1
|
Wei X, Ran S, Yan X, Huang J, Xue L, He TC, Zhang H, Wu S. Pyroptosis in Pulpitis. J Inflamm Res 2025; 18:5867-5879. [PMID: 40322528 PMCID: PMC12050040 DOI: 10.2147/jir.s516502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Pulpitis is an inflammatory disease occurs in the pulp tissues. Continuous development of pulpitis can lead to apical periodontitis and seriously damage the function of teeth, affecting the oral health and daily life of patients. Pyroptosis, alternatively termed inflammatory necrosis, is a type of programmed cell death that is characterized by the swelling of cells until the cell membrane is broken. The GSDM family of proteins can be activated by a variety of pathways, which can lead to the puncture of cell membrane, inducing the release of cellular contents and inflammatory cytokines like IL-1β and IL-18 to activate a strong inflammatory response. Pyroptosis in dental pulp may be an important direction to find new targets for pulpal inflammation prevention and treatment, which deserves further study. In this article, we reviewed the activation mechanism and potential role of pyroptosis in the progression of pulpitis, along with the interaction between pyroptosis and other regulated cell death (RCD) pathways. This review aims to enrich the mechanism under the development of dental pulp inflammation, and to uncover potential therapeutic targets for early alleviation and treatment of pulp inflammation.
Collapse
Affiliation(s)
- Xiaorui Wei
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Shidian Ran
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Xingrui Yan
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Jindie Huang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Linyu Xue
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongmei Zhang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| | - Si Wu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Pan D, Hao Y, Tao Y, Li B, Cheng L. The influence of microorganisms on bone homeostasis in apical periodontitis. Arch Oral Biol 2025; 170:106153. [PMID: 39644768 DOI: 10.1016/j.archoralbio.2024.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE This review aims to provide an overview of the role of microorganisms in the onset and progression of periapical diseases, particularly regarding their effects on bone homeostasis. DESIGN The search for this narrative review was conducted in PubMed, Web of Science and Google Scholar using relevant keywords, including checking reference lists of journal articles by hand searching. RESULTS Microorganisms directly promote osteoclasts through pathways such as nuclear factor-κB (NF-κB) and extracellular regulated protein kinases (ERK), while inhibiting osteoblasts function by interfering with the wingless-related integration site (Wnt)/β-catenin pathway in the periapical area. Moreover, microorganisms indirectly regulate periapical bone homeostasis by inducing programmed cell death and modulating the immune microenvironment through the activation of innate immunity via pattern-recognition receptors (PRRs) and subsequent cascades of responses. Among these microorganisms, Enterococcus faecalis, Porphyromonas gingivalis and Fusobacterium nucleatum play significant roles. CONCLUSION Microorganisms regulate pathways such as NF-ĸB and Wnt/β-catenin, as well as programmed cell death and the immune microenvironment in the periapical area, thereby disrupting bone homeostasis.
Collapse
Affiliation(s)
- Dan Pan
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Hao
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yuyan Tao
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Bolei Li
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Lei Cheng
- West China School of Stomatology (WCSS), Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Chen W, Ma Q, Li Y, Wei L, Zhang Z, Khan A, Khan MZ, Wang C. Butyrate Supplementation Improves Intestinal Health and Growth Performance in Livestock: A Review. Biomolecules 2025; 15:85. [PMID: 39858479 PMCID: PMC11763988 DOI: 10.3390/biom15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Butyrate supplementation has gained considerable attention for its potential benefits in livestock, particularly concerning intestinal health and growth performance. This review synthesizes recent research on the diverse roles of butyrate, across various livestock species. As a short-chain fatty acid, butyrate is known for enhancing intestinal development, improving immune function, and modulating microbial diversity. Studies indicate that butyrate supports gut barrier integrity, reduces inflammation, and optimizes feed efficiency, especially during the critical weaning and post-weaning periods in calves, piglets, and lambs. Supplementation with butyrate in livestock has been shown to increase average daily gain (ADG), improve gut microbiota balance, promote growth, enhance gut health, boost antioxidant capacity, and reduce diarrhea. Additionally, butyrate plays a role in the epigenetic regulation of gene expression through histone acetylation, influencing tissue development and immune modulation. Its anti-inflammatory and antioxidant effects have been demonstrated across various species, positioning butyrate as a potential therapeutic agent in animal nutrition. This review suggests that optimizing butyrate supplementation strategies to meet the specific needs of each species may yield additional benefits, establishing butyrate as an important dietary additive for enhancing growth performance and health in livestock.
Collapse
Affiliation(s)
- Wenting Chen
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lin Wei
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhenwei Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Adnan Khan
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Fan H, Shen R, Yan J, Bai Y, Fu Q, Shi X, Du G, Wang D. Pyroptosis the Emerging Link Between Gut Microbiota and Multiple Sclerosis. Drug Des Devel Ther 2024; 18:6145-6164. [PMID: 39717200 PMCID: PMC11665440 DOI: 10.2147/dddt.s489454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
This review elucidates the pivotal role of pyroptosis, triggered by gut microbiota, in the development of multiple sclerosis (MS), emphasizing its significance within the gut-brain axis. Our comprehensive analysis of recent literature reveals how dysbiosis in the gut microbiota of MS patients-characterized by reduced microbial diversity and shifts in bacterial populations-profoundly impacts immune regulation and the integrity of the central nervous system (CNS). Pyroptosis, an inflammatory form of programmed cell death, significantly exacerbates MS by promoting the release of inflammatory cytokines and causing substantial damage to CNS tissues. The gut microbiota facilitates this detrimental process through metabolites such as short-chain fatty acids and neuroactive compounds, or self-structural products like lipopolysaccharides (LPS), which modulate immune responses and influence neuronal survival. This review highlights the potential of modulating gut microbiota to regulate pyroptosis, thereby suggesting that targeting this pathway could be a promising therapeutic strategy to mitigate inflammatory responses and preserve neuronal integrity in patients with MS.
Collapse
Affiliation(s)
- Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ruile Shen
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Junqiang Yan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Yongjie Bai
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Qizhi Fu
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Xiaofei Shi
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Ganqin Du
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| | - Dongmei Wang
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, People’s Republic of China
| |
Collapse
|
6
|
Niu C, Huang J, Wei L, Wang J, Ran S. Proinflammatory Effect of Membrane Vesicles Derived from Enterococcus faecalis at Neutral and Alkaline pH. J Endod 2024; 50:1602-1611.e10. [PMID: 39218147 DOI: 10.1016/j.joen.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The present study explored the proinflammatory impact of Enterococcus faecalis membrane vesicles (MVs) derived from culture medium at pH levels of 7.4 and 9.0. METHODS E. faecalis MVs were obtained by centrifugation and purified by size-exclusion chromatography. Proteomic analyses were performed on E. faecalis MVs to investigate their components. THP-1 macrophages were exposed to E. faecalis MVs, and the inflammatory cytokines and proteins were evaluated using enzyme-linked immunosorbent assay and immunoblotting. The inflammatory cytokines in the serum of mice with intraperitoneal injection of E. faecalis MVs were evaluated by enzyme-linked immunosorbent assay, and immunophenotyping of spleen cells was investigated with flow cytometry. RESULTS Proteomic analysis revealed 196 proteins in E. faecalis MVs obtained under neutral and alkali conditions; 110 proteins were up-regulated, and 79 proteins were down-regulated by alkaline pH. E. faecalis MVs induced secretion of inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha in a concentration-dependent manner. Immunoblotting revealed that E. faecalis MVs increased expression of pro-IL-1β, nuclear factor kappa Bp65, and Toll-like receptor 2. In vivo studies demonstrated that E. faecalis MVs significantly promoted secretion of IL-1β in mouse serum, whereas inflammatory cells were activated in the spleen. E. faecalis MVs obtained at a pH of 9.0 showed stronger proinflammatory effects than those obtained under neutral pH. CONCLUSIONS E. faecalis produces MVs that carry specific proteins associated with virulence factors, and these MVs can promote inflammation in vitro and in vivo. E. faecalis MVs obtained under alkaline conditions have a stronger proinflammatory effect.
Collapse
Affiliation(s)
- Chenguang Niu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Nucleic Acid Drug Research and Development Institute, CSPC, Shanghai, China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
7
|
Hernández-Sandoval EM, Sánchez-Gutiérrez R, Torres-Monjarás AP, Alvarado-Hernández DL, Méndez-González V, Hernández-Castro B, Bernal-Silva S, Comas-García A, Martínez-Rider R, González-Amaro R, Vitales-Noyola M. α-IRAK-4 Suppresses the Activation of RANK/RANKL Pathway on Macrophages Exposed to Endodontic Microorganisms. Int J Mol Sci 2024; 25:8434. [PMID: 39126003 PMCID: PMC11313395 DOI: 10.3390/ijms25158434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Periapical lesions are common pathologies affecting the alveolar bone, often initiated by intraradicular lesions resulting from microbial exposure to dental pulp. These microorganisms trigger inflammatory and immune responses. When endodontic treatment fails to eliminate the infection, periapical lesions persist, leading to bone loss. The RANK/RANKL/OPG pathway plays a crucial role in both the formation and the destruction of the bone. In this study, the objective was to inhibit the RANK/RANKL pathway in vitro within exposed Thp-1 macrophages to endodontic microorganisms, specifically Enterococcus faecalis, which was isolated from root canals of 20 patients with endodontic secondary/persistent infection, symptomatic and asymptomatic, and utilizing an α-IRAK-4 inhibitor, we introduced endodontic microorganisms and/or lipoteichoic acid from Streptococcus spp. to cellular cultures in a culture plate, containing thp-1 cells and/or PBMC from patients with apical periodontitis. Subsequently, we assessed the percentages of RANK+, RANKL+, and OPG+ cells through flow cytometry and measured the levels of several inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) in the cellular culture supernatant through a CBA kit and performed analysis by flow cytometry. A significant difference was observed in the percentages of RANK+RANKL+, OPG+ RANKL+ cells in thp-1 cells and PBMCs from patients with apical periodontitis. The findings revealed significant differences in the percentages of the evaluated cells, highlighting the novel role of the IRAK-4 inhibitor in addressing this oral pathology, apical periodontitis, where bone destruction is observed.
Collapse
Affiliation(s)
- Elsa Montserrat Hernández-Sandoval
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Raquel Sánchez-Gutiérrez
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
- Department of Molecular and Translational Medicine, School of Medicine, Texas Tech University Health Sciences, El Paso, TX 79905, USA
| | - Ana Patricia Torres-Monjarás
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Diana Lorena Alvarado-Hernández
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Verónica Méndez-González
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| | - Berenice Hernández-Castro
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Sofía Bernal-Silva
- Department of Microbiology, Faculty of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (S.B.-S.); (A.C.-G.)
| | - Andreu Comas-García
- Department of Microbiology, Faculty of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (S.B.-S.); (A.C.-G.)
- School of Medicine, Cuauhtemoc University, Manuel Nava 3291, San Luis Potosi 78290, SLP, Mexico
| | - Ricardo Martínez-Rider
- Oral and Maxillofacial Surgery Specialty, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico;
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, SLP, Mexico; (R.S.-G.); (D.L.A.-H.); (B.H.-C.); (R.G.-A.)
| | - Marlen Vitales-Noyola
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava 2, San Luis Potosi 78290, SLP, Mexico; (E.M.H.-S.); (A.P.T.-M.); (V.M.-G.)
| |
Collapse
|
8
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Payen S, Giroux MC, Gisch N, Schombel U, Fittipaldi N, Segura M, Gottschalk M. Lipoteichoic acids influence cell shape and bacterial division of Streptococcus suis serotype 2, but play a limited role in the pathogenesis of the infection. Vet Res 2024; 55:34. [PMID: 38504299 PMCID: PMC10953176 DOI: 10.1186/s13567-024-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Streptococcus suis serotype 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans, responsible for substantial economic losses to the swine industry worldwide. The pathogenesis of infection and the role of bacterial cell wall components in virulence have not been fully elucidated. Lipoproteins, peptidoglycan, as well as lipoteichoic acids (LTA) have all been proposed to contribute to virulence. In the present study, the role of the LTA in the pathogenesis of the infection was evaluated through the characterisation of a mutant of the S. suis serotype 2 strain P1/7 lacking the LtaS enzyme, which mediates the polymerization of the LTA poly-glycerolphosphate chain. The ltaS mutant was confirmed to completely lack LTA and displayed significant morphological defects. Although the bacterial growth of this mutant was not affected, further results showed that LTA is involved in maintaining S. suis bacterial fitness. However, its role in the pathogenesis of the infection appears limited. Indeed, LTA presence reduces self-agglutination, biofilm formation and even dendritic cell activation, which are important aspects of the pathogenesis of the infection caused by S. suis. In addition, it does not seem to play a critical role in virulence using a systemic mouse model of infection.
Collapse
Affiliation(s)
- Servane Payen
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marie-Christine Giroux
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nahuel Fittipaldi
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mariela Segura
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marcelo Gottschalk
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
10
|
Rana AK, Kumar Saraswati SS, Anang V, Singh A, Singh A, Verma C, Natarajan K. Butyrate induces oxidative burst mediated apoptosis via Glucose-6-Phosphate Dehydrogenase (G6PDH) in macrophages during mycobacterial infection. Microbes Infect 2024; 26:105271. [PMID: 38036036 DOI: 10.1016/j.micinf.2023.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Microorganisms present in the gut modulate host defence responses against infections in order to maintain immune homeostasis. This host-microbe crosstalk is regulated by gut metabolites. Butyrate is one such small chain fatty acid produced by gut microbes upon fermentation that has the potential to influence immune responses. Here we investigated the role of butyrate in macrophages during mycobacterial infection. Results demonstrate that butyrate significantly suppresses the growth kinetics of mycobacteria in culture medium as well as inhibits mycobacterial survival inside macrophages. Interestingly, butyrate alters the pentose phosphate pathway by inducing higher expression of Glucose-6-Phosphate Dehydrogenase (G6PDH) resulting in a higher oxidative burst via decreased Sod-2 and increased Nox-2 (NADPH oxidase-2) expression. Butyrate-induced G6PDH also mediated a decrease in mitochondrial membrane potential. This in turn lead to an induction of apoptosis as measured by lower expression of the anti-apoptotic protein Bcl-2 and a higher release of Cytochrome C as a result of induction of apoptosis. These results indicate that butyrate alters the metabolic status of macrophages and induces protective immune responses against mycobacterial infection.
Collapse
Affiliation(s)
- Ankush Kumar Rana
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | | | - Vandana Anang
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aarti Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Chaitenya Verma
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
11
|
Jiang Y, Wang X, Chen J, Zhang Y, Hashimoto K, Yang JJ, Zhou Z. Repeated ( S)-ketamine administration ameliorates the spatial working memory impairment in mice with chronic pain: role of the gut microbiota-brain axis. Gut Microbes 2024; 16:2310603. [PMID: 38332676 PMCID: PMC10860353 DOI: 10.1080/19490976.2024.2310603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Chronic pain is commonly linked with diminished working memory. This study explores the impact of the anesthetic (S)-ketamine on spatial working memory in a chronic constriction injury (CCI) mouse model, focusing on gut microbiome. We found that multiple doses of (S)-ketamine, unlike a single dose, counteracted the reduced spontaneous alteration percentage (%SA) in the Y-maze spatial working memory test, without affecting mechanical or thermal pain sensitivity. Additionally, repeated (S)-ketamine treatments improved the abnormal composition of the gut microbiome (β-diversity), as indicated by fecal 16S rRNA analysis, and increased levels of butyrate, a key gut - brain axis mediator. Protein analysis showed that these treatments also corrected the upregulated histone deacetylase 2 (HDAC2) and downregulated brain-derived neurotrophic factor (BDNF) in the hippocampi of CCI mice. Remarkably, fecal microbiota transplantation from mice treated repeatedly with (S)-ketamine to CCI mice restored %SA and hippocampal BDNF levels in CCI mice. Butyrate supplementation alone also improved %SA, BDNF, and HDAC2 levels in CCI mice. Furthermore, the TrkB receptor antagonist ANA-12 negated the beneficial effects of repeated (S)-ketamine on spatial working memory impairment in CCI mice. These results indicate that repeated (S)-ketamine administration ameliorates spatial working memory impairment in CCI mice, mediated by a gut microbiota - brain axis, primarily through the enhancement of hippocampal BDNF - TrkB signaling by butyrate.
Collapse
Affiliation(s)
- Yubin Jiang
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xingming Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Chen
- Department of Anesthesiology, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Yibao Zhang
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Chen L, Mou X, Li J, Li M, Ye C, Gao X, Liu X, Ma Y, Xu Y, Zhong Y. Alterations in gut microbiota and host transcriptome of patients with coronary artery disease. BMC Microbiol 2023; 23:320. [PMID: 37924005 PMCID: PMC10623719 DOI: 10.1186/s12866-023-03071-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses. RESULTS Herein, we collected 52 fecal and 50 blood samples from CAD patients and matched controls, and performed amplicon and transcriptomic sequencing on these samples, respectively. By comparing CAD patients with health controls, we found that dysregulated gut microbes were significantly associated with CAD. By leveraging the Random Forest method, we found that combining 20 bacteria and 30 gene biomarkers could distinguish CAD patients from health controls with a high performance (AUC = 0.92). We observed that there existed prominent associations of gut microbes with several clinical indices relevant to heart functions. Integration analysis revealed that CAD-relevant gut microbe genus Fusicatenibacter was associated with expression of CAD-risk genes, such as GBP2, MLKL, and CPR65, which is in line with previous evidence (Tang et al., Nat Rev Cardiol 16:137-154, 2019; Kummen et al., J Am Coll Cardiol 71:1184-1186, 2018). In addition, the upregulation of immune-related pathways in CAD patients were identified to be primarily associated with higher abundance of genus Blautia, Eubacterium, Fusicatenibacter, and Monoglobus. CONCLUSIONS Our results highlight that dysregulated gut microbes contribute risk to CAD by interacting with host genes. These identified microbes and interacted risk genes may have high potentials as biomarkers for CAD.
Collapse
Affiliation(s)
- Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanting Mou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caijie Ye
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofei Gao
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohua Liu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Department of Biomedical Informatics, Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Leonov GE, Varaeva YR, Livantsova EN, Starodubova AV. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023; 11:2749. [PMID: 37893122 PMCID: PMC10604844 DOI: 10.3390/biomedicines11102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The human oral microbiome has emerged as a focal point of research due to its profound implications for human health. The involvement of short-chain fatty acids in oral microbiome composition, oral health, and chronic inflammation is gaining increasing attention. In this narrative review, the results of early in vitro, in vivo, and pilot clinical studies and research projects are presented in order to define the boundaries of this new complicated issue. According to the results, the current research data are disputable and ambiguous. When investigating the role of SCFAs in human health and disease, it is crucial to distinguish between their local GI effects and the systemic influences. Locally, SCFAs are a part of normal oral microbiota metabolism, but the increased formation of SCFAs usually attribute to dysbiosis; excess SCFAs participate in the development of local oral diseases and in oral biota gut colonization and dysbiosis. On the other hand, a number of studies have established the positive impact of SCFAs on human health as a whole, including the reduction of chronic systemic inflammation, improvement of metabolic processes, and decrease of some types of cancer incidence. Thus, a complex and sophisticated approach with consideration of origin and localization for SCFA function assessment is demanded. Therefore, more research, especially clinical research, is needed to investigate the complicated relationship of SCFAs with health and disease and their potential role in prevention and treatment.
Collapse
Affiliation(s)
- Georgy E Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Yurgita R Varaeva
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Elena N Livantsova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
14
|
Wang J, Dong P, Zheng S, Mai Y, Ding J, Pan P, Tang L, Wan Y, Liang H. Advances in gut microbiome in metabonomics perspective: based on bibliometrics methods and visualization analysis. Front Cell Infect Microbiol 2023; 13:1196967. [PMID: 37325519 PMCID: PMC10266355 DOI: 10.3389/fcimb.2023.1196967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background and aims Gastrointestinal microbial metabolomics is closely related to the state of the organism and has significant interaction with the pathogenesis of many diseases. Based on the publications in Web of Science Core Collection(WoSCC) from 2004 to 2022, this study conducted a bibliometric analysis of this field, aiming to understand its development trend and frontier, and provide basic information and potential points for in-depth exploration of this field. Methods All articles on gastrointestinal flora and metabolism published from 2004 to 2022 were collected and identified in WoCSS. CiteSpace v.6.1 and VOSviewer v.1.6.15.0 were used to calculate bibliometric indicators, including number of publications and citations, study categories, countries/institutions, authors/co-cited authors, journals/co-cited journals, co-cited references, and keywords. A map was drawn to visualize the data based on the analysis results for a more intuitive view. Results There were 3811 articles in WoSCC that met our criteria. Analysis results show that the number of publications and citations in this field are increasing year by year. China is the country with the highest number of publications and USA owns the highest total link strength and citations. Chinese Acad Sci rank first for the number of institutional publications and total link strength. Journal of Proteome Research has the most publications. Nicholson, Jeremy K. is one of the most important scholars in this field. The most cited reference is "Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease". Burst detection indicates that Urine, spectroscopy, metabonomic and gut microflora are long-standing hot topics in this field, while autism spectrum disorder and omics are likely to be at the forefront of research. The study of related metabolic small molecules and the application of gastrointestinal microbiome metabolomics in various diseases are currently emerging research directions and frontier in this field. Conclusion This study is the first to make a bibliometric analysis of the studies related to gastrointestinal microbial metabolomics and reveal the development trends and current research hotspots in this field. This can contribute to the development of the field by providing relevant scholars with valuable and effective information about the current state of the field.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzen, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yiyin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liugang Tang
- Tendon and Injury Department, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Hui Liang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzen, China
| |
Collapse
|