1
|
Guo Y, Zhang X, Zhou S, Liang Q, Zeng H, Xu Y, Awati A, Liang K, Zhu D, Liu M, Jiang L, Kong B. Super-Assembled Lamellar Conductive Heterochannels with Optical-Electrical Coupling Sensitivity for Smart Ion Transport. Angew Chem Int Ed Engl 2025; 64:e202500116. [PMID: 39985322 DOI: 10.1002/anie.202500116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Artificial nanofluidic devices inspired bylight-driven ion transport in biological systems, leveraging the photoelectric effect, have attracted extensive attention for their potential in signal transduction and smart ion transport applications. However, effective separation of photogenerated carriers in traditional p-n junction interface can be hindered by energy band structure of different semiconductor materials. Here, we present a novel approach using conductive polypyrrole (PPy) to modify graphene oxide (GO), creating polypyrrole-graphene oxide (PyGO) functional lamellar conductive nanochannels with tailored channel-sized gradients and inherent optical-electrical coupling sensitivity via a facile super-assembly strategy. This design facilitates the PyGO own conductive lamellar channels and efficient separation of photogenerated carriers, resulting in significantly enhanced selective ion transport behavior. Coupling the conductivity and photosensitivity of PPy contributes to a peak power density of 14.1 W m-2 under a salinity differential of 0.5/0.01 M NaCl, which is 35.6 % higher than that under dark conditions. Additionally, combing the salinity gradients with optical-electrical coupling sensitivity of the nanofludic devices, we demonstrate the application of PyGO in a real-time detection device for monitoring ion concentrations in nutrient solutions, paving the way for smart irrigation systems in agriculture. This work presents a novel and effective strategy for light-driven ion transport with potential applications in energy conversion and beyond.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shan Zhou
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qirui Liang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, P. R. China
| | - Hui Zeng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yeqing Xu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Abuduheiremu Awati
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Dazhang Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Wang Q, Yan Z, Hu Y, Zhang Q, Kong XY, Qian Y, Ling H, Zhang ZH, Li T, Li X, Kang L, Yang L, Jiang L, Zhang Z, Wen L. Light-Boosted Osmotic Energy Conversion and Ion Pumping through a Graphdiyne Oxide-Based Membrane. J Am Chem Soc 2025; 147:14595-14604. [PMID: 40108124 DOI: 10.1021/jacs.5c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Two-dimensional (2D) membranes with engineered light-responsive ion transport dynamics have been explored to construct efficient nanofluidic platforms that show great potential in osmotic and solar-osmotic energy conversion. However, the power density is still limited by poor responsivity and the inevitable trade-off effect between ion selectivity and flux. Here, we observed light-pumping ion transport behavior in graphdiyne oxide (GDYO) with a unique carbon hybrid skeleton that provides sensitive photoelectric responsivity and high-speed cation pathways. Molecular dynamics simulations verify that the coexistent interaction effects between cations and the negatively charged sites in GDYO (i.e., oxygen-containing groups and electron-rich acetylenic bonds) could significantly promote cation transmembrane transport via an absorption-acceleration mechanism. Furthermore, the GDYO-based system, possessing a coupled photon-electron-ion transport behavior due to its inherent semiconductor properties, could subtly realize unidirectional ion movement, consuming luminous energy either from low concentration to high concentration or vice versa, flexibly promoting the osmotic power density by ∼195% to 11.91 W m-2.
Collapse
Affiliation(s)
- Qingchen Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qixiang Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhe-Hua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tingyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Kang
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhen Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Kiss E, Mester D, Bojtár M, Miskolczy Z, Biczók L, Hessz D, Kállay M, Kubinyi M. Supramolecular Control of the Photoisomerization of a Coumarin-Based Photoswitch. ACS OMEGA 2024; 9:51652-51664. [PMID: 39758680 PMCID: PMC11696389 DOI: 10.1021/acsomega.4c08106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
The complex formation of the cationic stilbene-type photoswitch CP with the anionic macrocycles carboxylato-pillar[5]arene (WP5) and carboxylato-pillar[6]arene (WP6) has been investigated in aqueous solution by optical spectroscopic, NMR and isothermal calorimetric experiments and theoretical calculations. Subsequently, the photoisomerization reactions of the supramolecular complexes formed have been studied. CP consists of a 7-diethylamino-coumarin fluorophore and an N-methylpyridinium unit, which are connected via an ethene bridge. The trans isomer of CP is fluorescent, and its cis isomer is dark. The binding constants of the WP6 complexes of the two photoisomers of CP are larger by 2 orders of magnitude than those of the respective complexes with WP5, and trans-CP forms more stable complexes with the individual pillararenes than the cis isomer. As shown by NMR spectroscopic measurements and theoretical calculations, the two isomers of CP form external complexes with WP5 and inclusion complexes with WP6. On complexation with WP6, the quantum yields of both the trans-to-cis and cis-to-trans photoisomerization reactions of CP increase significantly, and the fluorescence quantum yield of trans-CP is also enhanced. These changes are due to the suppression of the TICT deactivation process, which is characteristic of 7-dialkylamino-coumarin derivatives.
Collapse
Affiliation(s)
- Etelka Kiss
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Dávid Mester
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Budapest
University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Márton Bojtár
- Chemical
Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Zsombor Miskolczy
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, HUN-REN Research Network, H-1519 Budapest, P.O. Box 286, Hungary
| | - László Biczók
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, HUN-REN Research Network, H-1519 Budapest, P.O. Box 286, Hungary
| | - Dóra Hessz
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Budapest
University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Miklós Kubinyi
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| |
Collapse
|
4
|
Wang Y, Deng D, Lin Q, Li S, Chen Z, Periyasami G, Li H, Zhang S, Liu Y, Sun Y. Gadolinium-Sensitive Artificial Nanochannel Membrane for Information Encryption. ACS NANO 2024; 18:32226-32234. [PMID: 39501759 DOI: 10.1021/acsnano.4c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Inspired from ion channels in the myelinated axon of Xenopus laevis found to be affected by gadolinium on axonal currents, we present a solid nanochannel membrane sensitive to gadolinium (Gd3+), which can be achieved via the use of the macrocyclic triacetic acid derivative in the host-guest chemistry approach. The macrocyclic nanochannel has good responsiveness toward Gd3+, even at the nanomolar concentration level, evidenced by discernible changes in rectification, ionic conductance, and XPS analyses. Notably, the Gd3+-sensitive nanochannel membrane can be switched by the addition of a diethylenetriaminepentaacetic acid (DTPA) derivative. Further studies have indicated that the gated behavior of Gd3+ in the nanochannel can be attributed to the strong binding strength between DO3A and Gd3+, which induces a surface charge reversal within the nanochannel. The mechanism has been confirmed through several experimental techniques, including isothermal titration calorimetry (ITC) experiments, fluorescence titration experiments, and finite element analysis. Based on its Gd3+ responsiveness of the constructed ion channel, we successfully developed an advanced multilevel information encryption application of the artificial solid nanochannel membrane. Furthermore, it is anticipated that a more effective encryption system will be built by utilizing the bionic ion channel system's ease of use and straightforward functionalization.
Collapse
Affiliation(s)
- Yumei Wang
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Diandian Deng
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Qian Lin
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Shulan Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Zhao Chen
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- North China University of Science and Technology, Tangshan 063210, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
5
|
Jiang Y, Wang R, Ye C, Wang X, Wang D, Du Q, Liang H, Zhang S, Gao P. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35666-35674. [PMID: 38924711 DOI: 10.1021/acsami.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Responsive regulation of ion transport through nanochannels is crucial in the design of smart nanofluidic devices for sequencing, sensing, and water-energy nexus. Functionalization of the inner wall of the nanochannel enhances interaction with ions and fluid but restricts versatile chemical approaches and accurate characterizations of fluidic interfaces. Herein, we reveal a responsive regulating mechanism of ion transport through nanochannels by polydopamine (PDA)-induced functionalization on the macroscopic outer surface of nanochannels. Responsive molecules were codeposited with PDA on the outer surface of nanochannels and formed a valve of nanometer thickness to manually manipulate ion transport by changing its gap spacing, surface charge, and wettability under external stimulus. The response ratio can be up to 100-fold by maximizing the proportion of responsive molecules on the outer surface. Laminating the codepositions of different responsive molecules with PDA on the channel's outer surface produces multiple responses. A nearly universal adhesion of PDA with responsive molecules on the open outer surface induces nanochannels responsive to different external stimuli with variable response ratios and arbitrary combinations. The results challenge the primary role of functionalization on the nanoconfined interface of nanofluidics and open opportunities for developing new-style nanofluidic devices through the functionalization of macroscopic interface.
Collapse
Affiliation(s)
- You Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Rongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chunxi Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Quan J, Yan H, Periyasami G, Li H. A Visible-Light Regulated ATP Transport in Retinal-Modified Pillar[6]arene Layer-by-Layer Self-Assembled Sub-Nanochannel. Chemistry 2024; 30:e202401045. [PMID: 38693094 DOI: 10.1002/chem.202401045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Natural light-responsive rhodopsins play a critical role in visual conversion, signal transduction, energy transmission, etc., which has aroused extensive interest in the past decade. Inspired by these gorgeous works of living beings, scientists have constructed various biomimetic light-responsive nanochannels to mimic the behaviors of rhodopsins. However, it is still challenging to build stimuli-responsive sub-nanochannels only regulated by visible light as the rhodopsins are always at the sub-nanometer level and regulated by visible light. Pillar[6]arenes have an open cavity of 6.7 Å, which can selectively recognize small organic molecules. They can be connected to ions of ammonium or carboxylate groups on the rims. Therefore, we designed and synthesized the amino and carboxyl-derived side chains of pillar[6]arenes with opposite charges. The sub-nanochannels were constructed through the electrostatic interaction of layer-by-layer self-assembled amino and carboxyl-derived pillar[6]arenes. Then, the natural chromophore of the retinal with visible light-responsive performance was modified on the upper edge of the sub-nanochannel to realize the visible light switched on and off. Finally, we successfully constructed a visible light-responsive sub-nanochannel, providing a novel method for regulating the selective transport of energy-donating molecules of ATP.
Collapse
Affiliation(s)
- Jiaxin Quan
- Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Hewei Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
7
|
Geng Y, Zhang L, Li M, He Y, Lu B, He J, Li X, Zhou H, Fan X, Xiao T, Zhai J. Nano-Confined Effect and Heterojunction Promoted Exciton Separation for Light-Boosted Osmotic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309128. [PMID: 38308414 DOI: 10.1002/smll.202309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The osmotic energy conversion properties of biomimetic light-stimulated nanochannels have aroused great interest. However, the power output performance is limited by the low light-induced current and energy conversion efficiency. Here, nanochannel arrays with simultaneous modification of ZnO and di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,20-bipyridyl-4,40-dicarboxylato) ruthenium (II) (N719) onto anodic aluminum oxide (AAO) to combine the nano-confined effect and heterojunction is designed, which demonstrate rectified ion transport behavior due to the asymmetric composition, structure and charge. High cation selectivity and ion flux contribute to the high power density of ≈7.33 W m-2 by mixing artificial seawater and river water. Under light irradiation, heterojunction promoted the production and separation of exciton, enhanced cation selectivity, and improved the utilization efficiency of osmotic energy, providing a remarkable power density of ≈18.49 W m-2 with an increase of 252% and total energy conversion efficiency of 30.43%. The work opens new insights into the biomimetic nanochannels for high-performance energy conversion.
Collapse
Affiliation(s)
- Yutong Geng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Liangqian Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mengjie Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Youfeng He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xuejiang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hangjian Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
8
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
9
|
Yan H, Liu X, Ding C, Liang G. Enzyme-Instructed Host-Guest Assembly/Disassembly for Biomedical Applications. Chembiochem 2024; 25:e202300648. [PMID: 37984845 DOI: 10.1002/cbic.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Compared with the normal assembly/disassembly approaches, enzyme-instructed host-guest assembly/disassembly strategies due to their superior biocompatibility and specificity for specific substrates, can more effectively and precisely release molecules at lesions for reflecting in vivo biological events. Specifically, due to the over-expression of enzymes in specific tissues, the assembly/disassembly processes can directly occur on the pathological sites (or regions of interest), thus these enzyme-instructed processes are widely and effectively used for disease treatment or precise bioimaging. Based on it, we introduce the concept and major strategies of enzyme-instructed host-guest assembly/disassembly, illustrate their importance in the diagnosis and treatment of diseases, and review their advances in biomedical applications. Further, the challenges of these strategies in the clinic and future tendencies are also prospected.
Collapse
Affiliation(s)
- Hongzhe Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| |
Collapse
|
10
|
Zhou S, Zhang X, Xie L, He Y, Yan M, Liu T, Zeng H, Jiang L, Kong B. Dual-Functional Super-Assembled Mesoporous Carbon-Titania/AAO Hetero-Channels for Bidirectionally Photo-Regulated Ion Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301038. [PMID: 37069771 DOI: 10.1002/smll.202301038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Photo-regulated nanofluidic devices have attracted great attention in recent years due to their adjustable ion transport in real time. However, most of the photo-responsive nanofluidic devices can only adjust the ionic current unidirectionally, and cannot simultaneously increase or decrease the current signal intelligently by one device. Herein, a mesoporous carbon-titania/ anodized aluminum hetero-channels (MCT/AAO) is constructed by super-assembly strategy, which exhibits dual-function of cation selectivity and photo response. The polymer and TiO2 nanocrystals jointly build the MCT framework. Polymer framework with abundant negatively charged sites endows MCT/AAO with excellent cation selectivity, and TiO2 nanocrystals are responsible for the photo-regulated ion transport. High photo current densities of 1.8 mA m-2 (increase) and 1.2 mA m-2 (decrease) are realized by MCT/AAO benefiting from the ordered hetero-channels. Significantly, MCT/AAO can also achieve the bidirectionally adjustable osmotic energy by alternating the configurations of concentration gradient. Theoretical and experimental results reveal that the superior photo-generated potential is responsible for the bidirectionally adjustable ion transport. Consequently, MCT/AAO performs the function of harvesting ionic energy from the equilibrium electrolyte solution, which greatly expands its practical application field. This work provides a new strategy in constructing dual-functional hetero-channels toward bidirectionally photo-regulated ionic transport and energy harvesting.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xin Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yanjun He
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Tianyi Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Hui Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, P. R. China
- Shandong Research Institute, Fudan University, Jinan, Shandong, 250103, P. R. China
| |
Collapse
|
11
|
Li G, Wang Y, Luan H, Sun Y, Qu Y, Lu Z, Li H. Highly Selective Transport and Enrichment of Lithium Ions through Bionic Ion Pair Receptor Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384944 DOI: 10.1021/acsami.3c05776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Inspired by ion pair cotransport channels in biological systems, a bionic nanochannel modified with lithium ion pair receptors is constructed for selective transport and enrichment of lithium ions (Li+). NH2-pillar[5]arene (NP5) is chosen as ion pair receptors, and the theoretical simulation and NMR titration experiments illustrate that NP5 has good affinity for the ion pair of LiCl through a strong host-guest interaction at the molecular level. Due to the confinement effect and ion pair cooperation recognition, an NP5-based receptor was introduced into an artificial PET nanochannel. An I-V test indicated that the NP5 channel realized the highly selective recognition for Li+. Meanwhile, transmembrane transport and COMSOL simulation experiments proved that the NP5 channel achieved the transport and enrichment of Li+ through the cooperative interaction between NP5 and LiCl. Moreover, the receptor solution of transmembrane transport LiCl in the NP5 channel was used to cultivate wheat seedlings, which obviously promoted their growth. This nanochannel based on the ion pair recognition will be much useful for practical applications like metal ion extraction, enrichment, and recycle.
Collapse
Affiliation(s)
- Guang Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yue Wang
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Hanghang Luan
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Yanjuan Qu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Zhiyan Lu
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
12
|
Wang X, Wang H, Zhang M. A multi-stimuli-responsive nanochannel inspired by biological disulfide bond. Talanta 2023; 265:124785. [PMID: 37348351 DOI: 10.1016/j.talanta.2023.124785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/24/2023]
Abstract
Disulfide bonds exist widely in channel protein and play an essential role in matter exchange and signal transduction (e.g., rhodopsin, canonical transient receptor potential 5 (TRPC5)). The research on disulfide bond in nanochannel is significant for the cognition of their biological functions. However, the fragility of biological channel limits the in-situ study and practical application. Herein, an innovative biologically-inspired artificial nanochannel based on disulfide bond (NCDS) with excellent durability, adjustable surface property is proposed. The constructed NCDS has a multi-response to UV-light, thiol (e.g., cysteine (Cys)) or pH stimulation, and can obtain reversibility after regulation by hydrogen peroxide (H2O2) or H+. The biomimetic NCDS shows great potential in biosensor and intelligent response design. This study also shines new light to channel protein based on disulfide bond that despite the nanochannel has specificity, it will be modulated by the change of nature environment, such as UV-light and chemical microenvironment (e.g., redox state and pH), which might be the reason of some disease.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Huiming Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
13
|
Zhang D, Sun Y, Wang Z, Liu F, Zhang X. Switchable biomimetic nanochannels for on-demand SO 2 detection by light-controlled photochromism. Nat Commun 2023; 14:1901. [PMID: 37019894 PMCID: PMC10076267 DOI: 10.1038/s41467-023-37654-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
In contrast to the conventional passive reaction to analytes, here, we create a proof-of-concept nanochannel system capable of on-demand recognition of the target to achieve an unbiased response. Inspired by light-activatable biological channelrhodopsin-2, photochromic spiropyran/anodic aluminium oxide nanochannel sensors are constructed to realize a light-controlled inert/active-switchable response to SO2 by ionic transport behaviour. We find that light can finely regulate the reactivity of the nanochannels for the on-demand detection of SO2. Pristine spiropyran/anodic aluminium oxide nanochannels are not reactive to SO2. After ultraviolet irradiation of the nanochannels, spiropyran isomerizes to merocyanine with a carbon‒carbon double bond nucleophilic site, which can react with SO2 to generate a new hydrophilic adduct. Benefiting from increasing asymmetric wettability, the proposed device exhibits a robust photoactivated detection performance in SO2 detection in the range from 10 nM to 1 mM achieved by monitoring the rectified current.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yongjie Sun
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Zhichao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fang Liu
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
14
|
Chen Z, He Q, Deng X, Peng J, Du K, Sun Y. Engineering solid nanochannels with macrocyclic host-guest chemistry for stimuli responses and molecular separations. Chem Commun (Camb) 2023; 59:1907-1916. [PMID: 36688813 DOI: 10.1039/d2cc06562b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biological channels in the cell membrane play a critical role in the regulation of signal transduction and transmembrane transport. Researchers have been committed to building biomimetic nanochannels to imitate the above significant biological processes. Unlike the fragile feature of biological channels, numerous solid nanochannels have aroused extensive interests for their controllable chemical properties on the surface and superior mechanical properties. Surface functionalization has been confirmed to be vital to determine the properties of solid nanochannels. Macrocyclic hosts (e.g., the crown ethers, cyclodextrins, calix[n]arenes, cucurbit[n]urils, pillar[n]arenes, and trianglamine) can be tailored to the interior surface of the nanochannels with the performance of stimuli response and separation. Macrocycles have good reversibility and high selectivity toward specific ions or molecules, promoting functionalies of solid nanochannels. Hence, the combination of macrocyclic hosts and solid nanochannels is conducive to taking both advantages and achieving applications in functional nanochannels (e.g., membranes separations, biosensors, and smart devices). In this review, the most recent advances in nanochannel membranes decorated by macrocyclic host-guest chemistry are briefed. A variety of macrocyclic hosts-based responsive nanochannels are organized (e.g., the physical stimuli and specific molecules or ions stimuli) and nanochannels are separated (e.g., water purifications, enantimerseparations, and organic solvent nanofiltration), respectively. Hopefully, this review can enlighten on how to effectively build functional nanochannels and facilitate their practical applications in membrane separations.
Collapse
Affiliation(s)
- Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Qiang He
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiaowen Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jiehai Peng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
15
|
Recent progress of membrane technology for chiral separation: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Li RH, Lin Q, Li SL, Sun Y, Liu Y. MXenes Functionalized with Macrocyclic Hosts: From Molecular Design to Applications. Chempluschem 2023; 88:e202200423. [PMID: 36680301 DOI: 10.1002/cplu.202200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Two-dimensional (2D) MXene has aroused wide attention for its excellent physical and chemical properties. The interlayer engineering formed by layer-by-layer stacking of MXene nanosheets can be employed for molecular sieving and water purification by incorporating specific groups onto the exterior surface of MXene. Macrocyclic hosts exhibiting unique structural features and recognition ability can construct smart devices for external stimuli with reversible features between macrocycles and guests. On that basis, macrocyclic hosts can be anchored to MXene to provide numerous insights into their compositions and intercalation states. In this review, the MXene prepared based on macrocyclic hosts from molecular design to applications is highlighted. Various MXenes functionalized with macrocyclic hosts are empowered in functional membrane (including water purification, organic solvent nanofiltration, and electromagnetic shielding), photocatalysis, sensing, and adsorption (interactions with specific guest). Hopefully, this review can bring new inspiration to the design of multifunctional MXene-based materials and improving its practical applications.
Collapse
Affiliation(s)
- Run-Hao Li
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Qian Lin
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Shu-Lan Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.,State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
17
|
Li W, Xu W, Zhang S, Li J, Zhou J, Tian D, Cheng J, Li H. Supramolecular Biopharmaceutical Carriers Based on Host-Guest Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12746-12759. [PMID: 36094144 DOI: 10.1021/acs.jafc.2c04822] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional drugs have the disadvantages of poor permeability and low solubility, which makes the utilization of pesticides lower and brings many side effects. With the continuous development of supramolecular chemistry in recent years, it has also played an irreplaceable role in the field of pharmaceutical science. Supramolecular macrocycles, such as crown ethers, cyclodextrins, calixarenes, pillararenes and cucurbiturils, are potentially good candidates for drug carriers due to their biocompatibility, hydrophobic cavity and ease of derivatization. The encapsulation of drugs based on host-guest interaction has the advantage of being adjustable and reversible as well as improving the low availability of drugs. Here, the recent advances in methods and strategies for drug encapsulation and release based on supramolecular macrocycles with host-guest interactions have been systematically summarized, laying a bright foundation for the development of novel nanopesticide preparations in the future and pointing out future directions of novel biopesticide research.
Collapse
Affiliation(s)
- Wenjie Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Jia Li
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| |
Collapse
|
18
|
Qin H, Ding X, Cheng SQ, Qin SY, Han X, Sun Y, Liu Y. An H 2S-Regulated Artificial Nanochannel Fabricated by a Supramolecular Coordination Strategy. J Phys Chem Lett 2022; 13:9232-9237. [PMID: 36173107 DOI: 10.1021/acs.jpclett.2c02233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hydrogen sulfide (H2S), as the third gasotransmitter, has an important impact on physiological and pathological activities. Herein, we fabricated an artificial nanochannel with a conductance value of 2.01 nS via a supramolecular coordination strategy. Benefiting from the unique H2S-mediated covalent reaction, the nanochannel biosensor could change from ON to OFF states with the addition of H2S. Furthermore, this nanochannel directed the ion transport, showing a high rectification ratio as well as gating ratio. Subsequently, theoretical simulations were conducted to help to reveal the possible mechanism of the functionalized nanochannel. This study can provide insights for better understanding the process of H2S-regulated biological channels and fabricating gas gated nanofluids.
Collapse
Affiliation(s)
- Huan Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaolong Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Shi-Qi Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
19
|
Quan J, Guo Y, Ma J, Long D, Wang J, Zhang L, Sun Y, Dhinakaran MK, Li H. Light-responsive nanochannels based on the supramolecular host–guest system. Front Chem 2022; 10:986908. [PMID: 36212057 PMCID: PMC9532542 DOI: 10.3389/fchem.2022.986908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The light-responsive nanochannel of rhodopsin gained wider research interest from its crucial roles in light-induced biological functions, such as visual signal transduction and energy conversion, though its poor stability and susceptibility to inactivation in vitro have limited its exploration. However, the fabrication of artificial nanochannels with the properties of physical stability, controllable structure, and easy functional modification becomes a biomimetic system to study the stimulus-responsive gating properties. Typically, light-responsive molecules of azobenzene (Azo), retinal, and spiropyran were introduced into nanochannels as photo-switches, which can change the inner surface wettability of nanochannels under the influence of light; this ultimately results in the photoresponsive nature of biomimetic nanochannels. Furthermore, the fine-tuning of their stimulus-responsive properties can be achieved through the introduction of host–guest systems generally combined with a non-covalent bond, and the assembling process is reversible. These host–guest systems have been introduced into the nanochannels to form different functions. Based on the host–guest system of light-responsive reversible interaction, it can not only change the internal surface properties of the nanochannel and control the recognition and transmission behaviors but also realize the controlled release of a specific host or guest molecules in the nanochannel. At present, macrocyclic host molecules have been introduced into nanochannels including pillararenes, cyclodextrin (CD), and metal–organic frameworks (MOFs). They are introduced into the nanochannel through chemical modification or host–guest assemble methods. Based on the changes in the light-responsive structure of azobenzene, spiropyran, retinal, and others with macrocycle host molecules, the surface charge and hydrophilic and hydrophobic properties of the nanochannel were changed to regulate the ionic and molecular transport. In this study, the development of photoresponsive host and guest-assembled nanochannel systems from design to application is reviewed, and the research prospects and problems of this photo-responsive nanochannel membrane are presented.
Collapse
Affiliation(s)
- Jiaxin Quan
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| | - Ying Guo
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry, School of Pharmacy Hubei University of Medicine, Shiyan, China
| | - Deqing Long
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Jingjing Wang
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Liling Zhang
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Yong Sun
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| |
Collapse
|
20
|
Tang M, Liu YH, Liu H, Mao Q, Yu Q, Kitagishi H, Zhang YM, Xiao L, Liu Y. Supramolecular Dual Polypeptides Induced Tubulin Aggregation for Synergistic Cancer Theranostics. J Med Chem 2022; 65:13473-13481. [DOI: 10.1021/acs.jmedchem.2c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mian Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyoto 610-0321, Japan
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyoto 610-0321, Japan
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
21
|
Zhou Z, Chen IC, Rehman LM, Aboalsaud AM, Shinde DB, Cao L, Zhang Y, Lai Z. Conjugated microporous polymer membranes for light-gated ion transport. SCIENCE ADVANCES 2022; 8:eabo2929. [PMID: 35714184 PMCID: PMC9205585 DOI: 10.1126/sciadv.abo2929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 05/28/2023]
Abstract
Inspired by the light-gated ion channels in cell membranes that play important roles in many biological activities, herein, we developed an artificial light-gated ion channel membrane out of conjugated microporous polymers. Through bottom-up design of the monomer molecular structure and by the electropolymerization method, the membrane pore size and thickness were precisely controlled on the molecular level. The obtained membrane exhibited uniform pore size and highly sensitive light-switchable response. The photoisomerization of the polymer chain resulted in a reversible "on and off" light control over the pore size and subsequently led to light-gated ion transport across the membrane for a series of ions including hydrogen, potassium, sodium, lithium, calcium, magnesium, and aluminum ions.
Collapse
|
22
|
Yang L, Zhang F, Chen C, Liu Z, Liu L, Li H. An Ultraviolet/Visible Light Regulated Protein Transport Gate Constructed by Pillar[6]arene-based Host-Guest System. Chem Asian J 2022; 17:e202200455. [PMID: 35532204 DOI: 10.1002/asia.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/06/2022] [Indexed: 11/08/2022]
Abstract
Protein transport is an interesting and intrinsic life feature that is highly relevant to physiology and disease in living beings. Herein, inspired by nature, based on the supramolecular host-guest interaction, we have introduced the classical azobenzene light switches and L-phenylalanine derived pillar[6]arene (L-Phe-P6) into the artificial nanochannel to construct light-responsive nanochannels that could regulate protein transport effectively under the control of ultraviolet (UV) and visible (Vis) light. The light-controlled distribution of L-Phe-P6 in the channel led to the difference in surface charges in the nanochannel, which eventually brought the difference in protein transport. This research may not only provide a convenient theoretical model for biological research, but also a flexible light-responsive protein transport model, which will play a crucial role in light-controlled release of protein drugs and so on.
Collapse
Affiliation(s)
- Lei Yang
- Central China Normal University, College of Chmistry, CHINA
| | - Fan Zhang
- Hubei University, College of Chemistry and Chemical Engineering, CHINA
| | - Chunxiu Chen
- Central China Normal University, College of Chemistry, CHINA
| | - Zhisheng Liu
- Central China Normal University, College of Chemistry, CHINA
| | - Lu Liu
- Central China Normal University, College of Chemistry, CHINA
| | - Haibing Li
- Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA
| |
Collapse
|
23
|
Kan X, Wu C, Wen L, Jiang L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. SMALL METHODS 2022; 6:e2101255. [PMID: 35218163 DOI: 10.1002/smtd.202101255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biological nanochannels which can regulate ionic transport across cell membranes intelligently play a significant role in physiological functions. Inspired by these nanochannels, numerous artificial nanochannels have been developed during recent years. The exploration of smart solid-state nanochannels can lay a solid foundation, not only for fundamental studies of biological systems but also practical applications in various fields. The basic fabrication principles, functional materials, and diverse applications based on artificial nanochannels are summarized in this review. In addition, theoretical insights into transport mechanisms and structure-function relationships are discussed. Meanwhile, it is believed that improvements will be made via computer-guided strategy in designing more efficient devices with upgrading accuracy. Finally, some remaining challenges and perspectives for developments in both novel conceptions and technology of this inspiring research field are stated.
Collapse
Affiliation(s)
- Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
24
|
Cai J, Zhang W, Xu L, Hao C, Ma W, Sun M, Wu X, Qin X, Colombari FM, de Moura AF, Xu J, Silva MC, Carneiro-Neto EB, Gomes WR, Vallée RAL, Pereira EC, Liu X, Xu C, Klajn R, Kotov NA, Kuang H. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. NATURE NANOTECHNOLOGY 2022; 17:408-416. [PMID: 35288671 DOI: 10.1038/s41565-022-01079-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/13/2022] [Indexed: 05/21/2023]
Abstract
Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane-electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics.
Collapse
Affiliation(s)
- Jiarong Cai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, China
- Beijing Computational Science Research Centre, Beijing, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Jiahui Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| | - Rafal Klajn
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Michigan Institute for Translational Nanotechnology, Ypsilanti, MI, USA.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
| |
Collapse
|
25
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
26
|
Cheng SQ, Zhang SY, Min XH, Tao MJ, Han XL, Sun Y, Liu Y. Photoresponsive Solid Nanochannels Membranes: Design and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105019. [PMID: 34910848 DOI: 10.1002/smll.202105019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Light stimuli have notable advantages over other environmental stimuli, such as more precise spatial and temporal regulation, and the ability to serve as an energy source to power the system. In nature, photoresponsive nanochannels are important components of organisms, with examples including the rhodopsin channels in optic nerve cells and photoresponsive protein channels in the photosynthesis system of plants. Inspired by biological channels, scientists have constructed various photoresponsive, smart solid-state nanochannels membranes for a range of applications. In this review, the methods and applications of photosensitive nanochannels membranes are summarized. The authors believe that this review will inspire researchers to further develop multifunctional artificial nanochannels for applications in the fields of biosensors, stimuli-responsive smart devices, and nanofluidic devices, among others.
Collapse
Affiliation(s)
- Shi-Qi Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Si-Yun Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, P. R. China
| | - Xue-Hong Min
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Ming-Jie Tao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Xiao-Le Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Yue Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
27
|
Shi L, Kuang D, Ma X, Jalalah M, Alsareii SA, Gao T, Harraz FA, Yang J, Li G. Peptide Assembled in a Nano-confined Space as a Molecular Rectifier for the Availability of Ionic Current Modulation. NANO LETTERS 2022; 22:1083-1090. [PMID: 35049303 DOI: 10.1021/acs.nanolett.1c04154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioinspired nanochannels have emerged as a powerful tool for bioengineering and biomedical research due to their robust mechanical and controllable chemical properties. Inspired by inward-rectifier potassium (K+) channels, herein, the charged peptide assembly has been introduced into a nano-confined space for the modulation of ion current rectification (ICR). Peptide-responsive reaction-triggered sequence changes can contribute to polarity conversion of the surface charge; therefore, ICR reversal (ICRR) is generated. Compared with other responsive elements, natural charged peptides show the merit of controllable charge polarity. By electrochemically monitoring the ICRR as an output signal, one can utilize the peptide assembly-mediated ICRR to construct an ionic sensory platform. In addition, a logic gate has been established to demonstrate the availability of an ionic sensory platform for inhibitor screening. As peptide nanoassemblies may also have various structures and functions due to their diverse properties, the ionic modulation system can provide alternatives for the assay of peptide-associated biotargets with biomedical applications.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Deqi Kuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xuemei Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
28
|
Zhang Y, Liu F, Zhao J, Yan M, Wang X, Wang W. Dual pH-/Photo-Responsive Color Switching Systems for Dynamic Rewritable Paper. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5825-5833. [PMID: 35068137 DOI: 10.1021/acsami.1c22306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart color switching materials that can change color with a fast response and a high reversibility have attracted increasing attention in color-on-demand applications. However, most of them can only respond to a single stimulus from their external environment, which dramatically limits their broad applications. To address this problem, we report a new strategy in developing a dual pH-/photo-responsive color switching system by coupling the pH-dependent and redox-driven color switchable neutral red (NR) with photoreductive TiO2-x nanoparticles. The biodegradable TiO2-x nanoparticles/NR/agarose gel film shows a rapid color switching between yellow and red upon stimulation with acidic/basic vapors in more than 20 cycles because of the protonation and deprotonation process of NR. Moreover, the film shows interesting photoreversible color switching properties under both acidic and basic conditions, including a fast response time and a high reversibility. Taking advantage of the excellent dual pH-/photo-responsive color switching properties, we demonstrated the potential applications of the TiO2-x nanoparticles/NR/agarose gel film in dynamic rewritable paper, in which the created patterns by photo-printing produce dynamic color changing upon applying an acidic or a basic vapor. We believe that the result will enable a new path for the development of dual- and even multi-responsive color switching systems, broadening their new applications.
Collapse
Affiliation(s)
- Yun Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jingmei Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Wenshou Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
29
|
Sun Y, Wang C, Yi F, Li RH, Liang X, He Q, Min X, Hu X. Facile Surface Functionalization of MXene by Pillar[5]arene for Enhanced Electrochemical Performance. Chem Commun (Camb) 2022; 58:3170-3173. [DOI: 10.1039/d1cc05998j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple strategy was used to prepare functional two-dimensional materials via combination of pillar[5]arene (P5) and MXene. Electrochemical results of MXene-P5 exhibits high supramolecular recognition, enrichment capability, and high electrochemical...
Collapse
|
30
|
Sun Y, Liang X, Cheng SQ, He Q, Zhou ZQ, Zhao Y. Porphyrin Derivative Based Tandem Response Nanochannels Triggered by Zn2+ and NO. Chem Commun (Camb) 2022; 58:8286-8289. [DOI: 10.1039/d2cc02163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe tandem response solid nanochannels tailored with a porphyrin derivative that show Zn2+ and NO gating behaviors with good selectivity, stability, and reversibility. EXAFS and fluorescence experiments showed that...
Collapse
|
31
|
He Q, Tao M, Ali W, Min X, Zhao Y. Artificial chiral nanochannels. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1991924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiang He
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, China
| | - Mingjie Tao
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wajahat Ali
- Department of Chemistry, University of Baltistan, Skardu, Pakistan
| | - Xuehong Min
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yanxi Zhao
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
32
|
Sharma R, Geranpayehvaghei M, Ejeian F, Razmjou A, Asadnia M. Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta 2021; 235:122815. [PMID: 34517671 DOI: 10.1016/j.talanta.2021.122815] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Nano structured ion-selective membranes (ISMs) are very attractive materials for a wide range of sensing and ion separation applications. The present review focuses on the design principles of various ISMs; nanostructured and ionophore/ion acceptor doped ISMs, and their use in biomedical engineering. Applications of ISMs in the biomedical field have been well-known for more than half a century in potentiometric analysis of biological fluids and pharmaceutical products. However, the emergence of nanotechnology and sophisticated sensing methods assisted in miniaturising ion-selective electrodes to needle-like sensors that can be designed in the form of implantable or wearable devices (smartwatch, tattoo, sweatband, fabric patch) for health monitoring. This article provides a critical review of recent advances in miniaturization, sensing and construction of new devices over last decade (2011-2021). The designing of tunable ISM with biomimetic artificial ion channels offered intensive opportunities and innovative clinical analysis applications, including precise biosensing, controlled drug delivery and early disease diagnosis. This paper will also address the future perspective on potential applications and challenges in the widespread use of ISM for clinical use. Finally, this review details some recommendations and future directions to improve the accuracy and robustness of ISMs for biomedical applications.
Collapse
Affiliation(s)
- Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marzieh Geranpayehvaghei
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Center for Membrane Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
33
|
Yang L, Cheng M, Quan J, Zhang S, Liu L, Johnson RP, Zhang F, Li H. Construction of A High‐Flux Protein Transport Channel Inspired by the Nuclear Pore Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Lu Liu
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | | | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
34
|
Yang L, Cheng M, Quan J, Zhang S, Liu L, Johnson RP, Zhang F, Li H. Construction of A High-Flux Protein Transport Channel Inspired by the Nuclear Pore Complex. Angew Chem Int Ed Engl 2021; 60:24443-24449. [PMID: 34528744 DOI: 10.1002/anie.202110273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Indexed: 11/07/2022]
Abstract
Inspired by the nuclear pore complex (NPC), herein we have established a biomimetic high-flux protein delivery system via the ingenious introduction of pillar[5]arene-based host-guest system into one side of artificial hour-glass shaped nanochannel. With a transport flux of 660 lysozymes per minute, the system provides efficient high-flux protein transport at a rate which is significantly higher than that of an unmodified nanochannel and conventional bilateral symmetrical modified nanochannels. In view of these promising results, the use of artificial nanochannel to improve protein transport not only presents a new potential chemical model for biological research and better understanding of protein transport behavior in the living systems, but also provides a high-flux protein transporter device, which may have applications in the design of protein drug release systems, protein separation systems and microfluidics in the near future.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lu Liu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Robert P Johnson
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
35
|
Qian T, Zhao C, Wang R, Chen X, Hou J, Wang H, Zhang H. Synthetic azobenzene-containing metal-organic framework ion channels toward efficient light-gated ion transport at the subnanoscale. NANOSCALE 2021; 13:17396-17403. [PMID: 34642709 DOI: 10.1039/d1nr04595d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial nanochannels with diverse responsive properties have been widely developed to replicate the smart gating functionalities of biological ion channels. However, in these traditional nanochannels, common responsive molecules are usually too small to efficiently block the large channels under the closed states, leading to weak gating performances. Herein, we report carboxylated azobenzene-coordinated metal-organic-framework (AZO-MOF) ion channels with impressive light-gating properties. The AZO-MOF ion channels were synthesized by the confined growth of AZO-MOFs, composed of light-responsive AZO-containing ligands, non-responsive ligands and metal clusters, into ion-track-etched polymer nanochannels. The AZO-MOF ion channels with an appropriate number of AZO ligands showed a well-maintained crystalline and three-dimensional porous structure, including nanoscale cavities and subnanoscale windows for LiCl conduction. Meanwhile, the AZO-containing ligands bend and stretch upon light irradiation to open and close the pathways, thus gating the ion flux through the AZO-MOF ion channels with high on-off ratios up to 40.2, which is ∼2.3-30 times those of AZO-encapsulated MOF ion channels and AZO-modified nanochannels. This work suggests ways to achieve subnanoscaled gating of ion transport by angstrom-porous MOFs coordinated by stimuli-responsive ligands.
Collapse
Affiliation(s)
- Tianyue Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Ruoxin Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Xiaofang Chen
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
36
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
37
|
Li C, Chen H, Yang X, Wang K, Liu J. An ion transport switch based on light-responsive conformation-dependent G-quadruplex transmembrane channels. Chem Commun (Camb) 2021; 57:8214-8217. [PMID: 34308935 DOI: 10.1039/d1cc03273a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A light-responsive ion transport switch has been developed based on conformation-dependent azobenzene-incorporated lipophilic G-quadruplex channels, which provides a new smart approach for the selective transport of K+ ions across the lipid membrane.
Collapse
Affiliation(s)
- Chunying Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | |
Collapse
|
38
|
Zhang S, Cheng M, Dhinakaran MK, Sun Y, Li H. Enantioselective Antiport in Asymmetric Nanochannels. ACS NANO 2021; 15:13148-13154. [PMID: 34319088 DOI: 10.1021/acsnano.1c02630] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enantioselective sensing and separation are major challenges. Nanochannel technologies are energy-saving and efficient for membrane separation. Herein, inspired by biological antiporter proteins, artificial nanochannels with antiporter behavior were fabricated for chiral sensing and separation. Tyrosine enantiomers were incorporated into hourglass-shaped nanochannels via stepwise modifications to fabricating multiligand-modified asymmetric channels. Chiral distinction of naproxen enantiomers was amplified in the l-Tyr/d-Tyr channels, with an enantioselectivity coefficient of 524, which was over 100-fold that of one-ligand-modified nanochannels. Furthermore, transport experiments evidenced the spontaneous antiport of naproxen enantiomers in the l-Tyr/d-Tyr channels. The racemic naproxen sample was separated via the chiral antiport process, with an enantiomeric excess of 71.2%. Further analysis using electro-osmotic flow experiments and finite-element simulations confirmed that the asymmetric modified multiligand was key to achieving separation of the naproxen enantiomers. We expect these multiligand-modified asymmetric nanochannels to provide insight into mimicking biological antiporter systems and offer an approach to energy-efficient and robust enantiomer separation.
Collapse
Affiliation(s)
- Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, People's Republic of China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, People's Republic of China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, People's Republic of China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, People's Republic of China
| |
Collapse
|
39
|
Khalil-Cruz LE, Liu P, Huang F, Khashab NM. Multifunctional Pillar[ n]arene-Based Smart Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31337-31354. [PMID: 34184874 DOI: 10.1021/acsami.1c05798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of smart nanomaterials from host macrocycles that are responsive to specific stimuli has gained significant attention in recent years. The application of pillar[n]arenes has been of particular interest given their ease of functionalization and tunability of the intrinsic cavity electronic properties that allows them to encapsulate a great variety of guests and complex with metal ions with high selectivity via noncovalent interactions, endowing them with captivating properties and functions. Herein, we present the most recent advances in the design and functionalization of pillar[n]arene-based smart nanomaterials, and their applications for sensing, catalysis, drug delivery, and artificial transmembrane channels.
Collapse
Affiliation(s)
- Laila E Khalil-Cruz
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High- Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
40
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
41
|
Cai J, Ma W, Hao C, Sun M, Guo J, Xu L, Xu C, Kuang H. Artificial light-triggered smart nanochannels relying on optoionic effects. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Cheng SQ, Liu XQ, Han ZL, Rong Y, Qin SY, Sun Y, Li H. Tailoring CO 2-Activated Ion Nanochannels Using Macrocyclic Pillararenes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27255-27261. [PMID: 34029047 DOI: 10.1021/acsami.1c03329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas-responsive nanochannels have great relevance for applications in many fields. Inspired by CO2-sensitive ion channels, herein we present an approach for designing solid-state nanochannels that allow controlled regulation of ion transport in response to alternate CO2/N2 stimuli. The pillar[5]arene (P5N) bearing diethylamine groups can convert into the water-soluble host P5C, containing cationic tertiary ammonium salt groups after absorbing CO2. Subsequently, the nanochannel walls are tailored using P5N-based host-guest chemistry. The ion transport rate of K+ in the P5N nanochannels under CO2 was 1.66 × 10-4 mol h-1 m-2, whereas that under N2 was 7.98 × 10-4 mol h-1 m-2. Notably, there was no significant change to the ion current after eight cycles, which may indicate the stability and repeatability of CO2-activated ion nanochannels. It is speculated that the difference in ion conductance resulted from the change in wettability and surface charge within the nanochannels in response to the gas stimuli. Achieving CO2-activated ion transport in solid-state nanochannels opens new avenues for biomimetic nanopore systems and advanced separation processes.
Collapse
Affiliation(s)
- Shi-Qi Cheng
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Xue-Qing Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Zhi-Liang Han
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Yu Rong
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 P.R. China
| |
Collapse
|
43
|
Li X, Yang Y, Quan J, Zhang J, Cheng M, Yan H, Zhang S, Yang L, Lu Z, Li H. A layer-by-layer assembled D/L-arginine-calix[4]arene-Si-surface for macroscopic enantio-selective discrimination of ( R)/( S)-ibuprofen. Chem Commun (Camb) 2021; 57:5706-5709. [PMID: 33982718 DOI: 10.1039/d1cc01307f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chiral arginine was introduced by layer-by-layer assembly onto a calix[4]arene-diacid modified silica surface to control the adsorption of different kinds of ibuprofen droplets. The droplet of (S)-ibuprofen slid off rapidly, whereas the droplet of (R)-ibuprofen absorbed on the modified surface.
Collapse
Affiliation(s)
- Xiong Li
- Department of ultrasound, Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
| | - Yingying Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jin Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Hewei Yan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Zhiyan Lu
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang District, Wuhan 430071, Hubei, China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
44
|
Wu YY, Chen LD, Cai XH, Zhao Y, Chen M, Pan XH, Li YQ. Smart pH-Modulated Two-Way Photoswitch Based on a Polymer-Modified Single Nanochannel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25241-25249. [PMID: 34018390 DOI: 10.1021/acsami.1c01975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this article, we have demonstrated a smart pH-modulated two-way photoswitch that can reversibly switch ion transport under alternating light exposure over a wide pH range. This photoswitch was prepared by functionalizing the interior of a single conical glass nanochannel with a poly-spiropyran-linked methacrylate (P-SPMA) polymer through surface-initiated atom transfer radical polymerization. The P-SPMA polymer brushes comprise functional groups that are responsive to light and pH, which can cause configuration and charge changes to affect the properties of the nanochannel wall. The SPMA polymer-modified nanochannel not only reversibly controlled ion transport under alternating light irradiation but also efficiently and flexibly regulated the direction and extent of the ion transport based on the pH. This two-way photoswitch exhibits the considerable potential of photoresponsive polymers for the advancement of "intelligent" bionic nanochannel devices for ion screening and optical sensing in various applications.
Collapse
Affiliation(s)
- Yuan-Yi Wu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Li-Dong Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xiu-Hong Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yan Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Min Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xiao-Hui Pan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
45
|
Quan J, Zhu F, Dhinakaran MK, Yang Y, Johnson RP, Li H. A Visible-Light-Regulated Chloride Transport Channel Inspired by Rhodopsin. Angew Chem Int Ed Engl 2021; 60:2892-2897. [PMID: 33145896 DOI: 10.1002/anie.202012984] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Indexed: 01/16/2023]
Abstract
Inspired by the light-regulating capabilities of naturally occurring rhodopsin, we have constructed a visible-light-regulated Cl- -transport membrane channel based on a supramolecular host-guest interaction. A natural retinal chromophore, capable of a visible-light response, is used as the guest and grafted into the artificial channel. Upon introduction of an ethyl-urea-derived pillar[6]arene (Urea-P6) host, threading or de-threading of the retinal and selective bonding of Cl- can be utilized to regulate ion transport. Based on the visible-light responsiveness of the host-guest interaction, Cl- transport can be regulated by visible light between ON and OFF states. Visible-light-regulated Cl- transport as a chemical model permits to understand comparable biological ion-selective transport behaviors. Furthermore, this result also supplies a smart visible-light-responsive Cl- transporter, which may have applications in natural photoelectric conversion and photo-controlled delivery systems.
Collapse
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yingying Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Robert P Johnson
- School of Chemistry, University College Dublin, Dublin, 4, Ireland
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
46
|
Quan J, Zhu F, Dhinakaran MK, Yang Y, Johnson RP, Li H. A Visible‐Light‐Regulated Chloride Transport Channel Inspired by Rhodopsin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Yingying Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | | | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
47
|
Zhang S, Boussouar I, Li H. Selective sensing and transport in bionic nanochannel based on macrocyclic host-guest chemistry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Chong H, Nie C, Wang L, Wang S, Han Y, Wang Y, Wang C, Yan C. Construction and investigation of photo-switch property of azobenzene-bridged pillar[5]arene-based [3]rotaxanes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Hu X, Yang H. A reversible single-molecule ligand-gating ion transportation switch of ON–OFF–ON type through a photoresponsive pillar[6]arene channel complex. RSC Adv 2021; 11:7450-7453. [PMID: 35423228 PMCID: PMC8695115 DOI: 10.1039/d0ra10871e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/08/2021] [Indexed: 12/04/2022] Open
Abstract
A reversible pseudo-single-ligand-gated ion transportation switch of ON–OFF–ON type was achieved through host–guest complexation with pillar[6]arene (P[6]) as the ion channel, and a photoresponsive azobenzene as the dual-role (open and close) ligand. A reversible pseudo-single-ligand-gated ion transportation switch of ON–OFF–ON type through pillar[6]arene and photoresponsive azobenzene as dual-role ligand.![]()
Collapse
Affiliation(s)
- Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou)
- College of Electrical and Electronic Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Haishen Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai
- People's Republic of China
| |
Collapse
|
50
|
Leifert D, Moreland AS, Limwongyut J, Mikhailovsky AA, Bazan GC. Photoswitchable Conjugated Oligoelectrolytes for a Light-Induced Change of Membrane Morphology. Angew Chem Int Ed Engl 2020; 59:20333-20337. [PMID: 32596843 DOI: 10.1002/anie.202004448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Indexed: 11/07/2022]
Abstract
The synthesis of a new conjugated oligoelectrolyte (COE), namely DSAzB, is described, which contains a conjugated core bearing a diazene moiety in the center of its electronically delocalized structure. Similar to structurally related phenylenevinylene-based COEs, DSAzB readily intercalates into model and natural lipid bilayer membranes. Photoinduced isomerization transforms the linear trans COE into a bent or C-shape form. It is thereby possible to introduce DSAzB into the bilayer of a cell and disrupt its integrity by irradiation with light. This leads to controlled permeabilization of membranes, as demonstrated by the release of calcein from DMPG/DMPC vesicles and by propidium iodide influx experiments on S. epidermidis. Both experiments support that the permeabilization is selective for the light stimulus, highly efficient, and repeatable. Target-selective and photoinduced actions demonstrated by DSAzB may have broad applications in biocatalysis and related biotechnologies.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Jakkarin Limwongyut
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Alexander A Mikhailovsky
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical Engineering, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|