1
|
Liu WM, Chen CY, Ma HQ, Zhang QQ, Zhou X, Wu YL, Huang WJ, Qi XS, Zhang YX, Tang D, Sun HY, Wu HP, Jiao YF, He ZY, Yu WF, Yan HX. Inhibition of liver cancer cell growth by metabolites S-adenosylmethionine and nicotinic acid originating from liver progenitor cells. J Gastroenterol 2025; 60:754-769. [PMID: 40019515 DOI: 10.1007/s00535-025-02226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the most common form of liver cancer, presents a challenging malignancy with scarce treatment options. Liver progenitor cells (LPCs) play a pivotal role in both liver regeneration and the progression of liver cancer, yet the specific functions of LPCs from different origins in liver cancer remain to be fully elucidated. METHODS We explored the liver progenitor-like cells derived from human hepatocytes (HepLPCs) on the proliferation of HCC both in vitro and in vivo. The mitochondrial function was assessed through electron microscopy and functional experiments. Transcriptomic sequencing and western blot unveiled the fundamental mechanisms at play, whereas metabolomic sequencing pinpointed crucial effector molecules involved in the paracrine secretion of HepLPCs. RESULTS By employing a co-culture system of HepLPCs and HCC cells, we found that HepLPCs markedly inhibited HCC growth by prompting mitochondrial dysfunction, which further led to the co-inhibition of the Notch1 and JAK1/STAT3 signaling pathways through paracrine actions involving S-adenosylmethionine (SAM) and Nicotinic acid (NA). CONCLUSIONS This study has uncovered that HepLPCs have a suppressive influence on the proliferation of HCC cells. This is achieved through the impairment of mitochondrial function and the inhibition of key signaling pathways, namely, Notch1 and JAK1/STAT3, which are critical drivers of cancer progression. The secretion of the metabolites SAM and NA by HepLPCs appears to be instrumental in mediating these effects. These findings provide a solid foundation for identifying new therapeutic targets and clarifying the mechanisms through which HepLPCs can be harnessed to effectively treat HCC.
Collapse
Affiliation(s)
- Wen-Ming Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Shanghai Engineering Research Center of Peri-Operative Organ Support and Function Preservation (20DZ2254200), Renji Hospital, Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Qian Ma
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Shanghai Engineering Research Center of Peri-Operative Organ Support and Function Preservation (20DZ2254200), Renji Hospital, Shanghai, China
| | - Qiu-Qiu Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Shanghai Engineering Research Center of Peri-Operative Organ Support and Function Preservation (20DZ2254200), Renji Hospital, Shanghai, China
| | - Xu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Ling Wu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Jian Huang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Shu Qi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Xin Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Shanghai Engineering Research Center of Peri-Operative Organ Support and Function Preservation (20DZ2254200), Renji Hospital, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Shanghai Engineering Research Center of Peri-Operative Organ Support and Function Preservation (20DZ2254200), Renji Hospital, Shanghai, China
| | - Han-Yong Sun
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Ping Wu
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ying-Fu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Shanghai Engineering Research Center of Peri-Operative Organ Support and Function Preservation (20DZ2254200), Renji Hospital, Shanghai, China
| | - Zhi-Ying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
- Shanghai Engineering Research Center of Peri-Operative Organ Support and Function Preservation (20DZ2254200), Renji Hospital, Shanghai, China.
| | - He-Xin Yan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
- Shanghai Engineering Research Center of Peri-Operative Organ Support and Function Preservation (20DZ2254200), Renji Hospital, Shanghai, China.
| |
Collapse
|
2
|
Goswami Y, Baghel A, Sharma G, Sharma PK, Biswas S, Yadav R, Garg PK, Shalimar, Tandon R. Liver Organoids From Hepatocytes of Healthy Humans and Non-alcoholic Fatty Liver Disease (NAFLD) Patients Display Multilineage Architecture and can be Used to Develop an In Vitro Model of Steatohepatitis. J Clin Exp Hepatol 2025; 15:102463. [PMID: 39872219 PMCID: PMC11761825 DOI: 10.1016/j.jceh.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/15/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Aim Non-alcoholic fatty liver disease (NAFLD) is a global health concern with limited treatment options. The paucity of predictive i n v itro models in preclinical settings seems to be one of the limitations of identifying effective medicines. We therefore aimed to develop an i n v itro model that can display the key hallmarks of NAFLD, such as steatosis, inflammation, and fibrosis. Methods An in vitro model of steatohepatitis was developed using organoids prepared from hepatocytes of healthy individuals from a commercial source (HLOs) and the liver tissues collected from needle biopsies of NAFLD patients (HLONAFLD) using defined culture conditions. HLOs were treated with palmitic acid for 72 h to develop an i n v itro model of steatohepatitis, while HLONAFLD served as a natural model of steatohepatitis. Metformin and saroglitazar were used to validate the liver organoid model of steatohepatitis. Saroglitazar was also evaluated in the high-fat, high-fructose (HF-HF) diet-induced model of NAFLD using C57BL/6 mice to validate the findings from the i n v itro model. Results HLOs and HLONAFLD exhibited bipotent properties, showing the expression of markers of hepatocytes, ductal cells, and also stem cells. Furthermore, they demonstrated the expression of nonparenchymal cell markers such as stellate cells (CD166) and Kupffer-like cells (CD68 and EMR1). The steatohepatitis models developed using these organoids displayed markers associated with steatosis, inflammation and fibrosis, which were decreased by metformin and saroglitazar. Conclusion The in vitro models developed in our lab employing HLOs and HLONAFLD display all three key hallmarks of NAFLD: steatosis, inflammation, and fibrosis without the necessity for coculture with other nonparenchymal cells. The implementation of the HLONAFLD-based model is also expected to provide a more realistic assessment of test substances to develop therapeutics for NAFLD.
Collapse
Affiliation(s)
- Yamini Goswami
- BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Akash Baghel
- BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ghanshyam Sharma
- BRIC-Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Phulwanti K. Sharma
- BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sagnik Biswas
- All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- All India Institute of Medical Sciences, New Delhi, India
| | - Pramod K. Garg
- BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
- All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- All India Institute of Medical Sciences, New Delhi, India
| | - Ruchi Tandon
- BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
3
|
Papamichail L, Koch LS, Veerman D, Broersen K, van der Meer AD. Organoids-on-a-chip: microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Front Bioeng Biotechnol 2025; 13:1515340. [PMID: 40134772 PMCID: PMC11933005 DOI: 10.3389/fbioe.2025.1515340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Organoids are stem-cell derived tissue structures mimicking specific structural and functional characteristics of human organs. Despite significant advancements in the field over the last decade, challenges like limited long-term functional culture and lack of maturation are hampering the implementation of organoids in biomedical research. Culture of organoids in microfluidic chips is being used to tackle these challenges through dynamic and precise control over the organoid microenvironment. This review highlights the significant breakthroughs that have been made in the innovative field of "organoids-on-chip," demonstrating how these have contributed to advancing organoid models. We focus on the incorporation of organoids representative for various tissues into chips and discuss the latest findings in multi-organoids-on-chip approaches. Additionally, we examine current limitations and challenges of the field towards the development of reproducible organoids-on-chip systems. Finally, we discuss the potential of organoids-on-chip technology for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Lito Papamichail
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lena S. Koch
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| | - Devin Veerman
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, Department of Bioengineering Technologies, University of Twente, Enschede, Netherlands
| |
Collapse
|
4
|
Wu H, Wang J, Liu S, Wang Y, Tang X, Xie J, Wang N, Shan H, Chen S, Zhang X, Zeng W, Chen C, Fu Y, Lai L, Duan Y. Large-Scale Production of Expandable Hepatoblast Organoids and Polarised Hepatocyte Organoids From hESCs Under 3D Static and Dynamic Suspension Conditions. Cell Prolif 2025:e70001. [PMID: 39921573 DOI: 10.1111/cpr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
To date, generating viable and functional hepatocytes in large scale remains challenge. By employing 3D suspension condition with the support of low concentration Matrigel, a novel culture system was developed to generate expandable hepatoblast organoids (HB-orgs) and mature polarised hepatocyte organoids (P-hep-orgs) from human embryonic stem cells (hESCs) in both dishes and bioreactors. scRNA-seq and functional assays were used to characterise HB-orgs and P-hep-orgs. hESC-derived HB-orgs could proliferate at least for 15 passages, leading to 1012 in total cells in 4 weeks. P-hep-orgs differentiated from HB-orgs displayed characteristics of mature hepatocytes with polarisation. Moreover, single-cell RNA sequencing exhibited that over 40% of cells in P-hep-orgs were highly fidelity with human primary hepatocytes. Eventually, large-scale production of P-hep-orgs could be generated from massively expanded HB-orgs within 1 week with similar number in bioreactors, which were achieved by the enhancements in energy metabolism contribute to the expansion of HB-orgs and maturation of P-hep-orgs in bioreactors. By providing a cost-efficient and robust platform, our study represents a significant step toward manufacturing large-scale functioning hESC-derived hepatocytes for cell-based therapeutics, disease modelling, pharmacology and toxicology studies.
Collapse
Affiliation(s)
- Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiyu Wang
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xianglian Tang
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huanhuan Shan
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Sen Chen
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xueyan Zhang
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Weiping Zeng
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuxin Chen
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yinjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Zhou X, Liu WM, Sun HY, Peng Y, Huang RJ, Chen CY, Zhang HD, Zhou SA, Wu HP, Tang D, Huang WJ, Wu H, Li QG, Zhai B, Xia Q, Yu WF, Yan HX. Hepatocyte-derived liver progenitor-like cells attenuate liver cirrhosis via induction of apoptosis in hepatic stellate cells. Hepatol Commun 2025; 9:e0614. [PMID: 39878682 PMCID: PMC11781762 DOI: 10.1097/hc9.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/12/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy. METHODS The effects of allogeneic or xenogeneic HepLPC transplantation were investigated in rat model of liver cirrhosis. Liver tissues were collected and subjected to immunostaining to assess changes in histology. In vitro experiments used HSCs to explore the antifibrotic properties of HepLPC-secretomes and their underlying molecular mechanisms. Additionally, proteomic analysis was conducted to characterize the protein composition of HepLPC-secretomes. RESULTS Transplantation of HepLPCs resulted in decreased active fibrogenesis and net fibrosis in cirrhosis models. Apoptosis of HSCs was observed in vivo after HepLPC treatment. HepLPC-secretomes exhibited potent inhibition of TGF-β1-induced HSC activation and promoted apoptosis through signal transducer and activator of transcription (STAT)1-mediated pathways in vitro. Furthermore, synergistic effects between amphiregulin and FGF19 within HepLPC-secretomes were identified, contributing to HSC apoptosis and exerting antifibrotic effects via activation of the janus kinase-STAT1 pathway. CONCLUSIONS HepLPCs have the potential to ameliorate liver cirrhosis by inducing STAT1-dependent apoptosis in HSCs. Amphiregulin and FGF19 are key factors responsible for STAT1 activation, representing promising novel therapeutic targets for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wen-Ming Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Han-Yong Sun
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Peng
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ren-Jie Huang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Shen-Ao Zhou
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Hong-Ping Wu
- Molecular Epidemiology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wei-Jian Huang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Han Wu
- Hubei Key Laboratory of Tumour Biological Behaviors, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qi-Gen Li
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - He-Xin Yan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang Y, Li L, Dong L, Cheng Y, Huang X, Xue B, Jiang C, Cao Y, Yang J. Hydrogel-Based Strategies for Liver Tissue Engineering. CHEM & BIO ENGINEERING 2024; 1:887-915. [PMID: 39975572 PMCID: PMC11835278 DOI: 10.1021/cbe.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 02/21/2025]
Abstract
The liver's role in metabolism, detoxification, and immune regulation underscores the urgency of addressing liver diseases, which claim millions of lives annually. Due to donor shortages in liver transplantation, liver tissue engineering (LTE) offers a promising alternative. Hydrogels, with their biocompatibility and ability to mimic the liver's extracellular matrix (ECM), support cell survival and function in LTE. This review analyzes recent advances in hydrogel-based strategies for LTE, including decellularized liver tissue hydrogels, natural polymer-based hydrogels, and synthetic polymer-based hydrogels. These materials are ideal for in vitro cell culture and obtaining functional hepatocytes. Hydrogels' tunable properties facilitate creating artificial liver models, such as organoids, 3D bioprinting, and liver-on-a-chip technologies. These developments demonstrate hydrogels' versatility in advancing LTE's applications, including hepatotoxicity testing, liver tissue regeneration, and treating acute liver failure. This review highlights the transformative potential of hydrogels in LTE and their implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yu Zhang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Luofei Li
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Liang Dong
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuanqi Cheng
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaoyu Huang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Jiapeng Yang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
7
|
Zhang L, Deng Y, Bai X, Wei X, Ren Y, Chen S, Deng H. Cell therapy for end-stage liver disease: Current state and clinical challenge. Chin Med J (Engl) 2024; 137:2808-2820. [PMID: 39602326 DOI: 10.1097/cm9.0000000000003332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 11/29/2024] Open
Abstract
ABSTRACT Liver disease involves a complex interplay of pathological processes, including inflammation, hepatocyte necrosis, and fibrosis. End-stage liver disease (ESLD), such as liver failure and decompensated cirrhosis, has a high mortality rate, and liver transplantation is the only effective treatment. However, to overcome problems such as the shortage of donor livers and complications related to immunosuppression, there is an urgent need for new treatment strategies that need to be developed for patients with ESLD. For instance, hepatocytes derived from donor livers or stem cells can be engrafted and multiplied in the liver, substituting the host hepatocytes and rebuilding the liver parenchyma. Stem cell therapy, especially mesenchymal stem cell therapy, has been widely proved to restore liver function and alleviate liver injury in patients with severe liver disease, which has contributed to the clinical application of cell therapy. In this review, we discussed the types of cells used to treat ESLD and their therapeutic mechanisms. We also summarized the progress of clinical trials around the world and provided a perspective on cell therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Chen Y, Wu Y, Sun H, Zhang H, Tang D, Yuan T, Chen C, Huang W, Zhou X, Wu H, Xu S, Liu W, Jiao Y, Yang L, Li Q, Yan H, Yu W. Human liver progenitor-like cells-derived extracellular vesicles promote liver regeneration during acute liver failure. Cell Biol Toxicol 2024; 40:106. [PMID: 39604571 PMCID: PMC11602810 DOI: 10.1007/s10565-024-09954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Hepatocyte-derived liver progenitor-like cells (HepLPCs) exhibit a remarkable capacity to support liver function by detoxifying ammonia, promoting native liver regeneration, and suppressing inflammation, which leads to improvements in the recovery and survival of animals with acute liver failure (ALF). However, the mechanism through which HepLPCs promote liver regeneration is unclear. Here, we isolated HepLPC-derived extracellular vesicles (HepLPC-EVs) from conditioned media and performed microRNA sequencing analysis. Our results showed HepLPC-EVs promoted liver regeneration in mice with carbon tetrachloride or acetaminophen induced ALF. Cell cycle progression and proliferation of primary human hepatocytes were promoted after coculture with HepLPC-EVs. Exosomal miRNA sequencing confirmed that HepLPC-EVs were enriched with miR-183-5p, which played an essential role in ameliorating ALF. Mechanistically, HepLPC-derived exosomal miR-183-5p negatively regulated the expression of the target gene FoxO1, activated the Akt/GSK3β/β-catenin signaling pathway, and thereby promoted liver regeneration and restoration of normal liver function. These results indicate that during ALF, HepLPC-Exos mediate liver regeneration mainly through a paracrine exosome-dependent mechanism and these effects accelerate liver regeneration and lead to the restoration of normal liver function.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Yuling Wu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Hanyong Sun
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Hongdan Zhang
- Celliver Biotechnology Co. Ltd., Shanghai, 200120, China
| | - Dan Tang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Tianjie Yuan
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Caiyang Chen
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Weijian Huang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Xu Zhou
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Hongping Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai, 200438, China
| | - Saihong Xu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Wenming Liu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
| | - Yingfu Jiao
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Liqun Yang
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China
| | - Qigen Li
- Department of Organ Transplantation, the Second Affiliated Hospital of Nanchang University, Nanchang, 330200, China.
| | - Hexin Yan
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China.
- Celliver Biotechnology Co. Ltd., Shanghai, 200120, China.
| | - Weifeng Yu
- Department of Anesthesiology / Department of Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200217, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200217, China.
| |
Collapse
|
9
|
Sun P, Yuan Y, Lv Z, Yu X, Ma H, Liang S, Zhang J, Zhu J, Lu J, Wang C, Huan L, Jin C, Wang C, Li W. Generation of self-renewing neuromesodermal progenitors with neuronal and skeletal muscle bipotential from human embryonic stem cells. CELL REPORTS METHODS 2024; 4:100897. [PMID: 39515335 PMCID: PMC11705767 DOI: 10.1016/j.crmeth.2024.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Progress has been made in generating spinal cord and trunk derivatives from neuromesodermal progenitors (NMPs). However, maintaining the self-renewal of NMPs in vitro remains a challenge. In this study, we developed a cocktail of small molecules and growth factors that induces human embryonic stem cells to produce self-renewing NMPs (srNMPs) under chemically defined conditions. These srNMPs maintain the state of neuromesodermal progenitors in prolonged culture and have the potential to generate mesodermal cells and neurons, even at the single-cell level. Additionally, suspended srNMP aggregates can spontaneously differentiate into all tissue types of early embryonic trunks. Furthermore, transplanted srNMP-derived muscle satellite cells or progenitors of motor neurons were integrated into skeletal muscle or the spinal cord, respectively, and contributed to regeneration in mouse models. In summary, srNMPs hold great promise for applications in developmental biology and as renewable cell sources for cell therapy for trunk and spinal cord injuries.
Collapse
Affiliation(s)
- Pingxin Sun
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Yuan Yuan
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Zhuman Lv
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Xinlu Yu
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Haoxin Ma
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Shulong Liang
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Jiqianzhu Zhang
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China; Department of Health Toxicology, Naval Medical University, 200433 Shanghai, China
| | - Jiangbo Zhu
- Department of Health Toxicology, Naval Medical University, 200433 Shanghai, China
| | - Junyu Lu
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Chunyan Wang
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China
| | - Le Huan
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China.
| | - Caixia Jin
- Department of Regenerative Medicine, College of Medicine, Tongji University, 200433 Shanghai, China.
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China.
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, 200433 Shanghai, China; Shanghai Key Laboratory of Cell Engineering, Naval Medical University, 200433 Shanghai, China.
| |
Collapse
|
10
|
Meng X, Liu A, Phangthavong O, Sun Y. A novel strategy for treating acute liver failure: encapsulated proliferating human hepatocyte organoids. BIOMATERIALS TRANSLATIONAL 2024; 5:444-446. [PMID: 39872926 PMCID: PMC11764186 DOI: 10.12336/biomatertransl.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 01/30/2025]
Affiliation(s)
- Xiangying Meng
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, Hubei Province, China
- National Engineering and Research Center of Human Stem Cells, Changsha, Hubei Province, China
| | - Aihui Liu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hubei Province, China
- National Engineering and Research Center of Human Stem Cells, Changsha, Hubei Province, China
| | - Oulayvanh Phangthavong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hubei Province, China
- National Engineering and Research Center of Human Stem Cells, Changsha, Hubei Province, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hubei Province, China
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, Hubei Province, China
- National Engineering and Research Center of Human Stem Cells, Changsha, Hubei Province, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, Hubei Province, China
| |
Collapse
|
11
|
Shi X, Zhang K, Yu F, Qi Q, Cai X, Zhang Y. Advancements and Innovative Strategies in Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cell Therapy: A Comprehensive Review. Stem Cells Int 2024; 2024:4073485. [PMID: 39377039 PMCID: PMC11458320 DOI: 10.1155/2024/4073485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
The effectiveness and safety of mesenchymal stem cell (MSC) therapy have been substantiated across various diseases. Nevertheless, challenges such as the restricted in vitro expansion capacity of tissue-derived MSCs and the clinical instability due to the high heterogeneity of isolated cells require urgent resolution. The induced pluripotent stem cell-derived MSCs (iPSC-MSCs), which is differentiated from iPSCs via specific experimental pathways, holds considerable potential as a substitute for tissue derived MSCs. Multiple studies have demonstrated that iPSCs can be differentiated into iPSC-MSCs through diverse differentiation strategies. Research suggests that iPSC-MSCs, when compared to tissue derived MSCs, exhibit superior characteristics in terms of proliferation ability, immune modulation capacity, and biological efficiency. In this review, we meticulously described and summarized the experimental methods of iPSC differentiation into iPSC-MSCs, the application of iPSC-MSCs in various disease models, the latest advancements in clinically relevant iPSC-derived cell products, and the development strategies for the next generation of iPSC-derived therapy products (not only cell products but also their derivatives).
Collapse
Affiliation(s)
- Xiaoyu Shi
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Kun Zhang
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Fengshi Yu
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Qi Qi
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Xiaoyu Cai
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Yu Zhang
- VCANBIO Cell and Gene Engineering Corp. Ltd., Tianjin, China
| |
Collapse
|
12
|
Xie H, Li G, Fu Y, Jiang N, Yi S, Kong X, Shi J, Yin S, Peng J, Jiang Y, Lu S, Deng H, Xie B. A two-step strategy to expand primary human hepatocytes in vitro with efficient metabolic and regenerative capacities. Stem Cell Res Ther 2024; 15:281. [PMID: 39227965 PMCID: PMC11373096 DOI: 10.1186/s13287-024-03911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Primary human hepatocytes (PHHs) are highly valuable for drug-metabolism evaluation, liver disease modeling and hepatocyte transplantation. However, their availability is significantly restricted due to limited donor sources, alongside their constrained proliferation capabilities and reduced functionality when cultured in vitro. To address this challenge, we aimed to develop a novel method to efficiently expand PHHs in vitro without a loss of function. METHODS By mimicking the in vivo liver regeneration route, we developed a two-step strategy involving the de-differentiation/expansion and subsequent maturation of PHHs to generate abundant functional hepatocytes in vitro. Initially, we applied SiPer, a prediction algorithm, to identify candidate small molecules capable of activating liver regenerative transcription factors, thereby formulating a novel hepatic expansion medium to de-differentiate PHHs into proliferative human hepatic progenitor-like cells (ProHPLCs). These ProHPLCs were then re-differentiated into functionally mature hepatocytes using a new hepatocyte maturation condition. Additionally, we investigated the underlying mechanism of PHHs expansion under our new conditions. RESULTS The novel hepatic expansion medium containing hydrocortisone facilitated the de-differentiation of PHHs into ProHPLCs, which exhibited key hepatic progenitor characteristics and demonstrated a marked increase in proliferation capacity compared to cells cultivated in previously established expansion conditions. Remarkably, these subsequent matured hepatocytes rivaled PHHs in terms of transcriptome profiles, drug metabolizing activities and in vivo engraftment capabilities. Importantly, our findings suggest that the enhanced expansion of PHHs by hydrocortisone may be mediated through the PPARα signaling pathway and regenerative transcription factors. CONCLUSIONS This study presents a two-step strategy that initially induces PHHs into a proliferative state (ProHPLCs) to ensure sufficient cell quantity, followed by the maturation of ProHPLCs into fully functional hepatocytes to guarantee optimal cell quality. This approach offers a promising means of producing large numbers of seeding cells for hepatocyte-based applications.
Collapse
Affiliation(s)
- Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guangya Li
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yunxi Fu
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Nan Jiang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Simeng Yi
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jihang Shi
- Department of Gastroenterology, The Second Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianhua Peng
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery, Institute of Hepatobiliary Surgery of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
13
|
Wang S, Wang X, Wang Y. The Progress and Promise of Lineage Reprogramming Strategies for Liver Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101395. [PMID: 39218152 PMCID: PMC11530608 DOI: 10.1016/j.jcmgh.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The liver exhibits remarkable regenerative capacity. However, the limited ability of primary human hepatocytes to proliferate in vitro, combined with a compromised regenerative capacity induced by pathological conditions in vivo, presents significant obstacles to effective liver regeneration following liver injuries and diseases. Developing strategies to compensate for the loss of endogenous hepatocytes is crucial for overcoming these challenges, and this remains an active area of investigation. Lineage reprogramming, the process of directly converting one cell type into another bypassing the intermediate pluripotent state, has emerged as a promising method for generating specific cell types for therapeutic purposes in regenerative medicine. Here, we discuss the recent progress and emergent technologies in lineage reprogramming into hepatic cells, and their potential applications in enhancing liver regeneration or treating liver disease models. We also address controversies and challenges that confront this field.
Collapse
Affiliation(s)
- Shuyong Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuan Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
14
|
Zhang K, Wan P, Wang L, Wang Z, Tan F, Li J, Ma X, Cen J, Yuan X, Liu Y, Sun Z, Cheng X, Liu Y, Liu X, Hu J, Zhong G, Li D, Xia Q, Hui L. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases. Cell Stem Cell 2024; 31:1187-1202.e8. [PMID: 38772378 DOI: 10.1016/j.stem.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiaolong Ma
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Zhen Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanhua Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| | - Lijian Hui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
15
|
Li G, Zeng M, Yan Z, Cai S, Ma Y, Wang Y, Li S, Li Y, Zhong K, Xiao M, Fu G, Weng J, Gao Y. HDAC inhibitors support long-term expansion of porcine hepatocytes in vitro. Biomed Pharmacother 2024; 177:116973. [PMID: 38908204 DOI: 10.1016/j.biopha.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Hepatocyte transplantation is an effective treatment for end-stage liver disease. However, due to the limited supply of human hepatocytes, porcine hepatocytes have garnered attention as a potential alternative source. Nonetheless, traditional primary porcine hepatocytes exhibit certain limitations in function maintenance and in vitro proliferation. This study has discovered that by using histone deacetylase inhibitors (HDACi), primary porcine hepatocytes can be successfully reprogrammed into liver progenitor cells with high proliferative potential. This method enables porcine hepatocytes to proliferate over an extended period in vitro and exhibit increased susceptibility in lentivirus-mediated gene modification. These liver progenitor cells can readily differentiate into mature hepatocytes and, upon microencapsulation transplantation into mice with acute liver failure, significantly improve the survival rate. This research provides new possibilities for the application of porcine hepatocytes in the treatment of end-stage liver disease.
Collapse
Affiliation(s)
- Guanhong Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou 510000, China
| | - Min Zeng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Zhengming Yan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shaoru Cai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi Ma
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yuting Wang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shao Li
- Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Kebo Zhong
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Mingjia Xiao
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| | - Gongbo Fu
- Department of Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210000, China.
| | - Jun Weng
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510000, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
16
|
Hendriks D, Artegiani B, Margaritis T, Zoutendijk I, Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth. Nat Commun 2024; 15:4034. [PMID: 38740814 DOI: 10.1038/s41467-024-48550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | | | - Iris Zoutendijk
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- University Medical Center Utrecht, Utrecht, The Netherlands.
- Pharma Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
17
|
Wen H, Ni X, Qian S, Abdul S, Lv H, Chen Y. Construction of a gene signature associated with anoikis to evaluate the prognosis and immune infiltration in patients with colorectal cancer. Transl Cancer Res 2024; 13:1904-1923. [PMID: 38737694 PMCID: PMC11082817 DOI: 10.21037/tcr-23-1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/08/2024] [Indexed: 05/14/2024]
Abstract
Background Colorectal cancer (CRC) is characterized by a high metastasis rate, leading to poor prognosis and increased mortality. Anoikis, a physiological process, serves as a crucial barrier against metastasis. The objective of this research is to construct a prognostic model for CRC based on genes associated with anoikis. Methods The study involved differential analysis and univariate Cox analysis of anoikis-related genes (ARGs), resulting in the selection of 47 genes closely associated with prognosis. Subsequently, unsupervised k-means clustering analysis was conducted on all patients to identify distinct clusters. Survival analysis, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE) analysis were performed on the different clusters to investigate associations within the clusters. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were utilized to assess metabolic pathway enrichment between the identified clusters. Furthermore, single-sample GSEA (ssGSEA) was applied to explore variations in immune infiltration. Multivariable Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were conducted to construct a risk model based on ten signatures, which enabled the grouping of all samples according to their risk scores. The prognostic value of the model was validated using receiver operating characteristic (ROC) curves, area under the curve (AUC) calculations, and survival curves. Additionally, the expression of candidate genes was validated using quantitative real-time polymerase chain reaction (qRT-PCR). Results Forty-seven survival-related ARGs were screened out. Somatic mutation analysis showed that these genes revealed a high mutation rate. Based on their expression, two clusters were identified. Cluster B patients exhibited a shortened overall survival and higher immune infiltration. A risk scoring model including ten genes was subsequently developed, which exhibited excellent prognostic predictive ability for CRC, as evidenced by the survival curve, ROC curve, and AUC curve. In addition, a nomogram was developed for predicting 3- and 5-year survival probabilities. The qRT-PCR results indicated the dissimilarities among the ten signatures in the tumor tissues and adjacent tissues of patients with CRC were fundamentally consistent with the analytical findings. Conclusions This study comprehensively evaluated the prognostic significance of ARGs in CRC. It identified two distinct anoikis-related clusters and examined their respective immune microenvironments. Furthermore, an ARGs signature was developed to effectively predict the prognosis of CRC, thereby establishing a solid foundation for investigating the clinical prognostic role of anoikis in CRC.
Collapse
Affiliation(s)
- Hang Wen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xixian Ni
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sicheng Qian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sammad Abdul
- International Education College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yitao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Yuan X, Wu J, Sun Z, Cen J, Shu Y, Wang C, Li H, Lin D, Zhang K, Wu B, Dhawan A, Zhang L, Hui L. Preclinical efficacy and safety of encapsulated proliferating human hepatocyte organoids in treating liver failure. Cell Stem Cell 2024; 31:484-498.e5. [PMID: 38458193 DOI: 10.1016/j.stem.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Alginate-encapsulated hepatocyte transplantation is a promising strategy to treat liver failure. However, its clinical application was impeded by the lack of primary human hepatocytes and difficulty in controlling their quality. We previously reported proliferating human hepatocytes (ProliHHs). Here, quality-controlled ProliHHs were produced in mass and engineered as liver organoids to improve their maturity. Encapsulated ProliHHs liver organoids (eLO) were intraperitoneally transplanted to treat liver failure animals. Notably, eLO treatment increased the survival of mice with post-hepatectomy liver failure (PHLF) and ameliorated hyperammonemia and hypoglycemia by providing liver functions. Additionally, eLO treatment protected the gut from PHLF-augmented permeability and normalized the increased serum endotoxin and inflammatory response, which facilitated liver regeneration. The therapeutic effect of eLO was additionally proved in acetaminophen-induced liver failure. Furthermore, we performed assessments of toxicity and biodistribution, demonstrating that eLO had no adverse effects on animals and remained non-tumorigenic.
Collapse
Affiliation(s)
- Xiang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingqi Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhen Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yajing Shu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dongni Lin
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center, King's College Hospital, London, UK; Dhawan Lab at the Mowat Labs, Institute of Liver Studies, King's College London at King's College Hospital, London, UK
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
19
|
Ma M, Ge JY, Nie YZ, Li YM, Zheng YW. Developing Humanized Animal Models with Transplantable Human iPSC-Derived Cells. FRONT BIOSCI-LANDMRK 2024; 29:34. [PMID: 38287837 DOI: 10.31083/j.fbl2901034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Establishing reliable and reproducible animal models for disease modelling, drug screening and the understanding of disease susceptibility and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune response, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerging trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for disease modeling and drug screening.
Collapse
Affiliation(s)
- Min Ma
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Yun-Zhong Nie
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 278-8510 Noda, Japan
| |
Collapse
|
20
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
21
|
Jiang M, Ren J, Belmonte JCI, Liu GH. Hepatocyte reprogramming in liver regeneration: Biological mechanisms and applications. FEBS J 2023; 290:5674-5688. [PMID: 37556833 DOI: 10.1111/febs.16930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
The liver is one of the few organs that retain the capability to regenerate in adult mammals. This regeneration process is mainly facilitated by the dynamic behavior of hepatocytes, which are the major functional constituents in the liver. In response to liver injury, hepatocytes undergo remarkable alterations, such as reprogramming, wherein they lose their original identity and acquire properties from other cells. This phenomenon of hepatocyte reprogramming, coupled with hepatocyte expansion, plays a central role in liver regeneration, and its underlying mechanisms are complex and multifaceted. Understanding the fate of reprogrammed hepatocytes and the mechanisms of their conversion has significant implications for the development of innovative therapeutics for liver diseases. Herein, we review the plasticity of hepatocytes in response to various forms of liver injury, with a focus on injury-induced hepatocyte reprogramming. We provide a comprehensive summary of current knowledge on the molecular and cellular mechanisms governing hepatocyte reprogramming, specifically in the context of liver regeneration, providing insight into potential applications of this process in the treatment of liver disorders, including chronic liver diseases and liver cancer.
Collapse
Affiliation(s)
- Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Huang WJ, Qiu BJ, Qi XS, Chen CY, Liu WM, Zhou SA, Ding M, Lu FF, Zhao J, Tang D, Zhou X, Fu GB, Wang ZY, Ma HQ, Wu YL, Wu HP, Chen XS, Yu WF, Yan HX. CD24 +LCN2 + liver progenitor cells in ductular reaction contributed to macrophage inflammatory responses in chronic liver injury. Cell Biosci 2023; 13:184. [PMID: 37784089 PMCID: PMC10546777 DOI: 10.1186/s13578-023-01123-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND CD24+CK19+/CD24+SOX9+ resident liver cells are activated and expanded after chronic liver injury in a ductular reaction. However, the sources and functions of these cells in liver damage remain disputed. RESULTS The current study combined genetic lineage tracing with in vitro small-molecule-based reprogramming to define liver progenitor cells (LPCs) derived from hepatic parenchymal and non-parenchymal tissues. tdTom+ hepatocytes were isolated from ROSA26tdTomato mice following AAV8-Tbg-Cre-mediated recombination, EpCAM+ biliary epithelial cells (BECs) from wild-type intrahepatic bile ducts and ALB/GFP-EpCAM- cells were isolated from AlbCreERT/R26GFP mice. A cocktail of small molecules was used to convert the isolated cells into LPCs. These in vitro cultured LPCs with CD24 and SOX9 expression regained the ability to proliferate. Transcriptional profiling showed that the in-vitro cultured LPCs derived from the resident LPCs in non-parenchymal tissues expressed Lipocalin-2 (Lcn2) at high levels. Accordingly, endogenous Cd24a+Lcn2+ LPCs were identified by integration of sc-RNA-sequencing and pathological datasets of liver dysfunction which indicates that LPCs produced by ductular reactions might also originate from the resident LPCs. Transplantation of in-vitro cultured Cd24a+Lcn2+ LPCs into CCl4-induced fibrotic livers exacerbated liver damage and dysfunction, possibly due to LCN2-dependent macrophage inflammatory response. CONCLUSIONS CD24+LCN2+ LPCs constituted the expanding ductular reaction and contributed to macrophage-mediated inflammation in chronic liver damage. The current findings highlight the roles of LPCs from distinct origins and expose the possibility of targeting LPCs in the treatment of chronic hepatic diseases.
Collapse
Affiliation(s)
- Wei-Jian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Celliver Biotechnology Inc., Shanghai, China
| | - Bi-Jun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University., Shanghai, China
| | - Xiao-Shu Qi
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Wen-Ming Liu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Min Ding
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Jiaotong University, Shanghai, China
| | - Feng-Feng Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University., Shanghai, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xu Zhou
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Gong-Bo Fu
- Department of Medical Oncology, First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Zhen-Yu Wang
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Hong-Qian Ma
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yu-Ling Wu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Hong-Ping Wu
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Song Chen
- Department of Infectious Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200120, China.
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
- Celliver Biotechnology Inc., Shanghai, China.
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Jiaotong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
23
|
Sun Z, Yuan X, Wu J, Wang C, Zhang K, Zhang L, Hui L. Hepatocyte transplantation: The progress and the challenges. Hepatol Commun 2023; 7:e0266. [PMID: 37695736 PMCID: PMC10497249 DOI: 10.1097/hc9.0000000000000266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023] Open
Abstract
Numerous studies have shown that hepatocyte transplantation is a promising approach for liver diseases, such as liver-based metabolic diseases and acute liver failure. However, it lacks strong evidence to support the long-term therapeutic effects of hepatocyte transplantation in clinical practice. Currently, major hurdles include availability of quality-assured hepatocytes, efficient engraftment and repopulation, and effective immunosuppressive regimens. Notably, cell sources have been advanced recently by expanding primary human hepatocytes by means of dedifferentiation in vitro. Moreover, the transplantation efficiency was remarkably improved by the established preparative hepatic irradiation in combination with hepatic mitogenic stimuli regimens. Finally, immunosuppression drugs, including glucocorticoid and inhibitors for co-stimulating signals of T cell activation, were proposed to prevent innate and adaptive immune rejection of allografted hepatocytes. Despite remarkable progress, further studies are required to improve in vitro cell expansion technology, develop clinically feasible preconditioning regimens, and further optimize immunosuppression regimens or establish ex vivo gene correction-based autologous hepatocyte transplantation.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingqi Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
24
|
Wang J, Sun S, Deng H. Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell 2023; 30:1130-1147. [PMID: 37625410 DOI: 10.1016/j.stem.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Chemical reprogramming offers an unprecedented opportunity to control somatic cell fate and generate desired cell types including pluripotent stem cells for applications in biomedicine in a precise, flexible, and controllable manner. Recent success in the chemical reprogramming of human somatic cells by activating a regeneration-like program provides an alternative way of producing stem cells for clinical translation. Likewise, chemical manipulation enables the capture of multiple (stem) cell states, ranging from totipotency to the stabilization of somatic fates in vitro. Here, we review progress in using chemical approaches for cell fate manipulation in addition to future opportunities in this promising field.
Collapse
Affiliation(s)
- Jinlin Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Shicheng Sun
- Changping Laboratory, 28 Life Science Park Road, Beijing, China; Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, 28 Life Science Park Road, Beijing, China.
| |
Collapse
|
25
|
Cardinale V, Lanthier N, Baptista PM, Carpino G, Carnevale G, Orlando G, Angelico R, Manzia TM, Schuppan D, Pinzani M, Alvaro D, Ciccocioppo R, Uygun BE. Cell transplantation-based regenerative medicine in liver diseases. Stem Cell Reports 2023; 18:1555-1572. [PMID: 37557073 PMCID: PMC10444572 DOI: 10.1016/j.stemcr.2023.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Nicolas Lanthier
- Service d'Hépato-gastroentérologie, Cliniques Universitaires Saint-Luc, Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological Sciences with Interest in Transplant, Oncology, and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Roberta Angelico
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tommaso Maria Manzia
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Detlef Schuppan
- Institute of Translational Immunology, Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
| | - Domenico Alvaro
- Department of Translation and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy.
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
27
|
Park SY, Ter-Saakyan S, Faraci G, Lee HY. Immune cell identifier and classifier (ImmunIC) for single cell transcriptomic readouts. Sci Rep 2023; 13:12093. [PMID: 37495649 PMCID: PMC10372073 DOI: 10.1038/s41598-023-39282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
Single cell RNA sequencing has a central role in immune profiling, identifying specific immune cells as disease markers and suggesting therapeutic target genes of immune cells. Immune cell-type annotation from single cell transcriptomics is in high demand for dissecting complex immune signatures from multicellular blood and organ samples. However, accurate cell type assignment from single-cell RNA sequencing data alone is complicated by a high level of gene expression heterogeneity. Many computational methods have been developed to respond to this challenge, but immune cell annotation accuracy is not highly desirable. We present ImmunIC, a simple and robust tool for immune cell identification and classification by combining marker genes with a machine learning method. With over two million immune cells and half-million non-immune cells from 66 single cell RNA sequencing studies, ImmunIC shows 98% accuracy in the identification of immune cells. ImmunIC outperforms existing immune cell classifiers, categorizing into ten immune cell types with 92% accuracy. We determine peripheral blood mononuclear cell compositions of severe COVID-19 cases and healthy controls using previously published single cell transcriptomic data, permitting the identification of immune cell-type specific differential pathways. Our publicly available tool can maximize the utility of single cell RNA profiling by functioning as a stand-alone bioinformatic cell sorter, advancing cell-type specific immune profiling for the discovery of disease-specific immune signatures and therapeutic targets.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Sonia Ter-Saakyan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gina Faraci
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
28
|
Katsuda T, Sussman J, Li J, Merrell AJ, Vostrejs W, Secreto A, Matsuzaki J, Ochiya T, Stanger BZ. Evidence for in vitro extensive proliferation of adult hepatocytes and biliary epithelial cells. Stem Cell Reports 2023; 18:1436-1450. [PMID: 37352852 PMCID: PMC10362498 DOI: 10.1016/j.stemcr.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Over the last several years, a method has emerged that endows adult hepatocytes with in vitro proliferative capacity, producing chemically induced liver progenitors (CLiPs). However, there is a growing controversy regarding the origin of these cells. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity in vitro using rat and mouse models. Unexpectedly, we also found that the CLiP method allows biliary epithelial cells to acquire extensive proliferative capacity. Interestingly, after long-term culture, hepatocyte-derived cells (hepCLiPs) and biliary epithelial cell-derived cells (bilCLiPs) become similar in their gene expression patterns, and they both exhibit differentiation capacity to form hepatocyte-like cells. Finally, we provide evidence that hepCLiPs can repopulate injured mouse livers, reinforcing our earlier argument that CLiPs can be a cell source for liver regenerative medicine. This study advances our understanding of the origin of CLiPs and motivates the application of this technique in liver regenerative medicine.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jonathan Sussman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson J Merrell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - William Vostrejs
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony Secreto
- Department of Medicine, Stem Cell and Xenograft Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Juntaro Matsuzaki
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan; Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Zhang W, Cui Y, Du Y, Yang Y, Fang T, Lu F, Kong W, Xiao C, Shi J, Reid LM, He Z. Liver cell therapies: cellular sources and grafting strategies. Front Med 2023; 17:432-457. [PMID: 37402953 DOI: 10.1007/s11684-023-1002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023]
Abstract
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuan Du
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Fang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Fengfeng Lu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Canjun Xiao
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Jun Shi
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
30
|
Ding M, Huang W, Liu G, Zhai B, Yan H, Zhang Y. Integration of ATAC-Seq and RNA-Seq reveals FOSL2 drives human liver progenitor-like cell aging by regulating inflammatory factors. BMC Genomics 2023; 24:260. [PMID: 37173651 PMCID: PMC10182660 DOI: 10.1186/s12864-023-09349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Human primary hepatocytes (PHCs) are considered to be the best cell source for cell-based therapies for the treatment of end-stage liver disease and acute liver failure. To obtain sufficient and high-quality functional human hepatocytes, we have established a strategy to dedifferentiate human PHCs into expandable hepatocyte-derived liver progenitor-like cells (HepLPCs) through in vitro chemical reprogramming. However, the reduced proliferative capacity of HepLPCs after long-term culture still limits their utility. Therefore, in this study, we attempted to explore the potential mechanism related to the proliferative ability of HepLPCs in vitro culture. RESULTS In this study, analysis of assay for transposase accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were performed for PHCs, proliferative HepLPCs (pro-HepLPCs) and late-passage HepLPCs (lp-HepLPCs). Genome-wide transcriptional and chromatin accessibility changes during the conversion and long-term culture of HepLPCs were studied. We found that lp-HepLPCs exhibited an aged phenotype characterized by the activation of inflammatory factors. Epigenetic changes were found to be consistent with our gene expression findings, with promoter and distal regions of many inflammatory-related genes showing increased accessibility in the lp-HepLPCs. FOSL2, a member of the AP-1 family, was found to be highly enriched in the distal regions with increased accessibility in lp-HepLPCs. Its depletion attenuated the expression of aging- and senescence-associated secretory phenotype (SASP)-related genes and resulted in a partial improvement of the aging phenotype in lp-HepLPCs. CONCLUSIONS FOSL2 may drive the aging of HepLPCs by regulating inflammatory factors and its depletion may attenuate this phenotypic shift. This study provides a novel and promising approach for the long-term in vitro culture of HepLPCs.
Collapse
Affiliation(s)
- Min Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijian Huang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Guifen Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hexin Yan
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
31
|
Sharma S, Rawal P, Kaur S, Puria R. Liver organoids as a primary human model to study HBV-mediated Hepatocellular carcinoma. A review. Exp Cell Res 2023; 428:113618. [PMID: 37142202 DOI: 10.1016/j.yexcr.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.
Collapse
Affiliation(s)
- Simran Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, Delhi, India.
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
32
|
Wang Y, Zheng Q, Sun Z, Wang C, Cen J, Zhang X, Jin Y, Wu B, Yan T, Wang Z, Gu Q, Lv X, Nan J, Wu Z, Sun W, Pan G, Zhang L, Hui L, Cai X. Reversal of liver failure using a bioartificial liver device implanted with clinical-grade human-induced hepatocytes. Cell Stem Cell 2023; 30:617-631.e8. [PMID: 37059100 DOI: 10.1016/j.stem.2023.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Liver resection is the first-line treatment for primary liver cancers, providing the potential for a cure. However, concerns about post-hepatectomy liver failure (PHLF), a leading cause of death following extended liver resection, have restricted the population of eligible patients. Here, we engineered a clinical-grade bioartificial liver (BAL) device employing human-induced hepatocytes (hiHeps) manufactured under GMP conditions. In a porcine PHLF model, the hiHep-BAL treatment showed a remarkable survival benefit. On top of the supportive function, hiHep-BAL treatment restored functions, specifically ammonia detoxification, of the remnant liver and facilitated liver regeneration. Notably, an investigator-initiated study in seven patients with extended liver resection demonstrated that hiHep-BAL treatment was well tolerated and associated with improved liver function and liver regeneration, meeting the primary outcome of safety and feasibility. These encouraging results warrant further testing of hiHep-BAL for PHLF, the success of which would broaden the population of patients eligible for liver resection.
Collapse
Affiliation(s)
- Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China; Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou 310016, China
| | - Qiang Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhen Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China
| | - Xinjie Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiuxia Gu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Junjie Nan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhongyu Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wenbin Sun
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China.
| | - Lijian Hui
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai 200031, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China; Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou 310016, China.
| |
Collapse
|
33
|
Sun XC, Kong DF, Zhao J, Faber KN, Xia Q, He K. Liver organoids: established tools for disease modeling and drug development. Hepatol Commun 2023; 7:02009842-202304010-00019. [PMID: 36972388 PMCID: PMC10043560 DOI: 10.1097/hc9.0000000000000105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
In the past decade, liver organoids have evolved rapidly as valuable research tools, providing novel insights into almost all types of liver diseases, including monogenic liver diseases, alcohol-associated liver disease, metabolic-associated fatty liver disease, various types of (viral) hepatitis, and liver cancers. Liver organoids in part mimic the microphysiology of the human liver and fill a gap in high-fidelity liver disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of liver diseases and play a crucial role in drug development. Moreover, it is challenging but opportunistic to apply liver organoids for tailored therapies of various liver diseases. The establishment, applications, and challenges of different types of liver organoids, for example, derived from embryonic, adult, or induced pluripotent stem cells, to model different liver diseases, are presented in this review.
Collapse
Affiliation(s)
- Xi-Cheng Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - De-Fu Kong
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
34
|
Yang S, Ooka M, Margolis RJ, Xia M. Liver three-dimensional cellular models for high-throughput chemical testing. CELL REPORTS METHODS 2023; 3:100432. [PMID: 37056374 PMCID: PMC10088249 DOI: 10.1016/j.crmeth.2023.100432] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Drug-induced hepatotoxicity is a leading cause of drug withdrawal from the market. High-throughput screening utilizing in vitro liver models is critical for early-stage liver toxicity testing. Traditionally, monolayer human hepatocytes or immortalized liver cell lines (e.g., HepG2, HepaRG) have been used to test compound liver toxicity. However, monolayer-cultured liver cells sometimes lack the metabolic competence to mimic the in vivo condition and are therefore largely appropriate for short-term toxicological testing. They may not, however, be adequate for identifying chronic and recurring liver damage caused by drugs. Recently, several three-dimensional (3D) liver models have been developed. These 3D liver models better recapitulate normal liver function and metabolic capacity. This review describes the current development of 3D liver models that can be used to test drugs/chemicals for their pharmacologic and toxicologic effects, as well as the advantages and limitations of using these 3D liver models for high-throughput screening.
Collapse
Affiliation(s)
- Shu Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masato Ooka
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Jared Margolis
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Liu S, Wang J, Chen S, Han Z, Wu H, Chen H, Duan Y. C/EBPβ Coupled with E2F2 Promoted the Proliferation of hESC-Derived Hepatocytes through Direct Binding to the Promoter Regions of Cell-Cycle-Related Genes. Cells 2023; 12:cells12030497. [PMID: 36766839 PMCID: PMC9914899 DOI: 10.3390/cells12030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human embryonic stem cells (hESCs) hold the potential to solve the problem of the shortage of functional hepatocytes in clinical applications and drug development. However, a large number of usable hepatocytes derived from hESCs cannot be effectively obtained due to the limited proliferation capacity. In this study, we found that enhancement of liver transcription factor C/EBPβ during hepatic differentiation could not only significantly promote the expression of hepatic genes, such as albumin, alpha fetoprotein, and alpha-1 antitrypsin, but also dramatically reinforce proliferation-related phenotypes, including increasing the expression of proliferative genes, such as CDC25C, CDC45L, and PCNA, and the activation of cell cycle and DNA replication pathways. In addition, the analysis of CUT&Tag sequencing further revealed that C/EBPβ is directly bound to the promoter region of proliferating genes to promote cell proliferation; this interaction between C/EBPβ and DNA sequences of the promoters was verified by luciferase assay. On the contrary, the knockdown of C/EBPβ could significantly inhibit the expression of the aforementioned proliferative genes. RNA transcriptome analysis and GSEA enrichment indicated that the E2F family was enriched, and the expression of E2F2 was changed with the overexpression or knockdown of C/EBPβ. Moreover, the results of CUT&Tag sequencing showed that C/EBPβ also directly bound the promoter of E2F2, regulating E2F2 expression. Interestingly, Co-IP analysis exhibited a direct binding between C/EBPβ and E2F2 proteins, and this interaction between these two proteins was also verified in the LO2 cell line, a hepatic progenitor cell line. Thus, our results demonstrated that C/EBPβ first initiated E2F2 expression and then coupled with E2F2 to regulate the expression of proliferative genes in hepatocytes during the differentiation of hESCs. Therefore, our findings open a new avenue to provide an in vitro efficient approach to generate proliferative hepatocytes to potentially meet the demands for use in cell-based therapeutics as well as for pharmaceutical and toxicological studies.
Collapse
Affiliation(s)
- Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Sen Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zonglin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Correspondence: (H.C.); (Y.D.)
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Correspondence: (H.C.); (Y.D.)
| |
Collapse
|
36
|
Blackford SJI, Yu TTL, Norman MDA, Syanda AM, Manolakakis M, Lachowski D, Yan Z, Guo Y, Garitta E, Riccio F, Jowett GM, Ng SS, Vernia S, Del Río Hernández AE, Gentleman E, Rashid ST. RGD density along with substrate stiffness regulate hPSC hepatocyte functionality through YAP signalling. Biomaterials 2023; 293:121982. [PMID: 36640555 DOI: 10.1016/j.biomaterials.2022.121982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Human pluripotent stem cell-derived hepatocytes (hPSC-Heps) may be suitable for treating liver diseases, but differentiation protocols often fail to yield adult-like cells. We hypothesised that replicating healthy liver niche biochemical and biophysical cues would produce hepatocytes with desired metabolic functionality. Using 2D synthetic hydrogels which independently control mechanical properties and biochemical cues, we found that culturing hPSC-Heps on surfaces matching the stiffness of fibrotic liver tissue upregulated expression of genes for RGD-binding integrins, and increased expression of YAP/TAZ and their transcriptional targets. Alternatively, culture on soft, healthy liver-like substrates drove increases in cytochrome p450 activity and ureagenesis. Knockdown of ITGB1 or reducing RGD-motif-containing peptide concentration in stiff hydrogels reduced YAP activity and improved metabolic functionality; however, on soft substrates, reducing RGD concentration had the opposite effect. Furthermore, targeting YAP activity with verteporfin or forskolin increased cytochrome p450 activity, with forskolin dramatically enhancing urea synthesis. hPSC-Heps could also be successfully encapsulated within RGD peptide-containing hydrogels without negatively impacting hepatic functionality, and compared to 2D cultures, 3D cultured hPSC-Heps secreted significantly less fetal liver-associated alpha-fetoprotein, suggesting furthered differentiation. Our platform overcomes technical hurdles in replicating the liver niche, and allowed us to identify a role for YAP/TAZ-mediated mechanosensing in hPSC-Hep differentiation.
Collapse
Affiliation(s)
- Samuel J I Blackford
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Centre for Craniofacial & Regenerative Biology, King's College London, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK.
| | - Tracy T L Yu
- Centre for Craniofacial & Regenerative Biology, King's College London, UK
| | - Michael D A Norman
- Centre for Craniofacial & Regenerative Biology, King's College London, UK
| | - Adam M Syanda
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK
| | - Michail Manolakakis
- MRC London Institute of Medical Sciences, UK; Institute of Clinical Sciences, Imperial College London, UK
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, UK
| | - Ziqian Yan
- Centre for Craniofacial & Regenerative Biology, King's College London, UK
| | - Yunzhe Guo
- Centre for Craniofacial & Regenerative Biology, King's College London, UK
| | - Elena Garitta
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK
| | - Federica Riccio
- Centre for Gene Therapy & Regenerative Medicine, King's College London, UK
| | - Geraldine M Jowett
- Centre for Craniofacial & Regenerative Biology, King's College London, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, UK
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, UK; Institute of Clinical Sciences, Imperial College London, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial & Regenerative Biology, King's College London, UK.
| | - S Tamir Rashid
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; NIHR Imperial BRC iPSC and Organoid Core Facility, Imperial College London, UK.
| |
Collapse
|
37
|
Evidence for in vitro extensive proliferation of adult hepatocytes and biliary epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522656. [PMID: 36712014 PMCID: PMC9881927 DOI: 10.1101/2023.01.03.522656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the last several years, a method has emerged which endows adult hepatocytes with in vitro proliferative capacity, producing chemically-induced liver progenitors (CLiPs). However, a recent study questioned the origin of these cells, suggesting that resident liver progenitor cells, but not hepatocytes, proliferate. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity in vitro . Unexpectedly, we also found that the CLiP method allows biliary epithelial cells to acquire extensive proliferative capacity. Interestingly, after long-term culture, hepatocyte-derived cells (hepCLiPs) and biliary-derived cells (bilCLiPs) become similar in their gene expression patterns, and they both exhibit differentiation capacity to form hepatocyte-like cells. Finally, we provide evidence that hepCLiPs can repopulate chronically injured mouse livers, reinforcing our earlier argument that CLiPs can be a cell source for liver regenerative medicine. Moreover, this study offers bilCLiPs as a potential cell source for liver regenerative medicine.
Collapse
|
38
|
Hepatic Polarized Differentiation Promoted the Maturity and Liver Function of Human Embryonic Stem Cell-Derived Hepatocytes via Activating Hippo and AMPK Signaling Pathways. Cells 2022; 11:cells11244117. [PMID: 36552880 PMCID: PMC9776724 DOI: 10.3390/cells11244117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocytes exhibit a multi-polarized state under the in vivo physiological environment, however, human embryonic stem cell-derived hepatocytes (hEHs) rarely exhibit polarity features in a two-dimensional (2D) condition. Thus, we hypothesized whether the polarized differentiation might enhance the maturity and liver function of hEHs. In this study, we obtained the polarized hEHs (phEHs) by using 2D differentiation in conjunct with employing transwell-based polarized culture. Our results showed that phEHs directionally secreted albumin, urea and bile acids, and afterward, the apical membrane and blood-bile barrier (BBIB) were identified to form in phEHs. Moreover, phEHs exhibited a higher maturity and capacitity of cellular secretory and drug metabolism than those of non-phEHs. Through transcriptome analysis, it was found that the polarized differentiation induced obvious changes in gene expression profiles of cellular adhesion and membrane transport in hEHs. Our further investigation revealed that the activation of Hippo and AMPK signaling pathways made contributions to the regulation of function and cellular polarity in phEHs, further verifying that the liver function of hEHs was closely related with their polarization state. These results not only demonstrated that the polarized differentiation enhanced the maturity and liver function of hEHs, but also identified the molecular targets that regulated the polarization state of hEHs.
Collapse
|
39
|
Wang C, Zhang L, Sun Z, Yuan X, Wu B, Cen J, Cui L, Zhang K, Li C, Wu J, Shu Y, Sun W, Wang J, Hui L. Dedifferentiation-associated inflammatory factors of long-term expanded human hepatocytes exacerbate their elimination by macrophages during liver engraftment. Hepatology 2022; 76:1690-1705. [PMID: 35229337 DOI: 10.1002/hep.32436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Hepatocyte transplantation has been demonstrated to be effective to treat liver metabolic disease and acute liver failure. Nevertheless, the shortage of donor hepatocytes restrained its application in clinics. To expand human hepatocytes at a large scale, several dedifferentiation-based protocols have been established, including proliferating human hepatocytes (ProliHH). However, the decreased transplantation efficiency of these cells after long-term expansion largely impedes their application. APPROACH AND RESULTS We found that accompanied with dedifferentiation, long-term cultured ProliHH (lc-ProliHH) up-regulated a panel of chemokines and cytokines related to innate immunity, which were referred to as dedifferentiation-associated inflammatory factors (DAIF). DAIF elicited excessive macrophage responses, accounting for the elimination of lc-ProliHH specifically during engraftment. Two possible strategies to increase ProliHH transplantation were then characterized. Blockage of innate immune response by dexamethasone reverted the engraftment and repopulation of lc-ProliHH to a level comparable to primary hepatocytes, resulting in improved liver function and a better survival of fumarylacetoacetate hydrolase-deficient mice. Alternatively, rematuration of lc-ProliHH as organoids reduced the expression of DAIF and led to markedly improved engraftment. CONCLUSIONS These results revealed that lc-ProliHH triggers exacerbated macrophage activation by DAIF and provided potential solutions for clinical transplantation of lc-ProliHH.
Collapse
Affiliation(s)
- Chenhua Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhen Sun
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Xiang Yuan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Baihua Wu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Jin Cen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Lei Cui
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Kun Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Chun Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Jingqi Wu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yajing Shu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wenbin Sun
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lijian Hui
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina.,School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina.,Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina.,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| |
Collapse
|
40
|
IL6 supports long-term expansion of hepatocytes in vitro. Nat Commun 2022; 13:7345. [PMID: 36446858 PMCID: PMC9708838 DOI: 10.1038/s41467-022-35167-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocytes are very difficult to expand in vitro. A few studies have demonstrated that chemical cocktails with growth factors or Wnt ligands can support long-term expansion of hepatocytes via dedifferentiation. However, the culture conditions are complex, and clonal expansion of hepatic progenitors with full differentiation capacity are rarely reported. Here, we discover IL6, combined with EGF and HGF, promotes long-term expansion (>30 passages in ~150 days with theoretical expansion of ~1035 times) of primary mouse hepatocytes in vitro in simple 2D culture, by converting hepatocytes into induced hepatic progenitor cells (iHPCs), which maintain the capacity of differentiation into hepatocytes. IL6 also supports the establishment of single hepatocyte-derived iHPC clones. The summation of the downstream STAT3, ERK and AKT pathways induces a number of transcription factors which support rapid growth. This physiological and simple way may provide ideas for culturing previously difficult-to-culture cell types and support their future applications.
Collapse
|
41
|
He W, Zhu X, Xin A, Zhang H, Sun Y, Xu H, Li H, Yang T, Zhou D, Yan H, Sun X. Long-term maintenance of human endometrial epithelial stem cells and their therapeutic effects on intrauterine adhesion. Cell Biosci 2022; 12:175. [PMID: 36258228 PMCID: PMC9580151 DOI: 10.1186/s13578-022-00905-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022] Open
Abstract
Background The human endometrium is a highly regenerative tissue that is believed to have two main types of stem cells: endometrial mesenchymal/stromal stem cells (eMSCs) and endometrial epithelial stem cells (eESCs). So far, eMSCs have been extensively studied, whereas the studies of eESCs are constrained by the inability to culture and expand them in vitro. The aim of this study is to establish an efficient method for the production of eESCs from human endometrium for potential clinical application in intrauterine adhesion (IUA). Results Here we developed a culture condition with a combination of some small molecules for in vitro culturing and expansion of human SSEA-1+ cells. The SSEA-1+ cells exhibited stem/progenitor cell activity in vitro, including clonogenicity and differentiation capacity into endometrial epithelial cell-like cells. In addition, the SSEA-1+ cells, embedded in extracellular matrix, swiftly self-organized into organoid structures with long-term expansion capacity and histological phenotype of the human endometrial epithelium. Specifically, we found that the SSEA-1+ cells showed stronger therapeutic potential than eMSCs for IUA in vitro. In a rat model of IUA, in situ injection of the SSEA-1+ cells-laden chitosan could efficiently reduce fibrosis and facilitate endometrial regeneration. Conclusions Our work demonstrates an approach for isolation and expansion of human eESCs in vitro, and an appropriate marker, SSEA-1, to identify eESCs. Furthermore, the SSEA-1+ cells-laden chitosan might provide a novel cell-based approach for IUA treatment. These findings will advance the understanding of pathophysiology during endometrial restoration which may ultimately lead to more rational clinical practice. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00905-4.
Collapse
Affiliation(s)
- Wen He
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xuejing Zhu
- Shanghai Celliver Biotechnology Co. Ltd, Shanghai, China
| | - Aijie Xin
- grid.8547.e0000 0001 0125 2443NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Hongdan Zhang
- Shanghai Celliver Biotechnology Co. Ltd, Shanghai, China
| | - Yiming Sun
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hua Xu
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - He Li
- grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Tianying Yang
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Dan Zhou
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hexin Yan
- Shanghai Celliver Biotechnology Co. Ltd, Shanghai, China
| | - Xiaoxi Sun
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China ,grid.412312.70000 0004 1755 1415Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China ,grid.412312.70000 0004 1755 1415Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
42
|
A comprehensive transcriptomic comparison of hepatocyte model systems improves selection of models for experimental use. Commun Biol 2022; 5:1094. [PMID: 36241695 PMCID: PMC9568534 DOI: 10.1038/s42003-022-04046-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The myriad of available hepatocyte in vitro models provides researchers the possibility to select hepatocyte-like cells (HLCs) for specific research goals. However, direct comparison of hepatocyte models is currently challenging. We systematically searched the literature and compared different HLCs, but reported functions were limited to a small subset of hepatic functions. To enable a more comprehensive comparison, we developed an algorithm to compare transcriptomic data across studies that tested HLCs derived from hepatocytes, biliary cells, fibroblasts, and pluripotent stem cells, alongside primary human hepatocytes (PHHs). This revealed that no HLC covered the complete hepatic transcriptome, highlighting the importance of HLC selection. HLCs derived from hepatocytes had the highest transcriptional resemblance to PHHs regardless of the protocol, whereas the quality of fibroblasts and PSC derived HLCs varied depending on the protocol used. Finally, we developed and validated a web application (HLCompR) enabling comparison for specific pathways and addition of new HLCs. In conclusion, our comprehensive transcriptomic comparison of HLCs allows selection of HLCs for specific research questions and can guide improvements in culturing conditions.
Collapse
|
43
|
Wang SX, Yan JS, Chan YS. Advancements in MAFLD Modeling with Human Cell and Organoid Models. Int J Mol Sci 2022; 23:11850. [PMID: 36233151 PMCID: PMC9569457 DOI: 10.3390/ijms231911850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic (dysfunction) associated fatty liver disease (MAFLD) is one of the most prevalent liver diseases and has no approved therapeutics. The high failure rates witnessed in late-phase MAFLD drug trials reflect the complexity of the disease, and how the disease develops and progresses remains to be fully understood. In vitro, human disease models play a pivotal role in mechanistic studies to unravel novel disease drivers and in drug testing studies to evaluate human-specific responses. This review focuses on MAFLD disease modeling using human cell and organoid models. The spectrum of patient-derived primary cells and immortalized cell lines employed to model various liver parenchymal and non-parenchymal cell types essential for MAFLD development and progression is discussed. Diverse forms of cell culture platforms utilized to recapitulate tissue-level pathophysiology in different stages of the disease are also reviewed.
Collapse
Affiliation(s)
- Shi-Xiang Wang
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Ji-Song Yan
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yun-Shen Chan
- Guangzhou Laboratory, No. 9 Xing Dao Huan Bei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| |
Collapse
|
44
|
Cai H, Cheng X, Wang X. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson's disease. Hepatology 2022; 76:1046-1057. [PMID: 35340061 PMCID: PMC9790736 DOI: 10.1002/hep.32484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Wilson's disease (WD) is a rare hereditary disorder due to ATP7B gene mutation, causing pathologic copper storage mainly in the liver and neurological systems. Hepatocyte transplantation showed therapeutic potential; however, this strategy is often hindered by a shortage of quality donor cells and by allogeneic immune rejection. In this study, we aimed to evaluate the function and efficacy of autologous reprogrammed, ATP7B gene-restored hepatocytes using a mouse model of WD. APPROACH AND RESULTS Sufficient liver progenitor cells (LPCs) were harvested by reprogramming hepatocytes from ATP7B-/- mice with small molecules, which exhibited strong proliferation and hepatic differentiation capacity in vitro. After lentivirus-mediated mini ATP7B gene transfection and redifferentiation, functional LPC-ATP7B-derived hepatocytes (LPC-ATP7B-Heps) were developed. RNA sequencing data showed that, compared with LPC-green fluorescent protein-Heps (LPC-GFP-Heps) with enrichment of genes that were mainly in pathways of oxidative stress and cell apoptosis, in LPC-ATP7B-Heps under high copper stress, copper ion binding and cell proliferation pathways were enriched. LPC-ATP7B-Heps transplantation into ATP7B-/- mice alleviated deposition of excess liver copper with its associated inflammation and fibrosis, comparable with those observed using normal primary hepatocytes at 4 months after transplantation. CONCLUSIONS We established a system of autologous reprogrammed WD hepatocytes and achieved ATP7B gene therapy in vitro. LPC-ATP7B-Heps transplantation demonstrated therapeutic efficacy on copper homeostasis in a mouse model of WD.
Collapse
Affiliation(s)
- Hongxia Cai
- Department of NeurologyTong‐Ren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xing Cheng
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Xiao‐Ping Wang
- Department of NeurologyTong‐Ren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
45
|
Di Zeo-Sánchez DE, Segovia-Zafra A, Matilla-Cabello G, Pinazo-Bandera JM, Andrade RJ, Lucena MI, Villanueva-Paz M. Modeling drug-induced liver injury: current status and future prospects. Expert Opin Drug Metab Toxicol 2022; 18:555-573. [DOI: 10.1080/17425255.2022.2122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Gonzalo Matilla-Cabello
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - José M. Pinazo-Bandera
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- Plataforma ISCIII de Ensayos Clínicos. UICEC-IBIMA, 29071, Malaga, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
46
|
Dynamics of hepatocyte-cholangiocyte cell-fate decisions during liver development and regeneration. iScience 2022; 25:104955. [PMID: 36060070 PMCID: PMC9437857 DOI: 10.1016/j.isci.2022.104955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The immense regenerative potential of the liver is attributed to the ability of its two key cell types – hepatocytes and cholangiocytes – to trans-differentiate to one another either directly or through intermediate progenitor states. However, the dynamic features of decision-making between these cell-fates during liver development and regeneration remains elusive. Here, we identify a core gene regulatory network comprising c/EBPα, TGFBR2, and SOX9 which is multistable in nature, enabling three distinct cell states – hepatocytes, cholangiocytes, and liver progenitor cells (hepatoblasts/oval cells) – and stochastic switching among them. Predicted expression signature for these three states are validated through multiple bulk and single-cell transcriptomic datasets collected across developmental stages and injury-induced liver repair. This network can also explain the experimentally observed spatial organization of phenotypes in liver parenchyma and predict strategies for efficient cellular reprogramming. Our analysis elucidates how the emergent dynamics of underlying regulatory networks drive diverse cell-fate decisions in liver development and regeneration. Identified minimal regulatory network to model liver development and regeneration Changes in phenotypic landscapes by in-silico perturbations of regulatory networks Ability to explain physiological spatial patterning of liver cell types Decoded strategies for efficient reprogramming among liver cell phenotypes
Collapse
|
47
|
Kim H, Im I, Jeon JS, Kang EH, Lee HA, Jo S, Kim JW, Woo DH, Choi YJ, Kim HJ, Han JS, Lee BS, Kim JH, Kim SK, Park HJ. Development of human pluripotent stem cell-derived hepatic organoids as an alternative model for drug safety assessment. Biomaterials 2022; 286:121575. [DOI: 10.1016/j.biomaterials.2022.121575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
|
48
|
Guo L, Zhu Z, Gao C, Chen K, Lu S, Yan H, Liu W, Wang M, Ding Y, Huang L, Wang X. Development of Biomimetic Hepatic Lobule-Like Constructs on Silk-Collagen Composite Scaffolds for Liver Tissue Engineering. Front Bioeng Biotechnol 2022; 10:940634. [PMID: 35814001 PMCID: PMC9260023 DOI: 10.3389/fbioe.2022.940634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Constructing an engineered hepatic lobule-mimetic model is challenging owing to complicated lobular architecture and crucial hepatic functionality. Our previous study has demonstrated the feasibility of using silk fibroin (SF) scaffolds as functional templates for engineering hepatic lobule-like constructs. But the unsatisfactory chemical and physical performances of the SF-only scaffold and the inherent defect in the functional activity of the carcinoma-derived seeding cells remain to be addressed to satisfy the downstream application demand. In this study, SF-collagen I (SFC) composite scaffolds with improved physical and chemical properties were fabricated, and their utilization for bioengineering a more hepatic lobule-like construct was explored using the immortalized human hepatocyte-derived liver progenitor-like cells (iHepLPCs) and endothelial cells incorporated in the dynamic culture system. The SFC scaffolds prepared through the directional lyophilization process showed radially aligned porous structures with increased swelling ratio and porosity, ameliorative mechanical stiffness that resembled the normal liver matrix more closely, and improved biocompatibility. The iHepLPCs displayed a hepatic plate-like distribution and differentiated into matured hepatocytes with improved hepatic function in vitro and in vivo. Moreover, hepatocyte–endothelial cell interphase arrangement was generated in the co-culture compartment with improved polarity, bile capillary formation, and enhanced liver functions compared with the monocultures. Thus, a more biomimetic hepatic lobule-like model was established and could provide a valuable and robust platform for various applications, including bioartificial liver and drug screening.
Collapse
Affiliation(s)
- Lina Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziqing Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Chuanzhou Gao
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Kaiwen Chen
- School of Bioengineering, State Key Laboratory of Fine Chemistry, Dalian University of Technology, Dalian, China
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Hexin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Wenming Liu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Mingqi Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yanfang Ding
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Lin Huang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- *Correspondence: Lin Huang, ; Xiuli Wang,
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
- General Surgery Center, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Lin Huang, ; Xiuli Wang,
| |
Collapse
|
49
|
Miyoshi T, Hidaka M, Miyamoto D, Sakai Y, Murakami S, Huang Y, Hara T, Soyama A, Kanetaka K, Ochiya T, Eguchi S. Successful induction of human chemically induced liver progenitors with small molecules from damaged liver. J Gastroenterol 2022; 57:441-452. [PMID: 35294680 DOI: 10.1007/s00535-022-01869-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/27/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Human chemically induced liver progenitors (hCLiP) induced by small molecules produced by mature hepatocytes can potentially overcome issues related to hepatocyte transplantation, such as graft rejection or donor shortage. However, to our knowledge, no studies have explored the induction of hCLiP from mature hepatocytes (MHs) in damaged liver, indicated for liver transplantation. METHODS Liver tissues were collected from surgically resected livers, including damaged livers, of 86 patients at our department, and hepatocytes were isolated using the collagenase perfusion method. Hepatocytes isolated from 33 of these 86 donors were cultured in YAC medium containing Y-27632 (ROCK inhibitor), A-83-01 (TGF-β type I receptor inhibitor), and CHIR99021 (GSK-3 inhibitor) to induce hCLiP, and their functions were assessed. RESULTS Hepatocytes were isolated regardless of the liver fibrosis classifications (viability: F0,1: 87.2 ± 13.2%; F2,3: 87.8 ± 13.1%; and F4: 86.3 ± 4.2%). Most hepatocytes cultured in the YAC medium acquired the liver progenitor cell (LPC) gene. The expression of MH markers (ALB, HNF4α, G6PC, and CYP1A2) was lower in hCLiP than in MHs before reprogramming. Reverse transcription-polymerase chain reaction revealed that hCLiP markers (e.g., EpCAM, SOX9, CK19, and CD133) exhibited higher expression in LPCs than in MHs. Furthermore, hCLiPs had the ability to differentiate into hepatocytes, and were engrafted on the liver surface as mature hepatocytes. CONCLUSION Hepatocytes could be isolated from damaged liver. Furthermore, hCLiP may be obtained from hepatocytes isolated from damaged liver and may differentiate into MHs in vitro. Autologous hCLiP can potentially be transplanted without tumorigenesis and remodel damaged liver.
Collapse
Affiliation(s)
- Takayuki Miyoshi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Fukuoka, Japan
| | - Shunsuke Murakami
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Takahiro Ochiya
- Department of Molecular Cell Therapy Research, Medical Research Institute, Tokyo Medical University, Tokyo, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
| |
Collapse
|
50
|
Tuerxun K, He J, Ibrahim I, Yusupu Z, Yasheng A, Xu Q, Tang R, Aikebaier A, Wu Y, Tuerdi M, Nijiati M, Zou X, Xu T. Bioartificial livers: a review of their design and manufacture. Biofabrication 2022; 14. [PMID: 35545058 DOI: 10.1088/1758-5090/ac6e86] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Acute liver failure (ALF) is a rapidly progressive disease with high morbidity and mortality rates. Liver transplantation and artificial liver support systems, such as artificial livers (ALs) and bioartificial livers (BALs), are the two major therapies for ALF. Compared to ALs, BALs are composed of functional hepatocytes that provide essential liver functions, including detoxification, metabolite synthesis, and biotransformation. Furthermore, BALs can potentially provide effective support as a form of bridging therapy to liver transplantation or spontaneous recovery for patients with ALF. In this review, we systematically discussed the currently available state-of-the-art designs and manufacturing processes for BAL support systems. Specifically, we classified the cell sources and bioreactors that are applied in BALs, highlighted the advanced technologies of hepatocyte culturing and bioreactor fabrication, and discussed the current challenges and future trends in developing next generation BALs for large scale clinical applications.
Collapse
Affiliation(s)
- Kahaer Tuerxun
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Jianyu He
- Department of Mechanical Engineering, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, Beijing, 100084, CHINA
| | - Irxat Ibrahim
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Zainuer Yusupu
- Department of Ultrasound, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Abudoukeyimu Yasheng
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Qilin Xu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Ronghua Tang
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Aizemaiti Aikebaier
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Yuanquan Wu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Maimaitituerxun Tuerdi
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Mayidili Nijiati
- Medical imaging center, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Xiaoguang Zou
- Hospital Organ, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Tao Xu
- Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, 100084, CHINA
| |
Collapse
|