1
|
Liu Y, Wang Z, Collins SP, Testani J, Safdar B. Sex differences in proteomics of cardiovascular disease - Results from the Yale-CMD registry. IJC HEART & VASCULATURE 2025; 58:101667. [PMID: 40224648 PMCID: PMC11987697 DOI: 10.1016/j.ijcha.2025.101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025]
Abstract
Aims This study assessed sex-specific proteomic profiles by cardiovascular disease (CVD) phenotype (coronary artery disease [CAD] vs coronary microvascular dysfunction [CMD]) and describe their role in sex-specific pathways. METHODS In a secondary biobank analysis of the Yale-CMD registry, adults with ischemic symptoms who underwent cardiac positron emission test/computed tomography were categorized as a) controls (normal coronary flow reserve (CFR) > 2 without perfusion defect or coronary calcification), b) having CMD (CFR < 2 without defect or calcification), or c) having CAD (known CAD or new perfusion defect). Using proximity extension assays (Olink® Explore 3072), we examined 2944 proteins. Differential protein expression was assessed using linear regression models, adjusting for age, race, body mass index, diabetes, dyslipidemia, hypertension, or smoking. RESULTS Of 190 patients, 91 provided blood samples (mean age, 56 years; 66 %, females; 48 %, controls; 24 %, CAD; 27 %, CMD). Among controls, 15 proteins showed sex differences (5 proteins upregulated in females, 10 in males; false discovery rate [FDR < 0.05]). Upregulated in CAD patients were FSHB in females and INSL3 and EDDM3B in males (FDR < 0.05). Among CMD patients, SCGB3A1 and HGFAC were higher in females; INSL3, SPINT3, EDDM3B, and KLK3 were higher in males (FDR < 0.05). Per pathway analysis, females showed upregulation of immune pathways in CAD and lipid and glucose metabolism pathways in CMD. Males showed upregulated endothelial regulation of blood flow in CAD and increased angiogenesis in CMD. CONCLUSIONS Sex differences exist in the proteomic profiles of CAD and CMD patients, highlighting a need for precision medicine.
Collapse
Affiliation(s)
- Yihan Liu
- Program in Computational Biology & Biomedical informatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Zuoheng Wang
- Program in Computational Biology & Biomedical informatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Sean P. Collins
- Department of Emergency Medicine, Vanderbilt University Medical Center, and Veterans Affairs Tennessee Valley Healthcare System, Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| | - Jeffery Testani
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Basmah Safdar
- Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
van Oortmerssen JAE, Mulder JWCM, Kavousi M, Roeters van Lennep JE. Lipid metabolism in women: A review. Atherosclerosis 2025; 405:119213. [PMID: 40300433 DOI: 10.1016/j.atherosclerosis.2025.119213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
The menopausal transition, defined by the cessation of menstruation due to declining ovarian follicular function, results in a marked decrease in endogenous estrogen levels. This phase is associated with significant metabolic changes and a shift towards a more atherogenic lipid profile. Specifically, there are increases in total cholesterol, low-density lipoprotein cholesterol, and triglycerides and unfavorable alterations in high-density lipoprotein cholesterol and lipoprotein(a) levels. These lipid changes, which contribute to an increased risk of atherosclerotic cardiovascular disease, are influenced by diminished estrogen levels and chronological aging. However, the specific mechanisms driving this increased risk are not fully understood. A thorough understanding of these lipid profile alterations is important for developing strategies to reduce cardiovascular disease risk in women. This review provides an overview of how lipid metabolism is affected during the menopausal transition and the resulting implications for cardiovascular risk.
Collapse
Affiliation(s)
- Julie A E van Oortmerssen
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janneke W C M Mulder
- Department of Internal Medicine, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jeanine E Roeters van Lennep
- Department of Internal Medicine, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Dallel S, Despalles M, Tore M, Renaud Y, Kocer A, Damon-Soubeyrand C, Pouchin P, Vachias C, Boutourlinsky K, Gonthier-Gueret C, De Haze A, Sanchez P, Pointud JC, Bouchareb E, Vialat M, Lagarde A, Gulunga C, Chaput L, Vega A, Brugnon F, Tauveron I, Trousson A, de Joussineau C, Degoul F, Morel L, Lobaccaro JM, Maqdasy S, Baron S. LXR pathway drives hormonal response intensity in polycystic ovary syndrome. EMBO Mol Med 2025:10.1038/s44321-025-00251-1. [PMID: 40399491 DOI: 10.1038/s44321-025-00251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025] Open
Abstract
Gonadotropin injections used to stimulate oocyte production during assisted reproductive technology (ART) procedures are associated with the risk of an abnormal response in predisposed patients suffering polycystic ovary syndrome (PCOS). Liver X receptors (LXR) pathway has been identified as key regulators during this process. This study explores the integration of the hormonal signals, cellular networks and molecular mechanisms linking sterol signaling with inflammation and immune infiltration. Pharmacological activation of LXR in a wild-type context protects against gonadotropin hyperstimulation mirroring the effect observed in LXR-deficient mice. Ovarian stimulation leads to immune cell infiltration orchestrated by granulosa cells in absence of LXR, resulting in an altered granulosa cell response to gonadotropin and enhanced inflammation. LXR controls inflammasome activity by regulating Thioredoxin Interacting Protein (TXNIP) gene expression in mural granulosa cells, thereby modulating IL1β production. This immune cell infiltration persists throughout ovulation in PCOS patients and is observed in cumulus oocytes complexes, highlighting the pivotal role of LXR path in regulating inflammatory processes during hormonal stimulation in ART procedures.
Collapse
Affiliation(s)
- Sarah Dallel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Manon Despalles
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Margaux Tore
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Caroline Vachias
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Katia Boutourlinsky
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Céline Gonthier-Gueret
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Phelipe Sanchez
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Jean-Christophe Pointud
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Marine Vialat
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Aurélie Lagarde
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Cristina Gulunga
- Assistance Médicale à la Procréation, CECOS, CHU Clermont-Ferrand, F-63003, Clermont-Ferrand, France
| | - Laure Chaput
- Assistance Médicale à la Procréation, CECOS, CHU Clermont-Ferrand, F-63003, Clermont-Ferrand, France
| | - Aurélie Vega
- Assistance Médicale à la Procréation, CECOS, CHU Clermont-Ferrand, F-63003, Clermont-Ferrand, France
| | - Florence Brugnon
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Assistance Médicale à la Procréation, CECOS, CHU Clermont-Ferrand, F-63003, Clermont-Ferrand, France
- Université Clermont Auvergne, IMOST, INSERM 1240, Faculté médecine, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Igor Tauveron
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Françoise Degoul
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Jean Marc Lobaccaro
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Salwan Maqdasy
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Silvère Baron
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Wang DP, Wu ZB. Targeting FSHR is a highly promising strategy for improving cognitive impairment in postmenopausal women. Mol Psychiatry 2025:10.1038/s41380-025-03048-3. [PMID: 40399468 DOI: 10.1038/s41380-025-03048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/10/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Affiliation(s)
- Da Peng Wang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Deng J, Li J, Han X, Zhou Y, He S, Xu J, Qin J, Song G, Xiao X, Wu L, Wang Y. Low-Intensity Pulsed Ultrasound Delays the Onset of Osteoporosis and Dyslipidemia in Mice With Premature Ovarian Insufficiency. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:819-829. [PMID: 39754744 DOI: 10.1002/jum.16641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES The pathogenesis of premature ovarian insufficiency (POI) not only affects the ovarian structure and function but also gives rise to complications such as osteoporosis and dyslipidemia. Although low-intensity pulsed ultrasound (LIPUS) has been proven effective in treating POI, its impact on the associated complications remains unexplored. Therefore, this study aims to investigate the effects of LIPUS irradiation on osteoporosis and dyslipidemia in a mouse model of POI. METHODS The post-treatment complications following LIPUS cessation were monitored in POI rats at 30 and 120 days in this trial conducted by us. The secretion of follicle-stimulating hormone (FSH) was assessed using enzyme-linked immunosorbent assay (ELISA) at different time points in POI rats. Pathological changes in the liver and femur were observed through HE staining. Blood lipid and bone metabolism indexes were measured via blood biochemical testing. Osteoporosis was evaluated using MicroCT and Masson staining techniques. The expression level of inflammatory factors in bone tissue was detected by Western blot (WB) test. RESULTS The serum FSH content showed a significant decrease in the LIPUS group on day 0, day 15, and day 30 (P < .05). On the 30th day following LIPUS treatment, TC, TG, and LDL-C decreased in the LIPUS group while HDL-C increased with no statistically significant differences (P > .05); the indexes of femur parameters (BS/TV, BV/TV, Tb.Th, BMD, and TMD) were increased (P > .05). On the 120th day after LIPUS treatment, TC content demonstrated a significant decrease (P < .05), and TG and LDL-C displayed a downward trend (P > .05) while HDL-C content increased (P < .05); the femur parameters were significantly reduced (P < .05). The LIPUS group exhibited an increased presence of new fibrillar fibers. Levels of IL-6 and IL-1β significantly decreased with LIPUS treatment, whereas osteocalcin (OCN) expression notably increased (P < .05). CONCLUSIONS The application of LIPUS demonstrates potential in mitigating complications associated with POI in rats through the reduction of FSH secretion levels and inhibition of tissue inflammation, thereby presenting a promising avenue for women with POI to explore more efficacious treatment alternatives.
Collapse
Affiliation(s)
- Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Junfen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinbin Han
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yiqing Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Sicheng He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Juan Qin
- Department of Obstetrics and Gynecology, Guiyang Maternal and Child Health Care Hospital, Guizhou Medical University, Guiyang, China
| | - Guolin Song
- Department of Emergency, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Lei Y, Wang L, Song L, Han J, Ma H, Luo H, Ma Y, Han D. Tiaogan Jiejiu Tongluo formula alleviates hepatic steatosis in NAFLD mice by regulating AMPK signaling pathway. J Pharm Pharmacol 2025; 77:492-500. [PMID: 39951113 DOI: 10.1093/jpp/rgaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/24/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVES Tiaogan Jiejiu Tongluo formula (TJTF) is a traditional Chinese medicine formula for liver disease. The purpose of this study was to explore the protective effects and mechanisms of TJTF on nonalcoholic fatty liver disease (NAFLD) mice. METHODS A NAFLD model of mice was established by a combination of a high-fat diet and CCL4 and then treated with TJTF. The damage to liver tissue was observed through histopathology, and the levels of AST, ALT, TG, TC, LDL-C, and HDL-C in the serum, as well as SOD, GSH, and MDA in the liver tissue were determined using biochemistry or ELISA kit. The expression of proteins related to the AMPK pathway was detected by western blotting. RESULTS Biochemical indicators and pathological examination showed that TJTF could enhance the antioxidant capacity of liver tissue and significantly reduce liver lipid deposition. In addition, TJTF significantly increased levels of LKB1 and p-AMPK, and decreased the levels of HMGCR, SREBP-1c, FAS, and ACC. CONCLUSION TJTF can alleviate hepatic steatosis and effectively improve NAFLD by regulating AMPK signaling pathway in NAFLD mice.
Collapse
Affiliation(s)
- Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Lianping Wang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Linze Song
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - He Ma
- Department of Respiratory Medicine, Changchun Hospital of Traditional Chinese Medicine, Jilin, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Yan Ma
- Department of Endocrinology and Metabolism, Jilin Province People's Hospital, Jilin, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
7
|
Chen J, Liao Y, Sheng Y, Yao H, Li T, He Z, Ye WWY, Yin M, Tang H, Zhao Y, Zhang P, Wang Y, Fu X, Ji Y. FSH exacerbates bone loss by promoting osteoclast energy metabolism through the CREB-MDH2-NAD + axis. Metabolism 2025; 165:156147. [PMID: 39880362 DOI: 10.1016/j.metabol.2025.156147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
AIMS Osteoclast energy metabolism is a promising target for treating diseases characterized by high osteoclast activity, such as osteoporosis. However, the regulatory factors involved in osteoclast bioenergetic processes are still in the early stages of being fully understood. This study reveals the effects of follicle-stimulating hormone (FSH) on osteoclast energy metabolism. METHODS The Lyz2-Cre-Flox model selectively deletes FSH receptor (FSHR) from osteoclast precursor cells to generate Fshrf/f; Lyz2-Cre (Fshrf/f; Cre) mice. Bone quality was assessed using micro-computed tomography, histomorphometric analysis, and dual-fluorescence labeling. The in vitro assays measured oxygen consumption rate, extracellular acidification rate, pyruvate content, and mitochondrial membrane potential to determine metabolic flux. RNA-seq, LC-MS, dual-luciferase reporter assays, and chromatin immunoprecipitation (ChIP) assays were used to elucidate the underlying mechanisms. RESULTS FSHR deficiency in osteoclasts protected bone from resorption under normal and ovariectomized conditions. FSHR-deficient osteoclasts have reduced nicotinamide adenine dinucleotide (NAD+) levels, impairing osteoclast activity and energy metabolism. Mechanistically, FSH influenced NAD+ levels via the CREB/MDH2 axis. Treatment with FSH monoclonal antibodies rescued bone loss in OVX mice and reduced bone marrow NAD+ levels. CONCLUSIONS Targeting FSH may be a promising metabolic modulation strategy for treating osteoporosis and other diseases associated with high osteoclast activity.
Collapse
Affiliation(s)
- Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yue Sheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Zhenru He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Weng Wan Yue Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Mengjie Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Huilin Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Peiqi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Yuting Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Xiazhou Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
8
|
Chen Y, Xu N, Zhang W, Wang Y, Su T, Zhou Y, Xu J. FSH enhances the inflammatory response of macrophages in the knee joint possibly through the NFκB pathway. FEBS Open Bio 2025; 15:622-633. [PMID: 39801258 PMCID: PMC11961395 DOI: 10.1002/2211-5463.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 04/03/2025] Open
Abstract
Previous studies have suggested that women with higher follicle-stimulating hormone (FSH) levels have a greater incidence of osteoarthritis (OA) compared to women with lower FSH despite normal estrogen levels. Our previous studies also showed that FSH has a negative effect on cartilage in postmenopausal OA. However, no studies have investigated the effect of FSH on the synovium. Here, we showed that the FSH receptor (FSHR) is expressed on RAW264.7 cells and BMDM (Bone Marrow-Derived Macrophages), and found that FSH stimulation promotes the production and secretion of inflammatory cytokines in synovial macrophages. In RAW264.7 cells, FSH stimulation enhances phosphorylation and nuclear translocation of P65, suggesting the activation of NFκB signaling, while the knockdown of FSHR eliminates the proinflammatory effect of FSH. To further validate these results, we used an ovariectomy mouse model supplemented with FSH and estrogen, and a mouse model with FSH neutralization. We noted that FSHR was expressed on mouse synovial joint membranes. Furthermore, in ovariectomy mice supplemented with estrogen and treated with FSH, synovial macrophages were significantly increased, while the opposite was the case in the FSH neutralizing group, which suggest that FSH triggers an inflammatory response in the synovial tissue in mice. Taken together, our results indicate that FSH is an important regulator in synovial inflammation via NFκB signaling activation and, to some extent, appears to accelerate the development of osteoarthritis.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Na Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Wen‐wen Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Yan Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Tong Su
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Yan‐man Zhou
- Department of NephrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| |
Collapse
|
9
|
Duan H, Gong M, Yuan G, Wang Z. Sex Hormone: A Potential Target at Treating Female Metabolic Dysfunction-Associated Steatotic Liver Disease? J Clin Exp Hepatol 2025; 15:102459. [PMID: 39722783 PMCID: PMC11667709 DOI: 10.1016/j.jceh.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising due to rapid lifestyle changes. Although females may be less prone to MASLD than males, specific studies on MASLD in females should still be conducted. Previous research has shown that sex hormone levels are strongly linked to MASLD in females. By reviewing a large number of experimental and clinical studies, we summarized the pathophysiological mechanisms of estrogen, androgen, sex hormone-binding globulin, follicle-stimulating hormone, and prolactin involved in the development of MASLD. We also analyzed the role of these hormones in female MASLD patients with polycystic ovarian syndrome or menopause, and explored the potential of targeting sex hormones for the treatment of MASLD. We hope this will provide a reference for further exploration of mechanisms and treatments for female MASLD from the perspective of sex hormones.
Collapse
Affiliation(s)
- Huiyan Duan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Dasso ME, Centola CL, Galardo MN, Riera MF, Meroni SB. FSH increases lipid droplet content by regulating the expression of genes related to lipid storage in Rat Sertoli cells. Mol Cell Endocrinol 2025; 595:112403. [PMID: 39490730 DOI: 10.1016/j.mce.2024.112403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Sertoli cells (SCs) are essential for appropriate spermatogenesis. From a metabolic standpoint, they catabolize glucose and provide germ cells with lactate, which is their main energy source. SCs also oxidize fatty acids (FAs), which are stored as triacylglycerides (TAGs) within lipid droplets (LDs), to fulfill their own energy requirements. On the other hand, it has been demonstrated that FSH regulates some of SCs functions, but little is known about its effect on lipid metabolism. In the present study, we aimed to analyze FSH-mediated regulation of (1) lipid storage in LDs and (2) the expression of genes involved in FAs activation and TAG synthesis and storage in SCs. SCs obtained from 20-day-old rats were cultured for different incubation periods with FSH (100 ng/ml). It was observed that FSH increased LD content and TAG levels in SCs. There were also increments in the expression of Plin1, Fabp5, Acsl1, Acsl4, Gpat3, and Dgat1, which suggests that these proteins may mediate the increase in TAGs and LDs elicited by FSH. Regarding the signaling involved in FSH actions, it was observed that dbcAMP increased LD, and H89, a PKA inhibitor, inhibited FSH stimulus. Also, dbcAMP increased Plin2, Fabp5, Acsl1, Acsl4, and Dgat1 mRNA levels, confirming a role of the cAMP/PKA pathway in the regulation of lipid storage in SCs. Altogether, these results suggest that FSH, via the cAMP/PKA pathway, regulates lipid storage in SCs ensuring the availability of substrates to satisfy their energy requirements.
Collapse
Affiliation(s)
- Marina Ercilia Dasso
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Cecilia Lucia Centola
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Noel Galardo
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Fernanda Riera
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina.
| |
Collapse
|
11
|
Luo M, Hu Z, Yang J, Yang J, Sheng W, Lin C, Li D, He Q. Diosgenin Improves Lipid Metabolism in Diabetic Nephropathy via Regulation of miR-148b-3p/DNMT1/FOXO1 Axis. Nephron Clin Pract 2024; 149:226-239. [PMID: 39602888 DOI: 10.1159/000541690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The progression of diabetic nephropathy (DN) is closely associated with lipid accumulation. Diosgenin (Dio) plays a beneficial role in the lipid metabolism associated with multiple diseases. Thus, the mechanism underlying Dio's function in DN associated with aberrant lipid accumulation warrants further investigation. METHODS To model DN in vitro, HK-2 cells were treated with high glucose (HG) and palmitic acid. Cell viability was evaluated using MTT assay. The triglyceride (TG) content in HK-2 cells was measured using a commercial assay kit. The formation of lipid droplets in HK-2 cells was observed using Oil Red O staining. The expression levels of mRNA and protein were detected using RT-qPCR and Western blot, respectively. The DNA methylation of FOXO1 was assessed using MSP. The interaction between DNMT1 and the FOXO1 promoter was confirmed by ChIP assay. RESULTS Dio treatment reduced TG levels and lipid droplet formation in HK-2 cells co-treated with HG and palmitic acid. Simultaneously, the levels of miR-148b-3p and FOXO1 were increased by Dio, while Dio decreased the expression levels of DNMT1 and SREBP-2. Meanwhile, miR-148b-3p can bind to DNMT1, which in turn inhibits the expression of FOXO1 by mediating the DNA methylation of FOXO1. In addition, FOXO1 negatively regulates the expression of SREBP-2 by interacting with the SREBP-2 promoter. MiR-148b-3p inhibition or silencing of FOXO1 abolished the inhibitory effect of Dio on TG production and lipid droplet formation. This effect was further exacerbated by the downregulation of DNMT1. FOXO1 overexpression may counteract the promotive effects of miR-148b-3p inhibitor on lipid accumulation. CONCLUSIONS Dio treatment reduced TG production and lipid droplet formation in HK-2 cells during the progression of DN by modulating the miR-148b-3p/DNMT1/FOXO1/SREBP-2 axis. This finding provides new evidence supporting the therapeutic potential of Dio for DN.
Collapse
Affiliation(s)
- Min Luo
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zongren Hu
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jichang Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Gooeto Internet-Based Hospital, Changsha, China
| | - Jinhan Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Gooeto Internet-Based Hospital, Changsha, China
| | - Wen Sheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chengxiong Lin
- Huairen Hospital of Traditional Chinese Medicine, Huaihua, China
| | - Dian Li
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qinghu He
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Li C, Ling Y, Kuang H. Research progress on FSH-FSHR signaling in the pathogenesis of non-reproductive diseases. Front Cell Dev Biol 2024; 12:1506450. [PMID: 39633710 PMCID: PMC11615068 DOI: 10.3389/fcell.2024.1506450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Follicle-stimulating hormone (FSH), a glycoprotein hormone synthesized and secreted by the anterior pituitary gland, plays a critical role in reproductive development and regulation by binding to FSH receptor (FSHR). Beyond reproductive tissue, FSHRs have been identified in various non-reproductive tissues, indicating broader functions. FSH levels chronically rise during menopause and remain elevated in postmenopausal life. This increase in FSH level has been indicated to be associated with heightened risk of several non-reproductive diseases, including osteoporosis, hypercholesterolemia, type 2 diabetes mellitus, obesity, cardiovascular disease, Alzheimer's disease, and certain cancers. In this review, we will examine the role of FSH-FSHR signaling in the pathogenesis of these non-reproductive diseases and explore therapeutic strategies targeting FSH-FSHR signaling pathways.
Collapse
Affiliation(s)
- Chenhe Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi, China
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Huang L, Sun S, Jiang G, Xie G, Yang Y, Chen S, Luo J, Lv C, Li X, Liao J, Wang Z, Zhang Z, Xiong J. Follicle-stimulating hormone induces depression-like phenotype by affecting synaptic function. Front Mol Neurosci 2024; 17:1459858. [PMID: 39498265 PMCID: PMC11532131 DOI: 10.3389/fnmol.2024.1459858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Depression is one of the most common affective disorders in people's life. Women are susceptibility to depression during puberty, peripartum and menopause transition, when they are suffering from sex hormone fluctuation. A lot of studies have demonstrated the neuroprotective effect of estrogen on depression in women, however, the effect of FSH on depression is unclear. In this study, we investigated the role of FSH on depression in mice. Our study demonstrated that FSH induced depression-like behaviors in mice in a dose-dependent manner. This induction was associated with elevated levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α in both serum and hippocampal tissues. Additionally, FSH treatment resulted in impaired synaptic plasticity and a reduction in the expression of key synaptic proteins. It is noteworthy that the depression-like behaviors, inflammatory cytokines expression and synaptic plasticity impairment induced by FSH could be alleviated by knocking down the expression of FSH receptor (FSHR) in the hippocampus of the mice. Therefore, our findings reveal that FSH may play an important role in the pathogenesis of depression and targeting FSH may be a potential therapeutic strategy for depression during hormone fluctuation in women.
Collapse
Affiliation(s)
- Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shangqi Sun
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science of Technology, Wuhan, China
| | - Gege Jiang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guanfeng Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Xu W, Wang Z, Yao H, Zeng Z, Lan X. Distribution of Arteriosclerotic Vessels in Patients with Arteriosclerosis and the Differences of Serum Lipid Levels Classified by Different Sites. Int J Gen Med 2024; 17:4733-4744. [PMID: 39429964 PMCID: PMC11491091 DOI: 10.2147/ijgm.s483324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Objective To investigate the distribution of arteriosclerotic vessels of arteriosclerosis, differential serum lipid profiles, and differences in the proportion of dyslipidaemia between patients with single-site arteriosclerosis and multi-site arteriosclerosis (significant hardening of ≥2 arteries). Methods The data of 6581 single-site arteriosclerosis patients and 5940 multi-site arteriosclerosis patients were extracted from the hospital medical record system. Serum total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) A1, ApoB concentrations and C-reactive protein (CRP) between patients with single-site arteriosclerosis and multi-site arteriosclerosis were collected and analyzed. Results The most diseased arteries were coronary arteries (n=7099, 33.7%), limb arteries (n=6546, 31.1%), and carotid arteries (n=5279, 25.1%). TC, LDL-C, TC/HDL-C, and LDL-C/HDL-C levels were higher and CRP level was lower in multi-site arteriosclerosis patients than those in single-site arteriosclerosis patients. The TC, LDL-C levels in non-elderly (<65 years old) female patients were higher and TG/HDL-C, TC/HDL-C, LDL-C/HDL-C levels were lower than those in non-elderly male patients, while the TG, TC, LDL-C, and TG/HDL-C levels in elderly (≥65 years old) female patients were higher and LDL-C/HDL-C level was lower than those in elderly male patients. The proportion of dyslipidemia in descending order was as follows: low HDL-C (31.9%), elevated TG (16.9%), elevated TC (9.0%), and elevated LDL-C (4.2%). The levels of TC, LDL-C, TC/HDL-C, and LDL-C/HDL-C in patients with peripheral arteriosclerosis were higher than those in patients with cardio-cerebrovascular arteriosclerosis. Conclusion There were differences in serum lipid levels in patients with arteriosclerosis with different age, gender and distribution of arteriosclerotic vessels.
Collapse
Affiliation(s)
- Weiyong Xu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhenchang Wang
- Department of Emergency Medicine, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Huaqing Yao
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zifeng Zeng
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Xinping Lan
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
15
|
Wang Y, Zhang Z, Du M, Ji X, Liu X, Zhao C, Pang X, Jin E, Wen A, Li S, Zhang F. Berberine alleviates ETEC-induced intestinal inflammation and oxidative stress damage by optimizing intestinal microbial composition in a weaned piglet model. Front Immunol 2024; 15:1460127. [PMID: 39351242 PMCID: PMC11440249 DOI: 10.3389/fimmu.2024.1460127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Enterotoxigenic Escherichia coli (ETEC) is the main diarrhea-causing pathogen in children and young animals and has become a global health concern. Berberine is a type of "medicine and food homology" and has a long history of use in China, particularly in treating gastrointestinal disorders and bacterial diarrhea. Methods In this study, we explored the effects of berberine on growth performance, intestinal inflammation, oxidative damage, and intestinal microbiota in a weaned piglet model of ETEC infection. Twenty-four piglets were randomly divided into four groups-a control group (fed a basal diet [BD] and infused with saline), a BD+ETEC group (fed a basal diet and infused with ETEC), a LB+ETEC group (fed a basal diet with 0.05% berberine and infused with ETEC infection), and a HB+ETEC group (fed a basal diet with 0.1% berberine and infused with ETEC). Results Berberine significantly improved the final body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) (P<0.05) of piglets, and effectively decreased the incidence of diarrhea among the animals (P<0.05). Additionally, berberine significantly downregulated the expression levels of the genes encoding TNF-α, IL-1β, IL-6, IL-8, TLR4, MyD88, NF-κB, IKKα, and IKKβ in the small intestine of piglets (P<0.05). ETEC infection significantly upregulated the expression of genes coding for Nrf2, CAT, SOD1, GPX1, GST, NQO1, HO-1, GCLC, and GCLM in the small intestine of the animals (P<0.05). Berberine significantly upregulated 12 functional COG categories and 7 KEGG signaling pathways. A correlation analysis showed that berberine significantly increased the relative abundance of beneficial bacteria (Gemmiger, Pediococcus, Levilactobacillus, Clostridium, Lactiplantibacillus, Weissella, Enterococcus, Blautia, and Butyricicoccus) and decreased that of pathogenic bacteria (Prevotella, Streptococcus, Parabacteroides, Flavonifractor, Alloprevotella) known to be closely related to intestinal inflammation and oxidative stress in piglets. In conclusion, ETEC infection disrupted the intestinal microbiota in weaned piglets, upregulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways, and consequently leading to intestinal inflammation and oxidative stress-induced damage. Discussion Our data indicated that berberine can optimize intestinal microbiota balance and modulate the TLR4/MyD88/NF-κB and Nrf2 signaling pathways, thus helping to alleviate intestinal inflammation and oxidative damage caused by ETEC infection in weaned piglets.
Collapse
Affiliation(s)
- Yue Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Ziting Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Min Du
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
16
|
Chen S, Wu N, Zhang Y, Lin Z, Chen J, Qin H, Chen H, Cui C, Yang G, Chen M. Follicle-stimulating hormone promotes atrial fibrosis in menopausal women with atrial fibrillation. Heart Rhythm 2024:S1547-5271(24)03320-4. [PMID: 39284398 DOI: 10.1016/j.hrthm.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Postmenopausal women with atrial fibrillation (AF) exhibit a higher level of atrial fibrosis and a higher recurrence rate after ablation compared with men. However, the underlying mechanism remains unclear. OBJECTIVE The purpost of this study was to investigate the mechanism through which menopause promotes atrial fibrosis. METHODS In a prospective cohort of women with AF, regression analyses were conducted to assess the relationship between low-voltage area (LVA) and sex hormone levels. CREM-IbΔC-X mice, a spontaneous AF model, underwent bilateral ovariectomy (OVX). Electrocardiograms, echocardiograms, and Masson staining were performed. Follicle-stimulating hormone (FSH) stimulation was applied in male mice for 3 months. OVX was also applied in an angiotensin II (Ang II)-induced pressure overload mouse model, after programmed electrical stimulation and structural analyses. Bulk RNA sequencing (RNA-seq) was performed to elucidate potential mechanisms. RESULTS Women demonstrated a significantly higher LVA burden than men (P < .001). A positive correlation was observed between LVA burden and FSH level (P = .002). Mice in the OVX group exhibited a significantly higher incidence of AF (P = .040) and atrial fibrosis (P = .021) compared with the Sham group, which could be attenuated by adeno-associated virus encoding small interfering RNA against Fshr. In male CREM-IbΔC-X mice, FSH stimulation promoted the occurrence of AF (P = .035) and atrial fibrosis (P = .002). In Ang II-induced female mice, OVX prompted atrial fibrosis, increased AF inducibility, and shortened atrial effective refractory period, which could be attenuated with knockdown of Fshr. RNA-seq indicated mitochondrial dysfunction. CONCLUSION Postmenopausal women exhibited a higher LVA burden than men, which was positively correlated with FSH level. FSH promoted atrial fibrosis through oxidative stress.
Collapse
Affiliation(s)
- Shaojie Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Nan Wu
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Yike Zhang
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Zhiqiao Lin
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Jiuzhou Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Huiyuan Qin
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Hongwu Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Chang Cui
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China.
| | - Gang Yang
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China; Division of Cardiology, Jiangsu Provincial People's Hospital Chongqing Hospital, Chongqing, China.
| | - Minglong Chen
- Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing China
| |
Collapse
|
17
|
Wan Y, Ma D, Yu L, Tian W, Wang T, Chen X, Shang Q, Xu H. The associations between dietary flavonoid intake and hyperlipidemia: data from the national health and nutrition examination survey 2007-2010 and 2017-2018. Front Nutr 2024; 11:1374970. [PMID: 38883860 PMCID: PMC11176614 DOI: 10.3389/fnut.2024.1374970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Background Hyperlipidemia is a worldwide health problem and a significant risk factor for cardiovascular diseases; therefore, it imposes a heavy burden on society and healthcare. It has been reported that flavonoids can increase energy expenditure and fat oxidation, be anti-inflammatory, and reduce lipid factor levels, which may reduce the risk of hyperlipidemia. However, the relationship between the prevalence of hyperlipidemia and dietary flavonoid intake in the population remains unclear. Methods This study included 8,940 adults from the 2007-2010 and 2017-2018 National Health and Nutrition Examination Surveys (NHANES). The relationship between dietary flavonoid intake and the prevalence of hyperlipidemia was analyzed using weighted logistic regression and weighted restricted cubic spline. Results We found an inverse relationship between subtotal catechins intake and hyperlipidemia prevalence in the third quartile [0.74 (0.56, 0.98), p = 0.04] compared with the first quartile. The prevalence of hyperlipidemia and total flavan-3-ol intake in the third quartile were inversely correlated [0.76 (0.59, 0.98), p = 0.03]. Total anthocyanin intake was inversely related to the prevalence of hyperlipidemia in the third quartile [0.77 (0.62, 0.95), p = 0.02] and the fourth quartile [0.77 (0.60, 0.98), p = 0.04]. The prevalence of hyperlipidemia was negatively correlated with total flavonols intake in the fourth quartile [0.75 (0.60, 0.94), p = 0.02]. Using restricted cubic splines analysis, we found that subtotal catechins intake and total flavan-3-ol intake had a nonlinear relationship with the prevalence of hyperlipidemia. Conclusion Our study may provide preliminary research evidence for personalizing improved dietary habits to reduce the prevalence of hyperlipidemia.
Collapse
Affiliation(s)
- Yingying Wan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Ma
- China Academy of Chinese Medical Sciences, Xiyuan Hospital Suzhou Hospital, Suzhou, China
| | - Linghua Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanye Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghua Shang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Libby AE, Solt CM, Jackman MR, Sherk VD, Foright RM, Johnson GC, Nguyen TT, Breit MJ, Hulett N, Rudolph MC, Roberson PA, Wellberg EA, Jambal P, Scalzo RL, Higgins J, Kumar TR, Wierman ME, Pan Z, Shankar K, Klemm DJ, Moreau KL, Kohrt WM, MacLean PS. Effects of follicle-stimulating hormone on energy balance and tissue metabolic health after loss of ovarian function. Am J Physiol Endocrinol Metab 2024; 326:E626-E639. [PMID: 38536037 PMCID: PMC11208003 DOI: 10.1152/ajpendo.00400.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.
Collapse
Affiliation(s)
- Andrew E Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Claudia M Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, United States
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Campus, Kansas City, Kansas, United States
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Thi-Tina Nguyen
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew J Breit
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nicholas Hulett
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Paul A Roberson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Elizabeth A Wellberg
- Stephenson Cancer Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janine Higgins
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Zhaoxing Pan
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kartik Shankar
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Dwight J Klemm
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
19
|
Li Y, Zheng M, Limbara S, Zhang S, Yu Y, Yu L, Jiao J. Effects of the Pituitary-targeted Gland Axes on Hepatic Lipid Homeostasis in Endocrine-associated Fatty Liver Disease-A Concept Worth Revisiting. J Clin Transl Hepatol 2024; 12:416-427. [PMID: 38638376 PMCID: PMC11022059 DOI: 10.14218/jcth.2023.00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatic lipid homeostasis is not only essential for maintaining normal cellular and systemic metabolic function but is also closely related to the steatosis of the liver. The controversy over the nomenclature of non-alcoholic fatty liver disease (NAFLD) in the past three years has once again sparked in-depth discussions on the pathogenesis of this disease and its impact on systemic metabolism. Pituitary-targeted gland axes (PTGA), an important hormone-regulating system, are indispensable in lipid homeostasis. This review focuses on the roles of thyroid hormones, adrenal hormones, sex hormones, and their receptors in hepatic lipid homeostasis, and summarizes recent research on pituitary target gland axes-related drugs regulating hepatic lipid metabolism. It also calls on researchers and clinicians to recognize the concept of endocrine-associated fatty liver disease (EAFLD) and to re-examine human lipid metabolism from the macroscopic perspective of homeostatic balance.
Collapse
Affiliation(s)
- Yifang Li
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Meina Zheng
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Steven Limbara
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Shanshan Zhang
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yutao Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Le Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Jian Jiao
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
20
|
Zhang S, Liu R, Ma Y, Ma Y, Feng H, Ding X, Zhang Q, Li Y, Shan J, Bian H, Zhu R, Meng Q. Lactiplantibacillus plantarum ATCC8014 Alleviates Postmenopausal Hypercholesterolemia in Mice by Remodeling Intestinal Microbiota to Increase Secondary Bile Acid Excretion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6236-6249. [PMID: 38484389 DOI: 10.1021/acs.jafc.3c08232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Hypercholesterolemia poses a significant cardiovascular risk, particularly in postmenopausal women. The anti-hypercholesterolemic properties of Lactiplantibacillus plantarum ATCC8014 (LP) are well recognized; however, its improving symptoms on postmenopausal hypercholesterolemia and the possible mechanisms have yet to be elucidated. Here, we utilized female ApoE-deficient (ApoE-/-) mice undergoing bilateral ovariectomy, fed a high-fat diet, and administered 109 colony-forming units (CFU) of LP for 13 consecutive weeks. LP intervention reduces total cholesterol (TC) and triglyceride (TG) accumulation in the serum and liver and accelerates their fecal excretion, which is mainly accomplished by increasing the excretion of fecal secondary bile acids (BAs), thereby facilitating cholesterol conversion. Correlation analysis revealed that lithocholic acid (LCA) is an important regulator of postmenopausal lipid abnormalities. LP can reduce LCA accumulation in the liver and serum while enhancing its fecal excretion, accomplished by elevating the relative abundances of Allobaculum and Olsenella in the ileum. Our findings demonstrate that postmenopausal lipid dysfunction is accompanied by abnormalities in BA metabolism and dysbiosis of the intestinal microbiota. LP holds therapeutic potential for postmenopausal hypercholesterolemia. Its effectiveness in ameliorating lipid dysregulation is primarily achieved through reshaping the diversity and abundance of the intestinal microbiota to correct BA abnormalities.
Collapse
Affiliation(s)
- Shurui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ronghui Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuting Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Han Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruigong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
21
|
Fang H, Li Q, Wang H, Ren Y, Zhang L, Yang L. Maternal nutrient metabolism in the liver during pregnancy. Front Endocrinol (Lausanne) 2024; 15:1295677. [PMID: 38572473 PMCID: PMC10987773 DOI: 10.3389/fendo.2024.1295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qingyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Haichao Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ying Ren
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
22
|
Zhang KX, Zhu Y, Song SX, Bu QY, You XY, Zou H, Zhao GP. Ginsenoside Rb1, Compound K and 20(S)-Protopanaxadiol Attenuate High-Fat Diet-Induced Hyperlipidemia in Rats via Modulation of Gut Microbiota and Bile Acid Metabolism. Molecules 2024; 29:1108. [PMID: 38474620 DOI: 10.3390/molecules29051108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Hyperlipidemia, characterized by elevated serum lipid concentrations resulting from lipid metabolism dysfunction, represents a prevalent global health concern. Ginsenoside Rb1, compound K (CK), and 20(S)-protopanaxadiol (PPD), bioactive constituents derived from Panax ginseng, have shown promise in mitigating lipid metabolism disorders. However, the comparative efficacy and underlying mechanisms of these compounds in hyperlipidemia prevention remain inadequately explored. This study investigates the impact of ginsenoside Rb1, CK, and PPD supplementation on hyperlipidemia in rats induced by a high-fat diet. Our findings demonstrate that ginsenoside Rb1 significantly decreased body weight and body weight gain, ameliorated hepatic steatosis, and improved dyslipidemia in HFD-fed rats, outperforming CK and PPD. Moreover, ginsenoside Rb1, CK, and PPD distinctly modified gut microbiota composition and function. Ginsenoside Rb1 increased the relative abundance of Blautia and Eubacterium, while PPD elevated Akkermansia levels. Both CK and PPD increased Prevotella and Bacteroides, whereas Clostridium-sensu-stricto and Lactobacillus were reduced following treatment with all three compounds. Notably, only ginsenoside Rb1 enhanced lipid metabolism by modulating the PPARγ/ACC/FAS signaling pathway and promoting fatty acid β-oxidation. Additionally, all three ginsenosides markedly improved bile acid enterohepatic circulation via the FXR/CYP7A1 pathway, reducing hepatic and serum total bile acids and modulating bile acid pool composition by decreasing primary/unconjugated bile acids (CA, CDCA, and β-MCA) and increasing conjugated bile acids (TCDCA, GCDCA, GDCA, and TUDCA), correlated with gut microbiota changes. In conclusion, our results suggest that ginsenoside Rb1, CK, and PPD supplementation offer promising prebiotic interventions for managing HFD-induced hyperlipidemia in rats, with ginsenoside Rb1 demonstrating superior efficacy.
Collapse
Affiliation(s)
- Kang-Xi Zhang
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Zhu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shu-Xia Song
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qing-Yun Bu
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Xiao-Yan You
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Ping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Wang Q, Han J, Liang Z, Geng X, Du Y, Zhou J, Yao W, Xu T. FSH Is Responsible for Androgen Deprivation Therapy-Associated Atherosclerosis in Mice by Exaggerating Endothelial Inflammation and Monocyte Adhesion. Arterioscler Thromb Vasc Biol 2024; 44:698-719. [PMID: 38205641 PMCID: PMC10880942 DOI: 10.1161/atvbaha.123.319426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases. METHODS We administered orchiectomy, GnRH agonist, or GnRH antagonist in male ApoE-/- mice fed with Western diet and manipulated FSH levels by testosterone and FSH supplementation or FSH antibody to investigate the role of FSH elevation on atherosclerosis. By combining lipidomics, in vitro study, and intraluminal FSHR (FSH receptor) inhibition, we delineated the effects of FSH on endothelium and monocytes and the underlying mechanisms. RESULTS Orchiectomy and GnRH agonist, but not GnRH antagonist, induced long- or short-term FSH elevation and significantly accelerated atherogenesis. In orchiectomized and testosterone-supplemented mice, FSH exposure increased atherosclerosis. In GnRH agonist-treated mice, blocking of short FSH surge by anti-FSHβ antibody greatly alleviated endothelial inflammation and delayed atherogenesis. In GnRH antagonist-treated mice, FSH supplementation aggravated atherogenesis. Mechanistically, FSH, synergizing with TNF-α (tumor necrosis factor alpha), exacerbated endothelial inflammation by elevating VCAM-1 (vascular cell adhesion protein 1) expression through the cAMP/PKA (protein kinase A)/CREB (cAMP response element-binding protein)/c-Jun and PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B)/GSK-3β (glycogen synthase kinase 3 beta)/GATA-6 (GATA-binding protein 6) pathways. In monocytes, FSH upregulated CD29 (cluster of differentiation 29) expression via the PI3K/AKT/GSK-3β/SP1 (specificity protein 1) pathway and promoted monocyte-endothelial adhesion both in vitro and in vivo. Importantly, FSHR knockdown by shRNA in endothelium of carotid arteries markedly reduced GnRH agonist-induced endothelial inflammation and atherosclerosis in mice. CONCLUSIONS FSH is responsible for ADT-associated atherosclerosis by exaggerating endothelial inflammation and promoting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
- Department of Urology, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu (Q.W.)
| | - Jingli Han
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Zhenhui Liang
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Xueyu Geng
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Yiqing Du
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (W.Y.)
| | - Tao Xu
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| |
Collapse
|
24
|
Seyyed-Mohammadzad M, Kavandi D, Jalili M, Ghodratizadeh S, Mikaeilvand A, Sakha H, Hajizadeh R. Association between parities and duration of breastfeeding and the severity of coronary artery disease in women above 30 years old age (A pilot study). CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:430-438. [PMID: 39011428 PMCID: PMC11246674 DOI: 10.22088/cjim.15.3.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 07/17/2024]
Abstract
Background The prevalence and mortality of CVD in women increase over time. We conducted this research to evaluate the severity of coronary artery disease with the number of live births and breastfeeding duration. Methods Patients aged 30-50 years old with positive exercise tests or evidence of cardiac ischemia who were candidates for coronary angiography were included. All the participants had at least one child. Syntax score was used to evaluate the severity of coronary arteries. Results Mean number of children was 3.72±1.85, in those patients with <2 live births no one had a syntax score≥1, but in the>5 live births group most patients had a syntax score≥1. In patients with zero syntax score, it was estimated as 4.91±39.7; in patients with 1≤ syntax score, it was 4.48±7.29 (P =0.76). Among patients with > 5 birth lives, those with higher syntax scores had older ages (P=0.497). After adjusting age, the association between live births and syntax score became non-significant (P=0.850). Conclusion By increasing the number of live births >5, the severity of coronary artery disease, increases. However, this association was not significant after adjusting the age of patients.
Collapse
Affiliation(s)
| | - Dorsa Kavandi
- Student Research Committee, Zanjan University of Medical Sciences, Urmia, Iran
| | - Mohammad Jalili
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Sahar Ghodratizadeh
- Department of Anesthesiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Mikaeilvand
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Hanieh Sakha
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hajizadeh
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
25
|
Sun C, Wu H, Xiao H, Nguepi Tsopmejio IS, Jin Z, Song H. Effect of dietary Flammulina velutipes (Curt.: Fr.) stem waste on ovarian follicles development in laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2178341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Chang Sun
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
| | - Haoyuan Wu
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
| | - Huanwei Xiao
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
| | | | - Zhouyu Jin
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, P. R. China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, P. R. China
| |
Collapse
|
26
|
Zhou X, Wu X, Wang R, Han L, Li H, Zhao W. Mechanisms of 3-Hydroxyl 3-Methylglutaryl CoA Reductase in Alzheimer's Disease. Int J Mol Sci 2023; 25:170. [PMID: 38203341 PMCID: PMC10778631 DOI: 10.3390/ijms25010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and has a high incidence in the elderly. Unfortunately, there is no effective therapy for AD owing to its complicated pathogenesis. However, the development of lipid-lowering anti-inflammatory drugs has heralded a new era in the treatment of Alzheimer's disease. Several studies in recent years have shown that lipid metabolic dysregulation and neuroinflammation are associated with the pathogenesis of AD. 3-Hydroxyl 3-methylglutaryl CoA reductase (HMGCR) is a rate-limiting enzyme in cholesterol synthesis that plays a key role in cholesterol metabolism. HMGCR inhibitors, known as statins, have changed from being solely lipid-lowering agents to neuroprotective compounds because of their effects on lipid levels and inflammation. In this review, we first summarize the main regulatory mechanism of HMGCR affecting cholesterol biosynthesis. We also discuss the pathogenesis of AD induced by HMGCR, including disordered lipid metabolism, oxidative stress, inflammation, microglial proliferation, and amyloid-β (Aβ) deposition. Subsequently, we explain the possibility of HMGCR as a potential target for AD treatment. Statins-based AD treatment is an ascent field and currently quite controversial; therefore, we also elaborate on the current application prospects and limitations of statins in AD treatment.
Collapse
Affiliation(s)
- Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Xiaolang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Rui Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Lu Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| | - Huilin Li
- Department of Endocrinology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China;
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (X.Z.); (X.W.); (R.W.); (L.H.)
| |
Collapse
|
27
|
Adhikaree J, Shrestha R, Bomjan P, Shrestha A, Pokharel S, Acharya R, Siwakoti A, Pokhrel R, Marzo RR, Rajbhandari PMS, Acharya S. Effect of menstrual status on lipid profile: A cross-sectional study in a tertiary care hospital in Nepal. Post Reprod Health 2023; 29:195-200. [PMID: 37907067 DOI: 10.1177/20533691231213301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background: The ovarian follicular cell's degradation and subsequent decrease in the synthesis of estrogen results in the decreased cardiovascular protection. As a result, the incidence of cardiovascular disease (CVD) increases in postmenopausal women and is characterized by change in lipid profile. This study sought to ascertain the extent of the impact that menstrual status might have on lipid profiles among premenopausal and postmenopausal women. Methods: A cross-sectional study was conducted with 260 premenopausal and postmenopausal women (1: 1) and serum lipid component concentrations (high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), and total cholesterol (TC)) were measured. A comparison between two groups was made between premenopausal and postmenopausal women, and regression was carried out to estimate the effect of menstrual status on lipid components. Results: Compared with premenopausal women, the concentrations of the lipid components (HDL-C, LDL-C, TG, and TC) were found to be significantly higher in postmenopausal women. Using the linear regression, menstruation status was able to predict 11.7%-13.3% of the lipid components (TG and TC) when age and weight were adjusted. Conclusion: The difference in lipid components between premenopausal women and postmenopausal women exists, with menstrual status explaining 11.7%-13.3% variance for the observed lipid level. The factors influencing the lipid profile beside the menstrual status should also be explored. External intervention such as estrogen replacement therapy is also recommended in case of deviation of lipid profile from the suggested normal clinical range.
Collapse
Affiliation(s)
- Jasper Adhikaree
- Department of Medical Biochemistry, Nobel College, Pokhara University, Kathmandu, Nepal
| | - Ruyusha Shrestha
- Department of Medical Biochemistry, Nobel College, Pokhara University, Kathmandu, Nepal
| | - Prabina Bomjan
- Department of Medical Biochemistry, Nobel College, Pokhara University, Kathmandu, Nepal
| | - Ashmita Shrestha
- Department of Medical Biochemistry, Nobel College, Pokhara University, Kathmandu, Nepal
| | - Shreya Pokharel
- Department of Medical Biochemistry, Nobel College, Pokhara University, Kathmandu, Nepal
| | - Rashila Acharya
- Department of Medical Biochemistry, Nobel College, Pokhara University, Kathmandu, Nepal
| | - Anusha Siwakoti
- Department of Medical Biochemistry, Nobel College, Pokhara University, Kathmandu, Nepal
| | - Ritesh Pokhrel
- Department of Medical Biochemistry, Nobel College, Pokhara University, Kathmandu, Nepal
| | - Roy Rillera Marzo
- Department of Community Medicine, International Medical School, Management and Science University, Shah Alam, Malaysia
| | | | - Swosti Acharya
- Department of Nursing, Manmohan Cardiothoracic Vascular and Transplant Center, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| |
Collapse
|
28
|
Zehnaker A, Vallet A, Gourdon J, Sarti C, Jugnarain V, Haj Hassan M, Mathias L, Gauthier C, Raynaud P, Boulo T, Beauclair L, Bigot Y, Casarini L, Crépieux P, Poupon A, Piégu B, Jean-Alphonse F, Bruneau G, Reiter É. Combined Multiplexed Phage Display, High-Throughput Sequencing, and Functional Assays as a Platform for Identifying Modulatory VHHs Targeting the FSHR. Int J Mol Sci 2023; 24:15961. [PMID: 37958944 PMCID: PMC10650796 DOI: 10.3390/ijms242115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Developing modulatory antibodies against G protein-coupled receptors is challenging. In this study, we targeted the follicle-stimulating hormone receptor (FSHR), a significant regulator of reproduction, with variable domains of heavy chain-only antibodies (VHHs). We built two immune VHH libraries and submitted them to multiplexed phage display approaches. We used next-generation sequencing to identify 34 clusters of specifically enriched sequences that were functionally assessed in a primary screen based on a cAMP response element (CRE)-dependent reporter gene assay. In this assay, 23 VHHs displayed negative or positive modulation of FSH-induced responses, suggesting a high success rate of the multiplexed strategy. We then focused on the largest cluster identified (i.e., PRC1) that displayed positive modulation of FSH action. We demonstrated that PRC1 specifically binds to the human FSHR and human FSHR/FSH complex while potentiating FSH-induced cAMP production and Gs recruitment. We conclude that the improved selection strategy reported here is effective for rapidly identifying functionally active VHHs and could be adapted to target other challenging membrane receptors. This study also led to the identification of PRC1, the first potential positive modulator VHH reported for the human FSHR.
Collapse
Affiliation(s)
- Anielka Zehnaker
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Amandine Vallet
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Juliette Gourdon
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Caterina Sarti
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Vinesh Jugnarain
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Maya Haj Hassan
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Laetitia Mathias
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Camille Gauthier
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Pauline Raynaud
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Thomas Boulo
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Linda Beauclair
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Yves Bigot
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Livio Casarini
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| | - Anne Poupon
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
- MAbSilico, 1 Impasse du Palais, 37000 Tours, France
| | - Benoît Piégu
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Frédéric Jean-Alphonse
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| | - Gilles Bruneau
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Éric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| |
Collapse
|
29
|
Cheng Y, Zhu H, Ren J, Wu HY, Yu JE, Jin LY, Pang HY, Pan HT, Luo SS, Yan J, Dong KX, Ye LY, Zhou CL, Pan JX, Meng ZX, Yu T, Jin L, Lin XH, Wu YT, Yang HB, Liu XM, Sheng JZ, Ding GL, Huang HF. Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets. Nat Commun 2023; 14:6991. [PMID: 37914684 PMCID: PMC10620214 DOI: 10.1038/s41467-023-42801-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Follicle-stimulating hormone (FSH) is involved in mammalian reproduction via binding to FSH receptor (FSHR). However, several studies have found that FSH and FSHR play important roles in extragonadal tissue. Here, we identified the expression of FSHR in human and mouse pancreatic islet β-cells. Blocking FSH signaling by Fshr knock-out led to impaired glucose tolerance owing to decreased insulin secretion, while high FSH levels caused insufficient insulin secretion as well. In vitro, we found that FSH orchestrated glucose-stimulated insulin secretion (GSIS) in a bell curve manner. Mechanistically, FSH primarily activates Gαs via FSHR, promoting the cAMP/protein kinase A (PKA) and calcium pathways to stimulate GSIS, whereas high FSH levels could activate Gαi to inhibit the cAMP/PKA pathway and the amplified effect on GSIS. Our results reveal the role of FSH in regulating pancreatic islet insulin secretion and provide avenues for future clinical investigation and therapeutic strategies for postmenopausal diabetes.
Collapse
Affiliation(s)
- Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jun Ren
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yan Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-En Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu-Yang Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yan Pang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Tao Pan
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Si-Si Luo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jing Yan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kai-Xuan Dong
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Cheng-Liang Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jie-Xue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhuo-Xian Meng
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Yu
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xian-Hua Lin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hong-Bo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin-Mei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jian-Zhong Sheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Obstetrics and Gynecology, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
- Department of Obstetrics and Gynecology, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
30
|
Foessl I, Dimai HP, Obermayer-Pietsch B. Long-term and sequential treatment for osteoporosis. Nat Rev Endocrinol 2023; 19:520-533. [PMID: 37464088 DOI: 10.1038/s41574-023-00866-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Osteoporosis is a skeletal disorder that causes impairment of bone structure and strength, leading to a progressively increased risk of fragility fractures. The global prevalence of osteoporosis is increasing in the ageing population. Owing to the chronic character of osteoporosis, years or even decades of preventive measures or therapy are required. The long-term use of bone-specific pharmacological treatment options, including antiresorptive and/or osteoanabolic approaches, has raised concerns around adverse effects or potential rebound phenomena after treatment discontinuation. Imaging options, risk scores and the assessment of bone turnover during initiation and monitoring of such therapies could help to inform individualized treatment strategies. Combination therapies are currently used less often than 'sequential' treatments. However, all patients with osteoporosis, including those with secondary and rare causes of osteoporosis, as well as specific patient populations (for example, young adults, men and pregnant women) require new approaches for long-term therapy and disease monitoring. New pathophysiological aspects of bone metabolism might therefore help to inform and revolutionize the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Ines Foessl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Hans P Dimai
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University Graz, Graz, Austria.
| |
Collapse
|
31
|
Ge S, Zheng Y, Du L, Hu X, Zhou J, He Z, Gu X, Huang X, Yang L, Lin X, Gu X. Association between follicle-stimulating hormone and nonalcoholic fatty liver disease in postmenopausal women with type 2 diabetes mellitus. J Diabetes 2023; 15:640-648. [PMID: 37221966 PMCID: PMC10415867 DOI: 10.1111/1753-0407.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/14/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND AND AIM Follicle-stimulating hormone (FSH) was negatively associated with nonalcoholic fatty liver disease (NAFLD) in women older than 55 years old. People with obesity and diabetes had higher prevalence of NAFLD. Thus, we aimed to explore the association between FSH and NAFLD in postmenopausal women with type 2 diabetes mellitus (T2DM). METHODS A total of 583 postmenopausal women with T2DM with an average age of 60.22 ± 6.49 were recruited in this cross-sectional study through January 2017 to May 2021. Anthropological data, biochemical indexes, and abdominal ultrasound results were retrospectively collected. Abdominal ultrasound was used to diagnose NAFLD. FSH was measured by enzymatic immunochemiluminescence and divided into tertiles for further analysis. The logistic regression was used to assess the association of FSH with prevalent NAFLD. Likelihood ratio tests were used to assess the interactions between groups. RESULTS A total of 332 (56.94%) postmenopausal women had NAFLD. Compared with postmenopausal women in the lowest tertile of FSH, postmenopausal women in the highest tertile of FSH had lower prevalence of NAFLD (p < .01). After adjusting for age, diabetes duration, metabolism-related indicators, and other sex-related hormones, FSH was inversely associated with NAFLD (odds ratio: 0.411, 95% confidence intervals: 0.260-0.651, p < .001). In subgroup analysis, there were no significant interactions of FSH with strata of metabolic factors on the association of NAFLD. CONCLUSION FSH was negatively and independently associated with NAFLD in postmenopausal women with type 2 diabetes mellitus. It might be a potential index for screening and identifying individuals with high risk of NAFLD in postmenopausal women.
Collapse
Affiliation(s)
- Shengjie Ge
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yinfeng Zheng
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Linjia Du
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiang Hu
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jingzong Zhou
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhiying He
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiao Gu
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoyan Huang
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lijuan Yang
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiuli Lin
- Department of Infectious DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xuejiang Gu
- Department of Endocrine and Metabolic DiseasesThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
32
|
Xiong J, Zhang Z, Ye K. C/EBPβ/AEP Signaling Drives Alzheimer's Disease Pathogenesis. Neurosci Bull 2023; 39:1173-1185. [PMID: 36735152 PMCID: PMC10313643 DOI: 10.1007/s12264-023-01025-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Almost two-thirds of patients with AD are female. The reason for the higher susceptibility to AD onset in women is unclear. However, hormone changes during the menopausal transition are known to be associated with AD. Most recently, we reported that follicle-stimulating hormone (FSH) promotes AD pathology and enhances cognitive dysfunctions via activating the CCAAT-enhancer-binding protein (C/EBPβ)/asparagine endopeptidase (AEP) pathway. This review summarizes our current understanding of the crucial role of the C/EBPβ/AEP pathway in driving AD pathogenesis by cleaving multiple critical AD players, including APP and Tau, explaining the roles and the mechanisms of FSH in increasing the susceptibility to AD in postmenopausal females. The FSH-C/EBPβ/AEP pathway may serve as a novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, 518034, China.
| |
Collapse
|
33
|
Zhang J, Xiao Y, Wang H, Zhang H, Chen W, Lu W. Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol Res 2023; 274:127432. [PMID: 37320895 DOI: 10.1016/j.micres.2023.127432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB) have implications for host health and act as food ingredients. Due to the variability of LAB-EPS (lactic acid bacteria-derived exopolysaccharide) gene clusters, especially the glycosyltransferase genes that determine monosaccharide composition, the structure of EPS is very rich. EPSs are synthesized by LAB through the extracellular synthesis pathway and the Wzx/Wzy-dependent pathway. LAB-EPS has a strong immunomodulatory ability. The EPSs produced by different genera of LAB, especially Lactobacillus, Leuconostoc, and Streptococcus, have different immunomodulatory abilities because of their specific structures. LAB-EPS possesses other health effects, including antitumor, antioxidant, intestinal barrier repair, antimicrobial, antiviral, and cholesterol-lowering activities. The bioactivities of LAB-EPS are tightly related to their structures such us monosaccharide composition, glycosidic bonds, and molecular weight (MW). For the excellent physicochemical property, LAB-EPS acts as product improvers in dairy, bakery food, and meat in terms of stability, emulsification, thickening, and gelling. We systematically summarize the detailed process of EPS from synthesis to application, with emphasis on physiological mechanisms of EPS, and specific structure-function relationship, which provides theoretical support for the potential commercial value in the pharmaceutical, chemical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
34
|
Spaziani M, Carlomagno F, Tenuta M, Sesti F, Angelini F, Bonaventura I, Ferrari D, Tarantino C, Fiore M, Petrella C, Tarani L, Gianfrilli D, Pozza C. Extra-Gonadal and Non-Canonical Effects of FSH in Males. Pharmaceuticals (Basel) 2023; 16:813. [PMID: 37375761 PMCID: PMC10300833 DOI: 10.3390/ph16060813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Recombinant follicle-stimulating hormone (FSH) is commonly used for the treatment of female infertility and is increasingly being used in males as well, as recommended by notable guidelines. FSH is composed of an α subunit, shared with other hormones, and a β subunit, which confers specificity of biological action by interacting with its surface receptor (FSHR), predominantly located in granulosa and Sertoli cells. However, FSHRs also exist in extra-gonadal tissues, indicating potential effects beyond male fertility. Emerging evidence suggests that FSH may have extra-gonadal effects, including on bone metabolism, where it appears to stimulate bone resorption by binding to specific receptors on osteoclasts. Additionally, higher FSH levels have been associated with worse metabolic and cardiovascular outcomes, suggesting a possible impact on the cardiovascular system. FSH has also been implicated in immune response modulation, as FSHRs are expressed on immune cells and may influence inflammatory response. Furthermore, there is growing interest in the role of FSH in prostate cancer progression. This paper aims to provide a comprehensive analysis of the literature on the extra-gonadal effects of FSH in men, with a focus on the often-conflicting results reported in this field. Despite the contradictory findings, the potential for future development in this area is substantial, and further research is needed to elucidate the mechanisms underlying these effects and their clinical implications.
Collapse
Affiliation(s)
- Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Carlomagno
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Angelini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Ilaria Bonaventura
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Davide Ferrari
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Chiara Tarantino
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
35
|
Chen K, Tang L, Nong X. Artesunate targets cellular metabolism to regulate the Th17/Treg cell balance. Inflamm Res 2023; 72:1037-1050. [PMID: 37024544 DOI: 10.1007/s00011-023-01729-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
INTRODUCTION Metabolic reprogramming is one of the important mechanisms of cell differentiation, and different cells have different preferences for energy sources. During the differentiation of naive CD4 + T cells into Th17 and Treg cells, these cells show specific energy metabolism characteristics. Th17 cells depend on enhanced glycolysis, fatty acid synthesis, and glutaminolysis. In contrast, Treg cells are dependent on oxidative phosphorylation, fatty acid oxidation, and amino acid depletion. As a potent antimalarial drug, artesunate has been shown to modulate the Th17/Treg imbalance and regulate cell metabolism. METHODOLOGY Relevant literatures on ART, cellular metabolism, glycolysis, lipid metabolism, amino acid metabolism, CD4 + T cells, Th17 cells, and Treg cells published from January 1, 2010 to now were searched in PubMed database. CONCLUSION In this review, we will highlight recent advances in which artesunate can restore the Th17/Treg imbalance in disease states by altering T-cell metabolism to influence differentiation and lineage selection. Data from the current study show that few studies have focused on the effect of ART on cellular metabolism. ART can affect the metabolic characteristics of T cells (glycolysis, lipid metabolism, and amino acid metabolism) and interfere with their differentiation lineage, thereby regulating the balance of Th17/Treg and alleviating the symptoms of the disease.
Collapse
Affiliation(s)
- Kun Chen
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Liying Tang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
36
|
Alfradique VAP, Alves SVP, Netto DLS, Machado AF, Penitente-Filho JM, da Silva W, Brandão FZ, Lopes MS, Guimarães SEF. The effect of age and FSH stimulation on the ovarian follicular response, nuclear maturation, and gene expression of cumulus-oocyte complexes in prepubertal gilts. Theriogenology 2023; 199:57-68. [PMID: 36696770 DOI: 10.1016/j.theriogenology.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study investigated the effects of age and FSH treatment on the ovarian response, follicular fluid (FF) biochemical composition, nuclear maturation, and molecular profile of cumulus-oocytes complexes (COCs) recovered from prepubertal gilts. Thirty-five prepubertal gilts were separated according to age [140 (n = 20) or 160 (n = 15) days], and within each age, the gilts were allotted to receive either 100 mg of FSH [treated; G140+FSH (n = 10) and G160+FSH (n = 7)] or saline solution [control; G140+control (n = 10) and G160+control (n = 8)]. Thus, four experimental groups were included in this study. In the FSH-treated gilts, the percentage of medium follicles increased (P < 0.0001) in the same proportion with which the percentage of small follicles decreased (P < 0.0001). In addition, the glucose concentration in the FF obtained from medium follicles increased (P < 0.05), while that of triglycerides decreased (P < 0.05) in the FSH-treated gilts. The FSH stimulation also improved (P < 0.05) the number of grade I COCs obtained from medium follicles and the meiotic maturation and BCB + rates. FSH treatment only upregulated (P < 0.05) HMGCR expression in immature COCs from prepubertal gilts. The metaphase II and BCB + rates, FF glucose and plasma IGF-1 levels were greater (P < 0.05) in prepubertal gilts at 160 than at 140 days of age. Age had no effect (P > 0.05) on the transcript abundance of the target genes in immature COCs. Hence, oocytes obtained from 140-day-old prepubertal gilts appeared less meiotically competent than those of 160-day-old prepubertal gilts. Our study suggests a possible strategy of using FSH treatment to improve oocyte quantity, quality, and nuclear maturation in 140 and 160-day-old prepubertal gilts.
Collapse
Affiliation(s)
- Vivian Angélico Pereira Alfradique
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil.
| | - Saullo Vinícius Pereira Alves
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Domingos Lollobrigida Souza Netto
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Andréia Ferreira Machado
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Jurandy Mauro Penitente-Filho
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Walmir da Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Felipe Zandonadi Brandão
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24230-340, Niterói, RJ, Brazil
| | - Marcos Soares Lopes
- Topigs Norsvin Brasil, Rua Visconde do Rio Branco, 1310, CEP 80420-210, Curitiba, PR, Brazil
| | - Simone Eliza Facioni Guimarães
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
37
|
Xu C, He Z, Song Y, Shao S, Yang G, Zhao J. Atypical pituitary hormone-target tissue axis. Front Med 2023; 17:1-17. [PMID: 36849623 DOI: 10.1007/s11684-022-0973-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 03/01/2023]
Abstract
A long-held belief is that pituitary hormones bind to their cognate receptors in classical target glands to actuate their manifold functions. However, a number of studies have shown that multiple types of pituitary hormone receptors are widely expressed in non-classical target organs. Each pituitary gland-derived hormone exhibits a wide range of nonconventional biological effects in these non-classical target organs. Herein, the extra biological functions of pituitary hormones, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, adrenocorticotrophic hormone, and prolactin when they act on non-classical organs were summarized, defined by the novel concept of an "atypical pituitary hormone-target tissue axis." This novel proposal explains the pathomechanisms of abnormal glucose and lipid metabolism, obesity, hypertension, fatty liver, and atherosclerosis while offering a more comprehensive and systematic insights into the coordinated regulation of environmental factors, genetic factors, and neuroendocrine hormones on human biological functions. The continued exploration of the physiology of the "atypical pituitary hormone-target tissue axis" could enable the identification of novel therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Zhao He
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Shanshan Shao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Guang Yang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China. .,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
38
|
Intra-pituitary follicle-stimulating hormone signaling regulates hepatic lipid metabolism in mice. Nat Commun 2023; 14:1098. [PMID: 36841874 PMCID: PMC9968338 DOI: 10.1038/s41467-023-36681-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Inter-organ communication is a major hallmark of health and is often orchestrated by hormones released by the anterior pituitary gland. Pituitary gonadotropes secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to regulate gonadal function and control fertility. Whether FSH and LH also act on organs other than the gonads is debated. Here, we find that gonadotrope depletion in adult female mice triggers profound hypogonadism, obesity, glucose intolerance, fatty liver, and bone loss. The absence of sex steroids precipitates these phenotypes, with the notable exception of fatty liver, which results from ovary-independent actions of FSH. We uncover paracrine FSH action on pituitary corticotropes as a mechanism to restrain the production of corticosterone and prevent hepatic steatosis. Our data demonstrate that functional communication of two distinct hormone-secreting cell populations in the pituitary regulates hepatic lipid metabolism.
Collapse
|
39
|
Wang T, Wang HQ, Yuan B, Zhao GK, Ma YR, Zhao PS, Xie WY, Gao F, Gao W, Ren WZ. Integrative Proteomics and Phosphoproteomics Analysis of the Rat Adenohypophysis after GnRH Treatment. Int J Mol Sci 2023; 24:ijms24043339. [PMID: 36834752 PMCID: PMC9961725 DOI: 10.3390/ijms24043339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The regulation of mammalian reproductive activity is tightly dependent on the HPG axis crosstalk, in which several reproductive hormones play important roles. Among them, the physiological functions of gonadotropins are gradually being uncovered. However, the mechanisms by which GnRH regulates FSH synthesis and secretion still need to be more extensively and deeply explored. With the gradual completion of the human genome project, proteomes have become extremely important in the fields of human disease and biological process research. To explore the changes of protein and protein phosphorylation modifications in the adenohypophysis after GnRH stimulation, proteomics and phosphoproteomics analyses of rat adenohypophysis after GnRH treatment were performed by using TMT markers, HPLC classification, LC/MS, and bioinformatics analysis in this study. A total of 6762 proteins and 15,379 phosphorylation sites contained quantitative information. Twenty-eight upregulated proteins and fifty-three downregulated proteins were obtained in the rat adenohypophysis after GnRH treatment. The 323 upregulated phosphorylation sites and 677 downregulated phosphorylation sites found in the phosphoproteomics implied that a large number of phosphorylation modifications were regulated by GnRH and were involved in FSH synthesis and secretion. These data constitute a protein-protein phosphorylation map in the regulatory mechanism of "GnRH-FSH," which provides a basis for future studies on the complex molecular mechanisms of FSH synthesis and secretion. The results will be helpful for understanding the role of GnRH in the development and reproduction regulated by the pituitary proteome in mammals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Gao
- Correspondence: (W.G.); (W.-Z.R.)
| | | |
Collapse
|
40
|
Zhou QQ, Xiao HT, Yang F, Wang YD, Li P, Zheng ZG. Advancing targeted protein degradation for metabolic diseases therapy. Pharmacol Res 2023; 188:106627. [PMID: 36566001 DOI: 10.1016/j.phrs.2022.106627] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The development and application of traditional drugs represented by small molecule chemical drugs and biological agents, especially inhibitors, have become the mainstream drug development. In recent years, targeted protein degradation (TPD) technology has become one of the most promising methods to remove specific disease-related proteins using cell self-destruction mechanisms. Many different TPD strategies are emerging based on the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), including but not limited to proteolysis-targeting chimeras (PROTAC), molecular glues (MG), lysosome targeting chimeras (LYTAC), chaperone-mediated autophagy (CMA)-targeting chimeras, autophagy-targeting chimera (AUTAC), autophagosome-tethering compound (ATTEC), and autophagy-targeting chimera (AUTOTAC). The advent of targeted degradation technology can change most protein targets in human cells from undruggable to druggable, greatly expanding the therapeutic prospect of refractory diseases such as metabolic syndrome. Here, we summarize the latest progress of major TPD technologies, especially in metabolic syndrome and look forward to providing new insights for drug discovery.
Collapse
Affiliation(s)
- Qian-Qian Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Fan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yong-Dan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Han JL, Song YX, Yao WJ, Zhou J, Du Y, Xu T. Follicle-Stimulating Hormone Provokes Macrophages to Secrete IL-1β Contributing to Atherosclerosis Progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:25-32. [PMID: 36368721 DOI: 10.4049/jimmunol.2200475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 02/17/2024]
Abstract
Abnormally high follicle-stimulating hormone (FSH) has been reported to associate with cardiovascular diseases in prostate cancer patients with specific androgen deprivation therapy and in menopausal women. All of the cardiovascular diseases were involved in atherosclerosis. However, the pathogenic mechanism of FSH-associated atherosclerosis remains uncertain. Apolipoprotein E-deficient mice were chosen to develop atherosclerosis, of which the plaques were analyzed with administration of short- and long-term FSH imitating androgen deprivation therapy-induced and menopausal FSH elevation. The study showed that short- and long-term exposure of FSH significantly accelerated atherosclerosis progression in apolipoprotein E-deficient mice, manifested as strikingly increased plaques in the aorta and its roots, increased macrophage content, reduced fibrin, and an enlarged necrotic core, suggesting a decrease in plaque stability. Furthermore, expression profiles from the Gene Expression Omnibus GSE21545 dataset revealed that macrophage inflammation was tightly associated with FSH-induced atherosclerotic progression. The human monocyte cell line THP-1 was induced by PMA and worked as a macrophage model to detect inflammatory factors and cellular functions. FSH remarkably promoted the expression of IL-1β in macrophages and strikingly increased the chemotactic migratory capacity of macrophages toward MCP-1, but the promigratory capacity of FSH was attenuated in foam cells. Overall, we revealed that FSH significantly promoted the inflammatory response and migration of macrophages, thereby provoking atherosclerosis development.
Collapse
Affiliation(s)
- Jing-Li Han
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yu-Xuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Wei-Juan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China; and
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China; and
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China;
| |
Collapse
|
42
|
Zhou E, Xiang D, Yu B, Yao H, Sun C, Wang Y. Ovarian tissue transplantation ameliorates osteoporosis and dyslipidaemia in ovariectomised mice. J Ovarian Res 2022; 15:139. [PMID: 36578058 PMCID: PMC9798584 DOI: 10.1186/s13048-022-01083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ovarian insufficiency frequently renders postmenopausal women susceptible to osteoporosis and dyslipidaemia. Postmenopausal transplant women are at a higher risk developing osteoporosis and dyslipidaemia due to the concomitant application of glucocorticoids and immunosuppressants after solid organ transplantation. Thus, this study aimed to explore the feasibility of ovarian tissue transplantation (OTT) as an alternative to Hormone replacement therapy (HRT) for postmenopausal women with solid organ transplant needs. RESULTS Sixty mice were randomly divided into four groups: sham operation, ovariectomised (OVX group), ovariectomy plus oestrogen (E2 group), and ovariectomy plus OTT (OTT group). The inhibin levels in the OTT group were increased and the follicle stimulating hormone and luteinizing hormone were suppressed to normal levels, which could not be achieved in the E2 group. The femoral bone mineral density in the OTT group was significantly increased than the E2 group (P < 0.05), and the probability of fracture was reduced by 1.4-2.6 times. Additionally, the high-density lipoprotein cholesterol levels were higher in the OTT group than in the E2 group and the triglyceride levels were lower in the OTT group than in the E2 group (P < 0.05). CONCLUSION OTT not only achieves certain endocrine effects by participating in the regulation of the hypothalamic-pituitary-ovarian feedback control loop, but also ameliorates osteoporosis and dyslipidaemia, which may be an alternative to traditional HRT for postmenopausal women with solid organ transplant needs.
Collapse
Affiliation(s)
- Encheng Zhou
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Du Xiang
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Bin Yu
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Hanlin Yao
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Chao Sun
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| | - Yanfeng Wang
- grid.413247.70000 0004 1808 0969Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071 Wuhan, China
| |
Collapse
|
43
|
Sheng S, Liu W, Xue Y, Pan Z, Zhao L, Wang F, Qi X. Follicle-Stimulating Hormone Promotes the Development of Endometrial Cancer In Vitro and In Vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215344. [PMID: 36430063 PMCID: PMC9696221 DOI: 10.3390/ijerph192215344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 05/26/2023]
Abstract
Endocrine disruptors as risk factors for endometrial cancer (EC) are positively correlated with serum follicle-stimulating hormone (FSH) levels. Additionally, increased FSH is associated with EC. However, its exact mechanism is not yet clear. Therefore, this study investigated how FSH affects the occurrence of EC. Using immunohistochemistry (IHC), immunofluorescence (IF), and Western blot (WB), we found that FSH receptor (FSHR) was expressed in both EC tissues and cell lines. To explore the effect of FSH on EC in vitro, Ishikawa (ISK) cells were cultured in different doses of FSH, and it was found that FSH could promote the proliferation and migration of ISK cells. Furthermore, the detection of key molecules of migration and apoptosis by WB showed that FSH promoted cell migration and inhibited apoptosis. Additionally, FSH decreased AMPK activation. To clarify the effect of FSH on EC in vivo, we subcutaneously planted ISK cells into ovariectomized mice and then gave two of the groups oestradiol (E2). In comparison with the OE (ovariectomy plus E2) and sham groups, the growth rates and weights of the tumors in the OE plus FSH group were significantly higher. The findings above suggest that FSH promotes the proliferation and metastasis of EC, providing a new strategy for the treatment of EC.
Collapse
Affiliation(s)
- Shuman Sheng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan 250021, China
| | - Yafei Xue
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Zhengwu Pan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Lanlan Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Fei Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan 250021, China
| | - Xiaoyi Qi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, 324 Jingwu Road, Jinan 250021, China
| |
Collapse
|
44
|
Compound of Cynanchum wilfordii and Humulus lupulus L. Ameliorates Menopausal Symptoms in Ovariectomized Mice. Reprod Sci 2022; 30:1625-1636. [PMID: 36333646 DOI: 10.1007/s43032-022-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Cynanchum wilfordii and Humulus lupulus L. have been used for their various pharmacological properties in South Korea as a traditional medicine or health functional food, respectively, and their intake may relieve menopausal symptoms. The purpose of current study was to determine the effect of compound of Cynanchum wilfordii and Humulus lupulus L. (CWHL) in menopausal symptoms of ovariectomized (OVX) mice. OVX mice received CWHL or caudatin (an active ingredient of CWHL) once daily for 7 weeks. Values for hypothalamic serotonin (5-HT), dopamine, norepinephrine, estrogen receptor (ER)-β, 5-HT1A, and 5-HT2A were significantly enhanced, while value for hypothalamic monoamine oxidase A was reduced in CWHL and caudatin groups compared with the OVX group. CWHL and caudatin significantly reduced tail skin temperature and rectal temperature of OVX mice through partial recovering of the levels of serum estrogen, nitric oxide, follicle-stimulating hormone, luteinizing hormone, and receptor-activator of the NF-κB ligand (RANKL). Moreover, CWHL and caudatin improved bone mineral density via decreasing levels of serum RANKL, tartrate-resistant acid phosphatase, and collagen type 1 cross-linked N-telopeptide and improving levels of serum alkaline phosphatase, osteoprotegerin, and osteocalcin compared with the OVX group without adverse effects such as dyslipidemia. CWHL increased uterine ER-β levels but did not change uterus and vaginal weights. Taken together, the results indicate that CWHL may relieve menopausal symptoms by controlling depression-, hot flashes-, and osteoporosis-associated biomarkers. Therefore, we propose that CWHL might be a safe and potential candidate for management of menopause as a health functional food.
Collapse
|
45
|
Intestinal Flora Affect Alzheimer's Disease by Regulating Endogenous Hormones. Neurochem Res 2022; 47:3565-3582. [DOI: 10.1007/s11064-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
46
|
Liu C, Zhang W, Xu G, Zhang D, Zhang C, Qiao S, Wang Z, Wang H. Deep multilayer brain omics identifies the potential involvement of menopause molecular networks in Gliomas' disease progression. FASEB J 2022; 36:e22570. [PMID: 36165217 DOI: 10.1096/fj.202200427rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
The risk of high-grade gliomas is lower in young females, however, its incidence enhances after menopause, suggesting potential protective roles of female sex hormones. Hormone oscillations after menopause have received attention as a possible risk factor. Little is known about risk factors for adult gliomas. We examined the association of the aging brain after menopause, determining the risk of gliomas with proteomics and the MALDI-MSI experiment. Menopause caused low neurotransmitter levels such as GABA and ACH, high inflammatory factor levels like il-1β, and increased lipid metabolism-related levels like triglycerides in the brain. Upregulated and downregulated proteins after menopause were correlated with differentially expressed glioma genes, such as ACTA2, CAMK2D, FNBPIL, ARL1, HEBP1, CAST, CLIC1, LPCAT4, MAST3, and DOCK9. Furthermore, differential gene expression analysis of monocytes showed that the downregulated gene LPCAT4 could be used as a marker to prevent menopausal gliomas in women. Our findings regarding the association of menopause with the risk of gliomas are consistent with several extensive cohort studies. In view of the available evidence, postmenopausal status is likely to represent a significant risk factor for gliomas.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University, Jinan, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Guozheng Xu
- Department of Physiology and Neurobiology, Shandong First Medical University, Jinan, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Cheng Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Sen Qiao
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, China.,School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
47
|
Tian W, Qi H, Wang Z, Qiao S, Wang P, Dong J, Wang H. Hormone supply to the pituitary gland: A comprehensive investigation of female‑related tumors (Review). Int J Mol Med 2022; 50:122. [PMID: 35946461 PMCID: PMC9387558 DOI: 10.3892/ijmm.2022.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The hypothalamus acts on the pituitary gland after signal integration, thus regulating various physiological functions of the body. The pituitary gland includes the adenohypophysis and neurohypophysis, which differ in structure and function. The hypothalamus-hypophysis axis controls the secretion of adenohypophyseal hormones through the pituitary portal vein system. Thyroid-stimulating hormone, adrenocorticotropic hormone, gonadotropin, growth hormone (GH), and prolactin (PRL) are secreted by the adenohypophysis and regulate the functions of the body in physiological and pathological conditions. The aim of this review was to summarize the functions of female-associated hormones (GH, PRL, luteinizing hormone, and follicle-stimulating hormone) in tumors. Their pathophysiology was described and the mechanisms underlying female hormone-related diseases were investigated.
Collapse
Affiliation(s)
- Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Zhimei Wang
- Jiangsu Province Hi‑Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, D‑66421 Homburg‑Saar, Germany
| | - Ping Wang
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
48
|
Xu Z, Gu S, Wu X, Zhou Y, Li H, Tang X. Association of follicle stimulating hormone and serum lipid profiles in postmenopausal women. Medicine (Baltimore) 2022; 101:e30920. [PMID: 36181065 PMCID: PMC9524973 DOI: 10.1097/md.0000000000030920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to observe the association between follicle stimulating hormone (FSH) levels and serum lipid profiles in postmenopausal women. A total of 411 healthy postmenopausal women with a mean age of 55 years (range 45-65 years) were enrolled in this study. Data on age, time of last menstrual period, past medical history, use of medications, and smoking status were collected, and body weight, height, and blood pressure were measured. Blood samples were collected to measure the serum concentrations of FSH, luteinizing hormone (LH), estradiol (E2), glucose, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) using routine methods. FSH levels were negatively associated with LDL-C, even after adjustment for age, LH, E2, BMI, systolic blood pressure (SBP), and diastolic blood pressure (DBP) (OR = 0.185, 95% CI = 0.051-0.669). Although FSH may also be negatively associated with dyslipidemia (P = .06 for trend) and hypercholesterolemia (P = .079 for trend), but no statistical significance was found after adjusting for confounding factors, particularly BMI. All relevant data are within the paper and its Supporting Information files. The results indicated that lower FSH levels might increase the odds of dyslipidemia, especially the risk of LDL-C elevation, which is an important factor that increases the risk of CVD in postmenopausal women.
Collapse
Affiliation(s)
- Zhengfen Xu
- Department of Obstetrics and Gynecology, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, China
| | - Shuiqin Gu
- Department of Nursing, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiaojie Wu
- Department of Obstetrics and Gynecology, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, China
| | - Huan Li
- Department of Obstetrics and Gynecology, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xuedong Tang
- Department of Obstetrics and Gynecology, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, China
- *Correspondence: Xuedong Tang, Department of Obstetrics and Gynecology, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, China (e-mail: )
| |
Collapse
|
49
|
Chen J, Li S, Huang Z, Cao C, Wang A, He Q. METTL3 suppresses anlotinib sensitivity by regulating m 6A modification of FGFR3 in oral squamous cell carcinoma. Cancer Cell Int 2022; 22:295. [PMID: 36167542 PMCID: PMC9516809 DOI: 10.1186/s12935-022-02715-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022] Open
Abstract
Background N6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA, but there were few studies on its role in cancer drug sensitivity and resistance. Anlotinib has been proved to have effective antitumor effects in oral squamous cell carcinoma (OSCC) in our previous study. Here, we sought to investigate the treatment target of anlotinib and the function and mechanisms of m6A modification in regulating anlotinib effect in OSCC. Methods Anlotinib treatment in a dose-dependent manner, western blotting, qRT-PCR and cell lost-of-function assays were used to study the treatment target of anlotinib in OSCC. RNA m6A dot blot assays, the m6A MeRIP-seq and MeRIP-qPCR, RNA and protein stability assays were used to explore the m6A modification of the treatment target of anlotinib. Cell lost-of-function assays after METTL3 depletion were conducted to investigate the effect of m6A modification level on the therapeutic effect of anlotinib in OSCC. Patient-derived tumor xenograft (PDX) models and immunohistochemistry staining were performed to study the relationship of METTL3 and antitumor sensitivity of anlotinib in vivo. Results Anlotinib targeted FGFR3 in the treatment of OSCC and inhibited tumor cell proliferation and promoted apoptosis by inactivating the FGFR3/AKT/mTOR signaling pathway. METTL3 was identified to target and modify FGFR3 m6A methylation and then decrease the stability of mRNA. METTL3 expression level was related to the anlotinib sensitivity in OSCC cells in vitro and METTL3 knockdown promoted anlotinib sensitivity of OSCC cells by inhibiting the FGFR3 expression. PDX models samples furthermore showed that METTL3 and FGFR3 levels were tightly correlated with the anlotinib efficacy in OSCC. Conclusions In summary, our work revealed that FGFR3 was served as the treatment target of anlotinib and METTL3-mediated FGFR3 m6A modification played a critical function in the anlotinib sensitivity in OSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02715-7.
Collapse
Affiliation(s)
- Jie Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.,Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Shuai Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Zhexun Huang
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Congyuan Cao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
50
|
Liu X, Huo Y, Zhao J, Wang G, Liu H, Yin F, Pang C, Wang Y, Bai L. Endothelial cell protein C receptor regulates neutrophil extracellular trap-mediated rheumatoid arthritis disease progression. Int Immunopharmacol 2022; 112:109249. [PMID: 36152537 DOI: 10.1016/j.intimp.2022.109249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022]
Abstract
Endothelial cell protein C receptor (EPCR) is a 46 kDa transmembrane protein receptor, expressed in most immune cells (T cells, monocytes, dendritic cells, polymorphonuclear neutrophils [PMN]). EPCR reportedly plays a vital role in rheumatoid arthritis (RA). Our results confirmed that EPCR expression exists in the PMN of RA patients, and animal experiments demonstrated that down-regulation of EPCR expression affects disease progression in collagen-induced arthritis (CIA) mice. PMN is the immune cell type that first enters the site of inflammation in the early stages of inflammation. In the early stage of RA, PMN cells migrate into the joint cavity and function in the process of RA synovial inflammation, aggravating the bone destruction found in RA and mediating the progression of RA disease progression. We verified the differences in EPCR expression in PMN cells between RA and osteoarthritis (OA) patients by Western blot and then confirmed this difference in animals. We found that CIA mice treated with PMN-neutralizing antibody intervention had reduced disease performance. On this basis, EPCR was knocked down at the same time. The therapeutic effect of PMN-neutralizing antibody treatment was subsequently diminished. To explore the relationship between EPCR and PMN in RA, we used immunofluorescence to detect the expression of PMN-neutrophil extracellular traps (NETs) in RA patients and used EPCR neutralizing antibodies as an intervention. The results showed that the formation of PMN-NETs in RA patients increased. Finally, through in vitro intervention experiments involving EPCR and PMN transcriptome analysis of the peripheral blood of RA patients, we concluded that EPCR may regulate the formation of PMN-NETs in RA patients through the activated protein C (APC)-EPCR signaling pathway, thereby affecting the progression of disease in RA patients.
Collapse
Affiliation(s)
- Xuanqi Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Yinping Huo
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Jingyang Zhao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Guan Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Huiyang Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Fangrui Yin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Chunyan Pang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Li Bai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China.
| |
Collapse
|