In both animal and cellular models, exogenous BHB administration has exhibited neuroprotective effects, reduction of infarct size, and improvement of neurological outcomes. In this review, we focus on the role of BHB before and after ischemic stroke, with an emphasis on the therapeutic potential and mechanisms of ketone administration after ischemic stroke.
Collapse
Affiliation(s)
- Ge Feng
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Zongkai Wu
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Leyi Yang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Kaimeng Wang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, China.
| |
Collapse
|
24
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
25
|
Luo H, Li Y, Xie J, Xu C, Zhang Z, Li M, Xia B, Shi Z, Lin L. Effect and mechanism of Prunella vulgaris L. extract on alleviating lipopolysaccharide-induced acute mastitis in protecting the blood-milk barrier and reducing inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117998. [PMID: 38484956 DOI: 10.1016/j.jep.2024.117998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1β, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Hongshan Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Chunfang Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhe Shi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
26
|
Li Q, Zhang C, Sun X, Wang M, Zhang Z, Chen R, Sun X. Forsythoside B alleviates cerebral ischemia-reperfusion injury via inhibiting NLRP3 inflammasome mediated by SIRT1 activation. PLoS One 2024; 19:e0305541. [PMID: 38885233 PMCID: PMC11182500 DOI: 10.1371/journal.pone.0305541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The inflammatory response is a key factor in the pathogenesis of cerebral ischemia/reperfusion injury (CIRI), and anti-inflammatory interventions may offer a promising therapeutic strategy. Forsythoside B (FB) is a phenylethanoid glycoside isolated from Forsythiae fructus, which has been reported to have anti-inflammatory effects. However, the mechanism of the neuroprotective effect of FB on CIRI remains unclear. METHODS Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion/reperfusion (MCAO/R). FB was administered intraperitoneally for 3 days prior to MCAO/R. Cerebral infarct volume and neurological deficit score were used as indices to evaluate MCAO/R injury. The serum levels of inflammatory factors and antioxidant enzymes were measured. The activation of silent information regulator 2 homolog 1 (Sirt1) and the inhibition of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) pathway were assessed through western blot and immunohistochemistry analysis. Furthermore, the rats were treated with Sirt1 shRNA 3 days before MCAO/R by stereotactical injection into the ipsilateral hemispheric region to assess the impact of Sirt1 knockdown on the protection of FB during MCAO/R. RESULTS FB reduced cerebral infarct volume and neurological deficit score in MCAO/R rats. FB reduced pathological changes and cell apoptosis in the hippocampal CA1 region and cortex on the ischemic side of rats. FB inhibited the serum levels of inflammatory factors and increased the activities of antioxidant enzymes. Further study showed that FB inhibited the activation of the NLRP3 pathway and induced Sirt1 activation. CONCLUSION FB demonstrated neuroprotective and anti-inflammatory effects by inhibiting the NLRP3 pathway through Sirt1 activation in CIRI.
Collapse
Affiliation(s)
- Qiaoyu Li
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chongyang Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhixiu Zhang
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongchang Chen
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Huang LY, Zhang YD, Liu YN, Liang ZY, Chen J, Wang B, Yin QL, Wang PP, Wang W, Qi SH. Remote Ischemic Postconditioning-Mediated Neuroprotection against Stroke by Promoting Ketone Body-Induced Ferroptosis Inhibition. ACS Chem Neurosci 2024; 15:2223-2232. [PMID: 38634698 DOI: 10.1021/acschemneuro.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Yi-de Zhang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
- Xuzhou Central Hospital, Xuzhou 221000, P.R China
| | - Yi-Ning Liu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Zhi-Yan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Bin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou 221000, P.R China
| | - Qi-Long Yin
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou 221000, P.R China
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Pei-Pei Wang
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| |
Collapse
|
28
|
Li L, Shi C, Dong F, Xu G, Lei M, Zhang F. Targeting pyroptosis to treat ischemic stroke: From molecular pathways to treatment strategy. Int Immunopharmacol 2024; 133:112168. [PMID: 38688133 DOI: 10.1016/j.intimp.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Ischemic stroke is the primary reason for human disability and death, but the available treatment options are limited. Hence, it is imperative to explore novel and efficient therapies. In recent years, pyroptosis (a pro-inflammatory cell death characterized by inflammation) has emerged as an important pathological mechanism in ischemic stroke that can cause cell death through plasma membrane rupture and release of inflammatory cytokines. Pyroptosis is closely associated with inflammation, which exacerbates the inflammatory response in ischemic stroke. The level of inflammasomes, GSDMD, Caspases, and inflammatory factors is increased after ischemic stroke, exacerbating brain injury by mediating pyroptosis. Hence, inhibition of pyroptosis can be a therapeutic strategy for ischemic stroke. In this review, we have summarized the relationship between pyroptosis and ischemic stroke, as well as a series of treatments to attenuate pyroptosis, intending to provide insights for new therapeutic targets on ischemic stroke.
Collapse
Affiliation(s)
- Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Chonglin Shi
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
29
|
Zhao J, Chen C, Ge L, Jiang Z, Hu Z, Yin L. TAK1 inhibition mitigates intracerebral hemorrhage-induced brain injury through reduction of oxidative stress and neuronal pyroptosis via the NRF2 signaling pathway. Front Immunol 2024; 15:1386780. [PMID: 38756773 PMCID: PMC11096530 DOI: 10.3389/fimmu.2024.1386780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Intracerebral hemorrhage (ICH) often triggers oxidative stress through reactive oxygen species (ROS). Transforming growth factor-β-activated kinase 1 (TAK1) plays a pivotal role in regulating oxidative stress and inflammation across various diseases. 5Z-7-Oxozeaenol (OZ), a specific inhibitor of TAK1, has exhibited therapeutic effects in various conditions. However, the impact of OZ following ICH and its underlying molecular mechanisms remain elusive. This study aimed to explore the possible role of OZ in ICH and its underlying mechanisms by inhibiting oxidative stress-mediated pyroptosis. Methods Adult male Sprague-Dawley rats were subjected to an ICH model, followed by treatment with OZ. Neurobehavioral function, blood-brain barrier integrity, neuronal pyroptosis, and oxidative stress markers were assessed using various techniques including behavioral tests, immunofluorescence staining, western blotting, transmission electron microscopy, and biochemical assays. Results Our study revealed that OZ administration significantly inhibited phosphorylated TAK1 expression post-ICH. Furthermore, TAK1 blockade by OZ attenuated blood-brain barrier (BBB) disruption, neuroinflammation, and oxidative damage while enhancing neurobehavioral function. Mechanistically, OZ administration markedly reduced ROS production and oxidative stress by facilitating nuclear factor-erythroid 2-related factor 2 (NRF2) nuclear translocation. This was accompanied by a subsequent suppression of the NOD-like receptor protein 3 (NLRP3) activation-mediated inflammatory cascade and neuronal pyroptosis. Discussion Our findings highlight that OZ alleviates brain injury and oxidative stress-mediated pyroptosis via the NRF2 pathway. Inhibition of TAK1 emerges as a promising approach for managing ICH.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lihong Yin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Xu F, Xin Q, Ren M, Shi P, Wang B. Inhibition of piezo1 prevents chronic cerebral hypoperfusion-induced cognitive impairment and blood brain barrier disruption. Neurochem Int 2024; 175:105702. [PMID: 38401846 DOI: 10.1016/j.neuint.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) plays a critical role in the onset and progression of vascular dementia (VD), which is now recognized as the second most common form of dementia after Alzheimer's disease (AD). The mechanosensitive piezo1 channel has been identified to play important roles in several neurological disorders. However, the roles and possible mechanisms of piezo1 in CCH-induced cognitive decline and blood brain barrier (BBB) disruption, as well as the underlying mechanisms remain elusive. In this study, the CCH model was established by bilateral common carotid artery occlusion in rats and by oxygen and glucose deprivation/reoxygenation (OGD/R) in bEnd.3 cells. The results demonstrated that the antagonist of piezo1 GsMTx4 ameliorated CCH-induced cognitive dysfunction and mitigated cerebral edema. Furthermore, this study indicated that GsMTx4 improved the permeability and integrity of BBB and protected cerebral microvasculature after CCH. In vitro, GsMTx4 improved cell viability, promoted the ability of cell motility and migration, and inhibited the degradation of BBB integrity-related proteins by inhibiting NLRP3 inflammasome activation. In addition, NLRP3 agonist abolished the beneficial effects of GsMTx4. Collectively, our results demonstrate that piezo1 might be involved in CCH-induced cognitive impairment and BBB damage, which may be at least partially mediated through regulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Fei Xu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Department of Vascular Surgery, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Qing Xin
- Department of Physiology, Jining Medical University, Jining, 272000, China
| | - Mengyao Ren
- Department of Physiology, Jining Medical University, Jining, 272000, China
| | - Peixin Shi
- Department of Physiology, Jining Medical University, Jining, 272000, China
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Wang M, Peng J, Yang M, Chen J, Shen Y, Liu L, Chen L. Elevated expression of NLRP3 promotes cigarette smoke-induced airway inflammation in chronic obstructive pulmonary disease. Arch Med Sci 2024; 20:1281-1293. [PMID: 39439673 PMCID: PMC11493075 DOI: 10.5114/aoms/176805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction NOD-like receptor protein 3 (NLRP3) is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Here, we explored the role of NLRP3 in cigarette smoke (CS)-induced airway inflammation in COPD. Material and methods NLRP3 expression level was assessed with the microarray data in GEO datasets and validated in serum by ELISA from a case-control cohort. Male C57BL/6J mice were randomly divided into: saline, CS, MCC950 (a specific NLRP3 inhibitor, 10 mg/kg) and CS + MCC950 (5 mg/kg and 10 mg/kg) groups (n = 5 per group). All mice were exposed to CS or air for 4 weeks. Then, broncho-alveolar lavage (BAL) fluid and lung tissues were collected for cell counting, ELISA, HE staining and RNA sequencing with validation by real-time qPCR. Results Compared to non-smokers, NLRP3 expression was significantly elevated in the lung tissues and sera of COPD smokers. CS remarkably induced airway inflammation in mice, characterized by an increase of inflammatory cells and proinflammatory cytokines in BAL fluid and HE inflammatory score, which were ameliorated by MCC950 treatment dose-dependently. Subsequently, 84 candidate genes were selected following RNA sequencing, and five hub genes (Mmp9, IL-1α, Cxcr2, Cxcl10, Ccr1) were then identified by PPI and MCODE analyses, which were confirmed by real-time qPCR. GO and KEGG analysis suggested that the five genes were enriched in a complicated network of inflammatory processes and signaling pathways. Conclusions NLRP3 expression is elevated in lungs and sera of COPD smokers. Inhibition of NLRP3 significantly attenuates CS-induced airway inflammation in mice via inactivation of multiple hub genes and their related inflammatory processes and signaling pathways.
Collapse
Affiliation(s)
- Min Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Peng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Yang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Chen
- Lab of Pulmonary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongchun Shen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Hu Q, Zhang R, Dong X, Yang D, Yu W, Du Q. Huperzine A ameliorates neurological deficits after spontaneous subarachnoid hemorrhage through endothelial cell pyroptosis inhibition. Acta Biochim Biophys Sin (Shanghai) 2024; 56:645-656. [PMID: 38529553 DOI: 10.3724/abbs.2024037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) is a kind of hemorrhagic stroke which causes neurological deficits in survivors. Huperzine A has a neuroprotective effect, but its role in SAH is unclear. Therefore, we explore the effect of Huperzine A on neurological deficits induced by SAH and the related mechanism. In this study, Evans blue assay, TUNEL staining, immunofluorescence, western blot analysis, and ELISA are conducted. We find that Huperzine A can improve neurological deficits and inhibit the apoptosis of nerve cells in SAH rats. Huperzine A treatment can improve the upregulation of brain water content, damage of blood-brain barrier, fibrinogen and matrix metalloprotein 9 expressions and the downregulation of ZO-1 and occludin expressions induced by SAH. Huperzine A inhibit the expressions of proteins involved in pyroptosis in endothelial cells in SAH rats. The increase in MDA content and decrease in SOD activity in SAH rats can be partly reversed by Huperzine A. The ROS inducer H 2O 2 can induce pyroptosis and inhibit the expressions of ZO-1 and occludin in endothelial cells, which can be blocked by Huperzine A. In addition, the increase in the entry of p65 into the nucleus in endothelial cells can be partly reversed by Huperzine A. Huperzine A may delay the damage of blood-brain barrier in SAH rats by inhibiting oxidative stress-mediated pyroptosis and tight junction protein expression downregulation through the NF-κB pathway. Overall, Huperzine A may have clinical value for treating SAH.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Rong Zhang
- Medical Examination Center, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Dingbo Yang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| |
Collapse
|
33
|
Fang M, Xia F, Wang J, Wang C, Teng B, You S, Li M, Chen X, Hu X. The NLRP3 inhibitor, OLT1177 attenuates brain injury in experimental intracerebral hemorrhage. Int Immunopharmacol 2024; 131:111869. [PMID: 38492343 DOI: 10.1016/j.intimp.2024.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND PURPOSE It has been reported activation of NLRP3 inflammasome after intracerebral hemorrhage (ICH) ictus exacerbates neuroinflammation and brain injury. We hypothesized that inhibition of NLRP3 by OLT1177 (dapansutrile), a novel NLRP3 inflammasome inhibitor, could reduce brain edema and attenuate brain injury in experimental ICH. METHODS ICH was induced by injection of autologous blood into basal ganglia in mice models. Sixty-three C57Bl/6 male mice were randomly grouped into the sham, vehicle, OLT1177 (Dapansutrile, 200 mg/kg intraperitoneally) and treated for consecutive three days, starting from 1 h after ICH surgery. Behavioral test, brain edema, brain water content, blood-brain barrier integrity and vascular permeability, cell apoptosis, and NLRP3 and its downstream protein levels were measured. RESULTS OLT1177 significantly reduced cerebral edema after ICH and contributed to the attenuation of neurological deficits. OLT1177 could preserve blood-brain barrier integrity and lessen vascular leakage. In addition, OLT1177 preserved microglia morphological shift and significantly inhibited the activation of caspase-1 and release of IL-1β. We also found that OLT1177 can protect against neuronal loss in the affected hemisphere. CONCLUSIONS OLT1177 (dapansutrile) could significantly attenuate the brain edema after ICH and effectively alleviate the neurological deficit. This result suggests that the novel NLRP3 inhibitor, OLT1177, might serve as a promising candidate for the treatment of ICH.
Collapse
Affiliation(s)
- Mei Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayan Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengyang Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Bang Teng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shenglan You
- Animal Imaging Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Manrui Li
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Xin Hu
- Animal Imaging Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
34
|
Liu L, Ma Z, Han Q, Meng W, Wang H, Guan X, Shi Q. Myricetin Oligomer Triggers Multi-Receptor Mediated Penetration and Autophagic Restoration of Blood-Brain Barrier for Ischemic Stroke Treatment. ACS NANO 2024; 18:9895-9916. [PMID: 38533773 DOI: 10.1021/acsnano.3c09532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Restoration of blood-brain barrier (BBB) dysfunction, which drives worse outcomes of ischemic stroke, is a potential target for therapeutic opportunities, whereas a sealed BBB blocks the therapeutics entrance into the brain, making the BBB protection strategy paradoxical. Post ischemic stroke, hypoxia/hypoglycemia provokes the up-regulation of transmembrane glucose transporters and iron transporters due to multiple metabolic disorders, especially in brain endothelial cells. Herein, we develop a myricetin oligomer-derived nanostructure doped with Ce to bypass the BBB which is cointermediated by glucose transporters and iron transporters such as glucose transporters 1 (GLUT1), sodium/glucose cotransporters 1 (SGLT1), and transferrin(Tf) reporter (TfR). Moreover, it exhibits BBB restoration capacity by regulating the expression of tight junctions (TJs) through the activation of protective autophagy. The myricetin oligomers scaffold not only acts as targeting moiety but is the prominent active entity that inherits all diverse pharmacological activities of myricetin. The suppression of oxidative damage, M1 microglia activation, and inflammatory factors makes it a multitasking nanoagent with a single component as the scaffold, targeting domain and curative components.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
35
|
Li B, Liu Y, Chen D, Sun S. Comprehensive Analysis of Predictive Value and the potential therapeutic target of NLRP3 inflammasome in glioma based on tumor microenvironment. Clin Immunol 2024; 261:109918. [PMID: 38307475 DOI: 10.1016/j.clim.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Glioma exhibits high recurrence rates and poor prognosis. The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in inflammation. There is a lack of research exploring the NLRP3 in glioma. METHODS We used several databases, networks, Western blotting, multiple immunofluorescence staining to analyze the role of NLRP3 in inflammatory tumor microenvironment (TME). RESULTS NLRP3 is higher-expression in glioma with a low mutation load. NLRP3 expression is linked to the infiltration of immune cells, chemokines, immunomodulators, and the TME. Signaling pathways, co-expression genes and interacting proteins contribute to the up-regulation of NLRP3. Patients responding to immunotherapy positively tend to have lower NLRP3 expression relating to the overall survival based on nomogram. Sensitivity to molecular medicines is observed in relation to NLRP3. CONCLUSION The NLRP3 inflammasome plays a pivotal role in TME which could serve as a higher predictive value biomarker and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Bihan Li
- Nanjing municipal center for disease control and prevention, Nanjing, Jiangsu, China; Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Dawei Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
36
|
Zhang C, Peng Q, Tang Y, Wang C, Wang S, Yu D, Hou S, Wang Y, Zhang L, Lin N. Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway. J Cancer Res Clin Oncol 2024; 150:168. [PMID: 38546908 PMCID: PMC10978631 DOI: 10.1007/s00432-024-05625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the anti-tumor effect of resveratrol (RSV) on glioblastoma (GBM) and its specific mechanism in improving the inflammatory response of the tumor microenvironment. The tumor microenvironment of GBM is highly neuroinflammatory, inducing tumor immunosuppression. Therefore, ameliorating the inflammatory response is an important focus for anti-tumor research. METHODS The anti-tumor effect of RSV on GBM was demonstrated through in vitro cellular assays, including CCK-8, EdU, PI staining, Transwell, wound healing assay, and flow cytometry. Potential mechanisms of RSV's anti-GBM effects were identified through network pharmacological analysis. In addition, the relationship of RSV with the JAK2/STAT3 signaling pathway and the inflammasome NLRP3 was verified using Western blot. RESULTS RSV significantly inhibited cell viability in GBM cell lines LN-229 and U87-MG. Furthermore, it inhibited the proliferation and invasive migration ability of GBM cells, while promoting apoptosis. Network pharmacological analysis revealed a close association between the anti-GBM effects of RSV and the JAK/STAT signaling pathway, as well as inflammatory responses. Western blot analysis confirmed that RSV inhibited the over-activation of the inflammasome NLRP3 through the JAK2/STAT3 signaling pathway. Partial reversal of RSV's inhibition of inflammasome NLRP3 was observed with the addition of the JAK/STAT agonist RO8191. CONCLUSIONS In vitro, RSV can exert anti-tumor effects on GBM and improve the inflammatory response in the GBM microenvironment by inhibiting the activation of the JAK2/STAT3 signaling pathway. These findings provide new insights into potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Qian Peng
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, China
| | - Yuhang Tang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Chengcheng Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Shuai Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Dong Yu
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Shiqiang Hou
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Yu Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Lanlan Zhang
- Department of Science and Education, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China.
| | - Ning Lin
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China.
| |
Collapse
|
37
|
Duan Y, Deng Y, Tang F, Li J. Lifibrate attenuates blood-brain barrier damage following ischemic stroke via the MLCK/p-MLC/ZO-1 axis. Aging (Albany NY) 2024; 16:6135-6146. [PMID: 38546384 PMCID: PMC11042934 DOI: 10.18632/aging.205692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 04/23/2024]
Abstract
Dysfunction of tight junction proteins-associated damage to the blood-brain barrier (BBB) plays an important role in the pathogenesis of ischemic stroke. Lifibrate, an inhibitor of cholinephosphotransferase (CPT), has been used as an agent for serum lipid lowering. However, the protective effects of Lifibrate in ischemic stroke and the underlying mechanism have not been clearly elucidated. Here, we employed an in vivo mice model of MCAO and an OGD/R model in vitro. In the mice models, neurological deficit scores and infarct volume were assessed. Evans Blue solution was used to detect the BBB permeability. The TEER was examined to determine brain endothelial monolayer permeability. Here, we found that Lifibrate improved neurological dysfunction in stroke. Additionally, increased BBB permeability during stroke was significantly ameliorated by Lifibrate. Correspondingly, the reduced expression of the tight junction protein ZO-1 was restored by Lifibrate at both the mRNA and protein levels. Using an in vitro model, we found that Lifibrate ameliorated OGD/R-induced injury in human bEnd.3 brain microvascular endothelial cells by increasing cell viability but reducing the release of LDH. Importantly, Lifibrate suppressed the increase in endothelial monolayer permeability and the reduction in TEER induced by OGD/R via the rescue of ZO-1 expression. Mechanistically, Lifibrate blocked activation of the MLCK/ p-MLC signaling pathway in OGD/R-stimulated bEnd.3 cells. In contrast, overexpression of MLCK abolished the protective effects of Lifibrate in endothelial monolayer permeability, TEER, as well as the expression of ZO-1. Our results provide a basis for further investigation into the neuroprotective mechanism of Lifibrate during stroke.
Collapse
Affiliation(s)
- Yu Duan
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Yao Deng
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Feng Tang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Jian Li
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| |
Collapse
|
38
|
Mayer MG, Fischer T. Microglia at the blood brain barrier in health and disease. Front Cell Neurosci 2024; 18:1360195. [PMID: 38550920 PMCID: PMC10976855 DOI: 10.3389/fncel.2024.1360195] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 01/24/2025] Open
Abstract
The blood brain barrier (BBB) plays a crucial role in maintaining brain homeostasis by selectively preventing the entry of substances from the peripheral blood into the central nervous system (CNS). Comprised of endothelial cells, pericytes, and astrocytes, this highly regulated barrier encompasses the majority of the brain's vasculature. In addition to its protective function, the BBB also engages in significant crosstalk with perivascular macrophages (MΦ) and microglia, the resident MΦ of the brain. These interactions play a pivotal role in modulating the activation state of cells comprising the BBB, as well as MΦs and microglia, themselves. Alterations in systemic metabolic and inflammatory states can promote endothelial cell dysfunction, reducing the integrity of the BBB and potentially allowing peripheral blood factors to leak into the CNS compartment. This may mediate activation of perivascular MΦs, microglia, and astrocytes, and initiate further immune responses within the brain parenchyma, suggesting neuroinflammation can be triggered by signaling from the periphery, without primary injury or disease originating within the CNS. The intricate interplay between the periphery and the CNS through the BBB highlights the importance of understanding the role of microglia in mediating responses to systemic challenges. Despite recent advancements, our understanding of the interactions between microglia and the BBB is still in its early stages, leaving a significant gap in knowledge. However, emerging research is shedding light on the involvement of microglia at the BBB in various conditions, including systemic infections, diabetes, and ischemic stroke. This review aims to provide a comprehensive overview of the current research investigating the intricate relationship between microglia and the BBB in health and disease. By exploring these connections, we hope to advance our understanding of the role of brain immune responses to systemic challenges and their impact on CNS health and pathology. Uncovering these interactions may hold promise for the development of novel therapeutic strategies for neurological conditions that involve immune and vascular mechanisms.
Collapse
Affiliation(s)
- Meredith G. Mayer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
39
|
Duan WL, Wang XJ, Ma YP, Sheng ZM, Dong H, Zhang LY, Zhang BG, He MT. Therapeutic strategies targeting the NLRP3‑mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review). Mol Med Rep 2024; 29:46. [PMID: 38275110 PMCID: PMC10835666 DOI: 10.3892/mmr.2024.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke poses a major threat to human health. Therefore, the molecular mechanisms of cerebral ischemia/reperfusion injury (CIRI) need to be further clarified, and the associated treatment approaches require exploration. The NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome serves an important role in causing CIRI, and its activation exacerbates the underlying injury. Activation of the NLRP3 inflammasome triggers the maturation and production of the inflammatory molecules IL‑1β and IL‑18, as well as gasdermin‑D‑mediated pyroptosis and CIRI damage. Thus, the NLRP3 inflammasome may be a viable target for the treatment of CIRI. In the present review, the mechanisms of the NLRP3 inflammasome in the intense inflammatory response and pyroptosis induced by CIRI are discussed, and the therapeutic strategies that target the NLRP3‑mediated inflammatory response and pyroptosis in CIRI are summarized. At present, certain drugs have already been studied, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Wan-Li Duan
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Zhi-Mei Sheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Li-Ying Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
40
|
Luo L, Wang S, Liu W, Zhang Z, Zhao M, Liu A. Narirutin Attenuates Cerebral Ischemia-Reperfusion Injury by Suppressing the TXNIP/NLRP3 Pathway. Neurochem Res 2024; 49:692-705. [PMID: 38047987 DOI: 10.1007/s11064-023-04062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/07/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Narirutin (Nar) is a flavonoid that is abundantly present in citrus fruits and has attracted considerable attention because of its diverse pharmacological activities and low toxicity. Here, we evaluated the preventive effects of Nar in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen-glucose deprivation/reperfusion (OGD/R)-injured bEnd.3 cells. Pretreatment with Nar (150 mg/kg) for 7 days effectively reduced infarct volume, improved neurological deficits, and significantly inhibited neuronal death in the hippocampus and cortex in MCAO/R-injured mice. Moreover, anti-apoptotic effects of Nar (50 µM) were observed in OGD/R-injured bEnd.3 cells. In addition, Nar pre-administration regulated blood-brain barrier function by increasing tight junction-related protein expression after MCAO/R and OGD/R injury. Nar also inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation by reducing the expression of thioredoxin-interacting protein (TXNIP) in vivo and in vitro. Taken together, these results provide new evidence for the use of Nar in the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Luo
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Saiying Wang
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenna Liu
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zimei Zhang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Minggao Zhao
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - An Liu
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
41
|
Cheng X, Ren Z, Jia H, Wang G. METTL3 Mediates Microglial Activation and Blood-Brain Barrier Permeability in Cerebral Ischemic Stroke by Regulating NLRP3 Inflammasomes Through m6A Methylation Modification. Neurotox Res 2024; 42:15. [PMID: 38349604 DOI: 10.1007/s12640-024-00687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
Cerebral ischemic stroke (CIS) is the main cause of disability. METTL3 is implicated in CIS, and we explored its specific mechanism. Middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation/reperfusion (OGD/R) HAPI cell model were established and treated with LV-METTL3 or DAA, oe-METTL3, miR-335-3p mimics, or DAA, to assess their effects on MCAO rat neurological and motor function, cerebral infarction area, brain water content, microglial activation, blood-brain barrier (BBB) permeability, and NLRP3 inflammasome activation. METTL3, pri-miR-335-3p, mature miR-335-3p, and miR-335-3p mRNA levels were assessed by RT-qPCR; M1/M2 microglial phenotype proportion and M1/M2 microglia ratio, inflammatory factor levels, and m6A modification were assessed. MCAO rats manifested cerebral ischemia injury. METTL3 was under-expressed in CIS. METTL3 overexpression inhibited microglial activation and M1 polarization and BBB permeability in MCAO rats and inhibited OGD/R-induced microglial activation and reduced M1 polarization. METTL3 regulated miR-335-3p expression and inhibited NLRP3 inflammasome activation. m6A methylation inhibition averted METTL3's effects on NLRP3 activation, thus promoting microglial activation in OGD/R-induced cells and METTL3's effects on BBB permeability in MCAO rats. Briefly, METTL3 regulated miR-335-3p expression through RNA m6A methylation and inhibited NLRP3 inflammasome activation, thus repressing microglial activation, BBB permeability, and protecting against CIS.
Collapse
Affiliation(s)
- Xue Cheng
- Department of Clinical Nutrition, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhetan Ren
- Clinical Medicine, The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, China
| | - Huiyang Jia
- Neurology, Jinzhou Medical University, Jinzhou, 121000, China
| | - Gang Wang
- Department of Tumor Intervention, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, China.
| |
Collapse
|
42
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
43
|
Fattakhov N, Ngo A, Torices S, Joseph JA, Okoro A, Moore C, Naranjo O, Becker S, Toborek M. Cenicriviroc prevents dysregulation of astrocyte/endothelial cross talk induced by ischemia and HIV-1 via inhibiting the NLRP3 inflammasome and pyroptosis. Am J Physiol Cell Physiol 2024; 326:C487-C504. [PMID: 38145295 PMCID: PMC11192487 DOI: 10.1152/ajpcell.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Blood-brain barrier (BBB) breakdown is one of the pathophysiological characteristics of ischemic stroke, which may contribute to the progression of brain tissue damage and subsequent neurological impairment. Human immunodeficiency virus (HIV)-infected individuals are at greater risk for ischemic stroke due to diminished immune function and HIV-associated vasculopathy. Studies have shown that astrocytes are involved in maintaining BBB integrity and facilitating HIV-1 infection in the brain. The present study investigated whether targeting astrocyte-endothelial cell signaling with cenicriviroc (CVC), a dual chemokine receptor (CCR)2 and CCR5 antagonist, may protect against dysregulation of cross talk between these cells after oxygen-glucose deprivation/reoxygenation (OGD/R) combined with HIV-1 infection. Permeability assay with 10 kDa fluorescein isothiocyanate (FITC)-dextran demonstrated that CVC alleviated endothelial barrier disruption in noncontact coculture of human brain microvascular endothelial cells (HBMECs) with HIV-1-infected human astrocytes, and reversed downregulation of tight junction protein claudin-5 induced by OGD/R- and HIV-1. Moreover, CVC attenuated OGD/R- and HIV-1-triggered upregulation of the NOD-like receptor protein-3 (NLRP3) inflammasome and IL-1β secretion. Treatment with CVC also suppressed astrocyte pyroptosis by attenuating cleaved caspase-1 levels and the formation of cleaved N-terminal GSDMD (N-GSDMD). Secretome profiling revealed that CVC ameliorated secretion levels of chemokine CC chemokine ligand 17 (CCL17), adhesion molecule intercellular adhesion molecule-1 (ICAM-1), and T cell activation modulator T cell immunoglobulin and mucin domain 3 (TIM-3) by astrocytes synergistically induced by OGD/R and HIV-1. Overall, these results suggest that CVC contributes to restoring astrocyte-endothelial cross interactions in an astrocyte-dependent manner via protection against NLRP3 activation and pyroptosis.NEW & NOTEWORTHY The present study reveals the role of astrocytic NOD-like receptor protein-3 (NLRP3) inflammasome in dysfunctional astrocyte-endothelial cross interactions triggered in response to oxygen/glucose deprivation injury associated with human immunodeficiency virus type 1 (HIV-1) infection. Our results suggest that blocking NLRP3 inflammasome activation and pyroptosis-mediated inflammation with cenicriviroc (CVC) may constitute a potentially effective therapeutic strategy for blood-brain barrier (BBB) protection during HIV-1-associated ischemic stroke.
Collapse
Affiliation(s)
- Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alex Ngo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Joelle-Ann Joseph
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Adesuwa Okoro
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Cameron Moore
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sarah Becker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
44
|
Liu C, Wu B, Tao Y, Liu X, Lou X, Wang Z, Guo Z, Tang D. Identification and immunological characterization of cuproptosis-related molecular clusters in ischemic stroke. Neuroreport 2024; 35:17-26. [PMID: 37983626 PMCID: PMC10702694 DOI: 10.1097/wnr.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
The present study elucidated cuproptosis-related molecular clusters involved in ischemic stroke and developed predictive models. Transcriptomic and immunological profiles of ischemic stroke-related datasets were extracted from the Gene Expression Omnibus database. Next, we conducted weighted gene co-expression network analysis to determine cluster-specific differentially expressed genes (DEGs). Models such as random forest and eXtreme gradient boosting (XGB) were evaluated to select the best prediction performance model. Subsequently, we validated the model's predictive efficiency by using nomograms, decision curve analysis, calibration curves, and receiver operating characteristic curve analysis with an external dataset. We identified two cuproptosis-related clusters involved in ischemic stroke. The DEGs in Cluster 2 were closely associated with amino acid metabolism, various immune responses, and cell proliferation pathways. The XGB model showed lower residuals, a smaller root mean square error, and a greater area under the curve value (AUC = 0.923), thus exhibiting the best discriminative performance. The AUC value for the external validation dataset was 0.921, thus confirming the high performance of the model. NFE2L2, NLRP3, GLS, LIPT1, and MTF1 were identified as potential cuproptosis predictors, thus shedding new light on ischemic stroke pathogenesis and heterogeneity.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Binbin Wu
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Yongjun Tao
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Xiang Liu
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Xiqiang Lou
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Zhen Wang
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Zhaofu Guo
- Department of Rehabilitation Research, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine
| | - Dongmei Tang
- Department of Rehabilitation Research, Lishui Second People’s Hospital, Zhejiang, China
| |
Collapse
|
45
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
46
|
Tao H, Li L, Dong L, Chen H, Shan X, Zhuge L, Lou H. Growth differentiation factor 7 pretreatment enhances the therapeutic capacity of bone marrow-derived mesenchymal stromal cells against cerebral ischemia-reperfusion injury. Chem Biol Interact 2023; 386:110779. [PMID: 37879595 DOI: 10.1016/j.cbi.2023.110779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/13/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic strategy for cerebral ischemia/reperfusion (I/R) injury; however, the clinical outcome is barely satisfactory and demands further improvement. The present study aimed to investigate whether preconditioning of BMSCs by recombinant human growth differentiation factor 7 (rhGDF7) could enhance its therapeutic capacity against cerebral I/R injury. Mouse BMSCs and primary neurons were co-cultured and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation. To investigate the role of exosomal microRNA-369-3p (miR-369-3p), inhibitors, RNAi and the miR-369-3p antagomir were used. Meanwhile, mice were intravenously injected with rhGDF7-preconditioned BMSCs and then received cerebral I/R surgery. Markers of inflammation, oxidative stress and neural damage were evaluated. To inhibit AMP-activated protein kinase (AMPK), compound C was used in vivo and in vitro. Compared with cell-free transwell or vehicle-preconditioned BMSCs, rhGDF7-preconditioned BMSCs significantly prevented OGD/R-induced inflammation, oxidative stress and neural damage in vitro. Meanwhile, rhGDF7-preconditioned BMSCs could prevent I/R-induced cerebral inflammation and oxidative stress in vivo. Mechanistically, rhGDF7 preconditioning significantly increased exosomal miR-369-3p expression in BMSCs and then transferred exosomal miR-369-3p to primary neurons, where it bound to phosphodiesterase 4 D (Pde4d) 3'-UTR and downregulated PDE4D expression, thereby preventing I/R-induced inflammation, oxidative stress and neural damage through activating AMPK pathway. Our study identify GDF7 pretreatment as a promising adjuvant reagent to improve the therapeutic potency of BMSCs for cerebral I/R injury and ischemic stroke.
Collapse
Affiliation(s)
- Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua, 321017, Zhejiang, China
| | - Lin Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Lihua Dong
- Medical College, Jinhua Polytechnic, Jinhua, 321017, Zhejiang, China
| | - Haohao Chen
- Medical College, Jinhua Polytechnic, Jinhua, 321017, Zhejiang, China
| | - Xiaoyun Shan
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Lujie Zhuge
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Hongqiang Lou
- Medical College, Jinhua Polytechnic, Jinhua, 321017, Zhejiang, China.
| |
Collapse
|
47
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
48
|
Cakir-Aktas C, Bodur E, Yemisci M, van Leyen K, Karatas H. 12/15-lipoxygenase inhibition attenuates neuroinflammation by suppressing inflammasomes. Front Cell Neurosci 2023; 17:1277268. [PMID: 37822799 PMCID: PMC10562712 DOI: 10.3389/fncel.2023.1277268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Lipoxygenases (LOXs) have essential roles in stroke, atherosclerosis, diabetes, and hypertension. 12/15-LOX inhibition was shown to reduce infarct size and brain edema in the acute phase of experimental stroke. However, the significance of 12/15-LOX on neuroinflammation, which has an essential role in the pathophysiology of stroke, has not been clarified yet. Methods In this study, ischemia/recanalization (I/R) was performed by occluding the proximal middle cerebral artery (pMCAo) in mice. Either the 12/15-LOX inhibitor (ML351, 50 mg/kg) or its solvent (DMSO) was injected i.p. at recanalization after 1 h of occlusion. Mice were sacrificed at 6, 24, and 72-h after ischemia induction. Infarct volumes were calculated on Nissl-stained sections. Neurological deficit scoring was used for functional analysis. Lipid peroxidation was determined by the MDA assay, and the inflammatory cytokines IL-6, TNF-alpha, IL-1beta, IL-10, and TGF-beta were quantified by ELISA. The inflammasome proteins NLRP1 and NLRP3, 12/15-LOX, and caspase-1 were detected with immunofluorescence staining. Results Infarct volumes, neurological deficit scores, and lipid peroxidation were significantly attenuated in ML351-treated groups at 6, 24, and 72-h. ELISA results revealed that the pro-inflammatory cytokines IL-1beta, IL-6, and TNF-alpha were significantly decreased at 6-h and/or 24-h of I/R, while the anti-inflammatory cytokines IL-10 and TNF-alpha were increased at 24-h or 72-h of ML351 treatment. NLRP1 and NLRP3 immunosignaling were enhanced at three time points after I/R, which were significantly diminished by the ML351 application. Interestingly, NLRP3 immunoreactivity was more pronounced than NLRP1. Hence, we proceeded to study the co-localization of NLRP3 immunoreactivity with 12/15-LOX and caspase-1, which indicated that NLRP3 was co-localized with 12/15-LOX and caspase-1 signaling. Additionally, NLRP3 was found in neurons at all time points but in non-neuronal cells 72 h after I/R. Discussion These results suggest that 12/15-LOX inhibition suppresses ischemia-induced inflammation in the acute and subacute phases of stroke via suppressing inflammasome activation. Understanding the mechanisms underlying lipid peroxidation and its associated pathways, like inflammasome activation, may have broader implications for the treatment of stroke and other neurological diseases characterized by neuroinflammation.
Collapse
Affiliation(s)
- Canan Cakir-Aktas
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Ebru Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Muge Yemisci
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Hulya Karatas
- Institute of Neurological Sciences & Psychiatry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
49
|
Chen J, Liu X, Bi R, Liu P, Gong W. NDUFC2 deficiency exacerbates endothelial mesenchymal transformation during ischemia-reperfusion via NLRP3. Neuroreport 2023; 34:670-676. [PMID: 37506315 DOI: 10.1097/wnr.0000000000001940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Ischemic stroke is the main type of cerebrovascular disease. Emergency thrombectomy combined with medication therapy is currently the primary treatment for stroke. Inflammation and oxidative stress induced by ischemia-reperfusion cause secondary damage to blood vessels, especially endothelial mesenchymal transformation (EndoMT). However, much is still unclear about the role of EndoMT in ischemia-reperfusion. In this study, an in vivo ischemia-reperfusion model was established by transient middle cerebral artery occlusion (tMCAO) in wild-type (WT) C57BL/6 mice and NLRP3 (NOD-like receptor thermal protein domain associated protein 3) knockout (KO) C57BL/6 mice. An in vitro ischemia-reperfusion model was established by oxygen glucose deprivation and reoxygenation (OGD/R) of human brain microvascular endothelial cells (HBMECs). α-SMA (alpha smooth muscle actin), CD31 (platelet endothelial cell adhesion molecule-1, PECAM-1/CD31), NDUFC2 (NADH: ubiquinone oxidoreductase subunit C2), and NLRP3 were used to evaluate EndoMT and inflammation. Real-time PCR measured superoxide dismutase 1 (SOD1) and catalase (CAT) mRNA expression to evaluate oxidative stress levels. NLRP3 was activated by ischemia-reperfusion injury and NLRP3 inactivation inhibited the EndoMT in tMCAO mice. Further experiments demonstrated that OGD/R treatment induced NLRP3 activation and EndoMT in HBMECs, which resulted in NDUFC2 deficiency. NDUFC2 overexpression suppressed NLRP3 activation and EndoMT in HBMECs induced by OGD/R. Moreover, NDUFC2 overexpression rescued SOD1 and CAT mRNA expression. These results demonstrated that NDUFC2 deficiency decreased the antioxidant levels, leading to NLRP3 activation and EndoMT during ischemia-reperfusion injury and suggesting that NDUFC2 is a potential drug target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jianwei Chen
- Interventional Medicine Center, Xi'an People's Hospital, Xi'an, China
| | | | | | | | | |
Collapse
|
50
|
Han PP, Han Y, Shen XY, Gao ZK, Bi X. NLRP3 inflammasome activation after ischemic stroke. Behav Brain Res 2023; 452:114578. [PMID: 37437697 DOI: 10.1016/j.bbr.2023.114578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/15/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Cerebral ischemia is a pathological condition resulting from the cessation or reduction of blood supply to the cerebral arteries. Neurological deficits that are clinically relevant can arise as a result of brain damage. The etiology of stroke is multifaceted and intricate, with the inflammatory response being a crucial component that warrants significant attention. Following a cerebrovascular accident, the levels of interleukin-1 beta and interleukin-18 within the central nervous system escalate due to the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome. The inflammation is aggravated by the subsequent occurrence of pyroptosis. The mechanisms that activate the NLRP3 inflammasome pyroptosis signaling pathway axis are described in this article. In addition, we go over how pyroptosis interacts with other processes for regulated cell death. In addition, specific NLRP3 inflammasome pathway inhibitors are identified, which offer new approaches to preventing ischemic brain injury.
Collapse
Affiliation(s)
- Ping-Ping Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| |
Collapse
|